
Please cite the Published Version

Marshall, Zoe , Runacres, Adam , Hallal, Pedro Curi, Jago, Russ, Kwon, Soyang, North-
stone, Kate, Pate, Russell R, Puder, Jardena, Reilly, John J, Sardinha, Luis B , Wedderkopp,
Niels and Van Slujis, Ester (2025) Associations between 24-hour movement compositions and
cardiometabolic health in children and adolescents: a five-part compositional analysis using data
from the International Children’s Accelerometery Database (ICAD). BMJ Open Sport & Exercise
Medicine, 11 (2). e002568 ISSN 2055-7647

DOI: https://doi.org/10.1136/bmjsem-2025-002568

Publisher: BMJ Group

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/640418/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article published in BMJ Open Sport & Exercise
Medicine, by BMJ Group.

Data Access Statement: Data may be obtained from a third party and are not publicly available.
All data were sourced from the International Children’s Accelerometery Database (ICAD). The
data may be obtained by submitting a research proposal, more details of which can be found here:
http://www.mrc-epid. cam.ac.uk/research/studies/icad/.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-4100-2689
https://orcid.org/0000-0002-8251-2805
https://orcid.org/0000-0002-6230-6027
https://doi.org/10.1136/bmjsem-2025-002568
https://e-space.mmu.ac.uk/640418/
https://creativecommons.org/licenses/by/4.0/
http://www.mrc-epid
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Marshall ZA, et al. BMJ Open Sp Ex Med 2025;11:e002568. doi:10.1136/bmjsem-2025-002568    1

Open access� Original research

Associations between 24-hour movement 
compositions and cardiometabolic health 
in children and adolescents: a five-part 
compositional analysis using data from 
the International Children’s 
Accelerometery Database (ICAD)

Zoë A Marshall  ‍ ‍ ,1,2 Adam Runacres  ‍ ‍ ,1 Pedro Curi Hallal,3 Russ Jago,4 
Soyang Kwon,5 Kate Northstone,4 Russell R Pate,6 Jardena Puder,7 John J Reilly,8 
Luis B Sardinha  ‍ ‍ ,9 Niels Wedderkopp,10 Ester Van Slujis,11 On behalf of the 
International Children’s Accelerometery Database (ICAD) Collaborators

To cite: Marshall ZA, 
Runacres A, Hallal PC, et al 
. Associations between 24-
hour movement compositions 
and cardiometabolic health 
in children and adolescents: 
a five-part compositional 
analysis using data from 
the International Children’s 
Accelerometery Database 
(ICAD). BMJ Open Sport 
& Exercise Medicine 
2025;11:e002568. doi:10.1136/
bmjsem-2025-002568

	► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (https://​doi.​
org/​10.​1136/​bmjsem-​2025-​
002568).

Accepted 20 May 2025

For numbered affiliations see 
end of article.

Correspondence to
Dr Adam Runacres;  
​a.​runacres@​mmu.​ac.​uk

© Author(s) (or their 
employer(s)) 2025. Re-use 
permitted under CC BY. 
Published by BMJ Group.

ABSTRACT
Objectives  The benefits of physical activity (PA) and the 
negative impacts of sedentary time (SED) on health in youth 
are well established. However, uncertainty remains surrounding 
how PA and SED jointly influence cardiometabolic risk (CMR) 
factors. The aim of this study was to determine the joint 
influence of SED, light-, moderate- and vigorous-intensity PA 
(LPA, MPA and VPA), and sleep on CMR factors using five-part 
compositional analyses.
Methods  Data were pooled from 16 cohort studies 
comprising 22 474 children and adolescents from the 
International Children’s Accelerometery Database. PA 
was measured using hip-mounted accelerometers with 
sleep self-reported. CMRs included body mass index 
(BMI), waist circumference (WC), systolic and diastolic 
blood pressure, fasting high- and low-density lipoprotein 
cholesterol, triglycerides, insulin and glucose. Time spent 
for sleep, SED, LPA, MPA and VPA was analysed using a 
compositional linear regression model.
Results  The overall PA composition explained between 3.0 
and 27.0% of the variance in CMR factors after accounting 
for age, sex, ethnicity and seasonal variation. However, when 
movement behaviours were explored in isolation, only sleep 
was associated with all CMR factors. In girls, compositions with 
10 min more VPA were associated with a 2.5–4.4% greater BMI 
and WC. However, 10 min reallocations of time in boys had no 
impact on any CMR factor.
Conclusion  These findings highlight that sleep and VPA 
are significantly associated with all CMR factors in youth, 
and therefore specific recommendations are needed to 
improve the current, and future, health of children and 
adolescents.

INTRODUCTION
The relationship between physical activity 
(PA) and cardiometabolic health is well docu-
mented in a variety of population groups.1–5 

Markers for cardiometabolic risk (CMR), such 
as atherosclerosis and cardiovascular disease 
(CVD), begin in early childhood, with factors 
such as obesity, sedentariness and physical 
inactivity suggested to increase the progres-
sion of risk throughout childhood.1 PA in 
paediatric populations has been shown to 
be a protective factor for current, and future 
CMR6; therefore, the risk of developing CVD 
and metabolic conditions later in life may be 
significantly reduced for those meeting PA 
recommendations.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Physical activity (PA) in children and adolescents is 
strongly associated with cardiometabolic health.

	⇒ Different movement behaviours when studied in iso-
lation have significant, and independent, effects on 
cardiometabolic health in children and adolescents.

WHAT THIS STUDY ADDS
	⇒ This study furthers the understanding of the inde-
pendent, and interactive, effect of movement be-
haviours on cardiometabolic health in children and 
adolescents.

	⇒ Sleep and vigorous intensity PA were highlighted as 
key indicators for favourable cardiometabolic health.

	⇒ 10 min reallocation of PA in boys, irrespective of in-
tensity, had no significant impact on any cardiomet-
abolic risk factor.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Future PA guidelines should highlight the importance 
of higher-intensity PA and meeting sleep recom-
mendations to promote favourable cardiometabolic 
health in children and adolescents.
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The majority of our understanding of the relationship 
between PA and health outcomes still revolves around 
moderate to vigorous PA (MVPA), with a developing 
understanding of the influence of remaining behaviours 
(ie, sedentary time (SED), sleep and light-intensity PA 
(LPA)) that make up on average 95% of a child’s day.5 The 
intensity of PA is recognised as important for cardiometa-
bolic health, as demonstrated by the WHO PA guidelines 
setting explicit targets for daily MVPA in children and 
adolescents.7 However, the collapsing of moderate 
and vigorous movements into one metric, MVPA, may 
be masking the importance of higher-intensity move-
ment.8–10 Indeed, previous research exploring the impact 
of higher-intensity movement suggests that moderate-
intensity movement may not be a sufficient stimulus to 
‘trigger potential cardiometabolic benefits in healthy 
children’.10 More specifically, a number of studies high-
light the importance of VPA in children and adolescents, 
with those who engage in higher volumes of VPA shown 
to have more favourable outcomes in adiposity,11 12 
cardiovascular health10 13 and cardiorespiratory fitness.8 14 
Higher-intensity movement is linked to higher fitness 
and lower adiposity, but on the other end of the intensity 
spectrum, evidence suggests that time spent on LPA may 
also be beneficial for markers of cardiovascular health, 
primarily systolic and diastolic blood pressures.15 Studies 
using compositional analyses and isotemporal substitu-
tion, which models the predicted outcomes in health 
markers when time is reallocated from one behaviour 
to another, indicate that engaging in PA, regardless of 
intensity, is beneficial for cardiovascular health.16 17 These 
results are in conflict with earlier studies suggesting that 
total SED accrued is independently associated with CMR 
than PA alone.18 19

While the relationship between PA and cardiometa-
bolic health is well established, a greater understanding 
is required of their interaction with SED and sleep given 
that the majority of any 24-hour period is spent in one 
of these behaviours.20 As such, an integrated approach 
is necessary to better understand how health outcomes 
relate to the 24-hour composition of movement 
behaviours. This integrated approach has been applied 
previously by a number of authors, including advocates 
for compositional analysis including Dumuid et al21 and 
Chastin et al.22 The use of compositional approaches 
controls for the inherently codependent nature of 
movement behaviours to explore the collective and inde-
pendent associations of time spent in each intensity of 
movement with health outcomes.21 22 As a result, compo-
sitional analysis can overcome issues of collinearity often 
found with traditional approaches20–22 and can also 
model how reallocating time from one behaviour to 
another could impact health outcomes.23 Research that 
employed compositional analysis in children and adoles-
cents found the combined associations of time in waking 
movement to be important for cardiometabolic health. 
More specifically, compositions with more time in VPA 
were particularly favourable for markers of adiposity, 

body mass index (BMI) z-score (BMI-z), waist circum-
ference (WC) and high-density lipoprotein cholesterol 
(HDL-C) levels,11 while days with short sleep and high 
SED were linked to increased adiposity and risk of meta-
bolic syndrome in children.24 Furthermore, Carson et 
al20 found MVPA and sleep were negatively associated 
with CMR markers, BMI-z and WC, and blood pressure, 
with reallocation of time away from MVPA to remaining 
behaviours unfavourable for BMI-z. The associations 
observed by Carson et al20 were supported somewhat 
by more recent evidence suggesting more time spent 
in MVPA relative to remaining waking behaviours was 
favourable for adiposity using fat-free mass.25

The application of compositional analysis in the 
context of movement behaviours and health has primarily 
focused on the use of four-part analyses; therefore, these 
studies have collapsed MPA and VPA into MVPA20 25 or 
if exploring the intensity of PA have focused on waking 
behaviours, omitting sleep.11 Some studies have applied 
a five-part analysis to explore the impact of the full spec-
trum of movement behaviours on V̇O

2max
 in children 

and adolescents8 and the effect of differing lengths of 
sedentary bouts in adults26–28; however, to the best of the 
author’s knowledge, no studies have assessed CMR in 
youth using a five-part compositional analysis approach. 
Subsequently, the aim of this study was to examine 
the independent, and interactive, effects of the five-
movement behaviours (sleep, SED, LPA, MPA and VPA) 
on CMR factors in children and adolescents. The second 
aim was to model how changes in behaviour at all inten-
sities may influence cardiometabolic markers through 
isotemporal substitutions.

MATERIALS AND METHODS
Participants
Participants were from the International Children’s 
Accelerometery Database (ICAD; http://www.mrc-​
epid.cam.ac.uk/research/studies/icad/) which is a 
harmonised database containing objectively measured 
PA and SED from children and adolescents from 21 
population studies across 10 countries.2 29 All sleep 
data contained within ICAD is self-reported. The aims, 
study design criteria, participant inclusion criteria and 
harmonisation process have been previously described 
elsewhere.29 All raw data within ICAD were collected 
between 1998 and 2009. Participants of the 16 studies 
which provided accelerometer-measured PA and SED, 
and self-reported sleep data in combination with at least 
one of the cardiometabolic outcome measures of interest 
constituted the sample for the present cross-sectional 
analysis (n=22 474). The 16 cohort studies included in 
the present study were conducted across 8 countries 
(Brazil, Denmark, Estonia, Norway, Portugal, Switzer-
land, the United Kingdom and the United States) and 
included children and adolescents between the ages of 6 
and 18 years. This study complies with the Declaration of 
Helsinki; all study protocols were approved by the institu-
tional ethics committees where the study was conducted; 
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and informed assent was obtained from all participants 
and their parent/guardian where appropriate.

Equity, diversity and inclusion statement
The author group is gender balanced and consists of 
junior, mid-career and senior researchers located all over 
the globe. Our study population included both male and 
female adolescents from different socioeconomic back-
grounds across eight countries. While we covary for all 
demographic factors within our analyses, our study popu-
lation had >85% white participants and thus the findings 
might not be generalisable to other ethnically or cultur-
ally diverse groups of children and adolescents.

Patient and public involvement
Patients and/or the public were not involved in the 
design, conduct, reporting or dissemination plans of this 
research.

Data analyses
After the processing of the PA data and cardiometa-
bolic health outcomes (described in detail in the online 
supplemental material: Assessment of Physical Activity and 
Cardiometabolic Health Outcomes), each day was expressed 
as a five-part movement composition encompassing time 
spent in SED, LPA, MPA, VPA and sleep. Linear predictive 
models were used to predict changes in cardiometabolic 
health outcomes, with sex-specific smallest worthwhile 
changes (SWC) calculated for each parameter using the 
formula: 0.2*group SD30 (online supplemental table 1).

All compositional analyses were conducted in R (http://​
cran.r-project.org) using the compositions package 
(V.1.40-2) and all relevant dependencies.22 A detailed 
description of the compositional analysis methodology 
can be found in the online supplemental material (see 
Compositional Data Analysis). All traditional statistical 
analyses were conducted in SPSS V.26 (IBM, Portsmouth, 
UK). Sex differences in anthropometric characteristics 
and cardiometabolic health outcomes were assessed 
using a one-way ANCOVA. Cohen’s d was also calcu-
lated, with ≤0.20, ≥0.21 to ≤0.60, ≥0.61 to ≤0.80 and 
≥0.81 considered a trivial, moderate, large and very large 
effect, respectively.31 Prior to publication, we reviewed 
our statistical analysis and presentation for consistency 
with the CHecklist for statistical Assessment of Medical 
Papers (CHAMP) statement.32 The full CHAMP checklist 
is available in the online supplemental material.

RESULTS
Of the original 22 474 participants initially extracted 
from the ICAD, 12 536 were excluded for failing to meet 
the wear-time criteria, or having missing cardiometabolic 
health data, leaving 9938 (5325 girls; 11.4±1.8 years) 
children and adolescents with valid accelerometery data. 
Participants within the final sample provided an average 
of 5.8±1.3 valid days of accelerometer data with an 
average wear time of 13.2±1.7 hours∙day−1. The number 
of participants with the corresponding cardiometabolic 

health measures varied, and a full breakdown of the 
number of participants with complete accelerometery 
and cardiometabolic health markers is provided in 
table 1.

There were no differences in any anthropometric 
measurements between boys and girls which were 
included or excluded (p>0.05). Additionally, there was 
no sex difference for any anthropometric parameter 
(p>0.05) except weight where girls were heavier than 
their male peers (p<0.05; table  1). After covarying for 

Table 1  Participant descriptive statistics

Boys (n=4613) Girls (n=5325)

Descriptives

 � Age (years) 11.4±1.7 11.4±1.8

 � Height (cm) 147.9±12.0 147.6±10.8

 � Weight (kg) 41.1±11.9 41.6±11.4*

 � Ethnicity 85.1% White 84.6% White

0.3% Black 0.3% Black

0.8% Asian 0.8% Asian

13.8% Not 
reported

14.3% Not 
reported

Cardiometabolic health outcomes (n, %)

 � BMI (kg∙m2) 18.4±3.1
(n=4613, 
100.0%)

18.8±3.4†
(n=5325, 100.0%)

 � BMI z-score −0.06±1.0
(n=4613, 
100.0%)

0.05±1.0†
(n=5325, 100.0%)

 � Fasting glucose 
(mmol∙l−1)

5.1±0.4
(n=1193, 25.9%)

5.0±0.4†
(n=1436, 27.0%)

 � Insulin (pmol∙l−1) 48.7±29.7
(n=1190, 25.8%)

57.5±35.5†
(n=1430, 26.9%)

 � HDL-C (mmol∙l−1) 1.5±0.3
(n=2736, 59.3%)

1.4±0.3†
(n=3097, 58.2%)

 � LDL-C (mmol∙l−1) 2.3±0.6
(n=2734, 59.3%)

2.5±0.6†
(n=3093, 58.1%)

 � Fasting triglycerides 
(mmol∙l−1)

0.9±0.5
(n=2722, 59.0%)

1.0±0.5†
(n=3071, 57.7%)

 � Systolic blood 
pressure 
(mmHg∙min−1)

105±14
(n=3736, 81.0%)

105±10*
(n=4235, 79.5%)

 � Diastolic blood 
pressure 
(mmHg∙min−1)

59±7
(n=3736, 81.0%)

60±7†
(n=4235, 79.5%)

 � Waist circumference 
(cm)

66.2±9.2
(n=4606, 99.8%)

64.9±8.9†
(n=5319, 99.9%)

All values are presented as mean±SD unless otherwise stated. All 
statistics for cardiometabolic outcomes were covaried for age and 
ethnicity.
*Indicates a significant difference between boys and girls (p<0.05).
†Indicates a significant difference between boys and girls (p<0.01).
BMI, body mass index; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol.

https://dx.doi.org/10.1136/bmjsem-2025-002568
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age and ethnicity, girls had a higher BMI (+0.4 kg∙m2, 
p<0.01, d=0.12 (0.08–0.16)), BMI z-score (+0.01, p<0.01, 
d=0.11 (0.07–0.15)), insulin (+8.8 pmol∙l−1, p<0.01, 
d=0.12 (0.08–0.16)), LDL-C (+0.2 mmol∙l−1, p<0.01, 
d=0.33 (0.28–0.39)), triglycerides (+0.1 mmol∙l−1, 
p<0.01, d=0.20 (0.15–0.25)) and diastolic blood pressure 
(+1 mmHg∙min−1, d=0.14 (0.10–0.19); table 1) than boys. 
However, boys had higher fasting glucose (+0.1 mmol∙l−1, 
p<0.01, d=0.25 (0.17–0.33)), HDL-C (+0.1 mmol∙l−1, 
p<0.01, d=0.33 (0.28–0.39)), WC (+1.2 cm, p<0.01, d=0.14 
(0.10–0.18)) and systolic blood pressure (p<0.05, d=0.00 
(−0.04 to 0.04); table 1).

PA composition description
In boys, the geometric means highlight that the largest 
portion of the day was spent in sleep (48.1%), followed 
by LPA (24.4%), with VPA only accounting for 1.0% of 
the day (table 2). Similarly, girls spent the longest portion 
of the day sleeping (47.3%), but this was followed by SED 
(25.4%), with VPA accounting for just 0.8% of the day. Boys 
spent significantly less time on sedentary (F

(1,9,860)
 = 36.5, 

p<0.01, d=−0.19 (−0.15 to −0.23)) and significantly more 
time on MPA (F

(1,9,860)
 = 1341.8, p<0.01, d=0.70 (0.66–

0.74)), VPA (F
(1,9,860)

 = 687.5, p<0.01, d=1.32 (1.28–1.37)) 
and sleep F

(1,9,860)
 = 108.4, p<0.01, d=0.06 (0.02–0.10)) 

than girls. However, there was no significant difference 
between boys and girls for LPA (F

(1,9,860)
 = 1.2, p=0.27, 

d=0.02 (−0.02 to 0.06)). LPA and MPA and LPA and SED 
demonstrated the smallest pairwise variation, indicating 
high codependency, whereas VPA had the largest pair-
wise log-ratio variation when compared with all other 
movement behaviours indicating less codependency 
(table 3). The ILR models revealed that the overall PA 

composition significantly predicted all cardiometabolic 
health outcomes explaining between 3.2% and 23.0% of 
the variance after covarying for age, sex, ethnicity and PA 
seasonal variation (table 4). When individual movement 
behaviours were considered, after adjusting for covari-
ates and the other movement behaviours, only sleep was 
significantly associated with all cardiometabolic health 
outcomes (table 4). Contrastingly, SED, LPA, MPA and 
VPA were associated with some, but not all, cardiometa-
bolic health outcomes. Data displaying the 95% CIs for 
all ILR model behaviours are available in online supple-
mental table 2.

Association between PA composition and cardiometabolic 
health outcomes
Change matrices describing the effect of reallocating 
10 min of time from one behaviour to another in boys 
and girls are presented in table 5. In boys, there was no 
effect of displacing 10 min of any movement behaviour 
on any of the 10 cardiometabolic health parameters 
measured with all of the predicted changes smaller than 
the SWC. Contrastingly, in girls’ compositions with 10 min 
less VPA (<1.5 min∙day−1) compared with the average 
11.5 min∙day−1 were associated with a 4.17–4.32% higher 
BMI and a 2.50–2.76% larger WC. Moreover, in girls with 
compositions <1.5 min∙day−1 of VPA were increased with 
a higher BMI-z score 0.25–0.26 units higher than the 
average (0.05), and compositions with <21.5 min∙day−1 
were associated with a decreased BMI-z score between 
0.05 and 0.07 units (table 5).

DISCUSSION
This study examined the inter-related effects of all 
movement behaviours (SED, LPA, MPA, VPA and sleep) 
using a five-part compositional analysis approach on 
cardiometabolic health in a large sample of children and 
adolescents. The main findings of the present study were 
that the overall movement composition was significantly 
associated with all cardiometabolic health outcomes 
explaining between 3.2 and 27.0% of the variance after 
covarying for age, sex, ethnicity and seasonal variation in 
PA. Moreover, sleep was the only movement behaviour 
which was significantly independently associated with all 
CMR factors. The results also suggest compositions with 

Table 2  Time spent on physical activity, sedentary time 
and sleep for boys and girls expressed as the unadjusted 
overall mean, geometric mean and a percentage of 24 hours

Overall mean 
(min∙day−1)

Geometric mean 
(min∙day−1)

% of 24 
hours

Boys

 � SED 311.9 342.1 23.8

 � LPA 311.5 350.7 24.4

 � MPA 39.5 40.5 2.8

 � VPA 16.8 14.0 1.0

 � Sleep 594.8 692.7 48.1

Girls

 � SED 325.4* 365.8* 25.4*

 � LPA 309.4 348.5 24.2

 � MPA 28.1* 30.2* 2.1*

 � VPA 10.6* 11.5* 0.8*

 � Sleep 604.5* 681.1* 47.3*

*Indicates a significant difference between boys and girls (p<0.01).
LPA, light physical activity; MPA, moderate physical activity; SED, 
sedentary time; VPA, vigorous physical activity.

Table 3  Pairwise log ratio variation matrix in the full 
sample (n=9938)

SED LPA MPA VPA Sleep

SED 0.05 −0.10 −0.22 0.09

LPA 0.05 −0.03 −0.15 0.05

MPA −0.10 −0.03 0.07 −0.07

VPA −0.22 −0.15 0.07 −0.18

Sleep 0.09 0.05 −0.07 −0.18

LPA, light physical activity; MPA, moderate physical activity; SED, 
sedentary time; VPA, vigorous physical activity.

https://dx.doi.org/10.1136/bmjsem-2025-002568
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10 min increases in VPA, irrespective of the behaviour it 
replaces, predict a 2.7–4.6% reduction in WC and BMI, 
and reduce BMI-z by 0.1 units in girls. However, a 10 min 
reallocation of VPA had a nonsignificant impact on all 
CMR factors in boys, highlighting that the intensity of PA 
may be of paramount importance in determining CMR 
in girls.

It is widely accepted that PA provides health benefits 
for children and adolescents with the benefits of being 
physically active thought to have a protective effect 
on adulthood.33 The results of this study support the 
proposed protective effect as the overall PA composi-
tion explained between 3.2 and 27.0% of the variance in 
CMR factors after covarying for age, sex, ethnicity and 
PA seasonal variation. This is in agreement with Carson 
et al11 who found that for children, the overall PA compo-
sition was significantly associated with WC, BMI, SBP, 
DBP, HDL-C and glucose. However, in discord with the 
current study, Carson et al11 reported that the overall PA 
composition was not significantly associated with LDL-C 
cholesterol, triglycerides or insulin. The disparity in 
results could be explained, at least in part, by Carson 
et al11 additionally covarying for socioeconomic status, 
smoking, daily sodium intake, saturated fat and energy all 
of which significantly impact cardiometabolic health.34 
However, this is unlikely to fully explain the differences 
between these studies with other studies reporting 
conflicting results for other health outcomes including 
WC,20 arterial stiffness and pulse wave velocity,35 36 and 
mental health outcomes.37 38 Consequently, the findings 
thus far from compositional analysis studies in children 
and adolescents seem equivocal, as a recent systematic 
review highlighted in adults39 and young childhood.40 
This could be due to methodological differences in 
both PA data collection and the different techniques 
used to quantify health parameters.39 40 Therefore, 
future research with consistent methodology around 
PA measurement and analysis process is needed, so the 
health impacts of 24-hour compositions can be fully 
elucidated.

When time was allocated to VPA, the isotemporal 
substitution indicated that it would be associated with a 
decreased WC, BMI and BMI-z in girls only which was 
surprising. However, this is not the first time that VPA 
in isolation has demonstrated a greater association with 
cardiometabolic health outcomes than MVPA in chil-
dren.3 9 10 14 More specifically, Nyström et al10 reported 
stronger associations between VPA and CVD risk factors 
than MVPA both cross-sectionally and longitudinally 
aligning with the findings of a meta-analysis exploring the 
association between VPA and health-related outcomes.9 
The result of the current study tentatively supports the 
notion that VPA is more strongly related to cardiometa-
bolic health outcomes than other movement behaviours 
and furthers it by revealing that sex differences may be 
evident for the first time. One possible explanation for 
the sex difference is that the association with VPA could 
be due to the sex differences in VPA undertaken in the Ta
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Table 5  Change matrices of reallocating 10 min of time from the behaviour in columns to the behaviour in rows on 
cardiometabolic health outcomes in boys and girls, expressed as a percentage change around the sample mean

Boys Girls

SED LPA MPA VPA Sleep SED LPA MPA VPA Sleep

BMI (kg∙m2)

SED 0.24 0.12 1.96 0.24 SED 0.22 0.08 4.39* 0.23

LPA −0.24 −0.11 1.72 0.00 LPA −0.23 −0.14 4.17* 0.00

MPA −0.14 0.10 1.82 0.10 MPA −0.11 0.12 4.28* 0.12

VPA −1.20 −0.96 −1.07 −0.95 VPA −1.60 −1.37 −1.51 −1.37

Sleep −0.24 0.02 −0.11 1.72 Sleep −0.23 0.00 −0.14 4.17*

BMI z-score

SED −16.25 −8.47 −134.48 −16.30 SED 62.02 22.39 1169.47* 61.93

LPA 16.54 7.69 −118.32 −0.14 LPA −63.04 −39.27 1107.81* 0.27

MPA 9.79 −6.84 −125.07 −6.89 MPA −31.24 32.15 1139.60* 32.06

VPA 82.18 65.56 73.33 65.51 VPA −435.86* −372.47* −412.10* −372.56*

Sleep 16.63 0.00 7.78 −118.23 Sleep −63.12 0.27 −39.36 1107.72*

Fasting glucose (mmol∙l−1)

SED −0.06 0.41 0.08 −0.16 SED −0.06 0.65 0.45 −0.16

LPA 0.06 0.47 0.15 −0.10 LPA 0.06 0.71 0.51 −0.10

MPA −0.30 −0.36 −0.22 −0.46 MPA −0.43 −0.49 0.02 −0.59

VPA −0.01 −0.07 0.40 −0.17 VPA −0.05 −0.12 0.59 −0.22

Sleep 0.16 0.10 0.57 0.25 Sleep 0.16 0.10 0.81 0.61

Insulin (pmol∙l−1)

SED 1.31 2.46 1.62 0.87 SED 1.08 2.68 2.77 0.71

LPA −1.32 1.16 0.32 −0.43 LPA −1.09 1.61 1.70 −0.36

MPA −2.11 −0.77 −0.47 −1.21 MPA −2.09 −0.99 0.69 −1.37

VPA −1.27 0.07 1.21 −0.38 VPA −1.23 −0.13 1.47 −0.50

Sleep −0.89 0.44 1.59 0.75 Sleep −0.72 0.38 1.91 2.06

HDL-C (mmol∙l−1)

SED −0.10 −0.30 −0.19 −0.10 SED −0.10 −0.41 −0.36 −0.10

LPA 0.11 −0.20 −0.09 0.00 LPA 0.10 −0.31 −0.26 0.00

MPA 0.26 0.15 0.06 0.16 MPA 0.32 0.22 −0.04 0.22

VPA 0.15 0.05 −0.15 0.05 VPA 0.18 0.08 −0.23 0.08

Sleep 0.10 0.00 −0.20 −0.09 Sleep 0.10 0.00 −0.31 −0.26

LDL-C (mmol∙l−1)

SED −0.21 0.16 0.86 −0.40 SED −0.19 0.32 2.25 −0.36

LPA 0.22 0.37 1.07 −0.19 LPA 0.19 0.50 2.43 −0.17

MPA −0.07 −0.29 0.78 −0.47 MPA −0.17 −0.36 2.07 −0.53

VPA −0.41 −0.62 −0.26 −0.81 VPA −0.67 −0.87 −0.36 −1.04

Sleep 0.40 0.18 0.55 1.25 Sleep 0.36 0.17 0.67 2.60

Fasting triglycerides (mmol∙l−1)

SED 0.12 0.65 −0.79 0.73 SED 0.10 0.73 −2.35 0.68

LPA −0.14 0.52 −0.92 0.60 LPA −0.12 0.62 −2.46 0.57

MPA −0.61 −0.47 −1.38 0.13 MPA −0.64 −0.52 −2.98 0.02

VPA 0.30 0.43 0.96 1.04 VPA 0.61 0.72 1.35 1.30

Sleep −0.74 −0.60 −0.07 −1.51 Sleep 0.68 −0.57 −2.35 3.02

Systolic blood pressure (mmHg∙min−1)

SED 0.11 0.49 0.21 0.11 SED 0.11 0.49 0.21 0.11

LPA −0.11 0.38 0.10 0.00 LPA −0.11 0.38 0.10 0.00

Continued
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present study (boys: 16.8±14.4 min∙day−1; girls: 10.6±8.8 
min∙day−1); however, this is similar to other large-scale 
population-based studies in this similar age group.41 
More specifically, a 10 min reallocation of VPA equates to 
a 92.6% change in VPA volume for girls compared with 
a 59.5% VPA volume change in boys, which might influ-
ence the magnitude of change predicted even though the 
same amount of time has been reallocated. Considering 
the limited success of PA interventions to date42 43 and 
the relatively small changes reported even when interven-
tions are successful, the current findings indicate that a 
drastic change to our approach to PA in youth may be 
needed.

In the current study, the average self-reported sleep 
duration was 594.8±52.2 min∙day−1 (9.9 hours∙night−1) 
for boys and 604.5±53.3 min∙day−1 (10.0 hours∙night−1) 
for girls which are both within the recommended sleep 
guidelines for children aged 6–12 years.44 Interestingly, 
sleep was the only movement behaviour in isolation 
that significantly predicted all cardiometabolic health 
outcomes after accounting for age, sex, ethnicity or PA 
seasonal variation. In adults, a ‘U’-shaped relationship 
between sleep duration and cardiovascular outcomes 
occurs with both short (≤6 hours∙night−1) and long 
durations (≥8 hours∙night−1) posing an increased risk of 
CVD.45 46 However, the relationship between sleep and 
cardiometabolic health in children and adolescents is 
less well understood with evidence suggesting that short 
sleep duration is associated with an increase in some, but 
not all, CMR factors.47 More specifically, short sleep dura-
tion has been strongly linked to obesity,48 increased blood 
pressure49 and a reduced basal metabolic rate50 due to 

alterations in autonomic, metabolic and endothelial func-
tions which influence both hormone levels and eating 
behaviours in children and adolescents.51 However, the 
evidence on abnormal sleep patterns and dyslipidaemia 
or irregular resting glucose/insulin remains inconsistent, 
and there is a need for more high-quality evidence using 
objective measures of sleep duration with methodolog-
ical inconsistencies likely contributing to the equivocal 
findings.47

Research/policy implications
While lifestyle factors such as a healthy diet and the 
promotion of regular PA have been routinely cited in 
international policies and guidelines to reduce the inci-
dence of cardiovascular and cardiometabolic diseases, 
sleep has often been overlooked,24 until recently. More 
specifically, sleep is now being recognised as one of the 
pillars for a healthy lifestyle,52 and 24-hour PA guidelines, 
including specific sleep recommendations, have now been 
implemented in countries in North America,53 Europe54 
and Australasia.55 56 However, all of the 24-hour move-
ment guidelines presently still advocate for increasing 
MVPA, whereas the current study indicates that MPA and 
VPA should not be combined into a single metric given 
their distinct effects on CMR factors. Collapsing MPA and 
VPA into MVPA potentially masks the importance of PA 
intensity for health and supports the notion that children 
and adolescents, particularly girls, may require a vigorous 
stimulus to realise health benefits.8 12 37 While some of 
the effect sizes in this study, such as the associations 
with HDL-C and systolic blood pressure, are modest, 
others like insulin and fasting glucose show stronger 

Boys Girls

SED LPA MPA VPA Sleep SED LPA MPA VPA Sleep

MPA −0.38 −0.27 −0.17 −0.27 MPA −0.39 −0.27 −0.17 −0.27

VPA −0.13 −0.02 0.36 −0.02 VPA −0.14 −0.02 0.36 −0.02

Sleep −0.11 0.00 0.38 0.10 Sleep 0.11 0.00 0.38 0.10

Diastolic blood pressure (mmHg∙min−1)

SED 0.10 0.36 0.21 0.01 SED 0.10 0.49 0.43 0.01

LPA −0.10 0.25 0.10 −0.09 LPA −0.10 0.39 0.33 −0.09

MPA −0.29 −0.19 −0.09 −0.28 MPA −0.37 −0.27 0.06 −0.36

VPA −0.14 −0.04 0.22 −0.13 VPA −0.18 −0.08 0.31 −0.17

Sleep −0.01 0.09 0.10 0.19 Sleep −0.01 0.09 0.48 0.42

Waist circumference (cm)

SED 0.21 0.05 1.27 0.27 SED 0.21 −0.03 2.76* 0.27

LPA −0.22 −0.16 1.05 0.06 LPA −0.22 −0.24 2.55* 0.06

MPA −0.09 0.13 1.19 0.19 MPA −0.04 0.18 2.73* 0.23

VPA −0.81 −0.59 −0.75 −0.53 VPA −1.08 −0.86 −1.10 −0.81

Sleep −0.27 −0.05 −0.22 1.00 Sleep −0.27 −0.05 −0.29 2.50*

*Indicates a change above the smallest worthwhile change (%).
BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LPA, light physical activity; 
MPA, moderate physical activity; SED, sedentary time; VPA, vigorous physical activity.

Table 5  Continued
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associations. These findings suggest that VPA may have a 
more pronounced impact on cardiometabolic outcomes, 
particularly for specific populations such as girls. Thus, 
even small effect sizes, when applied across large popu-
lations, can have meaningful public health implications. 
Taken together, this evidence indicates future studies 
should report the effects of MPA and VPA separately 
or report the MPA/VPA ratio of MVPA so the influence 
of PA on health can be explored in more detail. More-
over, there is growing evidence suggesting the need to 
promote VPA among youth for optimal health, and the 
guidelines for MVPA might need to be revised to incor-
porate specific VPA guidelines.

Limitations
While there are strengths to the current study including 
a sample size of ~10 000 children and adolescents with 
objectively measured PA and the use of a five-part 
compositional analysis, there are limitations which 
must be acknowledged. First, all accelerometery data 
within this study were collected using hip-worn accel-
erometers, so movements involving limited vertical hip 
movement (ie, cycling) or water-based activities (where 
the accelerometers have to be removed) are likely to be 
misclassified. Additionally, sleep was collected using self-
report measures, and although self-report sleep closely 
matches polysomnography,57 further research using 
objective measures is needed to confirm the findings 
in the present study. Moreover, the domain of PA from 
the accelerometery data could not be determined as 
well as several other confounding factors including diet, 
pubertal and socioeconomic status potentially inflating 
the influence of PA, and these should be controlled for 
in future studies. Additionally, the current study also had 
85% white participants and even though ethnicity was 
covaried in all analyses, the results of this study should be 
interpreted in the context of explaining the association 
of PA and CMR factors in white children and adolescents.

CONCLUSION
The overall five-part PA composition was a significant 
predictor of all cardiometabolic health outcomes inde-
pendent of age, sex, ethnicity and seasonal variation. 
However, sleep was the only movement behaviour that was 
significantly associated with all cardiometabolic health 
outcomes, even when the proportion of time spent on 
other behaviours was considered. Moreover, reallocating 
time to VPA had distinct effects by sex, emphasising the 
need for future studies to report the individual levels of 
MPA and VPA or report the MPA/VPA ratio to ascertain 
the relative importance of PA intensity for the current, 
and future, health of children and adolescents.
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