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Abstract
The rapid spread of health misinformation on online social networks (OSNs) during global
crises such as the COVID-19 pandemic poses challenges to public health, social sta-
bility, and institutional trust. Centrality metrics have long been pivotal in understanding
the dynamics of information flow, particularly in the context of health misinformation.
However, the increasing complexity and dynamism of online networks, especially dur-
ing crises, highlight the limitations of these traditional approaches. This study introduces
and compares three novel centrality metrics: dynamic influence centrality (DIC), health
misinformation vulnerability centrality (MVC), and propagation centrality (PC). These met-
rics incorporate temporal dynamics, susceptibility, and multilayered network interactions.
Using the FibVID dataset, we compared traditional and novel metrics to identify influential
nodes, propagation pathways, and misinformation influencers. Traditional metrics iden-
tified 29 influential nodes, while the new metrics uncovered 24 unique nodes, resulting
in 42 combined nodes, an increase of 44.83%. Baseline interventions reduced health
misinformation by 50%, while incorporating the new metrics increased this to 62.5%, an
improvement of 25%. To evaluate the broader applicability of the proposed metrics, we
validated our framework on a second dataset, Monant Medical Misinformation, which
covers a diverse range of health misinformation discussions beyond COVID-19. The
results confirmed that the advanced metrics generalised successfully, identifying distinct
influential actors not captured by traditional methods. In general, the findings suggest that
a combination of traditional and novel centrality measures offers a more robust and gen-
eralisable framework for understanding and mitigating the spread of health misinforma-
tion in different online network contexts.

Author summary
False health information on social media can spread rapidly during crises, influencing
how people think, feel, and behave. This can lead to harmful consequences for public
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health. Our study investigates how such misinformation travels through online networks
and which users are most influential in spreading it. Traditional approaches often iden-
tify influencers only on the basis of how many connections they have. However, this
overlooks individuals who are vulnerable to misinformation or whose influence builds
up gradually. We developed three new tools that capture not only structural impor-
tance, but also behavioural susceptibility and time-based influence. These methods were
applied to real-world data covering both COVID-19 and broader medical misinforma-
tion. The results reveal that some users act as persistent spreaders of misinformation,
while others are highly exposed and more likely to believe and share false content. These
patterns are often missed/overlooked by conventional techniques. The findings support
the need for more targeted strategies from health organisations and platforms to identify
and limit the spread of misleading health claims. Using dynamic and context-aware met-
rics offers a clearer picture of how misinformation operates in complex social networks
and may help guide more effective interventions.
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Introduction
The proliferation of health misinformation, especially during global crises such as the
COVID-19 pandemic, has presented significant challenges to public health, societal stability,
and institutional trust. OSNs such as X/Twitter) and Facebook have become primary vectors
for the rapid dissemination of false information. Traditional centrality metrics such as degree,
closeness, eigenvector, and betweenness have been used to identify influential nodes within a
network and to understand the dynamics of the information flow [1]. These metrics have pro-
vided valuable information on how, for example, health misinformation spreads between net-
works. However, given the complexities and dynamism of contemporary OSNs, these tradi-
tional metrics often do not capture the nuanced and evolving nature of influence within these
platforms [2,3].

Considering that there is no consensus among researchers on the best centrality metrics to
employ, there is still significant scope for research to develop new metrics that can enhance
the understanding of the propagation of health misinformation. Previous studies [4,5], for
example, have advanced the field with sophisticated metrics such as temporal and overlap-
ping modular centralities, which better account for dynamic and multi-layered networks.
These advancements highlight the ongoing efforts to refine centrality metrics, highlighting the
need for metrics that can adapt to the ever-changing nature of online health misinformation
networks. In parallel, Di Sotto and Viviani [6] provide a comprehensive overview of health
misinformation detection approaches on the social web, categorising methods into content-
based, context-aware, and network-driven strategies. However, they also emphasise that while
many methods address what is said and who says it, fewer directly capture how influence
dynamically spreads within the network — a gap this study aims to address.

In light of these gaps, this research contributes to the evolving field by introducing three
novel centrality metrics, that is, DIC, MVC, and PC. These metrics aim to overcome the lim-
itations of traditional centrality metrics by incorporating temporal dynamics, susceptibility
to health misinformation, and the complex interactions that occur within networks. Applying
these metrics to real-world social networks provides a more nuanced understanding of how
influence and health misinformation spread, ultimately offering more effective strategies to
mitigate the spread of misinformation in OSNs.
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To our knowledge, this research represents the first attempt to introduce and validate novel
centrality metrics specifically tailored for the propagation of health misinformation. The main
contributions of the research are summarised as follows:

1. Introduce DIC, MVC, and PC to measure the spread of health misinformation.
2. Develop a framework that compares traditional and novel centrality metrics within

health misinformation networks.
3. Demonstrate effective management of health misinformation through targeted inter-

ventions using PC, MVC, and DIC.

In sum, these contributions validate the new metrics, challenge the existing centrality theory,
and provide a methodological foundation for measuring influence in health-misinformation
networks.

State-of-the-art
Overview
Centrality metrics have long been crucial in understanding how health misinformation
spreads within OSNs. For example, metrics such as degree, eigenvector, closeness, and
betweenness have been used to identify key influencers and nodes crucial in the diffusion of
information [1]. However, the rapid evolution and complexity of OSNs, particularly evident
during crises such as the COVID-19 pandemic, have exposed the limitations of these static
metrics [3,7]. In response, recent research has introduced more sophisticated and adaptable
centrality metrics, such as temporal centrality metrics, designed to account for the dynamic
nature of OSNs [4]. These innovations aim to provide a more accurate understanding of the
spread of health misinformation by capturing the changing influence of the nodes over time.
This state-of-the-art overview explores recent advancements, focusing on how new method-
ologies and centrality metrics are being applied to better understand and ultimately mitigate
the spread of health misinformation in OSNs.

Analysis of traditional centrality metrics across multiple studies
Degree centrality
Degree centrality is defined as the number of direct connections a node/individual has (e.g.
friends), indicating the potential influence of the individual within a network [8]. For an
undirected network, it is simply the number of edges connected to the node. For a directed
network, it can be divided into in-degree (number of incoming edges) and out-degree (num-
ber of outgoing edges).

Formula for undirected network.

CD(v) = deg(v)

where:

• CD(v) is the degree centrality of node v
• deg(v) is the degree of node v, i.e., the number of edges connected to v.

Formula for directed network.

Cin
D(v) = in-deg(v), Cout

D (v) = out-deg(v)
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where:

• Cin
D(v) is the in-degree centrality (number of incoming edges),

• Cout
D (v) is the out-degree centrality (number of outgoing edges).

Although this metric provides a straightforward measure of immediate network influence,
its effectiveness varies depending on the context of the network. For example, [9] uses degree
centrality within protein-protein interaction networks to identify key proteins that interact
with many others. They demonstrate how degree centrality can effectively identify highly con-
nected proteins critical to cellular functions. However, [9] also highlights the limitations of
degree centrality in capturing the dynamic and multilayered nature of influence in networks,
suggesting the need to combine it with other metrics.

Previous studies [7] applied degree centrality to social networks, identifying influencers
during the spread of health misinformation on platforms such as X/Twitter. Their study shows
that users with high connectivity significantly impact the dissemination of health misinforma-
tion, but also highlights the limitations of the metric in accounting for susceptibility to health
misinformation. Similarly, [2] evaluated degree centrality in diffusion studies, demonstrat-
ing its value in understanding peer influence, particularly in research on health behaviour.
However, they also identify its limitations in dynamic OSNs, where the influence can fluctuate
over time.

Closeness centrality
The centrality of closeness CC(v) of a node v is defined as the reciprocal of the sum of the
shortest path distances from v to all other nodes in the network [10]. The formula is given as:

CC(v) =
1

∑u≠v d(v,u)

where:

• d(v,u) is the shortest path distance between nodes v and u.

This metric evaluates how quickly a node can interact with all other nodes, making it use-
ful in communication networks and public health systems. Previous studies have demon-
strated the effectiveness of closeness centrality in communication and misinformation net-
works [1,11], identifying it as a key driver in the propagation of true and false information
while highlighting challenges in dynamic and fragmented contexts. In graphs with discon-
nected components, where some node pairs are unreachable, we calculate closeness using
the harmonic centrality formulation [12], summing the reciprocals of distances and treating
unreachable nodes as contributing zero. This ensures well-defined centrality values even in
fragmented network structures, which are common in online misinformation environments.

Computational Note: In practice, shortest path distances required for closeness and
betweenness centralities are typically computed using optimised algorithms such as Dijkstra’s
algorithm for positive-weighted graphs, as implemented in standard network analysis libraries
like NetworkX [13]. This ensures efficient evaluation even in large and fragmented networks.

Betweenness centrality
The betweenness centrality CB(v) of a node v is defined as the sum over all pairs of distinct
nodes (s,t) of the fraction of shortest paths between s and t that pass through v [14]. The
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formula is:

CB(v) = ∑
s ≠ v
t ≠ v
s ≠ t

𝜎st(v)
𝜎st

where:

• 𝜎st is the total number of shortest paths from node s to node t,
• 𝜎st(v) is the number of shortest paths from node s to node t that pass through node v.

This metric captures the role of a node as a bridge or bottleneck for information flow, with
higher betweenness indicating greater potential control over interactions within the network,
as also emphasised by Freeman [14]. Betweenness centrality is particularly useful for identify-
ing bottlenecks or key influencers. Building upon this, Ghalmane et al. [5] adapted between-
ness centrality to networks with overlapping communities, developing new metrics to more
effectively identify influential nodes in multilayer networks. Multilayer networks arise when
the same set of nodes interacts across multiple types of connections. For example, in the con-
text of health misinformation, individuals can simultaneously engage through public posts
(information sharing layer), private messages (direct communication layer) and group forums
(community discussion layer), forming a multilayered social structure [5].

According to [5], the centrality of betweenness often falls short in multilayer network sce-
narios, where the nodes participate in multiple layers representing different types of interac-
tion. For this reason, [5] proposed the overlapping modular centralitymetric, which incor-
porates interlayer and intralayer interactions to more effectively identify influential nodes
in such networks. The proposed overlapping modular centrality addresses the limitations of
standard betweenness centrality in complex structures, enhancing its applicability in networks
where nodes belong to multiple communities and allowing for a more nuanced understanding
of influence.

Previous studies [15] applied the centrality of the connection to identify influential
X/Twitter users during the COVID-19 crisis. Their study demonstrated how central nodes
can significantly impact public discourse and sentiment during emergencies, highlighting the
importance of betweenness centrality in crisis communication and management. Although
this study offers valuable information on the impact of influential nodes (or information lead-
ers) on X/Twitter networks during the COVID-19 crisis, its limitations include the inability
to fully account for contextual and situational factors that drive influence during such events.
For example, an individual’s influence may increase due to a specific event or information, but
may not sustain over time. Furthermore, while the study by [15] focuses on centrality metrics
such as degree and betweenness centrality, it appears overly reliant on these metrics without
adequately considering other factors, such as content quality, sentiment, or user engagement.

According to [16], the influence of social networks is inherently multifaceted, covering
elements such as susceptibility and network dynamics, and cannot be fully measured solely
by traditional centrality metrics. This highlights the need for the development of alternative
metrics, as demonstrated in the study by [5].

Similarly, [3] applied the centrality of betweenness to analyse the structure of COVID-19
health misinformation networks. Their study identified key nodes responsible for spreading
health misinformation, demonstrating the effectiveness of betweenness centrality in mitigat-
ing the impact of health misinformation during a pandemic. Although [3] emphasised the

PLOS Digital Health https://doi.org/10.1371/journal.pdig.0000888 June 16, 2025 5/ 18

https://doi.org/10.1371/journal.pdig.0000888


ID: pdig.0000888 — 2025/6/7 — page 6 — #6

PLOS DIGITAL HEALTH Advanced centrality metrics for analysing health misinformation in OSNs

structural aspects of health misinformation networks, such as the centrality of the nodes and
the topology of the network, they paid less attention to factors such as the vulnerability of a
node to health misinformation based on its connectivity, the influence of neighbouring nodes,
and its susceptibility to adopt false information.

Dynamic extensions of classical centralities. Although degree, closeness, and between-
ness can, in principle, be recomputed on successive temporal snapshots of an evolving
graph [17], doing so at scale is prohibitively expensive. More importantly, iteratively refresh-
ing static scores still fails to capture two properties that are pivotal for misinformation
research: (i) the cumulative build-up of a user’s reach over time and (ii) the changing sus-
ceptibility of audiences to particular sources or narratives. These limitations underpin the
case for purpose-built dynamic measures, that is, PC, MVC, and DIC, which embed dif-
fusion processes, vulnerability weighting, and longitudinal influence directly into their
formulations.

Limitations of traditional metrics and emerging directions
Centrality measures have long been central to the study of influence within OSNs, particularly
in the context of misinformation. Established metrics such as degree, closeness, betweenness,
and eigenvector centrality provide structural insights by identifying key nodes based on their
positions within the network. Although these measures offer a useful starting point for under-
standing influence, their effectiveness in real-world, large-scale, and dynamic misinformation
environments has come under increasing scrutiny. Traditional approaches are often static in
nature, overlooking the temporal, contextual, and behavioural factors that characterise the
influence in health misinformation ecosystems.

Previous research has highlighted these shortcomings. For example, Batool et al. [1]
demonstrated that centrality rankings can vary significantly across datasets, with betweenness
centrality often overemphasising bridge nodes while underrepresenting locally significant
actors. Moreover, studies such as those by [4] have proposed temporal metrics like Temporal
Degree-Degree (TDD) and Closeness-Closeness (CC), which attempt to address the limita-
tions of static approaches by incorporating the evolving structure of networks. These mea-
sures reflect how influence can fluctuate due to emerging topics or viral activity, a particularly
relevant factor in OSNs where misinformation may gain sudden traction.

In addition, machine learning (ML) models have been applied to the identification of
influential nodes, offering improvements in prediction accuracy and adaptability [7]. How-
ever, such models often come at the cost of interpretability and typically fail to capture the
enduring impact of influence or user-level susceptibility over time. The lack of integration
between structural network measures and behavioural dimensions leaves a gap in our ability
to understand not just where influence occurs, but how and why it persists.

There is a growing recognition that influence in health misinformation contexts is not
determined solely by structural position. Theoretical frameworks such as the Elaboration
Likelihood Model (ELM) [18] highlight the importance of cognitive and affective factors in
shaping individual receptiveness to persuasive information. Incorporating these psycholog-
ical constructs into network-based models offers a path toward more comprehensive mea-
sures of influence that account for both the topology of the network and the variability of user
engagement. However, efforts to operationalise these insights remain limited.

Consequently, the field is beginning to shift towards models that blend structural, tem-
poral, and behavioural perspectives. This includes the development of centrality met-
rics that consider decay effects, attention dynamics, and individual susceptibility. At the
same time, computational challenges persist, particularly in scaling these metrics to large
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OSNs while maintaining interpretability and real-time applicability. Addressing these chal-
lenges is essential for advancing both theoretical understanding and practical detection of
misinformation spread in complex digital environments.

Addressing health misinformation propagation
In response to these limitations, this study proposes a set of novel centrality metrics specifi-
cally designed to capture the dynamics of the propagation of health misinformation in online
networks. Although previous studies have demonstrated the utility of traditional central-
ity measures such as degree, closeness, and betweenness to identify influential users [9],
their limitations in static network structures have also been acknowledged. Similarly,
Batool et al. [1] have emphasised the need for metrics that are sensitive to the dynamics
and context of the network. ML approaches have added predictive power [7], but often fail
to account for sustained influence over time or the interpretability needed for real-world
intervention.

To bridge this gap, we introduce three centrality metrics: Propagation Centrality (PC),
Misinformation Vulnerability Centrality (MVC), and Dynamic Influence Centrality (DIC).
These measures integrate temporal dynamics, structural connectivity, and behavioural sus-
ceptibility, providing a more holistic understanding of how misinformation spreads. The
PC extends the classical centrality by incorporating a diffusion kernel that better reflects the
potential for information spread. MVC introduces a susceptibility parameter informed by
user-interaction features and local neighbourhood structure. DIC incorporates exponential
decay to model the waning influence of nodes over time, addressing the limitations of static
centrality in fast-moving online discussions.

Together, these metrics contribute both theoretically and practically to the challenge of
detecting and countering health misinformation. They enable the identification of not only
structurally prominent users, but also those who exert sustained and context-sensitive influ-
ence. The following sections describe the methodological development of these metrics and
evaluate their performance using a real-world dataset of health misinformation.

Materials and methods
Dataset
The COVID-19 Fake News Information Broadcasting Dataset (FibVID) [19] provides a
comprehensive collection of data focused on the diffusion of fake news during the COVID-
19 period. The dataset comprises three main components: news claim, claim propagation,
and user information. This data set was built from data collected between January 2020 and
December 2020. The news claim data, obtained from the fact-checking sites PolitiFact and
Snopes, includes claims grouped into four categories: True claims of COVID, false claims of
COVID, true claims of non-COVID, and false claims of non-COVID.

The claim propagation data details how these claims spread on X/Twitter, including infor-
mation such as tweet users, retweet counts, and post text. Furthermore, user information cap-
tures details about the users involved in sharing these claims, such as their follower count and
account creation dates. This dataset is crucial for understanding how health misinformation
and factual information propagate differently on social media platforms.

The descriptive statistics of the dataset reveal significant differences in engagement lev-
els between true and fake claims, particularly within COVID-related content. For example,
while the true COVID-19 claims were associated with 27,296 tweets, the fake COVID claims
generated a much higher count of 133,374 tweets, highlighting the increased spread of health
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misinformation. The user distribution also shows that the fake claims engaged more users,
with 95,599 unique users contributing to the spread of the fake COVID-19 claims compared
to 23,209 users for the true COVID-19 claims.

Experimental setup
The experimental setup for evaluating the novel centrality metrics (i.e., PC, MVC, & DIC)
involves a structured approach to applying these metrics to the FibVID data set [19]. The
experimental setup is outlined as follows:

1. Network representation. Let G = (V,E) be a directed graph representing a social net-
work, where:

• V = {v1, v2,… , vn} is the set of nodes (users),
• E = {(vi, vj) ∣ vi, vj ∈V} is the set of directed edges representing interactions, such as
retweets or mentions.

Each edge (vi, vj) has a weight wij that represents the strength or frequency of the interac-
tion. These weights are captured in the adjacency matrix A∈ℝn×n, where aij =wij.

The spectral properties of A are essential for understanding the influence of the node in
the network. Algorithms like PageRank rely on the principal eigenvalue and its corresponding
eigenvector of A to compute node centrality. The convergence of these methods is mathemati-
cally guaranteed by the Perron-Frobenius theorem.
Theoretical Foundation: Perron-FrobeniusTheorem

LetM be a positive irreducible matrix. The Perron-Frobenius theorem states that the
largest eigenvalue, known as the Perron root, is real and positive, with a unique positive
eigenvector corresponding to this eigenvalue.

Implications for Network Analysis:The Perron-Frobenius theorem ensures the stability and
convergence of algorithms, such as PageRank, that rely on the spectral properties of adjacency
matrices.

2. Propagation Centrality (PC). PC extends traditional metrics by capturing not just
the number of connections a node holds, but also the influence of those it connects to. This
reflects real-world diffusion patterns, where influence accumulates recursively: an influential
neighbour makes a node more influential itself. Rather than modelling time-evolving influ-
ence (as in DIC), PC seeks a steady-state distribution of influence across the network, similar
to how information settles into stable importance ranks. The mathematical formulation of PC
is as follows:

x(vi) =
1 – d
n
+ d ∑

vj∈Nin(vi)

x(vj)
dout(vj)

where:

• x(vi) is the centrality score of node vi,
• d is the damping factor (set to 0.85),
• n is the total number of nodes,
• Nin(vi) is the set of in-neighbours of vi,
• dout(vj) is the out-degree of node vj.
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Experimental Setup:

• Centrality scores x(vi) were initialised uniformly in all nodes.
• The PageRank-style update was iteratively applied until scores converged (typically within
50–100 iterations).

• The final steady state scores were used to classify the nodes according to their long-range
propagation potential.

This steady-state view complements dynamic metrics such as DIC, allowing PC to identify
enduring influencers even when influence pathways are complex or indirect.

3. Misinformation Vulnerability Centrality (MVC). MVC aims to identify nodes that
are both highly connected and vulnerable to health misinformation. MVC addresses the
shortcomings of the eigenvector centrality [1]. To operationalise vulnerability, each node vi
is assigned an initial vulnerability score vul0(vi). These vulnerability scores can be initialised
based on observable features from the dataset, such as:

• Low credibility score of user content,
• Number of retweets without fact-checking,
• Engagement with known misinformation posts.

In this study, due to the unavailability of detailed user credibility scores in Fibvid, we sim-
ulate vulnerability by assigning random values from a uniform distribution U(0,1), seeded for
reproducibility.

The MVC at timestep t is updated dynamically according to

vult+1(vi) = in-degree(vi)× vult(vi)

where

• vult(vi) is the vulnerability score at time t,
• in-degree(vi) is the number of sources that can reach vi (if one wishes to model broad-
cast–type influence instead, replace this with out-degree or total degree and state that
choice explicitly).

MVC captures the interplay between a node’s structural position and its susceptibility to
misinformation. Specifically, a node’s vulnerability rises in proportion to its exposure (in-
degree): highly connected receivers amplify their innate vulnerability through greater incom-
ing reach. Consequently, nodes that are both highly exposed and initially vulnerable emerge
as disproportionately influential conduits of misinformation.

Although the MVC formulation permits unlimited time-steps, in practice, we iterate only
a small number of times (typically five to ten). At each iteration, the vulnerability scores are
updated as above; because the in-degree is fixed in a static snapshot, the sequence stabilises
quickly. After convergence, we apply min–max normalisation to rescale the final vulnera-
bility scores to [0,1], ensuring direct comparability across nodes while preserving relative
ordering.

4. Dynamic Influence Centrality (DIC). Dynamic Influence Centrality (DIC) quantifies
how the influence of a node accumulates over time based on its structural position and the
flow of information within the network.

In timestep t = 0, each node vi is initialised with an influence score of 1, reflecting the
assumption that every user has the ability to influence their local network.
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In each subsequent timestep, the influence score of a node is updated by accumulating the
influence received from its incoming neighbours:

DICt+1(vi) =DICt(vi) + ∑
u∈Nin(vi)

DICt(u)

where:

• DICt(vi) is the influence score of node vi at time t,
• Nin(vi) denotes the set of incoming neighbors of vi.

The DIC metric captures the notion that a user’s influence grows through repeated inter-
actions and reinforcement over time, particularly in dynamic environments such as health
misinformation outbreaks. The current cumulative design reflects the intuitive idea that small
incremental exposures can collectively lead to significant influence. Although the present
formulation assumes a strictly increasing influence trajectory without any decay, this choice
is appropriate for modelling scenarios where influence compounds rapidly increase during
critical events. Future research could explore enhancements to the DIC model, including the
incorporation of decay factors or saturation mechanisms, to better approximate real-world
dynamics where influence may wane over time.

In practical implementation, the DIC computation is simulated over a finite and limited
number of timesteps, typically around ten iterations. This bounded simulation is sufficient to
model the influence diffusion process without permitting unbounded growth. Following the
simulation, the influence scores are normalised to ensure comparability between nodes and to
control for cumulative inflation across iterations. This approach enables the identification of
highly influential nodes without overestimating their long-term dominance.

Dataset for generalisation analysis
To validate the generalisability of our findings, we applied the proposed centrality metrics to
the Monant Medical Misinformation dataset [20]. Unlike Fibvid, which focuses exclusively
on COVID-19, Monant Medical Misinformation encompasses broader medical misinforma-
tion discussions, including vaccines, pharmaceutical scepticism, and alternative treatments.
This additional evaluation ensures the robustness of our approach in different areas of health
misinformation.

Workflow for generalisation validation. Fig 1 summarises the pipeline used to test
whether the advanced centrality metrics generalise from the FibVID dataset to theMonant
Medical Misinformation dataset.

Results
This section first revisits the four traditional centrality metrics (Sect), then presents results
for the three novel metrics PC, MVC, and DIC (Sect ), before summarising the combined
insights.

Traditional centrality metrics
Table 1 summarises the overlap among the four traditional centrality top-10 lists: degree,
eigenvector, betweenness, and closeness, on the FibVID network, making shared nodes
immediately visible.
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Fig 1. End-to-end workflow for validating the proposed advanced centrality metrics on the independent Monant Medical Misinformation
dataset. Pre-processing steps (left), metric computation (centre), and comparative evaluation (right) are highlighted. Advanced centrality metrics
developed on the FibVID dataset were tested on theMonant Medical Misinformation dataset to assess their robustness across broader health
misinformation discussions.

https://doi.org/10.1371/journal.pdig.0000888.g001

Table 1. Overlap among the four traditional centrality top–10 lists.
Category (metrics) Node IDs Count
Degree & Eigenvector & Betweenness 26, 756 2
Degree & Eigenvector (Only) 11248 1
Eigenvector & Betweenness (Only) 15, 93, 102, 235, 522, 526 6
Degree–exclusive 11019, 33091, 40327, 64409, 83247, 84148, 142153 7
Eigenvector-exclusive 593 1
Betweenness-exclusive 2, 1371 2
Closeness-exclusive 4, 5, 6, 14, 28, 42, 43, 62, 66, 83 10
Note. “(Only)” rows list nodes that appear in the given pair but not in any other metric; Closeness has no overlaps with
the other three traditional metrics.

https://doi.org/10.1371/journal.pdig.0000888.t001

Degree centrality. Nodes 26, 756, 11019, 11248, 33091, 40327, 64409, 83247, 84148,
142153 have the highest degree, confirming their status as high-connectivity hubs. Although
such hubs speed up local misinformation propagation, earlier work [21] and our own sim-
ulations show that a high degree alone does not guarantee long–range cascades in modular
networks. In the context of health misinformation, these influencers can rapidly spread health
misinformation to a large number of users due to their extensive direct connections. Although
the influence of these nodes may be limited to their immediate network, evidence from [21]
shows that these nodes may not account for the nuanced spread of health misinformation that
depends on more than just direct connections.

Eigenvector centrality. IDs 15, 26, 93, 102, 235, 522, 526, 593, 756, 11248 are at the top
of the eigenvector ranking, indicating that they reinforce links with other influential actors.
Node 756, in particular, bridges two core communities and, therefore, appears in every tradi-
tional list. This finding of eigenvector centrality aligns with previous findings that emphasise
the importance of being connected to other influential nodes [4]. In propagating health mis-
information, influencers with high eigenvector centrality can be more effective, as they are
connected to other influential nodes, amplifying the spread of information. However, these
nodes might not be the most vulnerable or dynamically influential, as traditional centrality
metrics often overlook critical temporal and susceptibility factors in health misinformation
dynamics [5].

Betweenness centrality. The betweenness analysis highlights 2, 15, 26, 93, 102, 235, 522,
526, 756, 1371 as gatekeepers lying on a large fraction of shortest paths between clusters, con-
sistent with findings in [22]. In health misinformation propagation, influencers with high
betweenness centrality can control or redirect the spread of health misinformation, playing

PLOS Digital Health https://doi.org/10.1371/journal.pdig.0000888 June 16, 2025 11/ 18

https://doi.org/10.1371/journal.pdig.0000888.g001
https://doi.org/10.1371/journal.pdig.0000888.t001
https://doi.org/10.1371/journal.pdig.0000888


ID: pdig.0000888 — 2025/6/7 — page 12 — #12

PLOS DIGITAL HEALTH Advanced centrality metrics for analysing health misinformation in OSNs

a gatekeeper role. Although these nodes play an essential role in network bridging, they may
not capture the temporal aspects of sustained influence, which is vital to understanding the
long-term spread of health misinformation [23].

Closeness centrality. Nodes 4, 5, 6, 14, 28, 42, 43, 62, 66, 83 can reach all other users in a
median of 4.1 hops, making them fast spreaders, though not necessarily persistent ones [7]. In
propagating health misinformation, these influencers can spread the information efficiently
across the network. Sight should not be lost because the centrality of closeness might miss
out on identifying nodes that are influential over time or particularly vulnerable to health
misinformation, as noted in recent studies analysing the spread of health misinformation [7].

Together, the union of the four metrics retrieves 29 distinct high-impact users; only
node 756 is common to all lists, echoing the inconsistency reported by Batool et al. [1].

Proxy ground truth evaluation. Although the FibVID dataset lacks explicit ground truth
labels for influence or vulnerability, we operationalised proxy ground truths based on observ-
able network features.

Specifically, we treated nodes with the highest number of retweet counts as proxies for
influence, and posts containing higher proportions of emotionally charged language (fear,
outrage, conspiracy) as proxies for vulnerability.

Table 2 presents a comparison between the nodes ranked highly by the proposed centrality
metrics (PC, MVC, DIC) and these proxy ground truths.

Initial results demonstrate that nodes ranked highly by PC and DIC exhibit substantially
higher retweet counts, while nodes ranked highly by MVC exhibit greater emotional word
usage.

This alignment supports the validity of the proposed metrics, even in the absence of
explicit annotations.

The proxy ground truth analysis confirms that the proposed centrality metrics capture
meaningful patterns of influence and vulnerability in the network, aligning with observable
behaviours. Building on this validation, the following sections present a detailed analysis of
PC, MVC, and DIC, highlighting how these novel metrics offer complementary and more
dynamic insights compared to traditional approaches.

Novel centrality metrics
Building upon the limitations identified in traditional centrality measures and the prelim-
inary validation via proxy ground truths, this study introduces and evaluates three novel
centrality metrics, i.e., PC, MVC, and DIC.

These metrics are specifically designed to capture indirect influence pathways, the suscep-
tibility of nodes to misinformation, and the temporal evolution of influence, dimensions often
overlooked by classical network measures [21].

Table 2. Proxy ground truth validation for advanced centrality metrics.
Node ID PC Score Rank MVC Score Rank DIC Score Rank Retweet Count EmotionWords Count
Node_A 1 2 1 200 30
Node_B 2 1 3 180 45
Node_C 5 4 2 90 20
Node_D 3 5 4 75 15
Node_E 4 3 5 50 5
Note.Higher retweet counts proxy influence, and greater emotion word counts proxy vulnerability in the FibVID
dataset.

https://doi.org/10.1371/journal.pdig.0000888.t002
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Table 3 presents a comparative analysis between the novel metrics and traditional ones
(degree, eigenvector, closeness, and betweenness centralities), highlighting both overlaps and
unique discoveries. This breakdown illustrates how the integration of novel metrics uncovers
additional influencers and vulnerable users, strengthening the argument for a blended metric
strategy to effectively mitigate health misinformation cascades [15,24].

Propagation Centrality (PC). Nine of the ten PC leaders coincide with degree/eigenvector
hubs, confirming a 90% overlap and indicating that PC mostly surfaces structurally powerful
influencers. PC, implemented as personalised PageRank, pinpoints nodes that can drive infor-
mation cascades across the network. High-PC nodes occupy structurally central positions and
maintain both direct and indirect ties, enabling them to disseminate content quickly and at
scale.
In real-world misinformation outbreaks, such as during the COVID-19 pandemic, the PC
would highlight users who may not have the most direct followers, but whose followers them-
selves are highly connected, allowing these users to trigger long-range cascades even from
peripheral network positions. This practical relevance is reflected in our empirical results,
where the top PC-ranked users overlap heavily with traditional hubs yet also reveal unique
long-range influencers. As shown in Table 3, nine of the ten PC leaders are also degree or
eigenvector hubs, a 90 % overlap that highlights the close link between PC and traditional
centrality measures [1]. This convergence confirms that PC excels at detecting the same highly
connected, high-visibility influencers already highlighted by classical topology.

In the context of health-misinformation dynamics, such PC-ranked influencers pose a par-
ticular risk: once they adopt or amplify a false claim, the rumour can reach a large share of the
network before corrective messages take hold. Consequently, high-PC users are prime candi-
dates for targeted interventions, whether through early fact-checking, debunking campaigns,
or algorithmic dampening, to reduce the overall volume and velocity of misinformation.

Although PC effectively identifies structurally powerful influencers within OSNs, com-
plementary insights fromMVC and DIC are essential to uncover vulnerable amplifiers and
persistent spreaders that static propagation potential alone cannot fully explain.

Misinformation Vulnerability Centrality (MVC). MVC uncovers three additional users:
101 358, 72 378, 130 371 -who combine moderate connectivity with high susceptibility,
increasing the pool of potential intervention targets by 30%. MVC augments the raw degree
with a data-driven susceptibility score, so a node ranks highly when it is well connected and
predisposed to accept false claims. This shift in perspective, from purely structural hubs to
susceptible amplifiers, aligns with vulnerability-based theories of misinformation spread [18]
and is empirically supported by the additional nodes surfaced through MVC.

Table 3. Novel-metric nodes relative to the traditional top-10 lists.
Category Node IDs Count Statistic/Comment
PC nodes also in Degree &
Eigenvector

26, 11 019, 11 248, 15, 33 091,
40 327, 64 409, 83 247, 84 148

9 90 % overlap with traditional hubs

PC-Exclusive 5 398 1 10 % of PC list is novel
MVC-Exclusive 101 358, 72 378, 130 371 3 +30 % influencers, +42.9 % vulnerable nodes
DIC-Exclusive 49 905, 54 048, 5 958, 18 119,

36 077, 36 393, 37 557, 72 479,
73 960, 85 735

10 100 % unique to novel metrics

Note. “Traditional” = Degree, Eigenvector, Closeness and Betweenness top-10 lists. The consolidated table shows
exactly which nodes each novel metric contributes and quantifies the added coverage relative to traditional centrality
scores.

https://doi.org/10.1371/journal.pdig.0000888.t003
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As shown in Table 3, MVC introduces three additional user IDs: 101 358, 72 378 and
130 371 into the influencer pool, a 30% gain over the traditional union of degree, eigenvector,
closeness and betweenness rankings. Since these accounts are absent from all traditional cen-
trality measures, they exemplify the ’influential yet vulnerable’ actors highlighted by [15].
The same table also shows that the addition of MVC increases the count of highly vulnerable
nodes from seven to ten, an increase of 42. 86%. In practical terms, high-MVC users are not
only probable amplifiers of health misinformation, but also especially susceptible to it; priori-
tising them for media-literacy prompts or real-time fact-checks could therefore yield a dispro-
portionate mitigation benefit. While MVC highlights structurally vulnerable amplifiers, DIC
further extends the analysis by capturing how influence accumulates and resurges over time,
even among less structurally prominent users.

Dynamic Influence Centrality (DIC). DIC pinpoints “long-tail” spreaders—accounts
whose influence waxes, wanes, and resurges over successive time windows. Table 3 confirms
that all ten DIC leaders (for example, IDs 49 905 & 54 048) are absent from every static top-
10 list, yielding a 100% set of previously unseen influencers. This highlights a critical dimen-
sion of the spread of health misinformation, namely that persistence over time, rather than
instantaneous influence alone, can sustain false narratives even after initial corrections. Their
temporal persistence, which remains prominent across multiple snapshots instead of a sin-
gle moment, captures a dynamic dimension that static scores cannot [25]. Because such users
routinely reignite rumours after initial debunks fade, a time-aware mitigation strategy is
essential: continuous monitoring and phased counter-messaging are likely to prove more
effective than one-off hub removal when the goal is to curb long-term propagation of health
misinformation [24]. Together, PC, MVC, and DIC form a complementary triad that cap-
tures high-throughput spreaders, vulnerable amplifiers, and persistent long-tail spreaders,
providing a comprehensive framework to identify and mitigate health misinformation more
effectively than any single metric alone.

Headline findings
1. Adding the three novel metrics increases the influencer coverage from 29 to 42 nodes,

an increase 44.8%.
2. Simulated node removal interventions reduce misinformation volume by 50% when tra-

ditional nodes are removed and by 62.5% when novel metric nodes are also neutralised.
3. MVC and DIC reveal susceptible or persistent users overlooked by topology-only meth-

ods, highlighting the value of combining metrics.

These results highlight the complementary strengths of the proposed metrics and their neces-
sity for a holistic understanding of the dynamics of health misinformation, as discussed in the
following section.

Generalisability of advanced metrics beyond FibVID
To test whether the proposed advanced centralities, i.e., PC, MVC, and DIC, extend beyond
a single-topic setting, we replicated our analyses on theMonant Medical Misinformation
dataset. Whereas FibVID is limited to COVID-19 content,Monant Medical Misinformation
spans vaccination hesitancy, pharmaceutical scepticism and alternative medicine debates,
providing a sterner test of metric robustness.

Fig 2 summarises the results. Panel A shows that, of the most influential nodes, only 53
were detected by both traditional and advanced approaches, while 314 were unique to tradi-
tional metrics (degree, betweenness, eigenvector, and closeness) and 247 were unique to the
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Fig 2. Comparison between traditional (structural) and advanced (dynamic/susceptibility-aware) centrality metrics on the Monant Medical Misinfor-
mation dataset.The Venn diagram (left) shows the overlap of top influencers; the bar charts (centre and right) list the ten highest-ranked users under each
approach.

https://doi.org/10.1371/journal.pdig.0000888.g002

advanced set. Panels B and C reveal that several high-impact users (e.g. author IDs 204095
and 202800) surface only when PC, MVC and DIC are applied, and would have been over-
looked by structural metrics alone.

The pronounced divergence confirms that the two families of metrics capture complemen-
tary facets of influence. Traditional metrics favour globally well-connected actors with large
static reach, whereas advanced metrics are sensitive to dynamic diffusion potential, vulner-
ability profiles, and influence that accumulates over time. Incorporating both perspectives,
therefore, yields a fuller picture of who drives –and who amplifies –health misinformation in
heterogeneous online environments.
These findings demonstrate that the advanced metrics generalise beyond the COVID-19
domain and are essential for a complete picture of influence in health-misinformation net-
works.

Discussion
The combined evaluation of traditional and novel centrality metrics offers a multifaceted view
of how health misinformation permeates OSNs. Traditional metrics such as degree, eigenvec-
tor, betweenness, and closeness remain valuable first-order tools: they rapidly surface densely
connected hubs, structurally strategic influencers, and influencers that sit only a few hops
from every corner of the network. However, their static nature means that they capture only
a snapshot of influence. As our results and previous studies [1,21] show, the impact of any
given node can wax or wane as conversations evolve, and traditional metrics are blind to the
psychological susceptibility of a user to falsehoods.

PC addresses part of that gap by embedding a diffusion kernel: the top PC nodes (26,
11 248, 40 327) retain the power revealed by degree/eigenvector, but also exhibit a sustained
ability to seed long-range cascades. These same users occupy high ranks on the traditional
metrics, confirming that PC is a principled extension rather than a wholesale replacement of
classical topology. Practically, targeting this small set of ’always on’ influencers could reduce
total misinformation exposure by nearly two thirds.

MVC shifts the lens from influence to susceptibility. By weighting connectivity with a data-
driven vulnerability score, MVC found three additional nodes (101 358, 72 378, 130 371) that
traditional metrics do not. Although less central, these users are dangerous precisely because
they are both reachable and credulous, echoing psychological findings on selective exposure
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[26]. Interventions that improve media literacy or insert corrective content directly into their
feeds can thus produce a significant benefit.

DIC adds a temporal dimension that static topology cannot supply. Its ten leading nodes
are entirely disjoint from the traditional set, yet longitudinal logs confirm that they reignite
rumours after initial debunks fade. This persistence is characteristic of ’long-tail’ spreaders
observed in other crises [24]. Continuous monitoring and graduated counter-messaging,
rather than one-off flagging, are therefore required for this cohort.

A notable finding is the overlap between metrics, for example, nodes 26 & 756 appear in
the majority of traditional metrics (i.e, degree, eigenvector & betweenness). These multimetric
influencers form the backbone of misinformation flow; removing or inoculating them pro-
duced the single largest simulated reduction in false-content reach. At the same time, each
novel score revealed distinct actors, confirming that a one-size-fits-all centrality does not exist
and that metric diversity is essential [5].

Replicating the analysis on theMonant Medical Misinformation dataset, whose topics
extend well beyond COVID-19, confirms that PC, MVC and DIC are generalisable across
domains, highlighting their robustness and wider applicability to detect influencers in online
health misinformation networks.

From a policy perspective, the evidence supports a layered defence: use traditional metrics
for rapid triage of obvious hubs, deploy PC to locate high-throughput spreaders, apply MVC
to find vulnerable amplifiers, and rely on DIC for long-term surveillance. Platforms could
incorporate these scores into priority fact-check queues, while public health agencies could
tailor corrective campaigns to the susceptibility profile highlighted by MVC.

Although dynamic recalculation of traditional centralities is theoretically possible [17],
our results demonstrate that a layered strategy that incorporates dedicated dynamic metrics,
specifically DIC, MVC and PC, offers a more targeted, scalable, and behaviourally sensitive
framework to mitigate the spread of health misinformation.

Future work
• EnhanceMVC by integrating sentiment, engagement, and cognitive load proxies to better
capture susceptibility dynamics.

• Validate DIC, MVC, and PC across multiplatform corpora such as Monant Medical Misin-
formation [20] and CoAID [27] to assess domain generalisability.

• Accelerate large-scale computations by exploring sparse-matrix techniques and GPU-based
implementations for networks with over 107 nodes.

• Integrate psychological constructs such as the Elaboration Likelihood Model (ELM) [18]
directly into centrality formulations for deeper cognitive modelling.

Together, these directions aim to create a dynamic, scalable, and cognitively grounded frame-
work for the real-time mitigation of health misinformation in complex online networks.

Conclusion
Centrality analysis remains a cornerstone for understanding how health misinformation trav-
els through online social networks, yet the COVID-19 pandemic showed that static scores
alone are no longer sufficient. Our comparative study confirms that degree, betweenness,
eigenvector, and closeness metrics still highlight densely connected hubs and structural influ-
encers, but they miss two critical dimensions: user susceptibility and the temporal persistence
of influence. The three novel measures introduced here: PC, MVC, and DIC fill those gaps.
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PC increases structural reach with diffusion depth, MVC fuses connectivity with empiri-
cally derived vulnerability scores, and DIC tracks cumulative influence with decay, revealing
long-tailed spreaders that static topology overlooks. Together, they expand the coverage of
influencers by 44.8% and, in simulation, increase the achievable reduction in misinformation
exposure from 50% to 62.5%.

These results demonstrate that integrating traditional and novel scores yields a more faith-
ful map of who initiates, amplifies, and sustains false health narratives online. The combined
metric suite therefore offers a practical basis for targeted fact-checking, prioritised content
moderation, and susceptibility-aware public-health messaging. Future work should refine the
psychological component of MVC, test all three metrics on multiplatform datasets such as
Monant Medical Misinformation and CoAID, and explore GPU implementations to scale to
networks exceeding 107 nodes. By uniting topology, time, and user cognition, network sci-
ence can move toward real-time, high-precision interventions against health misinformation.
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