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Abstract: This study experimentally investigates lid-driven cavity flow at high 13 

Reynolds numbers (Re = 3×10⁵ to 1×10⁶) using Particle Image Velocimetry (PIV). The 14 

spatial distribution of root mean square (RMS) velocity, turbulent kinetic energy 15 

dissipation rate, and the Smagorinsky constant is analyzed to reveal key turbulence 16 

characteristics.  Results show that: (1) The RMS velocity increases significantly in the 17 

near-wall region with Reynolds number, reaching a peak of 0.43 m/s on the downstream 18 

near-wall surface at Re = 1×10⁶, while remaining below 0.1 m/s in the core region due 19 

to flow stability suppressing turbulence fluctuations; (2) The turbulent kinetic energy 20 

dissipation rate exhibits significant spatial nonuniformity near the wall, with a peak 21 

value of 0.6 at Re = 1×10⁶; as Reynolds number increases, high dissipation regions 22 

extend further into the cavity interior and evolve into multiscale fragmented structures; 23 

(3) The Smagorinsky constant is close to zero near the cavity wall, gradually increases24 

with distance from the wall, reaches a maximum, and then decreases to zero at the 25 
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cavity center. As Reynolds number increases, the overall Smagorinsky constant 26 

increases, with a more significant rise in its maximum value at higher Reynolds 27 

numbers, indicating stronger eddy viscosity. These findings provide experimental 28 

insights for improving the nonuniform parameterization in eddy viscosity models for 29 

large-eddy simulations.30 

Keywords: Lid-driven cavity flow; High Reynolds number;Particle Image Velocimetry; 31 

Large Eddy Simulation;Smagorinsky constant32 

1. Introduction33 

Turbulence is a complex and pervasive phenomenon found in both natural and34 

engineering systems, presenting significant challenges for numerical simulations in 35 

fluid dynamics due to its multi-scale vortex interactions and energy cascade 36 

characteristics (Smagorinsky, 1963).In practical application such as atmospheric 37 

circulation, aircraft aerodynamics, and chemical reactor flows, traditional numerical 38 

methods must balance accuracy and computational efficiency. While Direct Numerical 39 

Simulation (DNS) can fully resolve the turbulence spectrum (Ghia et al., 1982), it 40 

becomes prohibitively expensive at high Reynolds numbers. On the other hand, 41 

Reynolds-Averaged Navier-Stokes (RANS) methods, which rely on time-averaged 42 

equations to reduce computational costs (Pan and Acrivos, 1967), fail to capture 43 

transient turbulence fluctuations. Large Eddy Simulation (LES) has emerged as the 44 

leading approach, as it directly resolves large-scale vortices while modeling the effects 45 

of unresolved small-scale turbulence (Germano et al., 1991). However, the main 46 
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challenge in LES lies in the development of Subgrid-Scale (SGS) models and the 47 

optimization of their empirical parameters to improve predictive capabilities.The 48 

classical Smagorinsky model defines a nonlinear relationship between subgrid-scale 49 

stress and strain rate tensors based on the hypothesis of eddy viscosity, where the 50 

empirical constant Cs directly influences turbulence energy dissipation rate (Wang et al., 51 

2020). Early studies demonstrated success in homogeneous isotropic turbulence using 52 

a fixed Cs value (ranging from 0.1 to 0.18) (Geurts et al., 1999), but faced significant 53 

limitations in more complex flow scenarios. Malik et al. (2016) found that, while the 54 

Shear-Improved Smagorinsky Model (SISM) with Cs=0.18 could predict friction 55 

velocity in plane channel flow with less than 3% error compared to reference DNS data, 56 

it struggled to capture transient flow characteristics effectively when applied to 57 

complex unsteady flows. Dallali et al. (2015) emphasized the importance of selecting 58 

an appropriate Cs value for accurate turbulence simulations in sediment transport 59 

studies. Collectively, these findings highlight the inherent limitations of the fixed Cs 60 

model in non-homogeneous and unsteady flows.To improve model adaptability, the 61 

dynamic Smagorinsky model optimizes the Cs value in real-time using double filtering 62 

(Germano et al., 1991), enhancing accuracy in shear flows (Vreman et al., 2004). 63 

However, it faces challenges with parameter oscillations at extreme Reynolds numbers, 64 

and deficiencies in the near-wall region persist. Hybrid models, such as Detached Eddy 65 

Simulation (DES) combined with data-driven methods, provide new solutions. Beck et 66 

al. (2019) demonstrated that, with Cs =0.12, a hybrid model incorporating an Artificial 67 

Neural Network (ANN) closure term can stably simulate Decaying Homogeneous 68 
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Isotropic Turbulence (DHIT), significantly outperforming the standard Smagorinsky 69 

model. Despite these advantages, fixed Cs coefficients still restrict adaptability, making 70 

it difficult to capture the dynamic characteristics of high Reynolds number flows.The 71 

limitations of the fixed Cs model become more apparent in engineering practice. Bianco 72 

et al. (2016) found that , with Cs = 0.1 in the double-loop vortex tube heat transfer 73 

simulation, the prediction of heat transfer performance was biased, and this bias could 74 

not be fully corrected even with grid refinement.Piomelli and Balaras (2002) pointed 75 

out that in strong shear flows, Cs must be adjusted from 0.10 in the core flow region to 76 

0.05 near the wall. This spatially varying adjustment not only increases computational 77 

complexity but also leads to excessive suppression of turbulence fluctuations in the 78 

near-wall region. Notably, the WALE model (Nicoud and Ducros, 1999) introduces the 79 

square of the velocity gradient tensor to construct subgrid viscosity, and its constant Cw 80 

is optimized in the range of 0.55-0.60 for simulating decaying turbulence. However, 81 

compared to the dynamic Cs adjustment strategy, it remains constrained by the inherent 82 

limitation of a fixed constant.. More recently, de Crouy-Chanel et al. (2024) calibrated 83 

the VMS-Smag model (Cs =0.41) using the remeshed vortex method, achieving optimal 84 

accuracy in simulating Taylor-Green vortices. Nonetheless, its applicability in wall-85 

bounded flows still requires further validation.High Reynolds number lid-driven cavity 86 

flow, a common flow pattern in applications like aircraft engine cooling channels and 87 

building ventilation systems (Spalart et al., 2006), exhibits characteristics of strong 88 

inertial dominance, complex multi-scale vortex interactions, and poorly understood 89 

energy dissipation mechanisms. Existing studies often use a fixed Cs=0.17 or empirical 90 
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damping functions to modify near-wall dissipation (Lund et al., 1998), but they face 91 

dual challenges in practical applications. First, the fixed Cs value leads to excessive 92 

suppression of turbulence fluctuations in the wall region (Sardina et al., 2012), which 93 

affects the physical realism of vortex evolution. Second, the wall damping function is 94 

difficult to accurately define accurately in complex geometries (Vreman et al., 2004). 95 

Although dynamic models improve the accuracy of shear flow simulations through 96 

local parameter optimization (Germano et al., 1991), the distribution of Cs values and 97 

their dynamic correlation with flow field characteristics in high Reynolds number lid-98 

driven cavity flows have yet to be revealed. Recent research shows that most studies on 99 

cavity flows focus on low to medium Reynolds numbers (Abdi et al.,2021; Carlos et 100 

al.,2021; Trong et ak.,2020), and systematic experimental studies on high Reynolds 101 

number (Re≥1×105) cavity flow are still scarce (Bouffanais et al., 2007; Wang et al., 102 

2025; Samantaray et al., 2020). Particularly under the high Reynolds number condition 103 

of Re=1×105, the distribution of Cs values and their dynamic correlation with flow field 104 

features remain unexplored, lacking sufficient experimental research and in-depth 105 

exploration.106 

To address these challenges, this study systematically invetigates high Reynolds 107 

number flow in a 0.25m lid-driven cavity at Re=3×105 to 1×106. Using PIV to obtain 108 

transient flow field data, it analyzes the spatiotemporal evolution of Cs values and 109 

develops a model linking them to local turbulence kinetic energy dissipation 110 

mechanisms. This approach more accurately capture turbulence’s dynamic evolution 111 

and multi-scale coupling effects, overcoming the limitations of the traditional fixed Cs 112 
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models. The results provide physical-driven optimization guidelines for dynamic 113 

subgrid models and advance turbulence simulations from empirical corrections to a 114 

mechanism-driven paradigm, laying the theoretical foundation for refined prediction of 115 

high Reynolds number complex flows.116 

2. Experimental Setupand Methods117 

2.1 Experimental Setup118 

The experiment was conducted in a recirculating cubic cavity flow system, with 119 

the cavity dimensions being 0.25 m in length, width, and height, as shown in Figure 1. 120 

The top cover of the cavity is driven by a belt that moves the fluid, with the belt speed 121 

adjustable to control the Reynolds number. To ensure stable water volume inside the 122 

cavity, unaffected by the driving mechanism, a large water tank was installed at the 123 

outer edge of the cavity's top cover. The belt is submerged in the water tank, ensuring 124 

that the water flow is not reduced due to fluid loss outside the tank. During the 125 

experiment, the belt speed was adjusted to bring the Reynolds number close to the 126 

preset value. Tracer particles with an appropriate concentration were added to the water, 127 

and after waiting for 10-15 minutes to allow the flow system to stabilize, the laser was 128 

adjusted to illuminate the tracer particles along the middle plane of the cavity, 129 

specifically at X=0, as shown in Figure 1. The belt rotates along the x-direction of the 130 

cavity. High-speed cameras were used to capture and store experimental images. The 131 

experiment was repeated for different Reynolds numbers, adjusting the test conditions 132 

to obtain flow field data for varying Reynolds numbers. 133 
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This experiment utilized a classical multi-channel 2D2C PIVsystem for flow field 134 

measurements. The system consisted of a high-speed frame-straddling camera, a 135 

continuous laser, a synchronizer, and a computer. The high-speed camera used was the 136 

M220M model produced by Zhongke JunDa Vision Technology Co., Ltd., equipped 137 

with a 50 mm F1.4 lens, providing a maximum image resolution of 1920 × 1080 pixels 138 

and a maximum frame rate of 1000 frames per second. For actual measurements, the 139 

image resolution was set to 1024 × 1024 pixels to balance computational accuracy and 140 

image processing efficiency. The PIV data processing employed the classical cross-141 

correlation algorithm, combined with a multi-level grid iterative image deformation 142 

method (Image Deformation Algorithm) to improve image processing accuracy. 143 

Additionally, sub-pixel precision localization techniques were used to further optimize 144 

the displacement calculation accuracy. To ensure smooth velocity field calculations, the 145 

window overlap rate was set to 25%. The laser source used was a continuous 532 nm 146 

green laser with a power of 8 W, providing stable illumination intensity. Hollow glass 147 

microspheres with a diameter of 10 µm and a density of 1.1 g/cm³, closely matching 148 

that of water, were chosen as tracer particles due to their excellent flow-following 149 

characteristics, allowing for precise tracking of fluid motion.Image acquisition was 150 

performed using the "JunDa High-Tech High-Speed Image Acquisition System V1.0" 151 

software developed by Zhongke JunDa Vision Technology Co., Ltd. (Huang et al., 152 

2019). This system efficiently synchronized the laser and camera, ensuring accurate 153 

continuous image capture. With this setup, the experiment successfully observed typical 154 

vortex structures within the neutral-plane flow field, including the primary vortex (PV), 155 
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downstream secondary vortex (DSV), upstream secondary vortex (USV), and upstream 156 

unsteady vortex (UUV), along with other characteristic flow structures.157 

The Reynolds numbers measured in this study are 3×10⁵, 5×10⁵, 7×10⁵, and 1×10⁶. 158 

The Reynolds number is defined as Re=UL/ν, where ν is the kinematic viscosity and L 159 

is the length of the cavity. The required driving velocity can be calculated using this 160 

formula.161 

In the experiments conducted within the Reynolds number range of Re = 5×105 to 162 

1×106, the velocity field was subjected to uncertainty quantification analysis using PIV. 163 

Based on the time series statistics of multiple instantaneous velocity fields for each 164 

condition, the spatially averaged standard deviation (σavg) ranged from 0.0263 to 0.0516 165 

m/s, reflecting the variation in turbulence fluctuation intensity with Reynolds number. 166 

The maximum relative error (εmax) is below 1.5%. The PIV system was calibrated by 167 

the National Institute of Metrology, and the system's accuracy remains stable, with a 168 

relative error of -0.42% to -0.58% and repeatability < 0.33%, ensuring the reliable 169 

accuracy of the high Reynolds number experimental results.170 

171 
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172 

Fig. 1. Lid driven cavity. (a) Schematic of the experimental setup.(b) Vortex structure 173 

diagram. (c) Laboratory square cavity. (d) PIV imaging of the middle plane.174 

2.2 Large Eddy Simulation Governing Equations and Subgrid-Scale Stress175 

2.2.1 Governing Equations of Large Eddy Simulation176 

In LES, a spatial filtering operation decomposes the velocity field into a resolved 177 

large-scale component and an unresolved small-scale fluctuating component, which 178 

represents the subgrid-scale fluctuations.
i i iu u u = +                           (1) 179 

where i
u   represents the resolved large-scale low-pass filtered velocity, and

i
u180 

represents the unresolved small-scale residual fluctuations iu  .181 
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Assuming that the filtering process and the differentiation process can be 182 

interchanged, filtering the Navier-Stokes equations leads to the governing equations of 183 

LES.184 

2
1i ji i

j i j i

u uu up

t x x x x



 

+ = − +
    

  (2)185 

0i

i

u

x


=


   (3)186 

Let ( )
i j i j i j i j

u u u u u u u u= + −  .The term ( )
i j i j

u u u u− − is defined as the SGS, then 187 

Equation (2) can be rewritten as:188 

2
1i j iji i

j i j i j

u uu up

t x x x x x





 

+ = − + −
     

  (4)189 

In the equation, ij i j i j
u u u u = −   represents the SGS stress. To perform large eddy 190 

simulation, it is essential to construct a closure model. 191 

2.2.2 Subgrid-Scale Stress Model in Large Eddy Simulation192 

The most widely used subgrid-scale model is the Smagorinsky eddy viscosity 193 

model (Shui et al.,2022).194 

2 1/2 1
( ) 2( ) (2 )

3
ij i j i j s ij ij ij kk iju u u u C S S S  = − =  −   (5)195 

Here,  is the filter size, the subgrid-scale viscosity 2 1/2
( ) (2 )

s ij ij
C S S =  , and Cs is the 196 

Smagorinsky constant, which corresponds to the mixing length.197 

2.3 Methods for Computing the Smagorinsky Constant198 

The distribution of the Cs in the SGS energy flux and turbulence energy dissipation 199 

rate requires approach to compute the dissipation rate for closing the corresponding 200 

equations. The following section describes the formulas for calculating turbulence 201 

kinetic energy dissipation and the Cs in Large Eddy Simulation, as well as other 202 
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methods for computing turbulence kinetic energy dissipation.203 

2.3.1 Smagorinsky Constant in Large Eddy Simulation204 

To study LES from the energy perspective, multiply both sides of equation (4) by 205 

the velocity 
i

u and simplify it, resulting in the kinetic energy balance equation:206 

2 2 2

( ) 2i i

i ij i ij ij

j j j j j

u uq q q
u pu u S

t x x x x x
  

    
+ = − + − − +

     
    (6)207 

The left-hand side of the equation represents the rate of change of kinetic energy with 208 

time and the convective transport term. The right-hand side includes work done by 209 

pressure, viscous dissipation, work done by subgrid-scale stress, and the vortex 210 

dissipation term representing the transfer of large-scale turbulence kinetic energy to 211 

small scales. In Large Eddy Simulation, the turbulence kinetic energy dissipation rate 212 

can be approximately represented by the SGS energy dissipation rate (Meneveau and 213 

Katz, 2000).214 

ij
2

SGS ij
S     = −   (7)215 

In the Smagorinsky model, the subgrid-scale stress is given by 2 2

ij s ij
C S S = −  .216 

2.3.2 Calculation Methods for Dissipation Rate  217 

(1) Dimensional Analysis Method218 

In the study of turbulence dissipation rate, the dimensional analysis method219 

provides a way to express it using the Taylor scale and turbulent velocity. The 220 

turbulence dissipation rate can be expressed as:221 

2

2
15

u
 





=  (8)222 

Here,   represents the Taylor scale. According to the balance turbulence scales 223 
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(Konstantinos, 2022; Rubinstein and Clark,2017), equation (8) can be further 224 

transformed as follows:225 

3
u

A
l




= (9)226 

Here, l  represents the integral scale, and A is a constant close to 1. 227 

(2) Large Eddy PIV Method228 

The velocity field obtained using PIV is low-pass filtered, similar to LES. As a229 

result, only larger scales flow structures are resolved, with vortices smaller than the 230 

filtering scale are excluded. In high Reynolds number flow fields, turbulence kinetic 231 

energy is generated at the integral scale and dissipates near the Kolmogorov scale, with 232 

energy conservation between the two (Sikiö et al., 2018). An inertial subrange exists 233 

between these scales, where energy is transferred from larger to smaller scales without 234 

being generated or dissipated (Buaria and Sreenivasan, 2020). Therefore, when 235 

estimating the dissipation rate, it is sufficient to calculate the energy flowing through 236 

the inertial subrange, without needing to precisely resolve the Kolmogorov scale.237 

Sheng et al. (2000) proposed the Large Eddy PIV method, which uses data 238 

obtained through PIV measurements to directly calculate the turbulence dissipation rate. 239 

The point velocity in the actual fluid can be represented by the velocity measured using 240 

PIV:241 

2 31 1
( ) ( ) ( )

2! 3!
i i i i iu U U U U= − +  −  + (10) 242 

where, 2 2 2 2 2 2

1 1 2 2 3 3
( ) ( / / / )

i i
U a x a x a x U =   +   +     here 

i
U   is the velocity obtained using 243 

PIV, and 
1

a
2

a  
3

a  are constants related to the low-pass filtering width in the three 244 
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directions. These constants are typically expressed in a unified form as:245 

2

, 1, 2,3,
8

i

i
a i


= = (11)246 

Here, i
 is the filter width, and substituting it into the equation gives:247 

2 4

2 4

8 1024
i i i i

u U L U
 

= −  +  + (12)248 

Based on dimensional analysis, the second term in equation (12) is approximately 249 

related to 2 2/ l  , where l is the integral scale and  is the filter scale. Since l  , 250 

there is a magnitude difference, allowing the second term and all subsequent terms to 251 

be approximated as 0, leading to:252 

i i
u U253 

i
i

u U U
  −   (13)254 

i j i j i j
u u U U U U
   −255 

The filtered Navier-Stokes equations can be represented using the PIV 256 

measurement data as follows:257 

0i

i

U

x


=


(14)258 

2

2

( )
i j iji i

j j j j

U UU UP

t x x x x




  
+ = − + −

    
   (15)259 

Correspondingly, the energy balance equation can be expressed as follows:260 

2 2 2

( ) 2i i

j j ij i ij ij

j j j j j

U Uq q q
U PU U S

t x x x x x
   

    
+ = − + − − +

     
(16)261 

where 
1

( )
2

j i

ij

i j

U U
S

x x

 
= +

 
 denotes the strain rate tensor derived from measurements. 262 

The last term in the equation represents the viscous term. It indicates the energy 263 

transferred from the resolved scale to the small scales, and also represents the SGS 264 

energy flux. The momentum transport can be expressed through this energy flux:265 
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ij
2

SGS ij
S     = −          (17)266 

2.3.3 Smagorinsky Constant Calculation Formula267 

The Cs is calculated by closing the equations using the dimensional analysis 268 

method and the Large Eddy PIV method. The two equations are solved simultaneously:269 

3

2 2 3/2

ij
2 4 ( )

ij S ij ij

u
A S C S S

l
 



= = −   =         (18)270 

Here, u
  is the root-mean-square velocity, and Δ is the filter width. The following 271 

analyzes each term in the equation.272 

(1) Root Mean Square Velocity273 

The Root Mean Square (RMS) Velocity quantifies the magnitude of velocity274 

fluctuations in turbulent flows, serving as a key metric for characterizing turbulence 275 

intensity. The calculation formula is as follows:276 

( )
1

22 2

1

1
( )

N

ij ij
ij

n

u u u
N

 

=

= =         (19)277 

In PIV experiments, the velocity field measurements typically include 278 

instantaneous velocity and time-averaged velocity. The velocity obtained from PIV 279 

measurements can be expressed as:280 

( )
1

22 2

1

1
( )

N

ij ij
ij

n

u u U
N

 

=

= =  (20)281 

where ij
U  is the time-averaged velocity obtained from PIV measurements. Significant 282 

fluctuations in flow velocity and the potential periodic variations make it  insufficient 283 

to simply average a large amount of long-term data when processing PIV results. In this 284 

experiment, to obtain a more accurate time-averaged velocity, we employed a local 285 

averaging method. For each time t, the data from 10 time steps before and after t are 286 

selected, and the average velocity over thoese 21 time steps is calculated to represent 287 

the average velocity at t. This method effectively reduces the impact of random 288 

fluctuations in instantaneous velocity, making the resulting time-averaged velocity 289 

more representative, resulting in a more accurate calculation of the root mean square 290 
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velocity.291 

(2) lntegral Length Scale l292 

The integral length scale is an important parameter for describing turbulence 293 

characteristic (Arun et al., 2023), and is commonly represented by the integral of the 294 

autocorrelation coefficient of the velocity between two arbitrary points. The 295 

autocorrelation function ( )R r  reflects the correlation between the velocities at two 296 

points, and is expressed as:297 

2 2

( , ) ( , )
( )

( , ) ( , )

i i

i i

u x t u x r t
R r

u x t u x r t

 

 

+ 
 =

+ 
                     (21)298 

Here, ( )R r  represents the autocorrelation coefficient between two points separated 299 

by a distance rΔ, and i
u
  represents the fluctuating velocity, which is the instantaneous 300 

velocity minus the mean velocity. The superscript indicates the time average over 301 

different time scales. By subtracting the time-averaged velocity from the instantaneous 302 

velocity at each time step, the fluctuating velocity is obtained, and the autocorrelation 303 

coefficient is computed from these fluctuating velocities.304 

The calculation formula for the integral length scale l is:305 

max

0
( )

r

l R r d r


=   (22)306 

in which, Δrmax is the distance where the autocorrelation function first equals 0. In 307 

theory, when the two points are at a distance of 0, the autocorrelation function equals 1; 308 

when the distance approaches infinity, the autocorrelation function equals 0.309 

(3) Turbulence Kinetic Energy Dissipation Rate Using the Scale Similarity Method310 

Dimensional analysis is an important method in the study of turbulence dissipation311 

rate. Using equation (9) to calculate the turbulence kinetic energy dissipation rate helps 312 

to understand the characteristics of turbulent energy dissipation.313 

(4) Strain rate tensor314 

The strain rate tensor is expressed as:315 

1
( )

2

j i

ij

i j

U U
S

x x

 
= +

 
(23)316 
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The experiment uses two-dimensional PIV to observe the flow field, and the flow 317 

velocity within the plane has been determined. Therefore,  𝑆𝑖̅𝑗 for , 1, 2i j =  is,318 

1

11

1

1 2

12 21

2 1

2

22

2

1
( )

2

U
S

x

U U
S S

x x

U
S

x


=


 
= = +

 


=


(24)319 

3.Results and Discussion320 

3.1 Root Mean Square Velocity321 

3.1.1 Centerline Flow Velocity322 

Figure 2 shows the distribution of the RMS velocity along the centerline of the 323 

cavity. Experimental analysis reveals significant differences in the distribution of RMS 324 

velocity along the cavity centerline, particularly between the near-wall region and the 325 

primary vortex core region. In the near-wall region, both urms and vrms reach their 326 

maximum values, with urms at the bottom wall increasing from 0.19 m/s at Re = 3×105 327 

to 0.35 m/s at Re = 7×105. As the Reynolds number increases, particularly in the near-328 

wall region, the values of urms and vrms increase significantly. Specifically, vrms reaches 329 

its peak near the downstream wall; at Re = 5×105, the peak value at the upstream wall 330 

is 0.19 m/s, while at the downstream wall, it is 0.24 m/s. The peak at the downstream 331 

wall is slightly higher than at the upstream, indicating that turbulence fluctuations are 332 

most intense in this region. This trend is consistent with the experimental data of Prasad 333 

and Koseff (1989).334 

However, near the wall (at x = 0 or y = 0), due to flow resistance and the enhanced 335 
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end-wall effect, the RMS velocity quickly decays to nearly zero. The RMS velocity in 336 

the primary vortex core region (at x = 0.5 or y = 0.6) is significantly lower than in the 337 

near-wall region, as the main vortex structure suppresses turbulent fluctuations, and the 338 

RMS velocity in this region is less influenced by changes in Reynolds number. At high 339 

Reynolds numbers, the end-wall effect increases, leading to energy loss due to high-340 

frequency fluctuations in the boundary layer, and reduced momentum redistribution, 341 

which decreases the velocity in the primary vortex core. In contrast, in the near-wall 342 

region, the RMS velocity rises rapidly due to the enhanced wall shear stress and 343 

turbulent intensity. These factors together cause a significant increase in RMS velocity 344 

near the wall. As the Reynolds number increases, the turbulence shear effect in the near-345 

wall region intensifies, exacerbating boundary layer instability and causing turbulent 346 

kinetic energy accumulates, further increasing the fluctuation velocity. However, in the 347 

primary vortex core, due to the limited turbulence energy transport and lower 348 

momentum redistribution efficiency, the velocity distribution remains relatively stable.349 

The results of this study align with the findings of Samantaray and Das (2019) and 350 

Padilla et al. (2005) regarding low Reynolds number cavity flows, where the RMS 351 

velocity is higher in the near-wall region and lower in the primary vortex core. At Re = 352 

10000, the RMS velocity in the primary vortex region is smaller compared to the peak 353 

value at the wall, but the difference is relatively small (Samantaray et al., 2020). This 354 

is because at low Reynolds numbers, viscous effects dominate, and the turbulence 355 

characteristics in the primary vortex region and the near-wall region are more similar. 356 

However, in high Reynolds number flows (Re = 3×105 to Re = 106), the RMS velocity 357 
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in the primary vortex region is significantly lower than the peak value at the wall, with 358 

a larger difference. This is because in high Reynolds number flows, inertial forces 359 

dominate the evolution of turbulence, and the shear effects in the primary vortex region, 360 

which is far from the wall, are weaker, leading to lower turbulent fluctuation intensities. 361 

Meanwhile, in the wall region, turbulence intensity is higher due to stronger wall shear 362 

effects.363 

In high Reynolds number flows (Re = 3×105 to 7×105), the velocity difference 364 

between the left and right wall is smaller, indicating that the flow has entered a fully 365 

developed turbulent state, and intense turbulent fluctuations promote lateral momentum 366 

exchange, reducing local flow differences between the two walls. This contrasts with 367 

the low Reynolds number flows, where viscous effects are predominant. In low 368 

Reynolds number conditions, the flow near the walls is significantly influenced by local 369 

vortex structures, leading to greater velocity differences. Moreover, compared to the 370 

research by Samantaray et al. (2004) on square lid-driven cavities, although their 371 

experimental Reynolds numbers were lower (Re = 1000 to 15000), the variation of 372 

RMS velocity with Reynolds number showed consistent trends: as Reynolds number 373 

increased, turbulence intensity increased, and RMS velocity near solid boundaries 374 

significantly increased, while the RMS velocity in the cavity center was less influenced 375 

by changes in Reynolds number. This study further confirms that at high Reynolds 376 

numbers, the fluctuation velocity in the near-wall region increases significantly, while 377 

the core region exhibits weak dependence on Reynolds number due to flow stability 378 

limitations.379 
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380 

Figure 2: Root Mean Square Velocity along the Centerline , including urms and vrms381 

Regarding the two components of RMS velocity, Padilla and Martins (2005) found that when 382 

using the Smagorinsky subgrid model with a constant Cs = 0.1, the peak value near the wall 383 

was lower than that near the primary vortex, with vrms reaching 0.03 m/s near the primary 384 

vortex. Similarly, at Cs = 0.18, the peak velocity at x = 0.25 reached 0.32 m/s, which was 385 

significantly higher than the value near the left wall, indicating higher turbulence viscosity, 386 

which led to poor velocity statistics. As shown in Fig. 3, when using the dynamic subgrid 387 

model, the RMS velocity near the vortex center was lower than the velocity at the two side 388 

walls. In the case of different Cs values and the dynamic subgrid model, the peak values at the 389 

two side walls were very similar, with the vrms difference on the left side being only 0.003 m/s. 390 

Only at locations further away from the side walls did the results from the dynamic subgrid 391 

model align better with the experimental data. Similarly, for the vertical neutral line y, the 392 

variation of urms follows the same trend as vrms along the neutral line x. When Cs = 0.18 and 393 

using the dynamic subgrid model, the peak value errors at the top and bottom walls were 394 

small, with the error at the bottom wall side being only 0.01 m/s. Further away from the side 395 

walls, the velocity gradually decreased. When using the dynamic subgrid model, the peak 396 



20

value of urms was much larger compared to the flow velocity interpolation at the vortex core, 397 

with significant differences when Cs = 0.1 and Cs = 0.18.398 

399 

400 

Figure 3: The vertical velocity along the neutral plane at Re = 10,000, as presented in 401 

the data from Padilla and Martins (2005).402 
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3.1.2 Flow Velocity on the Middle Plane403 

Figure 4 presents the distribution of the RMS velocity (wrms) on the middle plane 404 

(X=0) under different Reynolds numbers (Re=3×105, 5×105, 7×105, 1×106). 405 

Experimental results indicate a significant spatial non-uniformity in the RMS velocity 406 

across different flow conditions. The fluctuation intensity in the primary vortex core 407 

region is relatively low, whereas noticeable peaks in the RMS velocity appear in the 408 

near-wall regions, particularly along the downstream wall. Specifically, at Re=3×105, 409 

the maximum RMS velocity is approximately 0.24 m/s, and as the Reynolds number 410 

increases to 1×106, the peak value rises to around 0.43 m/s, with the maximum always 411 

occurring near the downstream wall. This phenomenon may be attributed to the jet 412 

effect induced by the lid-driven flow, which generates a localized high shear region that 413 

leads to a sharp gradient in velocity near the right wall, forming a tightly spaced contour 414 

of velocity gradients. As the Reynolds number increases, the trend of increasing RMS 415 

velocity in the near-wall region becomes more pronounced, and the complexity of the 416 

contour distribution and shape also increases, further suggesting that at high Reynolds 417 

numbers, the spatial non-uniformity and dynamic evolution of turbulence fluctuations 418 

are enhanced. The increase in Reynolds number strengthens the inertial forces 419 

dominating the turbulent transport mechanism. In the near-wall region, the interaction 420 

between wall shear and the turbulent boundary layer intensifies the accumulation of 421 

velocity gradients and fluctuation energy, leading to a significant increase in RMS 422 

velocity with higher Reynolds numbers.423 

Specifically, at high Reynolds numbers, the frequency of turbulent vortex 424 
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breakdown and reorganization within the boundary layer increases, causing the 425 

fluctuation energy in the near-wall region to spread across a wider frequency range, 426 

thereby enhancing the local velocity fluctuation intensity. In contrast, the primary 427 

vortex core, being farther from the wall shear influence, exhibits higher flow stability. 428 

Therefore, the RMS velocity in this region is less dependent on Reynolds number. 429 

However, as the Reynolds number increases to 1×106, the turbulent mixing effects in 430 

the primary vortex region still lead to a slight increase in RMS velocity. This result 431 

highlights the competing mechanism between inertial and viscous forces in controlling 432 

the spatial distribution of turbulent energy. At high Reynolds numbers, the viscous 433 

dissipation effect near the walls weakens, and the inertial-dominated turbulent transport 434 

mechanism governs the distribution of energy. On the other hand, the core region is 435 

constrained by the momentum of the primary vortex structure, with its fluctuation 436 

evolution being dominated by local flow stability.437 

438 

Re=3×105 Re=5×105
439 
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440 

Re=7×105 Re=1×106
441 

Figure 4: Root Mean Square Velocity on the Middle Plane442 

To gain deeper understanding of the distribution characteristics of the root mean 443 

square velocity (wrms) at different positions on the cavity’s middleplane, Figure 5 shows 444 

the evolution of wrms along the middle line and near the side wall lines (x=0.91, y=0.11) 445 

under various conditions (Re=3×105, 5×105, 7×105). The experimental results indicate 446 

that the wrms along the side wall near the cavity exhibits a typical single-peak 447 

distribution (Figure b). Starting from the side wall (x = 0, y = 0), the wrms gradually 448 

increases as the distance from the wall increases, reaching a peak near the core of the 449 

main vortex (at Re = 7×105, the peak is approximately 0.37 m/s), and then gradually 450 

decays towards the opposite side wall. This phenomenon is attributed to the dynamic 451 

balance between the viscous effects in the near-wall region and turbulent energy 452 

transport. Near the wall, the viscous sublayer dampens the initial fluctuation intensity 453 

due to strong shear forces. As the distance from the wall increases (approximately x > 454 

0.2 or y > 0.2), the viscous constraints weaken, and the inertial-dominated turbulent 455 

fluctuations rapidly accumulate, leading to a significant increase in wrms. When the flow 456 
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reaches the main vortex region, the velocity reaches its maximum value. As the fluid 457 

continues to approach the wall (x > 0.6 or y > 0.6), the flow stabilizes, the momentum 458 

redistribution efficiency decreases, and the fluctuation energy dissipates gradually.459 

Notably, the wrms distribution along the middle line exhibits a "bimodal" 460 

characteristic (Figure a). Specifically, the velocity near the side walls is relatively high 461 

(approximately 0.36 m/s), while the velocity in the main vortex core region (0.4 < x < 462 

0.6 or 0.5 < y < 0.7) significantly decreases to below 0.1 m/s. This difference arises 463 

from the momentum constraint effect of the main vortex structure on the flow in the 464 

core region, which suppresses the multi-scale evolution of turbulent fluctuations. In 465 

contrast, near the side walls, the shear layer instability and enhanced turbulent mixing 466 

significantly amplify the fluctuation characteristics. Further analysis shows that as the 467 

Re increases from 3×105 to 7×105, the peak value of wrms exhibits a systematic increase. 468 

The peak value at the main vortex position along the side wall line x = 0.91 increases 469 

from 0.19 m/s at Re = 3×105 to 0.33 m/s at Re = 7×105, while the wrms along the side 470 

wall line y = 0.11 increases from 0.18 m/s to 0.35 m/s.471 

472 

(a) middle line473 



25

474 

(b) Near the side wall lines475 

Figure 5: Root Mean Square Velocity at Different Locations on the Middle Plane476 

3.2 Dissipation Rate(ε)477 

Figure 6 shows the spatial distribution of turbulence kinetic energy dissipation 478 

rates(ε) in the cavity at different Reynolds numbers (Re=3×105, 5×105, 7×105, 1×106). 479 

The experimental results indicate significant spatial non-uniformity in the ε: the ε in the 480 

main vortex region is generally below 0.1, while in the near-wall regions (near the 481 

bottom and side walls), the ε increases substantially, with the peak reaching 0.6 at Re 482 

=1×106. As the Reynolds number increases from 3×105 to 1×106, both the overall ε and 483 

its spatial complexity increase. Specifically, the ε near the bottom wall increases from 484 

0.33 at Re = 3×105 to 0.68 at Re = 1×106. At Re = 3×105, the dissipation of turbulent 485 

kinetic energy is mainly concentrated near the wall, with the ε at the left side wall being 486 

only 0.15 and covering a small area. When the Reynolds number increases to 5×105, 487 

the ε increases significantly, and the high dissipation area expands. At Re = 7×105, the 488 

high dissipation region at the left wall extends inward into the cavity, and two 489 

dissipation peak zones form on the left wall. At Re = 1×106, the high dissipation regions 490 
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fragment, and multiple localized high dissipation zones appear on the bottom and side 491 

walls, with the contour lines evolving from continuous bands to multi-scale fragmented 492 

structures, reflecting the dynamic evolution of the turbulence multi-scale vortex 493 

structures.494 

The near-wall regions experience high dissipation rates due to the boundary layer, 495 

where the velocity gradient is steepened by wall shear. In these regions, viscous 496 

dissipation dominates the energy loss, leading to a significant increase in the local 497 

dissipation rate. As the Reynolds number increases, turbulence fluctuations dominated 498 

by inertial forces enhance, making the flow more prone to turbulence and vortex 499 

formation. The interaction, stretching, and breaking of these vortices cause rapid energy 500 

dissipation, leading to an increase in the dissipation rate. In the near-wall regions, the 501 

turbulence activity within the boundary layer intensifies as Reynolds number increases, 502 

enhancing viscous dissipation and thus increasing the dissipation rate. Moreover, at 503 

high Reynolds numbers, the flow instability intensifies, leading to the emergence of 504 

smaller-scale vortex structures within the cavity, further enhancing energy dissipation.505 

A comparison with Samantaray et al.(2019) in their study of cavity flows at Re ≤ 506 

1.5×104 reveals a common trend of significant increases in dissipation rates near the 507 

wall. This study further shows that the high dissipation regions extend from near the 508 

wall into the cavity as Reynolds number increases, and more regions inside the cavity 509 

show a significant rise in turbulence dissipation rates, with more intense changes in 510 

contour lines. Additionally, Gnanasekaran and Satheesh (2024) found in their numerical 511 

study of turbulence in double-cavity flows that, under specific length-to-width and 512 
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velocity ratio conditions, the dissipation rate may decrease as the Reynolds number 513 

increases. This phenomenon is likely related to the geometric configuration of the 514 

double cavity and its effect on the stability of the main vortex structure, which may 515 

inhibit the development of turbulence and thus weaken energy dissipation. The results 516 

of this study show that, in a single-sided driven cavity, the positive reinforcing effect of 517 

Reynolds number on dissipation rates dominates, further highlighting the significant 518 

influence of geometric configuration and driving conditions on turbulence dissipation 519 

mechanisms.520 

521 

Re=3×105 Re=5×105
522 

523 

Re=7×105 Re=1×106
524 

Figure 6: Distribution of dissipation Rate.525 
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3.3 Smagorinsky Constant526 

Figure 7 shows the distribution of the Smagorinsky constant in the cavity at 527 

different Reynolds numbers (Re=3×105, 5×105, 7×105, 1×106). At each Reynolds 528 

number, the Smagorinsky constant exhibits a distinct non-uniform distribution within 529 

the cavity. In the boundary regions, the value is relatively small. Starting from the 530 

boundary, as the distance from the wall increases, the constant first increases and then 531 

decreases. The region closest to the boundary is where turbulence and viscosity are the 532 

most intense, and the Smagorinsky constant reaches its maximum value. In the central 533 

primary vortex region, which is essentially in the laminar range (no viscosity), the 534 

Smagorinsky constant increases from 0.02 m/s at Re=3×105 to 0.05 m/s at Re=1×106, 535 

and is close to zero. The turbulence characteristics at different positions within the 536 

cavity show significant variations, resulting in corresponding changes in the 537 

Smagorinsky constant used for simulating subgrid-scale stresses. Notably, although the 538 

Smagorinsky constant is larger near the boundary, the exact values for different walls 539 

vary. The bottom wall has a larger value than the top wall, with the maximum value 540 

often appearing in the upstream region, mainly concentrated near the upstream area of 541 

the UUV region.542 

As the Reynolds number increases, the maximum value of the Smagorinsky 543 

constant within the cavity also increases. The maximum value at Re=3×105 is around 544 

0.3, reaching 0.35 at Re=5×105, 0.4 at Re=7×105, and 0.6 at Re=1×106. This trend 545 

indicates that the increase in Reynolds number strengthens the turbulence within the 546 

cavity, leading to an increase in eddy viscosity, which is reflected in the rise of the 547 
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maximum value of the Smagorinsky constant. Additionally, although the overall 548 

distribution trend remains unchanged, at higher Reynolds numbers, the region with 549 

higher values of the constant expands, indicating that Reynolds number influences both 550 

the distribution range and intensity of the Smagorinsky constant within the cavity. 551 

Furthermore, as the Reynolds number increases, the turbulence within the cavity 552 

intensifies, and the region of the Smagorinsky constant tends to break up more, with 553 

the contour lines becoming more complex and the gradients steeper.554 

From the perspective of turbulence theory, near solid boundaries or in other 555 

laminar regions, turbulence-generated viscosity is zero, resulting in the Smagorinsky 556 

constant of zero. Closer to the boundary, the fluid is influenced by the wall, leading to 557 

complex state with strong turbulence, and a larger Smagorinsky constant is required to 558 

accurately simulate the subgrid-scale stresses and energy transfer. In the intermediate 559 

primary vortex region, which is in the laminar range and has no viscosity, the 560 

Smagorinsky constant decreases to zero (Kresta and Wood,1993). As the Reynolds 561 

number increases, the relative strength of inertial forces over viscous forces increases, 562 

and the turbulence intensity escalates. The number and activity of small-scale vortices 563 

increase, and to better simulate the subgrid-scale effects at this high turbulence intensity, 564 

the maximum value of the Smagorinsky constant increases accordingly. In conclusion, 565 

using a constant Smagorinsky value throughout the entire flow in high Reynolds 566 

number large eddy simulations is inaccurate. Since eddy viscosity differs across 567 

different regions of the flow, the corresponding Smagorinsky constant should also adapt 568 

accordingly.569 
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The experimental findings of this study reveal the spatial correlation between the 570 

Smagorinsky constant and turbulence characteristics in high-Reynolds lid-driven cavity 571 

flows, providing the following physical basis for the optimization of subgrid-scale 572 

models: Experimental data show that Cs exhibits a non-uniform distribution 573 

approaching zero in the boundary wall region (Cs ≈ 0 at Re = 1×10⁶).  Its value574 

increases and then decreases with increasing distance from the wall, and the peak 575 

position is significantly correlated with the spatial distribution of the local turbulent 576 

kinetic energy dissipation rate.  Further analysis shows that the peak value of Csmax 577 

increases with Reynolds number, from 0.3 at Re = 3×105 to 0.6 at Re = 1×106.  This 578 

suggests that subgrid models need to introduce Reynolds number-dependent dynamic 579 

scaling relationships (such as Cs∝Re
α
) to match the energy cascade process dominated 580 

by inertial effects.  In addition, the spatial non-uniformity of the turbulent kinetic 581 

energy dissipation rate (with peak values near the wall reaching 0.6 and below 0.1 in 582 

the core region) indicates that the model must achieve a refined calibration of the 583 

dissipation term by dynamically relating Cs with local flow parameters (e.g., wall 584 

distance y+), particularly in the near-wall high shear region, where enhanced dissipation 585 

resolution is needed to suppress excessive damping effects, where the near-wall vrms 586 

error reaches 0.03 m/s at Cs = 0.18).  Notably, the low sensitivity of urms to Reynolds 587 

number in the primary vortex core (variation< 0.1 m/s) provides a validation benchmark 588 

for the robustness of the model in the inertial-dominated region.  Compared to the 589 

fixed Cs model, the dynamic model reduces the error in this region to 0.01 m/s, 590 

confirming the superiority of the spatially adaptive Cs distribution.  These findings 591 
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provide experimental support for the development of partitioned dynamic subgrid 592 

models.  Future research could further optimize the near-wall model parameterization 593 

by incorporating the quantitative relationship between local dissipation rate and Cs. 594 

595 

596 

Re=3×105 Re=5×105
597 

598 

Re=7×105 Re=1×106
599 

Figure 7: Distribution of the Smagorinsky constant600 

4. Conclusions601 

This study examined water flow dynamics in a lid-driven cavity under four high602 

Reynolds number conditions: Re = 3×10⁵, 5×10⁵, 7×10⁵, and 1×10⁶. The flow field 603 
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within the cavity was measured using PIV, and RMS velocities and turbulent kinetic 604 

energy dissipation rates within the cavity were calculated. Using combination of the 605 

dimensional analysis method and large eddy PIV method, the distribution of the 606 

Smagorinsky constant within the cavity was further determined. The experimental 607 

findings yield the following key conclusions:608 

(1) Variation of RMS Velocity: As the Reynolds number increases, the RMS609 

velocities (urms and vrms) in the near-wall region of the cavity increase significantly, 610 

especially near the downstream wall where the RMS velocity reaches its peak. This 611 

indicates that, under high Reynolds number conditions, the turbulence intensity in the 612 

wall-adjacent regions is amplified. Specifically, when Re increases from 3×10⁵ to 1×10⁶, 613 

the RMS velocity at the bottom wall increases from 0.19 m/s to 0.35 m/s, further 614 

highlighting the significant increase in turbulence intensity in the boundary layer under 615 

high Reynolds number flows.616 

(2) The turbulent kinetic energy dissipation rate distribution on the neutral plane617 

of the cavity, obtained using both dimensional analysis and large eddy PIV methods, 618 

reveals higher dissipation rate near the left and right cavity walls. Moreover, under high 619 

Reynolds number conditions, the dissipation rate exhibits clear spatial non-uniformity. 620 

As the Reynolds number increases, the overall dissipation rate level rises, particularly 621 

in the near-wall region, where the dissipation of turbulent kinetic energy becomes 622 

significantly higher. For example, at Re = 1×10⁶, the peak dissipation rate near the 623 

bottom wall reaches 0.6, with its influence extending further within the cavity. These 624 

findings suggest that as the Reynolds number increases, the inertial forces dominate the 625 
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turbulent fluctuations, causing more intense dissipation of turbulent energy, which 626 

highlights the increased turbulent intensity and the spatial complexity of energy 627 

dissipation at high Reynolds numbers.628 

(3) Smagorinsky Constant Distribution: The Smagorinsky constant calculated629 

from the experimental results is close to zero near the cavity walls and gradually 630 

increases with distance from the wall, reaching a maximum value before decreasing to 631 

zero in the central region of the cavity. As the Reynolds number increases, the 632 

Smagorinsky constant also rises, especially at higher Reynolds numbers, where the 633 

enhanced vortex viscosity leads to a higher peak value of the Smagorinsky constant.634 

Limitations: It is important to note that this study was conducted using a 2D plane 635 

for the experimental setup, and the results may not fully capture the complexities of 636 

three-dimensional flow dynamics. Testing 3D models could provide further insights 637 

into the flow behavior and energy dissipation mechanisms in the cavity, particularly at 638 

higher Reynolds numbers. This aspect will be considered as a direction for future 639 

research. 640 
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