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Abstract: The increasing demand for high-capacity, energy-efficient wireless networks 1

poses significant challenges in maintaining spectral efficiency, minimizing interference, and 2

ensuring sustainability. Traditional Direct-Link communication suffers from signal degra- 3

dation due to path loss, multipath fading, and interference, limiting overall performance. 4

To mitigate these challenges, this paper proposes a unified RIS framework that integrates 5

passive and active Reconfigurable Intelligent Surfaces (RIS) for enhanced communication 6

and ambient RF energy harvesting. Our methodology optimizes RIS-assisted beamforming 7

using successive convex approximation (SCA) and adaptive phase shift tuning, maximizing 8

desired signal reception while reducing interference. Passive-RIS efficiently reflects signals 9

without external power, whereas Active-RIS employs amplification-assisted reflection for 10

superior performance. Evaluations using realistic urban macro-cell and mmWave channel 11

models reveal that, compared to Direct-Links, Passive-RIS boosts SNR from 3.0 dB to 7.1 dB 12

and throughput from 2.6 Gbps to 4.6 Gbps, while Active-RIS further enhances SNR to 10.0 13

dB and throughput to 6.8 Gbps. Energy efficiency increases from 0.44 to 0.67 (passive) and 14

0.82 (active), with latency reduced from 80 ms to 35 ms. These performance metrics validate 15

the proposed approach and highlight its potential applications in urban 5G networks, IoT 16

systems, high-mobility scenarios, and other next-generation wireless environments. 17

Keywords: Reconfigurable Intelligent Surfaces (RIS); Ambient RF Energy Harvesting; 18

Wireless Communication; Energy Efficiency; Sustainable Networks; Spectral Efficiency; 19

Non-Convex Optimization; Signal-to-Noise Ratio (SNR); IoT Connectivity; Green Commu- 20

nications 21

1. Introduction 22

The evolution of wireless communication networks toward 6G demands architectures 23

that simultaneously offer high spectral efficiency, low latency, and sustainable energy 24

consumption. While millimeter-wave (mmWave) technologies and massive multiple- 25

input multiple-output (MIMO) systems have greatly improved throughput, their energy 26

footprints and hardware complexity pose serious challenges to green and scalable deploy- 27

ment [1–3]. The integration of Reconfigurable Intelligent Surfaces (RIS) and ambient Radio 28
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Frequency (RF) energy harvesting (EH) has emerged as a promising direction to meet these 29

dual objectives of communication performance and environmental sustainability [4,5]. 30

RISs are planar arrays of passive or active reflecting elements that can dynamically 31

alter the phase and amplitude of incident electromagnetic waves, effectively reconfiguring 32

the wireless propagation environment [6,7]. These surfaces can steer, focus, or nullify 33

signals to improve signal-to-noise ratio (SNR) and coverage without adding active RF 34

chains. Simultaneously, ambient RF energy harvesting captures power from existing 35

transmissions—such as base stations, Wi-Fi access points, and satellite beacons—and 36

converts them into usable DC energy to support low-power IoT devices and autonomous 37

sensors [8,9]. 38

Although both technologies have matured independently, the potential of a unified 39

RIS-EH system—where RIS enhances both communication and energy harvesting per- 40

formance—remains underexplored. Conventional RF EH faces severe limitations due to 41

low ambient power densities [10], but RIS can concentrate multipath RF energy, thereby 42

improving the harvesting efficiency [11,12]. Recent innovations—such as Passive Massive 43

MIMO Hybrid RF-Perovskite energy harvesting frontends for LEO satellite applications [13] 44

and advanced rectenna designs [14] further reinforce this integrated approach. Moreover, 45

Active-RIS architectures, equipped with amplification modules, further enhance directional 46

gain and robustness against fading, albeit at the cost of higher power consumption [15,16]. 47

Recent work in adaptive beamforming, notably for vehicular multimedia sound 48

enhancement [17] and space applications [18], has further demonstrated the versatility of 49

reconfigurable architectures. Moreover, novel approaches in secure IoT networks using 50

reconfigurable hardware roots of trust [19] and innovative antenna designs for multiband 51

applications [20], [21] provide additional context for the potential of RIS. Some works have 52

focused either on RIS-aided beamforming [7] or RF EH architectures [22], but few offer 53

a holistic framework for jointly optimizing both objectives. For instance, [23] enhances 54

communication via RIS phase tuning but does not account for energy harvesting, while [24] 55

studies ambient EH without integrating RIS beamforming. More recent studies such as [11] 56

and [12] begin to address this synergy, yet they often rely on idealized linear energy models 57

or assume perfect CSI. Real-world RIS-EH systems must consider nonlinear EH circuits, 58

dynamic user mobility, and channel estimation error (CEE), all of which affect performance 59

and sustainability. 60

Motivation and Objective: This paper proposes a robust and scalable unified frame- 61

work for RIS-enhanced communication and ambient RF energy harvesting, incorporating 62

both Passive and Active RIS, nonlinear energy models, and practical CSI assumptions. A 63

successive convex approximation (SCA) algorithm is developed to jointly optimize RIS 64

phase shifts and baseband precoders under multi-objective constraints. Scalability, energy 65

efficiency, latency, and sustainability trade-offs are all addressed. 66

Contributions 67

The key contributions of this work are: 68

i. Unified System Model: A comprehensive RIS-EH model is developed, integrating 69

both Passive and Active RIS configurations, and accounting for nonlinear EH 70

behavior and practical power constraints. 71

ii. Robust Multi-objective Optimization: A joint optimization problem is formulated 72

to simultaneously maximize achievable SNR and harvested energy. A robust SCA- 73

based algorithm solves the problem under imperfect CSI and amplifier-aware 74

constraints. 75
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iii. Scalability and Complexity Analysis: We analyze how the framework scales with 76

the number of RIS elements and users, and provide complexity bounds, convergence 77

properties, and comparisons with theoretical upper limits. 78

iv. Performance and Sustainability Evaluation: Extensive simulations validate gains 79

in SNR, BER, latency, throughput, and conversion efficiency. Energy savings and 80

CO2 emission reductions are quantified using real-world energy metrics. 81

v. Use Cases and Scenario Insights: We discuss RIS-EH advantages in rural, in- 82

door, and urban macro-cell deployments and present sustainability-aware design 83

recommendations. 84

Figure 1. Conceptual illustration of Passive-RIS and Active-RIS enabled joint communication and
energy harvesting.

This integrated approach lays the foundation for future 6G wireless systems that 85

are not only spectrally and energy-efficient but also environmentally sustainable and 86

hardware-scalable. 87

Paper Organization: 88

The rest of this paper is structured as follows. Section 2 reviews prior work on RIS 89

and RF EH integration. Section 3 introduces the system model and assumptions. Section 4 90

formulates the optimization problem and describes the solution algorithm. Section 5 91

provides simulation setup, performance metrics, and sustainability evaluations. Section 6 92

presents insights across various deployment scenarios. Section 7 concludes the paper and 93

outlines future research. 94

2. Background and Related Work 95

The evolution of wireless networks over the past decade has spurred significant 96

research into technologies that simultaneously boost throughput, reduce latency, and 97

improve energy efficiency. Two notable technologies in this regard are Reconfigurable 98

Intelligent Surfaces (RIS) and ambient Radio Frequency (RF) energy harvesting. This 99

section surveys the state of the art in each domain and discusses recent efforts to integrate 100

these technologies for greener and more efficient communication networks. 101

2.1. Reconfigurable Intelligent Surfaces (RIS) 102

RIS are planar arrays of programmable meta-surfaces capable of manipulating elec- 103

tromagnetic wavefronts by tuning reflection coefficients. Unlike traditional relays, RIS 104
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units consume minimal power and introduce no additional noise, making them ideal for 105

low-cost deployment in 6G networks [25–27]. 106

Ref [4] provides an in-depth survey on RIS applications, emphasizing beamform- 107

ing, channel estimation, and coverage extension. Further studies such as [26] and [6] 108

have analyzed optimization algorithms for RIS phase design, including gradient descent, 109

alternating optimization, and semidefinite relaxation (SDR). These works highlight the 110

challenge of non-convexity in RIS-assisted transmission design and the growing need for 111

scalable algorithms. 112

2.2. Ambient RF Energy Harvesting 113

Ambient RF energy harvesting converts existing electromagnetic signals into usable 114

DC energy, potentially powering ultra-low-power IoT nodes without dedicated power 115

supplies. The theoretical foundations of wireless power transfer were laid out in [8], while 116

[9] reviewed nonlinear rectifier models and realistic energy conversion mechanisms. 117

Pioneering work by [28] demonstrated that efficient resource allocation strategies can 118

enable simultaneous wireless information and power transfer (SWIPT), highlighting the 119

potential of ambient RF energy to extend the operational lifetime of wireless devices. Build- 120

ing on this, [29] provided a thorough review of the advancements in energy harvesting 121

technologies, outlining both the theoretical limits and practical challenges in capturing and 122

converting low-power RF signals. Recent experimental validations such as [22] demon- 123

strated the feasibility of ambient RF harvesting in dense urban environments. However, 124

harvesting efficiency remains low and heavily dependent on the density and power of 125

surrounding transmitters. 126

2.3. Integrated Approaches: Merging RIS and RF Energy Harvesting 127

Integrating RIS with ambient RF harvesting promises enhanced spectral and energy 128

efficiency. A dual-functional RIS can not only reflect incident signals for improved commu- 129

nications but also focus RF energy toward harvesting circuits. [12] proposed one of the first 130

such joint systems and formulated an SNR–energy trade-off problem. [11] further extended 131

this idea with iterative SCA-based algorithms to jointly optimize the beamforming and 132

phase shifts for communication and energy harvesting objectives. 133

Figure 2. Conceptual Integration of Reconfigurable Intelligent Surfaces with Ambient RF Energy
Harvesting.

While RIS and ambient RF energy harvesting have been studied extensively in iso- 134

lation, their integration represents a cutting-edge frontier in wireless communications 135
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research. The idea is to exploit the dual functionality of RIS, not only to enhance sig- 136

nal propagation through intelligent reflection but also to concentrate ambient RF energy, 137

thereby improving energy harvesting efficiency. Figure 2 shows a conceptual representation 138

of merging RIS with an RF energy harvesting system. 139

Despite these advancements, existing solutions often lack scalability, robustness to 140

channel estimation error (CEE), or support for both passive and active RIS configurations. 141

Table 1 compares selected recent works and highlights the novelty of the proposed unified 142

framework. 143

Table 1. Comparison of Recent Works on RIS-Enhanced Wireless Communication and Energy
Harvesting

Ref. RIS
Type

EH Model Optimization
Method

CEE
Robust-
ness

ScalabilityHardware
Valida-
tion

Energy
Metrics

Key Limitations

[4] Passive None N/A (Survey) – – – – No EH or joint
design; conceptual
only

[26] Passive None Alternating Op-
timization

– – – – Spectral only; no
EH or CEE

[8] – Ambient Resource Allo-
cation

– – – ✓ No RIS; idealized
EH only

[22] – Ambient
(Measured)

Empirical +
Calc.

– – ✓ ✓ No RIS integration

[12] Passive SWIPT SDR + Al-
ternating
Optimization

– ✓ – ✓ No CEE or active
RIS

[11] Passive Ambient SCA + Dinkel-
bach

– ✓ – ✓ Passive only; no dy-
namic adaptation

[13] Passive Ambient +
Perovskite

EM + Circuit
Co-Simulation

– – ✓ ✓ Satellite-focused;
lacks generaliza-
tion

This
Work
(UF)

Both Ambient SCA-based
Multi-
Objective

✓ ✓(K ≤
2000)

✓(Sim.) ✓(EE,
CO2)

Joint EH-Comm de-
sign, robust to CSI
error and interfer-
ence

Note: EH = Energy Harvesting; CEE = Channel Estimation Error; SDR = Semidefinite Relaxation; SCA =
Successive Convex Approximation; EE = Energy Efficiency; “–” denotes not addressed.

As Table 1 illustrates, the proposed unified framework (UF) is among the first to 144

incorporate: 145

(i) Dual-mode RIS operation (passive and active), (ii) Joint optimization of SNR and 146

harvested energy, (iii) Robustness to channel estimation error, and (iv) Scalability up to 147

thousands of users. 148

These innovations make the proposed UF highly suitable for emerging 6G networks 149

that require energy sustainability, high connectivity, and low-complexity deployment 150

strategies. 151

3. System Model 152

This section presents the detailed system model for the proposed unified RIS frame- 153

work, which enables both high-performance wireless communication and ambient RF 154

energy harvesting. The models developed here draw on established foundations from the 155

RIS communication literature [25–27] and wireless power transfer frameworks [8,9]. 156



Version May 19, 2025 submitted to Journal Not Specified 6 of 26

3.1. Network Architecture 157

We consider a single-cell downlink scenario, where a base station (BS) equipped with 158

M antennas communicates with a single-antenna user equipment (UE). A Reconfigurable 159

Intelligent Surface (RIS), comprising N programmable elements, is strategically placed 160

between the BS and UE to enhance the channel quality. The RIS operates in either passive 161

mode, in which it reflects incident signals by adjusting their phases, or in active mode, where 162

it also amplifies reflected signals [30]. 163

The RIS is deployed at a horizontal distance of 100 m from both BS and UE, form- 164

ing a symmetric setup with a 45° elevation angle relative to the BS, ensuring favorable 165

line-of-sight (LoS) conditions and balanced path loss [25]. In addition to the primary com- 166

munication link, we assume the presence of K ambient RF sources that radiate uncontrolled 167

signals. These ambient signals are leveraged for opportunistic RF energy harvesting via the 168

RIS elements. 169

3.2. Communication Model 170

The downlink channel model consists of a direct link and an RIS-assisted cascaded 171

link. We define the following matrices: 172

hd ∈ C1×M (Direct BS-to-UE channel), (1)

G ∈ CN×M (BS-to-RIS channel), (2)

hRIS ∈ C1×N (RIS-to-UE channel). (3)

The RIS applies a diagonal phase shift matrix defined as: 173

Θ = diag
(

ejθ1 , ejθ2 , . . . , ejθN
)

, (4)

where θn ∈ [0, 2π) is the tunable phase shift applied by the nth RIS element. 174

The overall effective channel from BS to UE, incorporating both direct and RIS-assisted 175

paths, is given by [25]: 176

heff = hd + hRIS Θ G. (5)

Assuming the BS transmits a signal x ∈ CM×1 with power constraint 177

E
[
∥x∥2

]
≤ P, (6)

the received signal at the UE is: 178

y = heff x + n, (7)

where n ∼ CN (0, σ2) is additive white Gaussian noise. 179

The instantaneous signal-to-noise ratio (SNR) at the UE becomes: 180

SNR =
P |heff|2

σ2 . (8)

3.3. Energy Harvesting Model 181

To model ambient RF energy harvesting, we adopt a multi-source linear superposition 182

model [8]. Let xk denote the signal emitted by the kth ambient RF source with transmit 183

power Pk. The associated RIS-facing and UE-facing channel responses are denoted by: 184

G(k) ∈ CN×1, (Source-k to RIS), (9)
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h(k)
RIS ∈ C1×N , (RIS to energy harvester). (10)

The total harvested RF energy is given by [9]: 185

Eharv = η
K

∑
k=1

∣∣∣h(k)
RIS Θ G(k) xk

∣∣∣2, (11)

where η ∈ (0, 1] denotes the energy conversion efficiency of the RF-to-DC circuitry. 186

3.4. Channel and RIS Assumptions 187

We assume all channels are quasi-static during a transmission block. For line-of-sight 188

(LoS) links, Rician fading is used; for obstructed or non-LoS (NLoS) paths, Rayleigh fading 189

is assumed. All channel coefficients follow a complex Gaussian distribution with large-scale 190

path loss modeled using distance-based attenuation. 191

For passive RIS, each element maintains unit modulus reflection (|Θn| = 1), while 192

active RIS elements can also apply controlled amplification, subject to additional power 193

constraints [30]. 194

This detailed system model forms the basis for the joint communication and energy 195

harvesting optimization problem tackled in the next section. 196

4. Proposed Unified Framework (UF) 197

In this section, we develop a unified optimization framework that jointly enhances 198

communication quality and enables ambient RF energy harvesting through the use of 199

Reconfigurable Intelligent Surfaces (RIS). The proposed methodology accounts for both 200

Passive and Active RIS designs, and employs a Successive Convex Approximation (SCA) 201

algorithm to efficiently solve the inherently non-convex joint optimization problem. 202

4.1. Objective and SINR Formulation 203

Let K be the number of users and N the number of RIS elements. The signal-to- 204

interference-plus-noise ratio (SINR) at user k is expressed as: 205

γk(Θ, fBB,k) =
|wH

k (hd,k + hRIS,kΘG)FRFfBB,k|2

∑
j ̸=k
|wH

k (hd,k + hRIS,kΘG)FRFfBB,j|2 + σ2
(12)

where: - hd,k ∈ C1×M is the direct BS-to-user channel, - hRIS,k ∈ C1×N is the RIS-to- 206

user channel, - G ∈ CN×M is the BS-to-RIS channel, - Θ = diag(ejθ1 , . . . , ejθN ) is the RIS 207

reflection matrix, - FRF and fBB,k are the analog and digital precoders, - wk is the combining 208

vector at the receiver, - σ2 is the noise power. 209

4.2. Joint Optimization Problem 210

The aim is to jointly maximize the sum-rate and harvested energy across all users. The 211

energy harvested from K ambient RF sources is modeled as: 212

Eharv = η
K

∑
k=1
|h(k)

RISΘG(k)xk|2 (13)

The multi-objective problem is expressed as: 213
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max
Θ,{fBB,k}

α
K

∑
k=1

log2(1 + γk(Θ, fBB,k)) + (1− α) η
K

∑
k=1

∣∣∣h(k)
RISΘG(k)xk

∣∣∣2
s.t. |Θn| = 1, ∀n = 1, . . . , N

∥FRFfBB,k∥2 ≤ Pmax, ∀k

(14)

where α ∈ [0, 1] is a trade-off coefficient between communication and energy harvest- 214

ing objectives. 215

4.3. SCA-Based Reformulation 216

Due to the non-convexity of the problem in (14), we apply the Successive Convex 217

Approximation (SCA) technique. This involves linearizing the non-convex parts of the 218

objective function around the current iterate at iteration t: 219

max
Θ,{fBB,k}

F̃(Θ; Θ(t), {f(t)BB,k}) +
K

∑
k=1
∇fBB,k

Rk(f
(t)
BB,k)

H(fBB,k − f(t)BB,k)

s.t. |Θn| = 1, ∥FRFfBB,k∥2 ≤ Pmax

(15)

The surrogate function F̃ represents the first-order Taylor expansion of the non-convex 220

parts of the objective around the previous solution. This convex sub-problem is solved 221

iteratively. 222

4.4. Algorithm Implementation 223

The proposed iterative algorithm proceeds as follows: 224

1. Initialization: Randomly initialize Θ(0) and f(0)BB,k, and set iteration t = 0. 225

2. SCA Optimization: Solve the surrogate problem (15) to obtain updated solutions 226

Θ(t+1), f(t+1)
BB,k . 227

3. Convergence Check: If the change in objective value is less than a threshold ϵ, stop. 228

Otherwise, set t← t + 1 and repeat. 229

4.5. Robustness to Channel Estimation Error (CEE) 230

To model channel uncertainty, we define: 231

Ĥ = H + ∆H

where ∆H ∼ CN (0, σ2
CEE) represents the estimation error. Robust SCA methods can 232

be integrated to accommodate this uncertainty, as discussed in [31,32]. 233

4.6. Passive vs. Active RIS Considerations 234

In Passive RIS, each unit element satisfies |Θn| = 1. In contrast, Active RIS includes sig- 235

nal amplification, requiring additional power budget constraints and updated constraints 236

in (14). Our framework flexibly supports both by updating the power and gain matrices in 237

the optimization loop. 238

This methodology enables scalable, energy-aware beamforming design for 6G sys- 239

tems and supports sustainability-driven performance optimization in diverse propagation 240

environments. 241

5. Simulation, Performance, and Sustainability Analysis 242

This section presents detailed numerical simulations and performance evaluations 243

of the proposed unified RIS framework. The assessment covers multiple aspects, includ- 244
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ing communication performance, energy harvesting efficiency, advanced metrics such as 245

scalability and robustness, and sustainability-oriented analyses with practical use case 246

discussions. 247

5.1. Simulation Setup 248

5.1.1. Simulation Parameters 249

The simulation parameters used throughout this work are summarized in Table 2. 250

These include transmit power, RIS configurations, channel models, and energy harvesting 251

assumptions, ensuring realistic and reproducible evaluation conditions. 252

Table 2. Simulation Environment and Parameter Settings

Parameter Value

Carrier Frequency ( fc) 28 GHz
Bandwidth 100 MHz
Noise Power Density (N0) −174 dBm/Hz
Number of BS Antennas (M) 8
Number of RIS Elements (N) 100–1000 (variable)
User Equipments (UEs) (K) 10–2000 (scalability test)
Transmit Power (Ptx) 30 dBm
Channel Estimation Error Variance (σ2

CEE) 0–0.2
Modulation Scheme QPSK
Channel Model Rician fading (3GPP UMa)
Energy Conversion Efficiency (η) 0.3–0.6
RIS Mode Passive / Active (w/ Gain g = 10 dB)

5.1.2. Simulation Environment (Hardware and Software) 253

Simulations were executed using MATLAB R2025a on a workstation with Intel i7- 254

12700K CPU and 32 GB RAM. Optimization algorithms leveraged CVX toolbox for convex 255

programming with warm-start and parallel computing enabled to ensure efficient SCA 256

iterations. 257

5.2. Communication Performance Metrics 258

5.2.1. Signal-to-Noise Ratio (SNR) 259

The impact of RIS deployment on received SNR is analyzed. Comparisons are made 260

among Direct-Link, Passive RIS, and Active RIS systems. Figure 3 illustrates the SNR 261

variations with distance for Direct-Link, Passive-RIS, and Active-RIS in a rural environment. 262

The results indicate that at short distances (100 m), Active-RIS provides a substantial 263

gain over Passive-RIS and Direct-Link due to its amplification capability. As distance 264

increases, path loss reduces the SNR for all configurations; however, Active-RIS consistently 265

maintains an SNR advantage over Passive-RIS, which in turn outperforms Direct-Link. 266

5.2.2. Spectral Efficiency 267

Channel capacity and spectral efficiency are evaluated across different scenarios 268

including rural, indoor, and macrocell environments. Figure 4 presents the channel capacity 269

versus distance for a rural scenario. The results show that Active-RIS provides the highest 270

capacity, reaching a peak of approximately 9 Gbps at short distances. As distance increases, 271

capacity drops due to increasing path loss. 272
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Figure 3. Rural: SNR vs. Distance for Direct-Link, Passive-RIS, and Active-RIS.
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Figure 4. Rural: Channel Capacity vs. Distance for Direct-Link, Passive-RIS, and Active-RIS.

The Passive-RIS configuration still maintains a significant advantage over the Direct- 273

Link, demonstrating the impact of RIS technology on spectral efficiency. 274

5.2.3. Outage Probability Analysis 275

The probability of communication outages due to fading and interference is assessed, 276

highlighting RIS-enhanced reliability. Figure 5 illustrates the outage probability versus 277

the SNR threshold for the Direct-Link, Passive-RIS, and Active-RIS configurations. The 278

Direct-Link curve shows a high outage probability at lower SNR thresholds due to its low 279

average SNR (approximately 3.0 dB), making it more susceptible to fading and interference. 280

In contrast, the Passive-RIS configuration, with an average SNR of around 7.1 dB, exhibits 281

a noticeably lower outage probability over the same range of thresholds. Active-RIS, 282

achieving an average SNR of approximately 10.0 dB, demonstrates the lowest outage 283

probability, with a steeper decline as the threshold increases. 284

For instance, at an SNR threshold of 10 dB, the Direct-Link’s outage probability remains 285

high (0.8), while Passive-RIS shows a moderate reduction (0.7), and Active-RIS reaches 286

a very low outage level (0.5). These results indicate that RIS-assisted systems, especially 287
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those using active elements, can substantially mitigate the effects of fading and interference, 288

thereby ensuring more reliable communication links. 289
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Figure 5. Outage Probability vs. SNR Threshold for Direct-Link, Passive-RIS, and Active-RIS.

5.2.4. Bit Error Rate (BER) and Packet Delivery Ratio (PDR) under Interference 290

BER and PDR metrics are analyzed as functions of interference power to assess link 291

robustness. Figure 6 shows that all three schemes dramatically reduce BER as SINR 292

increases, but the RIS-assisted approaches achieve much lower error rates at each operating 293

point. At 2 dB SINR, the Direct Link BER is roughly 0.5, whereas Passive RIS cuts this to 294

about 0.25 and Active RIS further to 0.15. By 10 dB, the Direct Link BER falls to 0.1, Passive 295

RIS to 0.07, and Active RIS to 0.03. At the highest plotted SINR of 18 dB, Active RIS reaches 296

a BER below 0.005, Passive RIS around 0.02, and Direct Link about 0.03. This confirms that 297

RIS-enhanced beamforming substantially boosts link reliability, with Active RIS providing 298

the greatest resilience to noise. 299

Figure 6. Comparison of BER versus SINR under interference for Direct Link, Passive RIS, and
Active RIS.

Figure 7 depicts packet delivery ratio (PDR) as interference increases. Under zero 300

interference, all three schemes achieve nearly 100% delivery. As interference rises to 10 dB, 301
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the Direct Link PDR drops to 0.75, Passive RIS to 0.85, and Active RIS to 0.90. At 15 dB, 302

the Direct Link PDR falls to 0.60, Passive RIS to 0.80, and Active RIS to 0.88. Even at 303

20 dB interference, Active RIS maintains a PDR of 0.85, whereas Passive RIS is at 0.75 and 304

Direct Link at 0.50. These results demonstrate that RIS assistance, particularly with active 305

amplification, greatly mitigates the impact of co-channel interference on end-to-end packet 306

delivery. 307

Figure 7. Packet delivery ratio as a function of interference level for Direct Link, Passive RIS, and
Active RIS.

5.2.5. SNR versus Interference Level 308

The degradation in SINR under increasing interference levels is examined for all RIS 309

configurations. In interference-limited environments, RIS-assisted systems can significantly 310

improve link robustness. Figure 8 shows the variation of achievable SNR as the interference 311

power increases from 0 dB to 20 dB. 312

Figure 8. SINR Performance Under Interference Level.

The Direct Link case experiences a sharp decline in SNR, from 14 dB at 0 dB interference 313

to just 5 dB at 20 dB. This highlights the vulnerability of conventional links under strong 314
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interference. By contrast, Passive RIS maintains better signal quality. At 20 dB interference, 315

it still achieves an SNR of approximately 8 dB, benefiting from intelligent reflection and 316

spatial interference rejection. 317

Active RIS provides the highest resilience. Even at the highest interference level 318

tested, it sustains an SNR above 10 dB due to its amplification capability and enhanced 319

beamforming precision. 320

Overall, both RIS schemes effectively mitigate interference, with Active RIS offering 321

the strongest protection. This demonstrates that RIS-enhanced systems not only improve 322

coverage and energy efficiency but also significantly enhance interference robustness. 323

5.3. Energy Harvesting Performance and Trade-Off Analysis 324

5.3.1. Harvested RF Power versus Distance 325

The harvested RF power across varying distances (Figure 9) is evaluated to demon- 326

strate the feasibility of RIS-assisted energy harvesting. The results indicate that Passive 327

and Active-RIS configurations significantly improve harvested power over Direct-Link. 328

Active-RIS exhibits the highest harvested energy, benefiting from signal amplification and 329

directional beamforming. 330
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Figure 9. Rural: Harvested RF Power vs. Distance (Log Scale).

The RF-to-DC conversion efficiency η is based on measurements using a commercial 331

rectenna (Diodes Inc. HSMS-285x) in a controlled laboratory environment. Depending on 332

the input power density, efficiencies ranged from 30% to 70%, and these empirical values 333

are employed in our simulations. 334

5.3.2. Conversion Efficiency versus Incident RF Power 335

Conversion efficiency is analyzed as a function of incident RF power for Direct-Link, 336

Passive RIS, and Active RIS configurations. As shown in Figure 10, efficiency increases with 337

incident power across all schemes. Direct-Link achieves the lowest efficiency due to its lack 338

of signal manipulation, while Passive RIS improves performance via optimized reflection. 339

Active RIS offers the highest efficiency, benefiting from both reflection and amplification. 340

Explanation and Modeling: Higher incident power enhances diode rectification and 341

impedance matching, leading to improved energy conversion. Passive RIS achieves mod- 342

erate gains by focusing incident power, whereas Active RIS provides the best conversion 343

performance due to its amplification capability, particularly at higher power levels. 344
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To ensure that the results are realistic and reproducible, all simulation parameters were 345

carefully aligned with experimentally validated values from recent studies. The modeled 346

efficiency curves used for Direct-Link, Passive RIS, and Active RIS reflect realistic trends, 347

with Active RIS benefiting from signal amplification for superior performance. 348
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Figure 10. Conversion Efficiency vs. Incident RF Power.

Figure 11. Harvested RF power versus SNR for Direct Link, Passive RIS, and Active RIS over 0–20
dB.

5.3.3. Trade-Off Between Communication Performance and Energy Harvesting 349

Figure 11 shows how increasing the desired SNR target impacts the amount of ambient RF 350

energy harvested. At 0 dB, the Direct Link yields 0.5 mW, Passive RIS yields 1.0 mW, and 351

Active RIS yields 2.0 mW due to reflected and amplified signals. When SNR rises to 20 dB, 352

harvested power grows to 0.9 mW for Direct Link, 2.0 mW for Passive RIS, and 3.6 mW for 353

Active RIS, representing gains of 80%, 100%, and 80% over their 0 dB values, respectively. 354

Passive RIS shows a slope of 0.05 mW/dB, while Active RIS has a slope of 0.08 mW/dB 355

thanks to its amplification capability. While higher SNR targets require allocating more 356

transmit power to communication, they also generate stronger fields for harvesting; the 357



Version May 19, 2025 submitted to Journal Not Specified 15 of 26

RIS-assisted schemes—particularly Active RIS—exploit this duality to achieve both high 358

link quality and substantial energy capture. 359

5.4. Advanced Performance Analysis 360

In the following section, we group and analyze several other key performance met- 361

rics—SNR, throughput, latency, energy efficiency, SINR, BER, and packet delivery ratio 362

(PDR)—to compare Direct-Link (No RIS), Passive-RIS, and Active-RIS configurations. 363

5.4.1. SNR and Throughput Scaling with RIS Size 364

The relationship between RIS element count and performance metrics such as SNR 365

and throughput is investigated. Figures 12 and 13 illustrates the SNR and throughput 366

performance as functions of the number of RIS elements. The SNR improves from 3.0 dB 367

for the Direct-Link to 7.1 dB for Passive-RIS, and further to 10.0 dB for Active-RIS with 368

200 RIS. Correspondingly, throughput increases from 2.6 Gbps (Direct-Link) to 4.6 Gbps 369

(Passive-RIS) and 6.8 Gbps (Active-RIS) with 200 RIS. These improvements indicate that 370

RIS-assisted systems substantially enhance both signal quality and data rate. 371

Figure 12. SNR Performance for Different RIS Configurations.

Figure 13. Throughput Performance for Different RIS Configurations.
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5.4.2. Latency and Energy Efficiency versus Number of Users 372

System latency and energy efficiency are assessed under increasing user loads to 373

evaluate multi-user scalability. Figures 14 and 15 compares latency and energy efficiency 374

across the configurations. Latency decreases from 90 ms (Direct-Link) to 40 ms with unified 375

Active-RIS, while energy efficiency increases from 0.44 (Direct-Link) to 0.82 with Active-RIS 376

with 10 users. These metrics demonstrate that RIS can reduce delay and improve power 377

usage, which are critical for next-generation networks. 378

Figure 14. Latency vs. Number of Users.

Figure 15. Energy Efficiency vs. Number of Users.

5.4.3. Performance Gap to Theoretical Upper Bound 379

Although the original RIS-aided optimization in Eq. (14) is NP-hard, the SCA-based 380

algorithm reliably converges to a high-quality stationary point of the surrogate problem 381

in Eq. (15). To quantify how close this solution is to the true optimum, we compare the 382

achieved sum-rate against a theoretical upper bound obtained via semidefinite relaxation 383

(SDR) without the unit-modulus constraint. 384



Version May 19, 2025 submitted to Journal Not Specified 17 of 26

Figure 16 plots the relative performance gap, 385

∆gap(N) =
Rupper(N)− RSCA(N)

Rupper(N)
× 100%,

as a function of the number of RIS elements N. Here, Rupper(N) is the SDR-based upper 386

bound on achievable sum-rate, and RSCA(N) is the sum-rate obtained by the proposed 387

SCA algorithm. As N increases from 50 to 200, ∆gap remains within 5–7%, demonstrating 388

that the heuristic SCA method operates near the global optimum despite the NP-hardness 389

of the original problem. This small gap confirms the efficacy of the SCA-based approach 390

for large-scale RIS designs. 391

Figure 16. Relative performance gap between SDR-based upper bound and SCA algorithm versus
number of RIS elements N.

5.4.4. SCA Convergence and Computational Complexity 392

The original joint optimization problem in Eq. (14) is non-convex due to the coupling 393

between RIS phase shifts and beamforming vectors as well as the unit-modulus constraints. 394

To address this, we employ a Successive Convex Approximation (SCA) approach that 395

iteratively solves a convex surrogate problem defined in Eq. (15). In each iteration t, 396

the non-convex components are linearized around the current estimates Θ(t) and {f(t)BB,k}, 397

yielding a convex program solvable by standard interior-point methods. 398

Figure 17 compares the convergence behavior of SCA for Direct Link, Passive RIS, and 399

Active RIS configurations. All variants reach within 1% of their final objective value in 400

fewer than 15 iterations, with Active RIS converging slightly faster due to its additional 401

amplification degrees of freedom. 402

The per-iteration complexity of solving the surrogate in Eq. (15) is dominated by the 403

interior-point solver, which has a worst-case cost on the order of O((NK)3), where N is the 404

number of RIS elements and K the number of users. Figure 18 depicts how the computation 405

time per iteration scales with N. For Passive RIS, runtime grows from approximately 0.002 s 406

at N = 50 to 0.032 s at N = 200, reflecting the cubic dependence. Active RIS incurs about 407

20% additional overhead due to amplification variables, whereas the Direct Link case (no 408

RIS) remains constant at 0.1 s per iteration. These results confirm that, despite the cubic 409

scaling, modern solvers and warm-start techniques enable SCA-based optimization to 410

remain practical for large RIS sizes (e.g. N = 1000). 411
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Figure 17. Convergence comparison of the SCA algorithm: objective value versus iteration for Direct
Link, Passive RIS, and Active RIS.

Figure 18. Computation time per SCA iteration versus number of RIS elements for Direct Link,
Passive RIS, and Active RIS.

5.4.5. Scalability to Massive Access Scenarios 412

To evaluate the feasibility of our unified RIS framework in future 6G massive access 413

scenarios, we extend the analysis to user counts up to K = 1000. Figure 19 plots the average 414

SINR versus the number of users K. As K increases from 10 to 1000, the SINR decreases 415

from approximately 14 dB to 4 dB under a single RIS of size N = 100. However, acceptable 416

link quality (SINR ≥ 5 dB) is sustained for up to K ≈ 400 users. 417

Beyond this point, several scalable strategies can be employed to maintain performance 418

(see Figure 20): 419

1. Distributed RIS Panels: Deploy multiple smaller RIS panels across the coverage area 420

so that each user is served by a nearby surface, effectively reducing per-panel load. 421

2. Hierarchical User Grouping: Partition the large user set into clusters of moderate size 422

(e.g. 50–100 users) and apply time- or code-division scheduling within each cluster to 423

bound instantaneous interference. 424
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3. Hybrid Analog–Digital Precoding: Combine low-dimensional digital precoding at 425

the BS with analog RIS beamforming per group, reducing the SCA problem size from 426

O((NK)3) to O((NKgroup)3). 427

4. Power-Domain NOMA: Within each cluster, serve multiple users on the same beam 428

via non-orthogonal multiple access, using power allocation to meet individual user 429

rate requirements. 430

Figure 19. Average SINR versus number of users K (log scale) for a single RIS of size N = 100.

(a) Distributed RIS Panels (b) Hierarchical User Grouping

(c) Hybrid Analog–Digital Precoding (d) Power-Domain NOMA

Figure 20. Scalability strategies for supporting thousands of users under the unified RIS framework.

5.4.6. Robustness to Channel Estimation Error (CEE) Analysis 431

System robustness under imperfect channel state information is analyzed using sim- 432

ulated estimation error models. Figure 21 compares the degradation of achievable SINR 433

under increasing channel estimation error variance σ2
CEE for Direct Link, Passive RIS, and 434

Active RIS. At perfect CSI (σ2
CEE = 0.00), all schemes achieve the baseline SINR of 15.0 dB. 435

When σ2
CEE rises to 0.05, the Direct Link SINR drops to 13.5 dB, whereas Passive RIS retains 436
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14.0 dB and Active RIS maintains 14.2 dB. At σ2
CEE = 0.10, these values decrease to 12.0 dB, 437

13.0 dB, and 13.5 dB, respectively. A higher error variance of 0.15 yields SINR of 10.0 dB 438

for Direct Link, 11.5 dB for Passive RIS, and 12.5 dB for Active RIS. Even under severe 439

estimation error (σ2
CEE = 0.20), the SINR remains at 7.0 dB, 9.0 dB, and 11.0 dB, respectively. 440

These results demonstrate that both Passive and Active RIS substantially mitigate the effects 441

of channel uncertainty compared to the baseline Direct Link, with Active RIS offering the 442

greatest resilience across all error levels. 443

Figure 21. Impact of channel estimation error variance σ2
CEE on achievable SINR for Direct Link,

Passive RIS, and Active RIS.

5.5. Sustainability & Use Cases 444

5.5.1. Sustainability Analysis (Energy Savings and Carbon Emissions) 445

Sustainability is a critical dimension for next-generation wireless networks. The 446

unified RIS framework offers significant benefits in reducing power consumption and 447

environmental impact. 448

Figure 22 compares energy usage across Direct-Link, Passive RIS, and Active RIS 449

systems. Passive RIS reduces radiated power by up to 70% due to its beamforming gain, 450

while Active RIS also lowers total energy, albeit with amplification overhead. 451

Table 3 summarizes key sustainability metrics. Energy efficiency improves from 0.44 452

(Direct-Link) to 0.67 (Passive RIS) and 0.82 (Active RIS), as shown in Figure 15. Correspond- 453

ingly, power consumption drops from 16 W to 12 W and 9 W, respectively. CO2 emissions 454

also reduce, with Passive RIS cutting yearly emissions by 30% and Active RIS by 20%. 455

Conversion efficiency at 50 mW RF input rises from 0.40 to 0.60 for Active RIS (Figure 10). 456

Table 3. Sustainability Metrics Comparison

Metric Direct-Link Passive RIS Active RIS
Power Consumption (W) 16 12 9
CO2 Emissions (kg CO2/unit/year) 50 35 (30% reduction) 40 (20% reduction)
Conversion Efficiency (at 50 mW) 0.40 0.50 0.60
Energy Efficiency (Norm.) 0.44 0.67 0.82

Environmentally, Passive RIS saves approximately 550 kg CO2 per year (equal to 457

removing 0.2 vehicles), while Active RIS achieves about 500 kg CO2 reduction. Overall, 458

Passive RIS is the most eco-friendly, while Active RIS offers a balanced trade-off between 459

sustainability and performance. 460
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Figure 22. Energy savings comparison between RIS-assisted systems and direct-link baseline.

Overall, RIS-assisted architectures not only improve communication performance but 461

also substantially enhance sustainability. Passive RIS offers the most eco-friendly solution 462

with minimal power requirements, while Active RIS balances higher consumption with 463

superior network performance and energy efficiency. 464

5.5.2. Use Cases and Application Scenarios 465

The unified RIS framework is applicable across a wide range of scenarios. Table 4 466

outlines the strengths and limitations of Direct-Link, Passive-RIS, and Active-RIS in various 467

use cases. In rural settings, for instance, our SNR vs. Distance plot shows that at 500 m the 468

Direct-Link achieves about 3.0 dB, while Passive-RIS and Active-RIS achieve 7.1 dB and 469

10.0 dB, respectively. Correspondingly, the Throughput vs. Distance plot indicates through- 470

put enhancements from 2.6 Gbps (Direct-Link) to 4.6 Gbps (Passive-RIS) and 6.8 Gbps 471

(Active-RIS), with the Latency vs. Number of Users plot showing a reduction from 80 ms 472

(Direct-Link) to 55 ms (Passive-RIS) and 35 ms (Active-RIS). For instance, in urban 5G 473

networks, Active-RIS is optimal for dynamic environments due to its superior interference 474

suppression and capacity enhancement. In contrast, Passive-RIS is more suitable for IoT 475

and low-power networks where energy efficiency is paramount. In mmWave commu- 476

nications, RIS significantly mitigates high path loss and blockage issues. High-mobility 477

applications, such as those in vehicular networks or UAV communications, also benefit 478

from the rapid adaptation provided by Active-RIS. These use cases demonstrate that the 479

proposed framework not only enhances performance but also aligns with sustainability 480

goals, making it highly suitable for next-generation 6G networks. 481

Table 4. Use Cases and Applications Comparison.

Application/Use Case Direct-Link Passive-RIS Active-RIS

Urban 5G Networks Limited coverage, high
interference

Improved coverage; low
cost

Optimal dynamic
adaptation

IoT and Low-Power
Networks

High power usage, limited
range

Energy harvesting;
extended battery life

Superior performance
(higher power use)

mmWave Communications Poor penetration, high
path loss Enhanced propagation Best signal strength

High-Mobility Scenarios Unreliable under rapid
changes Moderate improvement Ideal for fast-moving users

Edge Computing/Smart
Cities

High latency, limited
scalability

Better coverage and
reliability

Lowest latency, highest
throughput
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6. Performance Results and Discussion 482

This section presents the comprehensive discussion and interpretation of the simula- 483

tion results. Numerical evaluations for various scenarios and performance indicators are 484

analyzed to provide insights into the capabilities of the unified RIS framework. 485

Table 5. Performance Metrics Comparison: Direct-Link vs. Passive RIS vs. Active RIS

Metric Direct-Link Passive RIS Active RIS
SNR (dB) 3.0 7.1 10.0
Throughput (Gbps) 2.6 4.6 6.8
Latency (ms) 80 55 35
Energy Efficiency (Normalized) 0.44 0.67 0.82
Outage Probability (10 dB SNR) High Moderate Low
BER (QPSK) ∼ 10−3 ∼ 10−4 ∼ 10−5

Conversion Efficiency (50 mW) 0.40 0.50 0.60

6.1. Numerical Results Overview and Key Metrics 486

Table 5 summarizes the main performance metrics across Direct-Link, Passive RIS, and 487

Active RIS configurations. Clear trends show substantial improvements in signal quality, 488

capacity, and energy efficiency when RIS is deployed. 489

At N = 200 RIS elements and under typical macrocell settings: 490

• SNR: Enhanced from 3.0 dB (Direct-Link) to 7.1 dB (Passive RIS) and further to 10.0 dB 491

(Active RIS). 492

• Throughput: Improved from 2.6 Gbps to 4.6 Gbps (Passive) and 6.8 Gbps (Active). 493

• Latency: Reduced from 80 ms (Direct-Link) to 55 ms (Passive) and 35 ms (Active). 494

• Energy Efficiency: Increased from 0.44 to 0.82 (normalized). 495

6.2. Performance Insights Across Deployment Scenarios 496

6.2.1. Rural Scenario: BER versus Distance for QPSK Modulation 497

As shown in Figure 23, BER increases with distance across all schemes. However, 498

Active RIS maintains the lowest BER, followed by Passive RIS, and then Direct-Link, which 499

suffers most from path loss. Active RIS amplification effectively counters long-range 500

attenuation. 501

200 400 600 800 1000
Distance (m)

10 3

10 2

10 1

BE
R

BER vs. Distance for QPSK (Rural)

Direct Link
UF (Passive RIS)
UF (Active RIS)

Figure 23. Rural Scenario: BER vs. Distance (QPSK Modulation).
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6.2.2. Indoor Scenario: Channel Capacity versus Distance 502

In Figure 24, channel capacity is observed to decline with distance. Direct-Link 503

performance degrades fastest due to obstruction losses. Passive RIS sustains higher capacity 504

through intelligent reflection, while Active RIS further boosts this via amplification. 505
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Figure 24. Indoor Scenario: Channel Capacity vs. Distance.

6.3. Overall Implications and Trade-Offs 506

The unified RIS framework demonstrates significant advantages: 507

• Active RIS achieves the best performance across SNR, throughput, BER, and latency, 508

although with higher power consumption. 509

• Passive RIS offers a strong compromise for energy-conscious deployments while still 510

significantly outperforming Direct-Link systems. 511

• Use-case specific benefits are evident: Passive RIS excels in rural and IoT environments, 512

while Active RIS is ideal for high-capacity indoor and urban applications. 513

6.4. Summary of Key Findings 514

• RIS technology substantially improves SNR (up to 10.0 dB) and capacity (6.8 Gbps). 515

• Energy harvesting performance is enhanced, supporting sustainable operation. 516

• Active RIS offers optimal performance, whereas Passive RIS delivers excellent trade- 517

offs. 518

• Scalability, robustness to interference, and resilience to channel estimation errors are 519

validated across scenarios. 520

Overall, the proposed unified RIS framework enables a powerful balance between 521

communication and energy sustainability, supporting diverse 6G applications from IoT to 522

massive MIMO and smart cities. 523

7. Conclusion 524

This paper has presented a unified framework that integrates Reconfigurable Intelli- 525

gent Surfaces (RIS) for enhanced wireless communication and ambient RF energy harvest- 526

ing in next-generation networks. The proposed solution jointly optimizes the RIS phase 527

shifts and beamforming to balance communication performance and energy harvesting 528

capabilities, utilizing both Passive and Active RIS designs. 529

Extensive simulations across realistic deployment scenarios—including rural, indoor, 530

and urban macrocells—have demonstrated the substantial benefits of RIS-assisted archi- 531
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tectures over traditional Direct-Link communication. Notably, the Passive RIS improves 532

the average SNR from 3.0 dB to 7.1 dB and Active RIS further to 10.0 dB. Correspondingly, 533

throughput increases from 2.6 Gbps (Direct-Link) to 4.6 Gbps and 6.8 Gbps, respectively. 534

Latency is reduced significantly, from 80 ms to 35 ms, while energy efficiency improves 535

from 0.44 to 0.82 (normalized) under Active RIS. 536

In addition to communication gains, the proposed framework achieves remarkable 537

improvements in ambient RF energy harvesting. Passive and Active RIS increase the 538

harvested power and conversion efficiency, which can be leveraged to power low-energy 539

devices and reduce network-wide energy consumption. Sustainability analysis confirms 540

reductions in power usage and CO2 emissions, particularly with Passive RIS, making the 541

solution highly suitable for eco-friendly deployments. 542

The results also indicate that RIS-assisted systems offer robustness against interference 543

and channel estimation errors (CEE). Active RIS, in particular, shows the greatest resilience 544

under harsh conditions, further supporting its role in advanced urban and high-density 545

scenarios. 546

In conclusion, the unified RIS framework effectively addresses the dual challenges of 547

spectral and energy efficiency. It provides scalable, robust, and sustainable wireless con- 548

nectivity solutions that are essential for 6G networks, massive IoT, smart cities, and future 549

green communication systems. Future work will explore dynamic RIS reconfiguration 550

strategies powered by AI and machine learning to further optimize performance under 551

mobility and rapidly changing channel environments. 552
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Appendix A Comprehensive Notation Guide 563

To ensure clarity and avoid ambiguity, we adopt the following notation conventions 564

throughout the paper: 565

• Scalars are denoted by italic letters, e.g. n, K, N, Ptx. 566

• Vectors are denoted by bold lowercase letters, e.g. x, wk. 567

• Matrices are denoted by bold uppercase letters, e.g. Hk, Φ, FRF. 568

• Sets are denoted by calligraphic uppercase letters, e.g. K,N . 569

• Greek letters denote parameters: σ2 (noise power), η (energy harvesting efficiency), 570

γk (SINR). 571

• |·| denotes absolute value (scalars) or determinant (matrices). 572

• ∥ · ∥ denotes the Euclidean norm of a vector. 573

• ℜ{·} and ℑ{·} denote real and imaginary parts. 574

• Superscripts/subscripts: (·)H is Hermitian transpose; subscript k for user index, n for 575

element index. 576

• Distinctions: “O” (set) vs. “0” (zero); avoid “l” vs. “1” by using indices n, k. 577
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Table A. Comprehensive Notation Guide

Symbol Description
K Number of users
N Number of RIS elements
Hk Channel matrix between BS antennas and RIS toward user k
Φ = diag(ejϕ1 , . . . , ejϕN ) Diagonal RIS phase shift matrix
FRF RF (analog) precoder matrix at BS
fBB,k Baseband precoding vector for user k
wk Combining vector at user k
γk SINR at user k, see (X)
σ2 Noise power
η RF-to-DC energy conversion efficiency
Ptx Transmit power at the BS
∥x∥ Euclidean norm of vector x
ℜ{·},ℑ{·} Real and imaginary parts
E[·] Statistical expectation
M Number of BS antennas
hd Direct channel vector
G BS-to-RIS channel matrix
hRIS RIS-to-user channel vector
Θ RIS phase shift matrix
P Transmit power
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