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 A B S T R A C T

Chronic wounds and associated complications present ever growing burdens for clinics and hospitals world 
wide. Venous, arterial, diabetic, and pressure wounds are becoming increasingly common globally. These 
conditions can result in highly debilitating repercussions for those affected, with limb amputations and 
increased mortality risk resulting from infection becoming more common. New methods to assist clinicians 
in chronic wound care are therefore vital to maintain high quality care standards. This paper presents an 
improved HarDNet segmentation architecture which integrates a contrast-eliminating component in the initial 
layers of the network to enhance feature learning. We also utilise a multi-colour space tensor merging process 
and adjust the harmonic shape of the convolution blocks to facilitate these additional features. We train our 
proposed model using wound images from light skinned patients and test the model on two test sets (one set 
with ground truth, and one without) comprising only darker skinned cases. Subjective ratings are obtained 
from clinical wound experts with intraclass correlation coefficient used to determine inter-rater reliability. 
For the dark skin tone test set with ground truth, when comparing the baseline results (𝐷𝑆𝐶 = 0.6389, 
𝐼𝑜𝑈 = 0.5350) with the results for the proposed model (𝐷𝑆𝐶 = 0.7610, 𝐼𝑜𝑈 = 0.6620) we demonstrate 
improvements in terms of Dice similarity coefficient (+0.1221) and intersection over union (+0.1270). Measures 
from the qualitative analysis also indicate improvements in terms of high expert ratings, with improvements 
of > 3% demonstrated when comparing the baseline model with the proposed model. This paper presents 
the first study to focus on darker skin tones for chronic wound segmentation using models trained only on 
wound images exhibiting lighter skin. Diabetes is highly prevalent in countries where patients have darker 
skin tones, highlighting the need for a greater focus on such cases. Additionally, we conduct the largest 
qualitative study to date for chronic wound segmentation. All source code for this study is available at: 
https://github.com/mmu-dermatology-research/hardnet-cws.
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1. Introduction

Diabetes is now regarded as a global epidemic, resulting in most 
part from a systematic increase in populations becoming overweight 
and obese [1]. Programmes that target the condition have historically 
shown only short-term benefits, with longer-term effects yet to be 
established [2,3]. The situation is similar for obesity [4], a common 
factor in diabetes occurrence [5]. Arterial leg ulcers (ALUs) and dia-
betic foot ulcers (DFUs) are a debilitating and costly complication of 
diabetes [1], with recent findings suggesting an association between 
DFU episodes and all-cause resource utilisation and increased mortality 
risk [6]. Venous leg ulcers (VLUs) and pressure ulcers (PRUs) are the 
most common types of complex skin ulcers [7], with ulcer prevalence 
in the diabetic population estimated to be 13% in North America [8]. 
The incidence of chronic wounds is high and is estimated to continue 
on an upward trajectory [9].

Patients diagnosed with DFU are two to three times more likely 
to die than patients without and are predisposed to numerous co-
morbidities, including peripheral artery disease, cardiovascular disease, 
neuropathy, retinopathy, and nephropathy. VLUs and DFUs often result 
in significantly impaired quality of life [10–12]. Occurrence of ulcers is 
linked to an increased incidence of both amputation and mortality, es-
pecially in the presence of advanced age, peripheral artery disease and 
anemia [10,13,14]. Chronic wounds exert a significant physical and 
emotional burden on patients [15,16], with depression being associated 
with an increased risk at initial and subsequent occurrence [17,18].

Chronic wounds are typically correlated with comorbidities such 
as diabetes, vascular deficits, hypertension, and chronic kidney dis-
ease [19]. Diabetic neuropathy is highly prevalent in DFU cases and 
is the primary cause of DFU formation [20], meaning that patients 
have lost sensation in their foot due to nerve damage [21]. This means 
that patients often go through long periods not realising they have a 
DFU until the wound becomes much worse and leads to other serious 
complications. Infection affects more than 50% of all DFU cases [22] 
and represents one of the most common causes of diabetes related 
hospitalisation [20]. Diabetic leg and foot ulcers are amongst the most 
expensive wound types to treat in the United States [19]. For VLUs, 
the recurrence rate within 3 months after wound closure is as high as 
70% [10].

Management of chronic wounds can be a long and difficult task, for 
both patient and clinician. This is especially true for wounds that are 
not caught early, and require more intensive treatment programmes. 
This can mean frequent visits to clinics or hospitals for assessment by 
experts [23,24]. Even after accomplished wound healing, recurrences 
are frequent and often lead to minor or major amputation of lower 
extremities [25,26]. The post COVID-19 climate poses further risks 
and challenges to the treatment of chronic wounds, given that diabetic 
patients are placed in the high-risk category. To this end, recent years 
have seen an increased research interest in the remote detection and 
monitoring of wounds using non-contact methods [27–29].

Evolving current telemedicine systems to include remote wound 
monitoring represents an opportunity to reduce risks to vulnerable pa-
tients and to ease significantly overburdened healthcare systems [30]. 
Furthermore, the advent of cheap consumer mobile devices and easily 
accessible cloud platforms promotes the idea of making these tech-
nologies available to poorer regions, where patients may experience 
reduced access to expert healthcare providers. Low cost, easy-to-use 
non-invasive devices that can detect and monitor wounds could act as 
a mechanism to promote patient engagement with the monitoring of 
their health.

A growing body of evidence has shown the ability of convolutional 
neural networks (CNNs) to equal or surpass experienced dermatologists 
for detection and classification in related domains [31–37]. In this 
regard, deep learning may be able to assist in providing more objective 
results in domains which are prone to high levels of subjectivity. 
Changes to wound area have been shown to be a robust predictor in 

healing status [38]. Segmentation of chronic wounds allows for more 
accurate assessment of changes to wound shape and size over time 
when compared to more generalised localisation techniques. In the next 
section, we discuss the recent notable developments in this domain.

2. Related work

Studies on deep learning tasks related to chronic wounds have 
become a growing interest in the research community in recent years 
due to the possible benefits that such technologies might offer in real-
world clinical settings [39,40]. In this section, we examine the more 
prominent studies conducted in chronic wound segmentation research 
that have helped to guide the experiments presented in this paper.

Goyal et al. [41] were one of the first research groups to investi-
gate chronic wound segmentation using convolutional neural networks 
(CNNs). They trained a number of fully convolutional networks (FCN) 
to segment DFU wounds and associated periwounds using a dataset 
comprising 600 DFU images together with ground truth masks which 
were provided by wound experts at Lancashire Teaching Hospitals 
(LTH), UK. A two-tier transfer learning approach using two publicly 
available general image datasets was used - Pascal VOC and ImageNet 
segmentation datasets. The DFU segmentation dataset was divided 
into 420 training images, 60 validation images, 120 test images, and 
105 images of healthy feet. In the joint segmentation of wound and 
periwound regions the highest performing model was FCN32-s with a 
Dice similarity coefficient (DSC) of 0.899. For segmentation of ulcer 
regions only, the highest performing model was FCN-16s, reporting a 
DSC of 0.794. For segmentation of only periwounds, the highest per-
forming model was FCN-16s, reporting a DSC of 0.851. This work noted 
that the FCN-AlexNet and FCN-32s models were less accurate in the 
segmentation of irregular boundaries, and that the smaller pixel strides 
used in FCN-16s and FCN-8s resulted in improved detection of such 
examples. This study also observed an overlap of periwound and wound 
regions in prediction results due to ambiguities in feature boundaries. 
A limitation of this work is the small number of samples used in the 
experiments, which may make the results difficult to generalise across 
more diverse datasets.

Wang et al. [42] conducted wound segmentation experiments using 
MobileNetV2, which was pretrained using the Pascal VOC segmentation 
dataset. For training and testing, they used a newly introduced dataset 
of 1109 DFU images (𝑡𝑟𝑎𝑖𝑛 = 831; 𝑡𝑒𝑠𝑡 = 278). A localisation method 
was used as a preprocessing stage to exclude non-DFU wound regions 
from images before the segmentation stage. As a post-processing step, 
morphological algorithms were used (small region removal and hole-
filling). Their test results reported a mean DSC of 0.9047. However, this 
work presents several limitations. First, all wound images were very 
small patches that are heavily padded to a resolution of 224 × 224 
pixels. Wound pixels therefore comprised only very small regions of 
the images. Excluding padding, the average size of the wound regions 
in the training set is 71 × 104 pixels, and the average wound region 
size in the test set is 70 × 101 pixels. At such low resolutions, as small 
as 17 × 18 pixels, a large number of wound features may be lost. They 
also tested their model on the Medetec dataset, and obtained a DSC of 
0.9405.

In later works, Wang et al. [43] conducted the Foot Ulcer Segmenta-
tion Challenge (FUSC) 2021 whereby a new DFU dataset was released 
(𝑡𝑟𝑎𝑖𝑛 = 810, 𝑣𝑎𝑙 = 200, 𝑡𝑒𝑠𝑡 = 200). This new dataset comprised of 
examples with less significant padding compared to their prior dataset, 
with images exhibiting more foot and background features. The winner 
of the FUSC 2021, Mahbod et al. [44], achieved an image-based DSC 
of 0.8880, which was 1.67% lower than the prior DSC reported by 
Wang et al. [42]. This may indicate that the task was more difficult 
when larger wound images were introduced. In the FUSC 2021, models 
were required to learn features that are more complex that were absent 
from the prior experiments conducted by Wang et al. [43] which used 
a smaller dataset comprising notably smaller wound regions and thus 
fewer features. 
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Scebba et al. [45] noted the numerous challenges associated with 
wound segmentation, including wound type heterogeneity, variance 
in tissue colouration, wound shapes, background features, anatomi-
cal location, variety of image capturing scenarios, and non-standard 
specifications of capture devices. They observed that standardisation 
initiatives in medical wound photography may lead to additional work-
load burdens on clinical routine, and that the proposal of standards 
would likely not result in a desired consistent approach in real-world 
scenarios. Their proposed method utilised a MobileNet localisation 
model to assist a U-Net segmentation model to reduce non-wound 
features. This study used a total of five chronic wound datasets: (1) 
SwissWOU - a private dataset of DFU (𝑛 = 1096) and systemic sclerosis 
digital ulcers (𝑛 = 63), (2) SIH (second healing intention dataset) (𝑛 =
58) [46], (3) DFUC2020 (𝑛 = 2000) [47], (4) FUSC (𝑛 = 60) [43], (5) 
Medetec (𝑛 = 53) [48]. We observe that for some of the datasets used in 
this study, complete sets were not utilised in the experiments. For the 
FUSC, Medetec, and SIH datasets, only a selection of images were used. 
The authors experimented using a range of well-known segmentation 
networks, both with and without localisation preprocessing (manual 
and automated). When tested using only the SwissWOU DFU images 
(10% of all patients), their results showed that U-Net was the highest 
performing network (𝑀𝐶𝐶 = 0.85, 𝐼𝑜𝑈 = 0.75). Their test results for 
the SwissWOU systemic digital ulcers, Medetec, SIH, and FUSC images 
also showed U-Net to be the best performing network (𝑀𝐶𝐶 = 0.8725, 
𝐼𝑜𝑈 = 0.7875).

HarDNet-DFUS (Harmonic Densely Connected Network), proposed 
by Liao et al. [49], was the winning entry for the DFUC 2022, achieving 
a DSC of 0.7287. The design is based on a prior work, HarDNet-
MSEG [50], and is the basis of our proposed methods in the present 
paper. HarDNet-DFUS uses inter-layer connections which were config-
ured according to the required block depth 𝑛. Therefore, when 𝑛 = 9, 
the resulting factors are 1, 3, and 9, allowing for shortcuts to the 1st, 
3rd, and 9th convolutions. This results in the removal of the power 
of 2 constraint found in the original block design. A block depth of 
3, 9, and 15 was selected for the final design, replacing the original 
depth of 4, 9, and 16. This results in reduced data movement using 
the same number of convolutional layers. Additionally, they replaced 
the receptive field blocks (RFB) in the decoder with a large window 
attention (Lawin) transformer. The original HarDNet network mainly 
utilised 3 × 3 convolutions to increase computational density, which 
changes the model from being memory-bound to compute-bound [51]. 
To increase accuracy further, they used an ensembling strategy using 
5-fold cross validation and test time augmentation (TTA). Augmented 
images were added to the test set when testing the sub-models, with 
the output averages used as the final prediction results. However, 
they found that this method was not consistent, and would sometimes 
degrade performance in terms of DSC and IoU.

Ramachandram et al. [52] proposed a chronic wound segmenta-
tion network for tissue type segmentation (AutoTissue) and wound 
segmentation (AutoTrace) designed for use in a commercial mobile 
app. The AutoTrace model implemented a typical auto-encoder design 
using depth-wise separable convolution layers, attention gates, and 
strided depth-wise convolutions resulting in downsample activations 
which act as an alternative to fixed max-pooling. Additive attention 
gates were added to skip connections to regulate activations from 
previous network layers. Bilinear upsampling was used in the decoder 
blocks followed by depth-wise separable convolution layers, helping 
to reduce memory requirements. The AutoTissue segmentation model 
implemented EfficientNetB0 as the encoder path, with a decoder com-
prising 4 layers with each layer utilising two-dimensional bilinear 
upsampling followed by 2 depth-wise convolution layers. AutoTrace 
was trained with a private dataset comprising 467,000 wound images, 
while AutoTissue was trained with a second private dataset comprising 
17,000 wound images. For both datasets, both images and ground truth 
labels were obtained from hospitals in North America, allowing for a 
diverse range of wound images. However, details were not disclosed 

regarding the exact composition of the datasets. The study reported 
an mIoU of 0.8644 for wound segmentation and an mIoU of 0.7192 
for tissue and wound segmentation. Clinicians rated 91% (53/58) of 
the results as between fair and good for segmentation and tissue seg-
mentation quality. Qualitative assessment of this type is rare in chronic 
wound related deep learning studies. However, the sample size used is 
limited, whereby only 58 examples were rated.

Swerdlow et al. [53] used a private dataset exhibiting stages 1–4 
PRUs, acquired from eKare Inc. Mask R-CNN with a ResNet101 back-
bone was trained for segmentation and classification of each PRU stage 
of development. The dataset comprised 969 PRU images (𝑡𝑟𝑎𝑖𝑛 = 848, 
𝑡𝑒𝑠𝑡 = 121). The study reported a DSC of 0.92 for stage 1 PRU, 0.85 
for stage 2 PRU, 0.93 for stage 3 PRU, and 0.91 for stage 4 PRU. The 
wound image acquisition protocol indicated that images be taken from 
approximately 40–65 cm distance from the wound. Additionally, the 
study excluded PRU wounds that were smaller than 2 × 2 cm, which 
may have limited testing of the model’s true ability to segment a range 
of wound sizes.

The use of different colour spaces in CNNs was explored by Gowda 
et al. [54]. Their classification experiments on the CIFAR-10, CIFAR-
100, SVHN, and ImageNet datasets showed that different classes were 
sensitive to models trained on different colour spaces. They trained 
a series of DenseNet models using multiple image datasets that had 
been converted to different colour spaces, with each DenseNet using a 
different colour space as input. The outputs from each DenseNet were 
then used as input into a final dense layer to generate weighted pre-
dictions from each sub-DenseNet. Increased computational overhead, a 
result of using multiple DenseNets, was addressed by using smaller and 
wider DenseNets. This work showed that training with images from 
multiple colour spaces provided comparable results to significantly 
larger models, such as DenseNet-BC-190-40, with a reduction of more 
than 10M parameters.

In later CNN-based colour space studies, Simon et al. [55] trained 
classification models using RGB and luminance images. Their exper-
iments utilised a ResNet101 pretrained model for feature learning 
and an SVM for the classifier. They trained and tested their model 
with the Describable Texture Dataset (DTD) and the Flickr Material 
Dataset (FMD). Compared to prior works, for the DTD, they reported 
an accuracy improvement of 0.73%, and for the FMD they reported an 
accuracy improvement of 6.95%.

In more recent work, McBride et al. [56] conducted preliminary 
experiments which merged individual colour channels from different 
colour spaces into single tensors when training a chronic wound U-Net 
segmentation model. They found that different colour channel merging 
operations using RGB, CIELAB, and YCrCb colour spaces improved 
segmentation performance by 0.0264 for IoU and 0.0348 for DSC when 
testing on the FUSC dataset. However, this study was limited by the use 
of only a simple U-Net model.

One of the most prominent aspects of chronic wound research in 
deep learning, as highlighted by our literature review, has been a 
lack of substantial publicly available fully annotated datasets. Another 
notable factor in the field is a lack of focus on patients exhibiting darker 
skin tones. The biases towards lighter skin tones present in deep learn-
ing models in dermatology research is well established [57]. Benčević 
et al. [58] observed significant bias in skin lesion segmentation against 
darker skin cases when performing in and out-of-sample evaluation. 
Furthermore, they also found that methods used to mitigate bias do 
not result in significant bias reduction. Most of the publicly available 
chronic wound datasets comprise cases that were collected from lighter 
skin patients. While some datasets do contain examples with darker 
skin tones, these are not quantified. In the next section, we discuss the 
chronic wound datasets that we used in our experiments.
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Table 1
A summary of public and private chronic wound image datasets used in our experiments. Note that the Train, Val, and Test columns show how 
the datasets were originally divided. YWHD - Yang Wound Healing dataset; AZH - Advancing the Zenith of Healthcare Wound Care dataset; 
FUSC - Foot Ulcer Segmentation Challenge dataset; GIS-W - Google Image Search wound images; CWDB - Complex Wound DB; Wseg - Wound 
Segmentation dataset; KSUMC - King Saud University Medical City dataset.
 Name Resolution Task Train Val Test Total Status  
 Medetec [48] 560 × (347−444) Segmentation – – 608 Public  
 YWHD [46] 5184 × 3456 – – – – 201 Public  
 Alzubaidi [72] Various Classification – – – 493 Public  
 AZH [42] 224 × 224 Segmentation 831b – 278b 1109 Public  
 DFUC 2022a [68] 640 × 480 Segmentation 2000b – 2000b 4000 Public  
 FUSC [73] 512 × 512 Segmentation 810b 200b 200 1210 Public  
 Fitzpatrick17k [74] Various – – – – 16,529 Public  
 WoundsDB [75] 4896 × 3264 Multimodal – – – 188b Public  
 GIS-W Various – – – – 186 Public  
 CWDB [76] Various Segmentation – – – 27b Public  
 Wseg [77] 331 × 331 Segmentation – – – 2686 Public  
 KSUMC Various Multimodal – – – 115 Private 
a Includes pathology class and anatomical location labels.
b Includes ground truth masks available to the present study.

3. Chronic wound datasets

Large medical imaging datasets present notable challenges when 
used to train deep learning networks [57]. Issues such as image du-
plication, image and feature similarity [59], varying image quality, 
label noise and the presence of visual artefacts can significantly impact 
model performance [60–65].

Our research group has been responsible for the release of the first 
substantial publicly available DFU wound datasets with ground truth 
labels [66–68]. With the release of each dataset, we have conducted 
yearly challenges in association with the International Conference on 
Medical Image Computing and Computer Assisted Intervention [47,
66,69–71]. Our datasets comprise of over 20,000 high quality DFU 
wound photographs together with internationally coordinated clinical 
labelling provided by experts in podiatry. Table  1 shows a summary of 
all the datasets used in our chronic wound segmentation experiments. 
We use 10 public datasets, 1 private dataset, and a dataset comprising 
Google Image Search images which we collected using the Creative 
Commons License search option to remove copyrighted images from 
search results. These images vary significantly, both in size and quality. 
To obtain these images, we used search terms such as ‘‘diabetic foot 
ulcer’’, ‘‘neuropathic ulcer’’, ‘‘venous ulcer’’, ‘‘pressure ulcer’’, ‘‘wound’’, 
and ‘‘chronic wound’’.

The private dataset used in our experiments is the The King Saud 
University Medical City (KSUMC) dataset. This dataset comprises 115 
DFU wound images and was obtained from the King Saud University 
Medical City, Saudi Arabia. The images were acquired using a Fujifilm 
Finepix SL260 digital camera at various resolutions and orientations. 
The KSUMC dataset was obtained with ethical approval from King Saud 
University Medical City, Saudi Arabia (REF: 24/1159/IRB).

3.1. Expert wound delineation

All training, validation and test cases for the DFUC 2022 dataset 
were delineated with the location of DFUs in polygon coordinates. The 
VGG Image Annotator tool [78,79] was used to delineate images with 
polygons indicating the ulcer region. The ground truth was produced 
by five healthcare professionals who specialise in treating diabetic foot 
ulcers and associated pathology, comprising consultant physicians and 
podiatrists, all with more than 5 years professional experience. Each 
clinical expert delineated a portion of the dataset. The instruction for 
annotation was to delineate each DFU with a polygon region.

Prior to the delineation of the full dataset, 800 cases were provided 
to two clinical experts for the purposes of evaluating expert agreement. 
The 800 cases represent 20% of the full dataset and were chosen at 
random. Agreement was assessed using intersection over union (IoU) 
and DSC. The delineation between experts in terms of IoU and DSC is 

Fig. 1. Illustration of an image from the DFUC 2022 training set and corresponding 
masks: (a) original image; (b) original mask based on clinician delineation; (c) 
original mask processed using active contour model; (d) original image with clinician 
delineation mask overlaid; and (e) original image with original mask processed using 
active contour model overlaid. Note that images were cropped for illustration purposes.

0.5876 ± 0.2670 and 0.6981 ± 0.2544 respectively, with a recorded 
accuracy of 0.9869 ± 0.0291. The delineations for the 800 cases used 
for reliability evaluation were not used in the subsequent release of the 
full dataset.

The use of active contour masks when used as ground truth has 
been shown to provide superior agreement with machine predicted 
results in chronic wound segmentation tasks [68]. Therefore, in our 
experiments, for the DFUC 2022 dataset we use ground truth masks 
that have been processed using the original polygon delineations with 
an active contour model applied to smooth delineated vertices. The 
active contour model masks were produced using the MATLAB (The 
MathWorks, Inc., Massachusetts) method created by Kroon et al. [80], 
using default parameters. Fig.  1 shows an example of the two dif-
ferent mask types applied to a training image from the DFUC 2022 
dataset. To further validate that the smoothing effect did not alter 
the delineation of the experts, we measure the similarity of the masks 
produced by the clinicians and the masks post-processed by active 
contour on the training set. The DSC is 0.9620 ± 0.0259 and the 
accuracy is 0.9991 ± 0.0012. These evaluations support our statement 
that the pre-processing stage has provided a smoothing effect, but did 
not significantly alter the experts’ delineation.

4. Method

This section details the training, validation, and testing workflow, 
proposed model architecture, and corresponding metrics used for our 
segmentation experiments.

4.1. Metrics

We utilised a series of widely used evaluation metrics to determine 
the accuracy of the models trained, validated, and tested in our wound 
segmentation experiments. IoU and DSC were selected as the main 
metrics for determining segmentation model accuracy. DSC was chosen 
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for its representation as the harmonic mean of precision and recall, 
giving a balanced evaluation between false positive and false negative 
predictions. A true positive prediction is defined as a segmentation 
result where the wound pixels are correctly segmented. A false positive 
prediction is defined as a segmentation result which includes non-
wound pixels. A true negative prediction is defined as a segmentation 
result where non-wound pixels have not been segmented. A false nega-
tive prediction is defined as a segmentation result where wound pixels 
have not been segmented. The mathematical expressions for IoU and 
DSC are shown in Eqs. (1) and (2) respectively:

𝐼𝑜𝑈 =
|𝑋 ∩ 𝑌 |
|𝑋| ∪ |𝑌 |

(1)

𝐷𝑆𝐶 = 2 ×
|𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

(2)

where 𝑋 represents the ground truth mask and 𝑌  represents the pre-
diction mask.

We also utilise two additional statistical hypothesis testing metrics 
to better understand the Type I and Type II errors associated with 
deep learning segmentation algorithm performance. The two additional 
metrics we use are False Positive Error (FPE) and False Negative Error 
(FNE) which are defined as follows:

𝐹𝑃𝐸 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(3)

𝐹𝑁𝐸 = 𝐹𝑁
𝐹𝑁 + 𝑇𝑃

(4)

where 𝐹𝑃  is the total number of false positive predictions, 𝑇𝑁 is the 
total number of true negative predictions, and 𝐹𝑁 is the total number 
of false negative predictions.

4.2. Baseline experiments

The first stage in our experiments was to determine the effectiveness 
of a range of deep learning segmentation networks using the largest 
publicly available chronic wound dataset (DFUC 2022). We obtained 
a series of baselines for training, validation, and test results for a 
selection of newer segmentation architectures using the DFUC 2022 
dataset. A single dataset (DFUC 2022) was used for the purposes of 
brevity, given the number of different model architectures requiring 
training, validation, testing, and subsequent analysis. This information 
also serves as a useful reference to researchers who do not have access 
to the private KSUMC dataset used later in the present study. Due to 
the limited availability of chronic wound images exhibiting darker skin 
tones with ground truth segmentation masks, later testing experiments 
presented in this paper require the use of images from both the DFUC 
2022 training and testing sets. Therefore, the initial baseline test set 
has a different composition compared to the test sets used in the later 
experiments for the proposed model. A second baseline is established 
with the new test sets for the proposed model to enable fair comparison 
in subsequent experiments. For the initial baseline experiments, we 
focus on a selection of more advanced CNN architectures that were 
not included in the previous baseline experiments reported for DFUC 
2022 [71]. For all baseline experiments, the DFUC 2022 dataset images 
and masks were unchanged from their original resolution (640 × 480 
pixels). A total of 200 images were taken at random from the training 
set for use as the validation set during training. No augmentation or 
post-processing methods were used in any of the baseline experiments. 
All baseline models were trained for 300 epochs with a batch size of 2 
using the Adam optimiser with a learning rate of 0.001, and a weight 
decay of 0.0001. All models were trained without the use of pretrained 
weights. The best model for each experiment was selected from the 
300 epochs training schedule determined by the highest validation 
IoU and DSC values. The hardware and software configuration for all 
experiments completed in the present paper was as follows: Debian 
GNU/Linux 10 (buster) operating system, AMD Ryzen 9 3900X 12-Core 
CPU, 128 GB RAM, NVIDIA GeForce RTX 3090 24 GB GPU. Models 

were trained with Tensorflow 2.4.1 and Pytorch 1.13.1 using Python 
3.7.13.

The results of the baseline experiments are summarised in Table  2. 
HarDNet-DFUS is clearly the best overall performing network in terms 
of training (𝐼𝑜𝑈 = 0.7889, 𝐷𝑆𝐶 = 0.8743), validation (𝐼𝑜𝑈 = 0.6068,
𝐷𝑆𝐶 = 0.7101), and test metrics (𝐼𝑜𝑈 = 0.5421, 𝐷𝑆𝐶 = 0.6520, 𝐹𝑃𝐸 =
0.0255, 𝐹𝑁𝐸 = 0.3278). We observe that the EfficientNet U-Nets record 
lower training and validation loss rates at 0.1558 (EffNetB0 U-Net) and 
0.3485 (EffNetB1 U-Net) respectively. These loss rates are significant, 
a reduction of 0.1043 for B0 train loss and a reduction of 0.1125 for 
B1 validation loss. However, these performance gains are not reflected 
in the test loss results when comparing the EfficientNets with HarDNet. 
The notable differences between validation and test results for the best 
overall performing network (HarDNet-DFUS) may be indicative of the 
random nature of the validation set, which might not fully represent 
the range of features present in the test set. We observe that the 
deeper U-Net variants such as U-Net++ and ResUNet++ demonstrated 
particularly low metrics, which may be a consequence of the relatively 
small size of the DFUC 2022 dataset and the larger size of these network 
architectures.

In addition to the range of network architectures reported on in 
Table  2, we also trained, validated, and tested a number of vision 
transformer (ViT) segmentation models. However, the test results for 
the ViTs were well below those reported in Table  2. As reported 
by [90], ViTs require substantial amounts of training data and are not 
suitable for use with very small datasets such as those used in the 
present paper. [90] observed that representation similarity between 
ViTs trained on small and large datasets comprising of > 1𝑀 images 
differed substantially. They posit that this may be due to a reduction 
in inductive bias (the relationship between closely positioned input 
features). Their experiments show that lower layers of ViTs are not able 
to sufficiently learn local relationships when small amounts of complex 
data are used. Conversely, recent work by [91] suggests that ViTs might 
be trained on smaller datasets using self-supervised inductive biases. 
However, even in these scenarios, datasets of up to 100,000 images 
were used, which although might be considered small in deep learning 
terms, is still significantly greater than the current publicly available 
chronic wound datasets.

We compared a selection of ground truth masks with model pre-
dictions for the best performing network in the initial baseline results, 
which was HarDNet-DFUS. Fig.  2 shows 3 cases with original image, 
ground truth labels, and corresponding baseline model predictions. The 
first row shows a case where the ground truth mask includes the wound 
and periwound as a single region, whereas the model predicted only 
the unhealed wound region. The second row shows a case where the 
two wound regions are separated by epithelial skin, indicating signif-
icant healing between the two non-healed regions. The corresponding 
prediction shows that only the main wound region was predicted by 
the model. The third row shows a case where two large wound regions 
are separated by an epithelial region. The ground truth includes both 
wound regions and the partially healed region. However, the prediction 
includes only the non-healed regions. These examples demonstrate the 
significant challenges inherent in human expert wound delineation and 
how delineation of wound regions can be highly subjective. We asked 
two clinical experts in wound care (a consultant surgeon and a consul-
tant podiatrist) to indicate agreement with the ground truth labels and 
corresponding model predictions for the 3 cases shown in Fig.  2. Both 
experts agreed that the model predictions, although not perfect, were of 
higher quality than the ground truth labels. Both experts indicated that 
the automated segmentation of non-healed wound regions was more 
important than segmentation of healed tissue in terms of automated 
wound monitoring. We note that these qualitative observations are 
preliminary and are not to be considered conclusive. The intention is 
to demonstrate issues present in both expert delineation and limitations 
of the baseline model. Larger scale qualitative assessment is explored 
later in the paper.
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Table 2
Baseline results for a selection of deep learning segmentation networks trained, validated and tested on the DFUC 2022 dataset (image size = 640 × 480 pixels). IoU - intersection 
over union; DSC - Dice similarity coefficient; FPE - false positive error; FNE - false negative error; DCSA - deeper more compact split-attention; MBS - multi-branch segmentation; 
EffNet - EfficientNet. ConvNeXt U-Net was trained using the convnext_base backbone. Note that none of the networks evaluated used pretraining.
 Model Epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 ResUNet++ [81] 152 0.6015 0.3238 0.7213 0.4495 0.6245 0.5767 0.3798 0.4969 0.4315 0.3967  
 U-Net++ [82] 279 0.6694 0.2662 0.7826 0.5147 0.4505 0.6451 0.3996 0.5179 0.4057 0.4152  
 Attention U-Net [83] 65 0.6710 0.2671 0.7835 0.5352 0.4157 0.6552 0.4135 0.5302 0.3760 0.4238  
 DCSAU-Net [84] 245 0.5657 0.3653 0.6887 0.4467 0.5395 0.5712 0.3627 0.4736 0.4498 0.4298  
 MBSNet [85] 81 0.6979 0.2332 0.7999 0.5195 0.4524 0.6446 0.3977 0.5102 0.4240 0.3979  
 ResNet50 U-Net [86] 196 0.6424 0.2892 0.7578 0.4924 0.4612 0.6211 0.3732 0.4915 0.3878 0.4712  
 MobileNetV2 U-Net [86] 34 0.6884 0.2485 0.7946 0.5624 0.3912 0.6844 0.4406 0.5597 0.3542 0.3975  
 ConvNeXt U-Net [87] 98 0.5529 0.3574 0.6869 0.4339 0.5016 0.5728 0.3087 0.4289 0.4157 0.5476  
 EffNetB0 U-Net [87] 258 0.7817 0.1558 0.8686 0.5846 0.3693 0.7044 0.4616 0.5784 0.3474 0.3813  
 EffNetB1 U-Net [87] 38 0.6856 0.2388 0.7935 0.5844 0.3485 0.7038 0.4584 0.5785 0.3396 0.3807  
 EffNetB2 U-Net [87] 184 0.7575 0.1748 0.8515 0.5843 0.3613 0.7026 0.4461 0.5641 0.3648 0.3828  
 UNeXt [88] 96 0.4580 0.4844 0.5895 0.4398 0.5128 0.5695 0.3383 0.4596 0.0464 0.4660  
 HarDNet-DFUS [89] 33 0.7889 0.2601 0.8743 0.6068 0.4610 0.7101 0.5421 0.6520 0.0255 0.3278 

Fig. 2. Illustration of 3 cases from the DFUC 2022 dataset where clinical experts 
determined the baseline model predictions (HarDNet-DFUS) to be superior to the 
ground truth labels. The first column shows the original images, the second column 
shows the ground truth, and the third column shows the model predictions.

We observe that many of the segmentation models that performed 
highly in other medical imaging domains, such as DCSAU-Net which re-
ported state-of-the-art performance on polyp, multiple myeloma plasma 
cells, ISIC 2018, and brain tumour segmentation, did not perform well 
when trained and tested on DFU wounds. We posit that this is due to 
the larger range of features found across chronic wounds at different 
stages of development, in addition to the significant visual complexity 
of such wounds.

4.3. Construction of training, validation, and test sets

The aim of our work is to determine the effectiveness of a seg-
mentation model, trained and validated only on patients with lighter 
skin tones, to segment wounds on patients with darker skin tones. To 
this end, we construct a series of datasets for use in our experiments. 
Our approach for this task was to use all publicly available chronic 
wound datasets that have ground truth masks, together with all datasets 
that we have access to privately. Test set images were selected based 
on Fitzpatrick [92] skin types IV (moderate brown skin), V (dark 
brown skin), and VII (deeply pigmented dark brown or black skin). 
To create the first test set (test set A), we gathered all images with 
masks exhibiting darker skin tones from the DFUC 2022 dataset (68 
images and corresponding masks from the training and test sets), the 

Table 3
Summary of the composition of the new dataset used for training, validation, and 
testing purposes. Note that the training and validation sets comprise only of wound 
images from light skinned patients, whereas the test set (test set A) comprises only 
wound images from patients with darker skin tones.
 Dataset Train Validation Test set A 
 DFUC 2022 3893 0 68  
 AZH 824 173 81  
 CWDB 0 24 3  
 FUSC 0 795 190  
 WoundsDB 0 188 0  
 Total 4717 1180 342  

AZH dataset (81 images and corresponding masks from the training 
and test sets), the CWDB dataset (3 images and corresponding masks), 
and the FUSC dataset (190 images and corresponding masks from the 
training and validation sets). Test set A comprises all publicly available 
wound images with segmentation masks from patients with dark skin 
tones. To create the new training set, we combined the remaining DFUC 
2022 training and test sets (3893 images and corresponding masks) 
with 824 images and corresponding masks from the AZH training and 
test sets. For the validation set, we use the remaining 173 AZH images 
and corresponding masks together with all 24 CWDB images and masks, 
all 795 FUSC training and validation images and masks, and all 188 
WoundsDB images and masks. Finally, we created a second test set 
(test set B) which comprises the same number of images as test set A 
(𝑛 = 342) and includes only dark skin tone wound images which do 
not have ground truth masks and will be assessed qualitatively. Test 
set B includes wound images from the Alzubaidi dataset (𝑛 = 52), the 
Fitzpatrick17k dataset (𝑛 = 4), the FUSC test set (𝑛 = 35), the GIS-
W dataset (𝑛 = 13), the Medetec dataset (𝑛 = 8), the Wseg dataset 
(𝑛 = 115), and the KSUMC dataset (𝑛 = 115). A summary of the dataset 
composition for training, validation, and testing (test set A) is show in 
Table  3. A summary of test sets A and B is shown in Table  4.

4.4. HarDNet-DFUS architecture

Following the analysis of the initial baseline results, we selected 
the HarDNet-DFUS network architecture used for the winning entry 
for DFUC 2022, proposed by [89]. This non-symmetrical hybrid trans-
former segmentation model demonstrated the highest performance in 
our baseline tests, as shown in Table  2, achieving a test DSC of 0.6520 
and a test IoU of 0.5421. The harmonic element of the network design 
that is used for the naming of the network is derived from the harmonic 
pattern of the number of layers used in each HarDNet convolution 
block. In the encoder, HarDNet performs channel splitting on the con-
volutional outputs in accordance to the number of output connections 
per layer. This results in an input channel count equal to the number 
of output channels for each 3 × 3 convolutional layer. The decoder 
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Table 4
Summary of the composition of the two dark skin tone test sets used in our experiments. 
Test set A = 342 images and corresponding masks taken from the DFUC 2022, AZH, 
and FUSC datasets; test set B = 342 images (with no masks) taken from the Alzubaidi, 
Fitzpatrick17k, FUSC, GIS-W, Medetec, Wseg, and KSUMC datasets.
 Dataset name Images Masks Test set 
 DFUC 2022 68 68 A  
 AZH 81 81 A  
 CWDB 3 3 A  
 FUSC 190 190 A  
 Alzubaidi 52 0 B  
 Fitzpatrick17k 4 0 B  
 FUSC 35 0 B  
 GIS-W 13 0 B  
 Medetec 8 0 B  
 Wseg 115 0 B  
 KSUMC 115 0 B  
 Total 684 342 A & B  

implements a series of Lawin (Large Window Attention) Transform-
ers. Multi-scale features are captured using a Multi-Layer Perception 
(MLP) decoder and an MLP-Mixer together with Spatial Pyramid Pool-
ing (SPP). The MLP-Mixer comprises two layer types: one with MLPs 
independently applied to image patches for the purpose of mixing per-
location features, and a second using MLPs which are applied across 
patches to enable spatial information to be mixed to enhance spatial 
representations, as originally proposed by [93]. SPP is a pooling layer 
with no fixed-size constraints whereby spatial information is retained in 
local spatial bins where the outputs of each filter are pooled, allowing 
for multi-scale representations of features [94]. The decoder design 
essentially allows for capture of richer contextual data at different 
scales, utilising transformer elements (Lawin) to focus on improved 
learning of global relationships. Deep supervision is employed in the 
decoder to aid regularisation in feature learning and to improve con-
vergence behaviour. This involves the use of companion losses which 
are calculated at different layers in the network, with the final loss 
calculated as the output loss plus the sum of the companion losses [95]. 
Edge loss is also used to enhance the fine-grained details at the edges 
of prediction masks. Finally, an Exponential Moving Average (EMA) 
function is used during training which maintains moving averages of 
trainable parameters via an exponential decay. [96] demonstrated that 
EMA models generalised better and had improved robustness to noisy 
labels.

4.5. HarDNet-CWS architecture

We propose a modified HarDNet-DFUS network architecture, hence-
forth ‘‘HarDNet-CWS’’ (Chronic Wound Segmentation), which utilises 
the following novel enhancements:

1. Implementation of an improved multi-colour space tensor merg-
ing process that builds on concepts proposed in our previous 
recent works.

2. Modification of the network encoder stem layers using combined 
instance-batch normalisation in the first encoder block, and 
switch normalisation in the second encoder block.

3. Replacement of ReLU6 activation functions with Parameterised 
Rectified Linear Unit (PReLU) activation functions in all convo-
lution blocks in the encoder.

4. Reshaping of the harmonic structure of the HarDNet dense con-
volution blocks to facilitate the additional colour tensor infor-
mation.

An overview of the complete training workflow for the proposed 
HarDNet-CWS architecture is shown in Fig.  3. An overview of the 
proposed HarDNet-CWS model architecture is shown in Fig.  4. Each of 
our proposed enhancements are detailed in the following subsections.

4.5.1. HarDNet experimental setup
All experiments completed in the following sections used wound 

images and masks at 640 × 480 pixels. All models were trained for 100 
epochs with a batch size of 5 using the AdamW optimiser with a learn-
ing rate of 0.00001, an epsilon of 0.0000001, and a weight decay of 
0.01. The hardware and software configuration used for all experiments 
is the same as those used for the initial baseline experiments.

4.5.2. Multi-colour space tensor merging
The first adjustment to our proposed HarDNet-CWS model architec-

ture facilitates the range of additional features found in different non-
RGB colour spaces. Traditionally, deep learning models that use colour 
medical photographs are trained and tested using images in the RGB 
colour space. However, recent preliminary research conducted by [56] 
demonstrated that combining individual colour channels from various 
colour spaces resulted in improved model performance on a range 
of chronic wound segmentation test sets. Their highest improvement 
was demonstrated when using the FUSC validation set as an exclusive 
test set, achieving increases in IoU (+0.0264) and DSC (+0.0348) when 
merging RGB colour channels with the Y (luminance) channel from 
the YCrCb colour space to form a new merged multi-channel tensor 
(RGB+Y). This work demonstrated that merging individual channels 
from non-RGB colour spaces resulted in higher performance gains 
when compared to merging whole colour spaces together. However, 
a limitation of this work is that it was only demonstrated using a 
simple U-Net architecture [97]. In this work, we experiment with 
the colour space channels that demonstrated the highest performance 
improvements in the prior studies completed by [56]. We complete 
experiments that utilise the merging of different colour channel tensors 
from the RGB, YCbCr, and CIELAB colour spaces. Based on the prior 
results from the experiments conducted by [56], we experiment by 
merging RGB with the Y luminance channel from the YCbCr colour 
space, and the ‘A’ chromaticity channel from the CIELAB colour space. 
We also propose an alternative representation of luminance, which we 
refer to as exaggerated luminance (eY), which is derived from the RGB 
colour space.

For the experiments which focus on merging RGB with the Y and 
A channels, a summary of results is shown in Table  5. Algorithm 1 
shows the process of merging the RGB channels with the Y and A 
channels to form newly merged tensors. In terms of test results, the 
RGB+A, RGB+Y, and RGB+Y+A experiments all show improvements 
over the baseline results, with the RGB+Y+A experiment demonstrating 
the highest test set performance increases for test IoU (+0.0180), test 
DSC (+0.0241), and FNE (−0.0055).

Algorithm 1 RGB+Y+A tensor merging algorithm.
1: procedure Tensor_Merge(𝑟𝑔𝑏_𝑖𝑚𝑎𝑔𝑒)
2:  𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟 ← 𝑡𝑜_𝑡𝑒𝑛𝑠𝑜𝑟(𝑟𝑔𝑏_𝑖𝑚𝑎𝑔𝑒)
3:  𝑙𝑎𝑏 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑟𝑔𝑏_𝑡𝑜_𝑙𝑎𝑏(𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟)
4:  𝑎 ← 𝑠𝑝𝑙𝑖𝑡(𝑙𝑎𝑏)[1]
5:  𝑦𝑐𝑟𝑐𝑏 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑟𝑔𝑏_𝑡𝑜_𝑦𝑐𝑟𝑐𝑏(𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟)
6:  𝑦 ← 𝑠𝑝𝑙𝑖𝑡(𝑦𝑐𝑟𝑐𝑏)[0]
7:  𝑖𝑚𝑎𝑔𝑒 ← 𝑚𝑒𝑟𝑔𝑒([𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟, 𝑦, 𝑎])
8:  Return 𝑖𝑚𝑎𝑔𝑒
9: end procedure

To build on the prior tensor merging work completed by [56], we 
experiment further with the Y channel in the tensor merging operation. 
Our approach was to increase the difference between lighter and darker 
values in the Y channel by first normalising then applying a fixed ex-
ponential. We also experimented by switching the R and B coefficients 
during the conversion process. The process of deriving the eY channel 
from the RGB colour space and merging the corresponding tensors is 
described in Algorithm 2. For all experiments which utilise eY, we use 
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Fig. 3. Illustration showing an overview of the proposed HarDNet-CWS training and testing workflow.

Fig. 4. Illustration of the proposed HarDNet-CWS network architecture. eY - exaggerated luminance, SRB - switched red and blue coefficients, IN - instance normalisation, BN - 
batch normalisation, SE - squeeze and excite, L - layers, Blk - HarDNet block, MLP - multilayer perceptron, R - patch size.
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Table 5
Summary of results for the multi-colour channel tensor merging operations when merging RGB colour channels with ‘A’ chromaticity (from the CIELAB colour space) and luminance 
(Y channel from the YCbCr colour space).
 Colour channels Best epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 RGB (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 RGB+A 19 0.7315 0.3299 0.8340 0.6167 0.3942 0.7066 0.5393 0.6449 0.0421 0.3267  
 RGB+Y 28 0.8380 0.2301 0.9084 0.6140 0.3777 0.7060 0.5402 0.6515 0.0446 0.3580  
 RGB+Y+A 33 0.8745 0.1895 0.9310 0.6319 0.3581 0.7229 0.5530 0.6630 0.0508 0.3199 

Table 6
Summary of results for the multi-colour channel tensor merging operations when merging RGB colour channels with exaggerated luminance (eY) and ‘A’ chromaticity using normal 
RGB coefficients (NC) and switched R and B coefficients (SC). Note that when deriving eY from RGB an exponent value of 5 was used for these experiments.
 Colour channels Best epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 RGB (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 RGB+eY (NC) 32 0.8670 0.1996 0.9267 0.6224 0.3944 0.7108 0.5422 0.6518 0.0481 0.3245  
 RGB+eY (SC) 32 0.8585 0.2089 0.9213 0.6232 0.3903 0.7128 0.5576 0.6654 0.0420 0.3119  
 RGB+eY+A (NC) 28 0.7825 0.2877 0.8719 0.6193 0.4033 0.7094 0.5436 0.6484 0.0452 0.3108 
 RGB+eY+A (SC) 26 0.8171 0.2554 0.8957 0.6302 0.3580 0.7201 0.5464 0.6544 0.0423 0.3427  

the derivation of luminance equation (see Eq. (5)) as defined by the 
BT.709-4 standard as proposed by [98]. 
𝑌 = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵 (5)

where 𝑅 represents the red channel value, 𝐺 represents the green 
channel value, and 𝐵 represents the blue channel value.

Algorithm 2 RGB+eY tensor merging algorithm.
1: procedure Tensor_Merge(𝑟𝑔𝑏_𝑖𝑚𝑎𝑔𝑒)
2:  𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟 ← 𝑡𝑜_𝑡𝑒𝑛𝑠𝑜𝑟(𝑟𝑔𝑏_𝑖𝑚𝑎𝑔𝑒)
3:  𝑟, 𝑔, 𝑏 ← 𝑠𝑝𝑙𝑖𝑡(𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟)
4:  𝑙 ← (𝑟 × 0.0722 + 𝑔 × 0.7152 + 𝑏 × 0.2126)
5:  𝑙 ← 𝑡𝑜_𝑎𝑟𝑟𝑎𝑦(((𝑙) ÷ 𝑚𝑎𝑥(𝑙)) × 255)
6:  𝑒𝑦 ← 𝑡𝑜_𝑎𝑟𝑟𝑎𝑦((𝑙 5 ÷ 𝑚𝑎𝑥(𝑙 5)) × 255)
7:  𝑖𝑚𝑎𝑔𝑒 ← 𝑚𝑒𝑟𝑔𝑒([𝑟𝑔𝑏_𝑡𝑒𝑛𝑠𝑜𝑟, 𝑒𝑦])
8:  Return 𝑖𝑚𝑎𝑔𝑒
9: end procedure

Table  6 shows the results of the eY experiments, with the results 
compared to the baseline RGB results. The RGB+eY(SC) test results 
show a clear improvement over both the baseline test results and the 
RGB+A, RGB+Y, and RGB+Y+A results shown in Table  5. Compared to 
the best results from the prior experiments (see Table  5) the RGB+eY 
tensor merging operation with switched R and B coefficients demon-
strate test set performance improvements in terms of test IoU (+0.0174), 
test DSC (+0.0139), FPE (−0.0026), and FNE (−0.0461).

Table  7 shows results for obtaining the optimum exponent value 
in the RGB+eY switched coefficient experiments. We initially selected 
an exponent value of 5, then experimented with values of 4 and 6. 
The results indicate that an exponent value of 5 provides the optimum 
exponent value. Fig.  5 shows two wound images from test set B for 
the luminance channel and the two alternate representations (eY and 
eY with swapped R and B coefficients). These images show a notable 
change in contrast between wound and non-wound regions. To the 
human eye, there is little discernible difference between eY and eYS-
R&B, although as shown in our results (see Table  6) the latter offers test 
performance improvements over the former. The ‘‘Difference’’ column 
shows the difference between the eY and eYS-R&B channels, which 
indicates a dense concentration of features within the wound regions. 
The ‘‘Difference’’ images were produced using the absdiff function in 
the Python CV2 library [99].

4.5.3. Combined instance-batch normalisation
The second of our modifications utilises a combined instance and 

batch normalisation (IBN) layer in the first convolution block of the 
encoder path. The IBN activation layer improves the ability of the 

encoder to extract features where contrast is still a prominent feature, 
found predominantly in the early layers of the encoder. In isolation, 
instance normalisation reduces contrast features but also reduces useful 
information, while batch normalisation allows for more of those fea-
tures to be retained [100]. The procedure for creating an IBN layer is 
detailed in Algorithm 3.

Algorithm 3 Instance-batch normalisation algorithm.
1: procedure IBN(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)
2:  𝑟𝑎𝑡𝑖𝑜 ← 0.5
3:  ℎ𝑎𝑙𝑓 ← (𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑟𝑎𝑡𝑖𝑜)
4:  𝑖𝑛 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑛𝑜𝑟𝑚(ℎ𝑎𝑙𝑓 )
5:  𝑏𝑛 ← 𝑏𝑎𝑡𝑐ℎ_𝑛𝑜𝑟𝑚(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − ℎ𝑎𝑙𝑓 )
6:  𝑜𝑢𝑡 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑖𝑛, 𝑏𝑛)
7:  Return 𝑜𝑢𝑡
8: end procedure

We experimented with IBN by gradually adding it to each suc-
cessive convolution block in the encoder until performance started 
to degrade. Combining instance normalisation with batch normali-
sation ensures that the benefits of instance normalisation (removing 
contrast information [101]), are not lost while also benefiting from 
the effect of batch normalisation, which reduces internal covariate 
shift, stabilising training by reducing overfitting and improving model 
generalisation [102]. The integration of batch normalisation ensures 
that the instance normalisation component does not remove more than 
the contrast features. This modification to HarDNet-DFUS is inspired by 
the work of [100]. They demonstrated the effect of combining instance 
and batch normalisation in object classification and non-medical seg-
mentation tasks. To the best of our knowledge, the use of IBN in our 
proposed HarDNet-CWS architecture is the first time that the method 
has been demonstrated in any deep learning chronic wound study.

4.5.4. Parameterised rectified linear unit
The third adjustment we make to the HarDNet-DFUS architecture 

is the replacement of Rectified Linear Unit (ReLU) activation layers in 
the encoder convolution blocks with Parametric ReLU (PReLU) activa-
tion layers. PReLU is an advanced variation of prior ReLU activation 
functions (ReLU and Leaky ReLU) that has been shown to improve 
model fitting [103]. PReLU can be used in training scenarios using 
backpropagation and can be optimised concurrently with other network 
layers. Leaky ReLU multiplies negative inputs by a nominal value, 
e.g. 0.022. PReLU improves on this aspect by making the nominal 
negative value learnable during training, allowing it to adapt more to 
weight and bias parameters. The mathematical expression for PReLU 
is show in Eq.  (6). Conditionally, if 𝑎𝑖 = 0, then 𝑓 becomes a ReLU 
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Table 7
Summary of results for the multi-colour channel tensor merging operations when merging RGB colour channels with exaggerated luminance (eY) for switched R and B coefficients 
using different exponent (EX) values.
 Colour channels Best epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 RGB (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 RGB+eY (EX = 4) 21 0.7383 0.3302 0.8405 0.6302 0.3649 0.7216 0.5427 0.6468 0.0458 0.3190  
 RGB+eY (EX = 5) 32 0.8585 0.2089 0.9213 0.6232 0.3903 0.7128 0.5576 0.6654 0.0420 0.3119 
 RGB+eY (EX = 6) 31 0.8616 0.2041 0.9234 0.6288 0.3750 0.7184 0.5559 0.6630 0.0449 0.3387  

Fig. 5. Illustration of 2 cases from test set B showing the Y channel and its alternate representations. Y - luminance, eY - exaggerated luminance, eYS-R&B - exaggerated luminance 
with swapped R and B coefficients. Note that the Difference images show the difference in features between the eY and eYS-R&B images. The first row image is from the Alzubaidi 
dataset, and the second row image is from the FUSC dataset.

activation. If 𝑎𝑖 > 0, then 𝑓 becomes a leaky ReLU activation. If 𝑎𝑖 is 
learnable, then 𝑓 becomes a PReLU activation. 

𝑓 (𝑦𝑖) =

{

𝑦𝑖, if 𝑦𝑖 > 0
𝑎𝑖𝑦𝑖, if 𝑦𝑖 ≤ 0

(6)

where 𝑦𝑖 is an input for the 𝑖th channel, and 𝑎𝑖 is the learnable 
parameter (negative slope).

4.5.5. Switchable-normalisation
To further enhance the encoder in our proposed network archi-

tecture, we implement a Switchable-Normalisation (SN) layer in the 
second encoder block. As with the previous experiments using IBN, 
we introduced SN into all layers of the encoder and gradually re-
moved each layer, starting from the last layer, until the optimum 
performance was reached. SN, originally proposed by [104], selectively 
learns different normalisers by using channel, layer, and minibatch 
values to compute means and variance statistics. SN is able to adapt 
to various network architecture designs, is robust to a range of batch 
sizes, and is not prone to hyper-parameter sensitivity as exhibited by 
other normalisation methods such as group normalisation. SN inherits 
all the benefits of instance norm, layer norm, and batch norm by 
learning their importance ratios during training, preventing overfit-
ting by balancing between generalisation and feature learning. The 
switchable-normalisation process is summarised in Eq.  (7). 

𝛷 =
{

𝜆𝑖𝑛, 𝜆𝑙𝑛, 𝜆𝑏𝑛, 𝜆′𝑖𝑛, 𝜆′𝑙𝑛, 𝜆′𝑏𝑛
}

(7)

where 𝛷 is a set of learnable parameters, 𝑖𝑛 represents instance nor-
malisation, 𝑙𝑛 represents layer normalisation, and 𝑏𝑛 represents batch 
normalisation.

Fig.  6 shows the original block design for the stem layers of the 
HarDNet-DFUS encoder together with our proposed adjustments imple-
menting IBN, PReLU, and SN.

Fig. 6. Illustration of (a) the original HarDNet-DFUS convolutional block design 
found in the encoder stem, and (b) our enhanced block design utilising instance-
batch normalisation, PReLU activation, and Switchable Normalisation. BN - batch 
normalisation, ReLU - rectified linear unit, IN - instance normalisation, PReLU - 
parametric rectified linear unit, SN - switchable normalisation.

4.5.6. Refined HarDNet block harmonic structure
The fourth refinement to our proposed HarDNet-CWS model archi-

tecture involves the adjustment of the harmonic shape found in the 
HarDNet convolution encoder blocks. The original block design is a 
pattern of increasing and decreasing sequence of convolution layers 
represented by each HarDNet block. In our proposed adjustment to 
the HarDNet blocks, we change the harmonic pattern such that the 
minimum and maximum layer amplitude values for the first four blocks 
are less pronounced. For the first four HarDNet blocks the number of 
layers in blocks with lower layer counts are increased, while the blocks 
with higher layer counts are reduced, creating a smoother harmonic 
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Fig. 7. Illustration of (a) the original HarDNet-DFUS harmonic block design, and (b) 
our proposed HarDNet-CWS harmonic block design which increases the density of the 
lower density blocks, and reduces the density of the higher density blocks which results 
in a reduction of the overall harmonic amplitude. L - number of layers in HarDNet 
convolution block, Blk - block number.

Fig. 8. Illustration comparing the waveform representations of the HarDNet blocks 
for the original HarDNet-DFUS architecture (blue), and our proposed HarDNet-CWS 
architecture (red).

pattern. This also results in an overall increase in distributed layers 
to facilitate the supplemental features captured from the additional 
eY channel tensors. Fig.  7 shows the original harmonic block design 
(a), and our improved harmonic block design (b). Fig.  8 shows a 
comparison of the block and layer patterns expressed as waveforms for 
the original HarDNet-DFUS and our proposed HarDNet-CWS architec-
ture. Our experimental results indicated that the network architecture 
responds more to lower variations in layer counts for each HarDNet 
block in the encoder when trained, validated, and tested on our wound 
datasets. The layer amplitude for HarDNet-DFUS has a 𝑠𝑑 = 4.2427, 
while our proposed HarDNet-CWS has a layer amplitude with 𝑠𝑑 =
3.7149.

Table  8 shows a summary of all the proposed network architecture 
modifications. These results show that the highest performance increase 
is with the use of the CWS model trained using RGB+eY merged tensors 
with the proposed PReLu, IBN, SN, and HarDNet block harmonic adjust-
ments. When using RGB+eY merged tensors with the proposed model 
adjustments, we observe test set performance improvements in terms 
of test IoU (+0.0144) and test DSC (+0.0141) when compared to using 
only RGB+eY merged tensors, as shown in the previous experiments.

4.6. GAN-based pretraining

[105] conducted experiments in DFU wound classification with 
different transfer learning scenarios. They showed that same-domain 

Fig. 9. Illustration of three GAN-generated DFU wounds from the 18,799 GAN-
generated wound images that we used for pretraining our proposed HarDNet-CWS 
model.

transfer learning significantly improved model performance.  [106] 
would later conduct DFU segmentation experiments using 4000 GAN-
generated DFU wound images to improve performance of a segmenta-
tion model. In this section we experiment with a model trained and 
validated on a solely synthetic DFU segmentation dataset, which we 
then use as a pretrained model for training our proposed HarDNet-CWS 
model. The respective dataset, consisting of 20,000 unconditionally 
generated and pseudo-labelled DFU images, originates from ground-
work conducted by [106] and provided for this study. Two underlying 
GAN-models were trained on the DFUC 2022 dataset, one on the 
training set and one on the training and test set. From each, 10,000 
images were generated via incrementing seeds and pseudo-labelled as 
described in the original work. Of these a total of 18,799 samples 
with at least one DFU instance was selected, and samples not showing 
any instances were discarded. Fig.  9 shows a selection of images from 
the included samples, demonstrating the variety of generated represen-
tations. For model training we then split the synthetic dataset using 
an 80:20 ratio into a training set (𝑛 = 15,039) and a validation set 
(𝑛 = 3760). We then trained our best model using this data. Next, 
we froze the stem layers and the first HarDNet block in our model, 
and trained again using the trained GAN DFU model as pretrained 
weights. The results of this experiment are shown in Table  9. When 
compared to the best performing model from the previous experiments 
(CWS+[RGB+eY]+[PReLU+IBN+SN+Har]), the results for the test set 
show clear performance improvements in terms of test IoU (+0.0243), 
test DSC (+0.0212), FPE (−0.0032), and FNE (−0.0032).

4.7. Cross-domain weakly supervised training using animal meat dataset

In this experiment, we sourced a dataset of 363 animal meat im-
ages using Google Image Search with the Creative Commons License 
search option to remove copyrighted images from search results. The 
motivation for this experiment derives from the visual appearance of 
textures present in both cooked and uncooked animal meat, which 
we identified as being similar to those of human wounds. Given the 
small size of the animal meat dataset, rather than using pretraining, we 
include the images directly into the wound training set. Beforehand, 
we used our current best model to complete inference on the animal 
meat images and used the resulting prediction masks as ground truth. 
Table  10 shows the results of the experiments which introduced the 
animal meat dataset into the training workflow. When compared to 
the best performing model in the previous experiments (CWS+pre-
trained), these results show clear performance improvements for test 
IoU (+0.0138), test DSC (+0.0154), and FNE (−0.0109). Fig.  10 shows 
three example masked animal meat images that we used to enhance 
model performance.

4.8. Augmentation and K-fold cross validation

For the final stage of training our proposed HarDNet-CWS model, we 
completed a 5-fold cross validation together with training augmenta-
tion and test time augmentation (TTA) to enhance model performance. 
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Table 8
Summary of results for the proposed model architecture improvements for HarDNet-CWS. DFUS - HarDNet-DFUS, CWS - HarDNet-CWS, eY - exaggerated luminance, IBN - 
instance-batch normalisation, PR - PReLU activation function, SN - switchable normalisation, Har - harmonic block adjustment.
 Model Best epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 DFUS (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 CWS RGB+Y+A 33 0.8745 0.1895 0.9310 0.6319 0.3581 0.7229 0.5530 0.6630 0.0508 0.3199  
 CWS [RGB+Y+A]+[PReLU+IBN+SN+Har] 25 0.7903 0.2769 0.8769 0.6266 0.3572 0.7171 0.5570 0.6645 0.0417 0.3563  
 CWS RGB+eY 32 0.8585 0.2089 0.9213 0.6232 0.3903 0.7128 0.5576 0.6654 0.0420 0.3119 
 CWS [RGB+eY]+[PReLU+IBN+SN+Har] 27 0.8241 0.2483 0.9001 0.6193 0.3916 0.7082 0.5720 0.6795 0.0476 0.3132  

Table 9
Summary of results showing the performance improvements for the proposed HarDNet-CWS model when using the DFU GAN pretrained weights. DFUS - HarDNet-DFUS, CWS - 
HarDNet-CWS [RGB+eY]+[PReLU+IBN+SN+Har].
 Model Best epoch Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 DFUS (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 CWS 27 0.8241 0.2483 0.9001 0.6193 0.3916 0.7082 0.5720 0.6795 0.0476 0.3132  
 CWS+pretrained 40 0.9444 0.0961 0.9704 0.6713 0.3391 0.7580 0.5963 0.7007 0.0444 0.3100 

Table 10
Summary of results showing the performance improvements when introducing the animal meat dataset into the training process. BEp - best epoch, DFUS - HarDNet-DFUS, CWS - 
HarDNet-CWS [RGB+eY]+[PReLU+IBN+SN+Har], AMD - animal meat dataset.
 Model BEp Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 DFUS (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 CWS+pretrained 40 0.9444 0.0961 0.9704 0.6713 0.3391 0.7580 0.5963 0.7007 0.0444 0.3100  
 CWS+pretrained+AMD 52 0.9509 0.0857 0.9738 0.6759 0.3213 0.7660 0.6101 0.7161 0.0456 0.2991 

Table 11
Summary of results showing the performance improvements when using 5-fold cross validation (5F) and test time augmentation (TTA). BEp - best epoch, DFUS - HarDNet-DFUS, 
CWS - HarDNet-CWS [RGB+eY]+[PReLU+IBN+SN+Har], PT - pretrained, AMD - animal meat dataset.
 Model BEp Train IoU Train loss Train DSC Val IoU Val loss Val DSC Test IoU Test DSC FPE FNE  
 DFUS (baseline) 50 0.9427 0.0975 0.9694 0.6258 0.4063 0.7176 0.5350 0.6389 0.0597 0.3254  
 CWS+PT+AMD 52 0.9509 0.0857 0.9738 0.6759 0.3213 0.7660 0.6101 0.7161 0.0456 0.2991  
 CWS+PT+AMD+5F 59 0.7561 0.3049 0.8507 0.6822 0.3571 0.7775 0.6460 0.7485 0.0526 0.2672  
 CWS+PT+AMD+5F+TTA 59 0.7561 0.3049 0.8507 0.6822 0.3571 0.7775 0.6620 0.7610 0.0522 0.2502 

Fig. 10. Illustration of three masked animal meat images used in the weakly supervised 
training process to enhance performance of our HarDNet-CWS model. Prior to training, 
ground truth masks were generated via inference using our best model.

For the training augmentation, the albumentations library [107] was 
utilised to generate the following: (1) centre cropping; (2) random crop-
ping; (3) horizontal flipping; (4) vertical flipping; (5) shift scale with 
rotation; (6) Gaussian noise; (7) random brightness and contrast; (8) 
contrast limited adaptive histogram equalisation; and (9) multi-scaling. 
For TTA we employed horizontal and vertical flipping. The training 
and validation results for these experiments are summarised in Table 
11. When compared to the best performing model from the previous 
experiments (CWS+PT+AMD), these results show clear performance 
improvements on the test set for the CWS+PT+AMD+5F+TTA model 
in terms of test IoU (+0.0519), test DSC (+0.0449), and FNE (−0.0489).

4.9. Qualitative analysis

Two clinical wound experts from two different hospitals were re-
cruited, each with more than 10 years clinical experience, to rate the 
inference predictions from the HarDNet-DFUS (baseline) and HarDNet-
CWS (proposed) models for test sets A and B using a 5-star rating 

system. A rating of 1 indicates a poor quality prediction, while a rating 
of 5 indicates an excellent quality prediction. Raters were asked to not 
rate a prediction if the model failed to make any prediction where 
wounds were visible in the image, which is defined as a zero-star 
rating. If no wounds were present in an image and no prediction had 
been generated, then raters were asked to rate the prediction with a 
5-rating. If more than one wound was present in an image, then the 
raters were asked to rate the overall quality of all predictions in the 
image. To reduce possible bias, raters were not informed of which 
model prediction images came from.

Statistical analysis to ascertain reliability measures taken from two 
clinical experts who rated the HarDNet-DFUS (baseline) and HarDNet-
CWS (proposed) test results was completed using IBM SPSS version 
28.0.1.0 (SPSS Inc., Chicago, Illinois). The analysis of the ordinal 
data was completed using the intra-class correlation coefficient (ICC) 
to obtain inter-rater reliability consistency and agreement measures. 
Consistency is defined as the degree to which the score of a single rater 
(𝑦) can be equated to a second rater’s score (𝑥) plus a systematic error 
(𝑐) (i.e., 𝑦 = 𝑥 + 𝑐). Agreement concerns the extent to which 𝑦 is equal 
to 𝑥 [108]. A two-way random effects model was used to generalise 
results to a population of raters from which the clinical expert raters 
in our study represent a sample. The mathematical expressions for 
ICC consistency and ICC agreement are shown in Eqs. (8) and (9) 
respectively.

𝐼𝐶𝐶 =
𝑀𝑆𝑅 −𝑀𝑆𝐸

𝑀𝑆𝑅
(8)

𝐼𝐶𝐶 =
𝑀𝑆𝑅 −𝑀𝑆𝐸

𝑀𝑆𝑅 + 𝑀𝑆𝐶−𝑀𝑆𝐸
𝑛

(9)

where 𝑀𝑆𝑅 is the mean square for rows, 𝑀𝑆𝐸 is the mean square for 
error, 𝑀𝑆𝐶 is the mean square for columns, and 𝑛 is the number of 
subjects.
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Table 12
Test results for the HarDNet-DFUS (baseline) and HarDNet-CWS (proposed) models for 
test set A dark skin tone wound images that have ground truth masks.
 Model IoU DSC FPE FNE  
 HarDNet-DFUS 0.5350 0.6389 0.0597 0.3254  
 HarDNet-CWS 0.6624 0.7610 0.0522 0.2502 

ICC values are interpreted as follows: 0–0.39 indicates poor reliabil-
ity; 0.4–0.74 indicates moderate reliability; 0.75–1 indicates excellent 
reliability [109].

5. Results

In this section we report on the results of inference using our 
proposed HarDNet-CWS model. We present the results for two test 
sets: test set A which comprises 342 dark skin tone wound images 
and corresponding masks taken from the DFUC 2022, AZH, CWDB, 
and FUSC datasets; and test set B which comprises 342 dark skin tone 
wound images with no masks taken from the Alzubaidi, Fitzpatrick17k, 
FUSC, GIS-W, Medetec, Wseg, and KSUMC datasets. The test set A 
predictions were assessed quantitatively and qualitatively, and the test 
set B results were assessed qualitatively only as this test set has no 
ground truth masks.

5.1. Quantitative results for test set A

Test metrics for test set A inference results for the HarDNet-DFUS 
(baseline) and HarDNet-CWS (proposed) models are summarised in Ta-
ble  12. We observe significant improvements in terms of IoU
(+0.1270), DSC (+0.1221), and FNE (−0.0752), while FPE demonstrated 
a more subtle improvement (−0.0075). Fig.  11 shows a selection of 
predictions from test set A demonstrating clear improvements in seg-
mentation performance when comparing the baseline results from the 
HarDNet-DFUS model with the results from the proposed HarDNet-CWS 
model. The first row shows a DFU wound on a foot exhibiting partial 
amputation, and shows that skin which has been miss-detected along 
the side of the toe with the DFUS model has not been inaccurately 
detected by the CWS model. This DFUS miss-detection may have been 
due to the darker skin on the toe, compared to the skin on the rest of the 
foot, which the model may have partly miss-detected as necrotic tissue. 
The second row shows a PRU wound on the lower-back of the torso 
where the CWS model has more accurately detected the edge details 
of the wound when compared to the DFUS prediction. This may be a 
result of the additional features provided by the enhanced tensor inputs 
in the CWS model, allowing the edge loss function to more accurately 
define wound boundary details. The third row shows a DFU wound on 
the ankle where the DFUS model prediction is more generalised and 
includes a significant region of miss-detected skin, and is much less 
accurate when compared to the CWS prediction.

5.2. Qualitative results for test sets A and B

Qualitative measures for test set A and B inference results from the 
HarDNet-DFUS (baseline) model and HarDNet-CWS (proposed) model 
are shown in Table  13. The ICC confidence and agreement values for 
the HarDNet-DFUS test set A predictions (confidence ICC = 0.6714, 
agreement ICC = 0.6717) indicate moderate reliability for the clinical 
ratings for this model. The ICC confidence and agreement values for 
the HarDNet-DFUS predictions for test set B (confidence ICC = 0.7907, 
agreement ICC = 0.7747) indicate excellent reliability for the clinical 
ratings for this model. The ICC confidence and agreement values for 
the HarDNet-CWS test set A predictions (confidence ICC = 0.6633, 
agreement ICC = 0.6631) indicate moderate reliability. The ICC confi-
dence and agreement values for the HarDNet-CWS predictions for test 
set B (confidence ICC = 0.5001, agreement ICC = 0.4992) indicate 

Table 13
Measures derived from expert rater quality assessment of test sets A and B inference 
results for the HarDNet-DFUS (baseline) and HarDNet-CWS (proposed) model. ICC - 
intra-class correlation coefficient, Co - consistency, Ag - agreement, LB - lower bound, 
UB - upper bound, CI - confidence interval.
 Test set Seg model Type ICC LB95%CI UB95%CI 
 A DFUS Co 0.6714 0.5935 0.7343  
 A DFUS Ag 0.6717 0.5940 0.7346  
 B DFUS Co 0.7907 0.7411 0.8308  
 B DFUS Ag 0.7749 0.6986 0.8287  
 A CWS Co 0.6633 0.5835 0.7278  
 A CWS Ag 0.6631 0.5834 0.7276  
 B CWS Co 0.5001 0.3817 0.5959  
 B CWS Ag 0.4992 0.3809 0.5949  

Table 14
Summary of percentage improvements in terms of 5 star ratings (a) and 4–5 star ratings 
(b) for the HarDNet-CWS (proposed) model when compared to the HarDNet-DFUS 
(baseline) model.
 Test set Rater DFUS rating CWS rating Improvement % 
 A 1 90.06%a 93.57%a 3.51%  
 A 2 89.47%a 92.98%a 3.51%  
 B 1 70.47%a 90.94%a 20.47%  
 B 2 88.30%a 92.04%a 3.74%  
 A 1 92.98%b 96.49%b 3.51%  
 A 2 92.39%b 96.20%b 3.81%  
 B 1 86.84%b 96.79%b 9.95%  
 B 2 91.81%b 95.87%b 4.06%  

moderate reliability. Overall, the ICC reliability measures for the DFUS 
(baseline) model predictions indicate moderate to excellent reliability, 
while moderate reliability is demonstrated for the CWS (proposed) 
model. For the CWS ICC test set A reliability measures, 311 ratings 
exactly matched, while 19 ratings varied by 1. For the CWS ICC test 
set B reliability measures, 308 ratings exactly matched, while 20 ratings 
varied by 1. These results indicate that the majority of ratings between 
raters matched exactly, or had a difference of no more than 1. Fig.  12 
shows a representative rating for each of the 0-5 star ratings for test 
sets A and B.

To provide further insights into the clinician prediction ratings, we 
conducted a relative distribution analysis. A summary of the distribu-
tion analysis for the DFUS predictions is shown in Fig.  13. These results 
indicate that for the DFUS (baseline) results, both raters consistently 
rated the predictions highly, within the 4–5 star range: test set A for 
rater 1 = 92.98%, test set A for rater 2 = 92.39%, test set B for rater 1 
= 86.84%, test set B for rater 2 = 91.81%, test sets A and B for rater 1 
= 89.91%, and test sets A and B for rater 2 = 92.11%.

The distribution analysis for the CWS predictions is shown in Fig. 
14. These results indicate that for the CWS (proposed) model, both 
raters consistently rated the predictions highly, within the 4–5 star 
range: test set A for rater 1 = 96.49%, test set A for rater 2 = 96.20%, 
test set B for rater 1 = 96.79%, test set B for rater 2 = 95.87%, test 
sets A and B for rater 1 = 96.64%, and test sets A and B for rater 2 =
95.62%.

We observe that for both test sets and both raters, the CWS (pro-
posed) predictions demonstrated higher scores than the DFUS (base-
line) predictions in terms of expert qualitative assessment. A summary 
of the improvements demonstrated by the CWS (proposed) model 
based on expert qualitative assessment is shown in Table  14 for 5 star 
ratings and for 4–5 star ratings. We observe that the number of 5 star 
ratings for rater 1 on test set B is significantly lower than the other 
5 star ratings for this model. However, the difference is much less 
pronounced when taking into account the 4–5 star ratings, meaning 
that the discrepancy is mostly due to a difference of 1 star between 
raters.
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Fig. 11. Illustration of a selection of wound segmentation predictions from test set A for the HarDNet-DFUS (baseline) and HarDNet-CWS (proposed) models. The first row shows 
a DFU wound on a foot exhibiting partial amputation, the second row shows a PRU wound on the lower back of the torso, and the third row shows a DFU wound on the ankle. 
The first and third row images are from the FUSC dataset, and the second row image is from the CWDB dataset. Note that images have been cropped for illustrative purposes.

5.3. Test set images with blank masks

During testing with test set A, we observed a number of cases where 
the ground truth masks comprised only of black pixels, indicating that 
there were no wound regions present in the corresponding images. 
However, qualitative results obtained from clinicians showed that some 
of these cases had in fact been labelled incorrectly. We identified 14 
cases in test set A that were sourced from the AZH (𝑛 = 4), FUSC (𝑛 = 9), 
and DFUC 2022 (𝑛 = 1) datasets where wounds were clearly present 
in the images, but the corresponding masks comprised of only black 
pixels. The total number of incorrectly labelled blank masks represents 
≈ 4% of the test set total (342 images/masks), indicating that the 
reported metrics in Tables  5 to 12 are likely to be under-estimates.

6. Discussion

This work focuses primarily on subjective measures derived from 
expert assessment of model predictions - a facet which is absent from al-
most all chronic wound deep learning research. Our experiment results 
indicate significant disparities between the quantitative lab based re-
sults and the qualitative results obtained from clinical expert ratings for 
both baseline (HarDNet-DFUS) and proposed (HarDNet-CWS) models. 
However, the results for our proposed HarDNet-CWS model show clear 
performance improvements in terms of lab based metrics and expert 
qualitative assessment.

The reliability measures obtained from both clinical expert raters for 
test sets A and B indicate that reliability is moderate to excellent for the 
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Fig. 12. Illustration of a representative expert clinical rating for each of the 0-5 star 
ratings for test sets A and B. The 0-star example shows a small wound that was not 
detected. The 1-star example shows that only a very small region of the wound has been 
detected. The 2-star example shows that although most of the wound has been detected, 
non-wound regions have also been miss-detected. The 3-star example shows that more 
than half of the wound regions have been accurately detected, however, there are 
still significant wound regions that have not been detected. The 4-star example shows 
that 2 of the 3 wound regions have been accurately detected, although the smallest 
wound region on the left side has not been detected. The 5-star example shows a highly 
accurate prediction of a wound region.

baseline model, and is moderate for the proposed model. However, a 
further analysis of these results shows that for the proposed model, 311 
of 342 5 star ratings matched between raters for test set A, and 308 
of 342 5 star ratings matched between raters for test set B. Further, 
19 ratings for test set A varied by only 1 star, and for test set B 20 
ratings varied by only 1 star. For test set A, a total of 330 of 342 
ratings either matched or differed by only 1 star, and for test set B 
a total of 328 of 342 ratings matched or differed by only 1 star. We 
therefore suggest that when taking into account that the majority of 

Fig. 13. Relative distribution of clinical ratings for test sets A and B DFUS (baseline) 
model predictions.

Fig. 14. Relative distribution of clinical ratings for test sets A and B CWS (proposed) 
model predictions.
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expert ratings (>95%) either matched or differed by only 1 star, these 
results should be considered to demonstrate generally excellent levels 
of agreement.

Our proposed model was trained and validated on chronic wound 
images taken from patients with lighter skin, while the two test sets 
comprised only wound images acquired from patients with darker skin 
tones. We observe that the validation results for our best performing 
model on test set A (CWS+PT+AMD+5F+TTA - see Table  11) are 
marginally higher when compared to the IoU and DSC test results: 
+0.0202 val IoU compared to test IoU, +0.0165 val DSC compared to 
test DSC. These results may be evidence that models trained only on 
lighter skin wound images may find inference challenging on darker 
skin wound images. However, in the absence of qualitative comparisons 
between the validation and test inference results, and taking into 
account the significant disparity between the lab based metrics and the 
expert qualitative results, we suggest that the differences in validation 
(lighter skin) and test (darker skin) results may not provide a complete 
assessment of the model’s true ability.

A limitation of this work is that the lab based metrics are assessed 
on a more fine-grained continuous scale (0–0.1), while the qualita-
tive measures are measured on a 0–5 star ordinal scale. Future work 
might focus on a more fine-grained approach to qualitative measures, 
although we suggest that our results give a good general indication of 
the qualitative aspects of model predictions.

The colour aspects of deep learning research involving the use of 
medical colour imaging is relatively under-explored. Colour imaging 
provides an enhanced visualisation of dermatological surface and sub-
surface structures which present novel challenges. This is especially 
pertinent in the deep learning domain, as most methods focus on 
single-channel images, which are generally less applicable to multi-
colour channel domains [110]. In this paper, we make an attempt 
to direct focus on this aspect with the use of manipulated multi-
colour space tensors and a corresponding modified hybrid transformer 
network architecture that facilitates the additional colour information. 
Our experiments seem to indicate that there may be additional features 
in different colour spaces, which the model is able to learn from 
when such colour space data is merged into single tensors. Our future 
work will continue to explore the colour aspects of medical wound 
photographs when training deep learning models.

Our results indicate that there may be a limited capacity for lab-
based accuracy metrics when using the current publicly available 
datasets. We posit that this is largely due to variability in segmen-
tation labelling. This is especially pertinent in the case of chronic 
wound labelling, which has been shown to be highly variable and 
subjective [111]. The observed disparity between DSC/IoU and expert 
subjective ratings for model predictions in our study indicate that the 
lab-based metrics are only providing part of the picture in deep learning 
assessment.

Recent studies, such as those conducted by [112], have highlighted 
a disparity in laboratory results obtained from deep learning models 
and results obtained in real-world scenarios. To address this issue, 
our study has an increased emphasis on presenting results from a 
qualitative analysis of the model predictions obtained in our wound 
segmentation experiments. The measures derived from our qualitative 
analysis clearly show that clinician ratings of model predictions are 
significantly more favourable when compared to the lab-based metrics.

The test sets we used in our main experiments, comprising only 
darker skin tones, were relatively small compared to most test sets 
used in deep learning studies. However, this limitation is due to the 
number of publicly available chronic wound images with ground truth 
masks, and the limited available time of our clinical collaborators who 
provided the expert assessment of model predictions. Despite these 
limitations, the present work presents the most extensive qualitative 
study so far in chronic wound segmentation.

This work represents the first study to identify that animal meat 
images can be used to enhance the performance of a chronic wound 

segmentation model. Using just 363 animal meat images, with weak 
supervision, we were able to improve model performance by 0.0141 for 
test DSC and 0.0144 for test IoU. Animal meat images are significantly 
easier to obtain than chronic wound images, and require no ethical 
approval to collect. Furthermore, it may be of interest to experiment 
with GANs that can generate additional meat images, and to experiment 
to see how much further such images can be used to boost chronic 
wound model performance. The number of publicly available chronic 
wound images with corresponding ground truth segmentation masks is 
notably limited in deep learning terms (<10, 000). If animal meat images 
can improve model performance further, then this may be a way to at 
least partly negate the difficult problem of wound image acquisition 
from medical settings. We strongly encourage other researchers work-
ing in chronic wound deep learning studies, especially those working 
in localisation and segmentation, to experiment with such images.

This work is motivated by the development of new technologies 
that will allow for the remote detection and monitoring of chronic 
wounds in home settings. Patients living in remote locations have 
been shown to have worse outcomes when compared to those living 
in urban areas. The development of new remote monitoring solutions 
using deep learning techniques may provide a solution to help reduce 
such disparities [113]. Such technologies have the potential to reduce 
the number of patient hospital visits, reducing nosocomial infections. 
The viability of deep learning detection systems within medical settings 
has been demonstrated for chronic wounds [40]. However, further 
clinical evaluations are required in larger studies to confirm model 
effectiveness across a more diverse range of skin tones. Such studies 
will be vital to identify where shortfalls exist in current segmentation 
models.

Strategic approaches to preprocessing methods when training deep 
learning models for chronic wounds have been shown to be highly 
effective, as per recent work completed by [114]. This work demon-
strates the importance of careful targeting of preprocessing methods for 
different wound types. Our future work will be guided by these methods 
to attempt to further improve network performance.

Future work will focus on models that utilise multi-modal data 
which will include additional clinical information collected from pa-
tient records. These data will include details of infection, ischemia, 
neuropathy, and other clinical measures such as patient age, ethnicity, 
and blood type. Work is currently underway with our clinical collabora-
tors to collect the required patient data. Prior studies in similar research 
domains have shown that multi-modality in training workflows can as-
sist in improvements to model accuracy [115]. Using patient IDs linked 
to dataset images will allow us to reduce the number of cases which are 
currently spread across training and test sets, reducing potential biases. 
We will also expand our work to investigate instance segmentation 
of wound and periwound to determine if features from surrounding 
wound tissue can help to improve segmentation and classification 
accuracy.

We note that there are currently no established standards for the 
accepted levels of accuracy in chronic wound localisation and segmen-
tation. In general, IoU thresholds of 0.50 and 0.75 are most commonly 
used [116]. However, these measures may differ depending on the 
research domain. The disparities observed in the present study between 
lab based metrics and qualitative measures highlight this issue further. 
We propose that future work should investigate the formulation of 
accuracy and evaluation standards for chronic wounds via an inter-
national consortium of clinical and deep learning experts. The clinical 
labelling of our datasets reveals that labelling amongst clinicians can 
be highly variable, a problem which occurs frequently in wound image 
datasets [117]. Establishing internationally agreed standards may help 
to improve the accuracy of future models. This is especially pertinent at 
this stage in the evolution of deep learning models trained using chronic 
wound datasets, whereby the number of publicly available datasets 
continues to grow.
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Our research group is currently in the process of capturing video 
recordings of chronic wounds in medical settings, which we intend 
to use in future studies. Videos of wounds, captured at different an-
gles, would allow for the capture of additional spatial data that may 
be able to improve the accuracy of predictive models and could be 
especially useful in the automatic assessment of wound healing over 
time. Short video clips would be straight forward to capture and analyse 
using the mobile and cloud frameworks developed in our prior wound 
studies [27,40].

7. Conclusion

In this work we proposed a novel harmonic densely connected 
hybrid transformer network architecture utilising multi-colour space 
tensor merging. We conduct the most comprehensive reliability study 
to date in chronic wound segmentation using 684 cases to obtain inter-
rater reliability measures. A total of 13 datasets were used to train and 
test our proposed segmentation model. Our proposed model demon-
strates significant improvements over the baseline model in terms of lab 
based metrics (+0.1270 for IoU, +0.1221 for DSC) and in terms of expert 
qualitative assessment (up to 20% when using a 5 star rating method). 
For the first time, we demonstrate the ability of a model trained only 
on patients with lighter skin tones to segment wounds on patients with 
darker skin tones in an effort to address the issue of biases inherent 
in many chronic wound deep learning studies. We also demonstrate 
performance improvements using GAN-generated wound images and an 
animal meat dataset in the training workflow. The aim of our work is to 
utilise and build upon state-of-the-art advances in the field to address 
the problem of accurate chronic wound segmentation and to bring 
these advances closer to the patients who need them most. Improved 
methods of chronic wound segmentation will allow for the automated 
monitoring of chronic wounds over time to determine healing status, 
requiring fewer hospital visits, and improving patient care.

CRediT authorship contribution statement

Bill Cassidy: Writing – review & editing, Writing – original draft, 
Software, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Christian McBride: Writing – review & editing, 
Writing – original draft, Software, Methodology, Formal analysis, Con-
ceptualization. Connah Kendrick: Writing – review & editing, Writing 
– original draft, Supervision, Software. Neil D. Reeves: Writing – 
review & editing, Writing – original draft, Supervision, Project admin-
istration. Joseph M. Pappachan: Writing – review & editing, Writing 
– original draft, Supervision, Project administration, Formal analysis, 
Data curation. Cornelius J. Fernandez: Writing – review & editing, 
Writing – original draft, Validation, Formal analysis. Elias Chacko: 
Writing – review & editing, Writing – original draft, Validation, Formal 
analysis. Raphael Brüngel: Writing – review & editing, Writing – orig-
inal draft, Software, Methodology, Data curation, Conceptualization. 
Christoph M. Friedrich: Writing – review & editing, Writing – origi-
nal draft, Supervision, Methodology, Data curation, Conceptualization. 
Metib Alotaibi: Writing – review & editing, Writing – original draft, 
Project administration, Formal analysis, Data curation. Abdullah Ab-
dulaziz AlWabel: Writing – review & editing, Writing – original draft, 
Project administration, Data curation. Mohammad Alderwish: Writing 
– review & editing, Writing – original draft, Project administration, 
Formal analysis, Data curation. Kuan-Ying Lai: Writing – review & 
editing, Writing – original draft, Software, Methodology. Moi Hoon 
Yap: Writing – review & editing, Writing – original draft, Validation, 
Supervision, Resources, Project administration, Formal analysis, Data 
curation.

Ethical approval and informed consent

The KSUMC dataset used in this study was obtained with ethical 
approval from King Saud University Medical City, Saudi Arabia (REF: 
24/1159/IRB, 1st March 2024). The Diabetic Foot Ulcer Challenge 
2022 dataset used in our experiments was obtained with ethical ap-
proval from Lancashire Teaching Hospitals NHS Foundation Trust (REF: 
SE-281, 30th November 2021). All data acquisition methods were 
performed in accordance with the guidelines and regulations set out by 
the King Saud University Institutional Review Board, the NHS Research 
Ethics Committee, and the Health Research Authority (UK). Written 
informed consent was obtained from all participating patients. The 
remaining datasets used in this study are publicly available for research 
purposes and can be requested from their respective owners.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

We would like to thank clinicians at the King Saud University 
Medical City, Saudi Arabia for granting permission to use the KSUMC 
chronic wound dataset in our experiments. We would also like to 
thank clinicians at the following UK NHS hospitals for providing valu-
able clinical feedback: Lancashire Teaching Hospitals NHS Foundation 
Trust, UK; United Lincolnshire Hospitals NHS Trust, UK; Jersey General 
Hospital, Jersey. Raphael Brüngel was partially funded by a PhD grant 
from the University of Applied Sciences and Arts Dortmund, Dortmund, 
Germany.

References

[1] J. Moura, J. Rodrigues, M. Gonçalves, C. Amaral, M. Lima, E. Carvalho, 
Imbalance in T-cell differentiation as a biomarker of chronic diabetic foot 
ulceration, Cell. Mol. Immunol. (2019) 1–2.

[2] K. Khunti, L.J. Gray, T. Skinner, M.E. Carey, K. Realf, H. Dallosso, H. Fisher, M. 
Campbell, S. Heller, M.J. Davies, Effectiveness of a diabetes education and self 
management programme (DESMOND) for people with newly diagnosed type 2 
diabetes mellitus: three year follow-up of a cluster randomised controlled trial 
in primary care, BMJ 344 (2012) http://dx.doi.org/10.1136/bmj.e2333, URL: 
https://www.bmj.com/content/344/bmj.e2333.

[3] M.J. Davies, L.J. Gray, D. Ahrabian, M. Carey, A. Farooqi, A. Gray, S. Goldby, S. 
Hill, K. Jones, J. Leal, K. Realf, T. Skinner, B. Stribling, J. Troughton, T. Yates, 
K. Khunti, Research highlights the challenges of preventing diabetes with group 
education sessions, Diabetes Metab. Horm. (2017) http://dx.doi.org/10.3310/
signal-000396, URL: https://evidence.nihr.ac.uk/alert/research-highlights-the-
challenges-of-preventing-diabetes-with-group-education-sessions/.

[4] K. Ong, L. Stafford, S. Mclaughlin, E. Boyko, S. Vollset, A. Smith, B. Dalton, J. 
Duprey, J. Cruz, H. Hagins, P. Lindstedt, A. Aali, Y. Habtegiorgis, M. Dagne, 
M. Abbasian, Z. Abbasi-Kangevari, M. Abbasi-Kangevari, S. Abd Elhafeez, R. 
Abd-Rabu, T. Vos, Global, regional, and national burden of diabetes from 1990 
to 2021, with projections of prevalence to 2050: a systematic analysis for the 
Global Burden of Disease Study 2021, Lancet (2023) http://dx.doi.org/10.1016/
S0140-6736(23)01301-6.

[5] S. Klein, A. Gastaldelli, H. Yki-Järvinen, P.E. Scherer, Why does obesity 
cause diabetes? Cell Metab. 34 (1) (2022) 11–20, http://dx.doi.org/10.
1016/j.cmet.2021.12.012, URL: https://www.sciencedirect.com/science/article/
pii/S1550413121006318.

[6] B. Petersen, W. Linde-Zwirble, T.-W. Tan, G. Rothenberg, S. Salgado, J. Bloom, 
D. Armstrong, Higher rates of all-cause mortality and resource utilization during 
episodes-of-care for diabetic foot ulceration, Diabetes Res. Clin. Pract. (2022) 
http://dx.doi.org/10.1016/j.diabres.2021.109182.

[7] D.A. Jenkins, S. Mohamed, J.K. Taylor, N. Peek, S.N. van der Veer, Potential 
prognostic factors for delayed healing of common, non-traumatic skin ulcers: 
A scoping review, Int. Wound J. 16 (3) (2019) 800–812, http://dx.doi.org/10.
1111/iwj.13100.

[8] P. Zhang, J. Lu, Y. Jing, S. Tang, D. Zhu, Y. Bi, Global epidemiology of 
diabetic foot ulceration: a systematic review and meta-analysis, Ann. Med. 
49 (2) (2017) 106–116, http://dx.doi.org/10.1080/07853890.2016.1231932, 
PMID: 27585063.

Computers in Biology and Medicine 192 (2025) 110172 

17 

http://refhub.elsevier.com/S0010-4825(25)00523-2/sb1
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb1
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb1
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb1
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb1
http://dx.doi.org/10.1136/bmj.e2333
https://www.bmj.com/content/344/bmj.e2333
http://dx.doi.org/10.3310/signal-000396
http://dx.doi.org/10.3310/signal-000396
http://dx.doi.org/10.3310/signal-000396
https://evidence.nihr.ac.uk/alert/research-highlights-the-challenges-of-preventing-diabetes-with-group-education-sessions/
https://evidence.nihr.ac.uk/alert/research-highlights-the-challenges-of-preventing-diabetes-with-group-education-sessions/
https://evidence.nihr.ac.uk/alert/research-highlights-the-challenges-of-preventing-diabetes-with-group-education-sessions/
http://dx.doi.org/10.1016/S0140-6736(23)01301-6
http://dx.doi.org/10.1016/S0140-6736(23)01301-6
http://dx.doi.org/10.1016/S0140-6736(23)01301-6
http://dx.doi.org/10.1016/j.cmet.2021.12.012
http://dx.doi.org/10.1016/j.cmet.2021.12.012
http://dx.doi.org/10.1016/j.cmet.2021.12.012
https://www.sciencedirect.com/science/article/pii/S1550413121006318
https://www.sciencedirect.com/science/article/pii/S1550413121006318
https://www.sciencedirect.com/science/article/pii/S1550413121006318
http://dx.doi.org/10.1016/j.diabres.2021.109182
http://dx.doi.org/10.1111/iwj.13100
http://dx.doi.org/10.1111/iwj.13100
http://dx.doi.org/10.1111/iwj.13100
http://dx.doi.org/10.1080/07853890.2016.1231932


B. Cassidy et al.

[9] E. Eriksson, P. Liu, G. Schultz, M. Martins-Green, R. Tanaka, D. Weir, L. Gould, 
D. Armstrong, G. Gibbons, R. Wolcott, O. Olutoye, R. Kirsner, G. Gurtner, 
Chronic wounds: Treatment consensus, Wound Repair Regen. 30 (2022) http:
//dx.doi.org/10.1111/wrr.12994.

[10] P. Franks, J. Barker, M. Collier, G. Gethin, E. Haesler, A. Jawien, S. Läuchli, 
G. Mosti, S. Probst, C. Weller, Management of patients with venous leg ulcers: 
Challenges and current best practice, J. Wound Care 25 (2016) S1–S67, http:
//dx.doi.org/10.12968/jowc.2016.25.Sup6.S1.

[11] J. Mader, W. Haas, F. Aberer, B. Boulgaropoulos, P.M. Baumann, M. Pandis, K. 
Horvath, F. Aziz, G. Köhler, T. Pieber, J. Plank, H. Sourij, Patients with healed 
diabetic foot ulcer represent a cohort at highest risk for future fatal events, Sci. 
Rep. 9 (2019) http://dx.doi.org/10.1038/s41598-019-46961-8.

[12] X.-f. Xiong, L. Wei, Y. Xiao, Y.-C. Han, J. Yang, H. Zhao, M. Yang, L. Sun, 
Family history of diabetes is associated with diabetic foot complications in type 
2 diabetes, Sci. Rep. 10 (2020) 17056, http://dx.doi.org/10.1038/s41598-020-
74071-3.

[13] R. Costa, N. Cardoso, R. Procópio, T. Navarro, A. Dardik, L. Cisneros, Diabetic 
foot ulcer carries high amputation and mortality rates, particularly in the 
presence of advanced age, peripheral artery disease and anemia, Diabetes 
Metab. Syndr.: Clin. Res. Rev. 11 (2017) http://dx.doi.org/10.1016/j.dsx.2017.
04.008.

[14] E. Vainieri, R. Ahluwalia, H. Slim, D. Walton, C. Manu, S. Taori, J. Wilkins, 
D. Huang, M. Edmonds, H. Rashid, V. Kavarthapu, P. Vas, Outcomes after 
emergency admission with a diabetic foot attack indicate a high rate of healing 
and limb salvage but increased mortality: 18-month follow-up study, Exp. Clin. 
Endocrinol. Diabetes (2020) http://dx.doi.org/10.1055/a-1322-4811.

[15] R. Renner, C. Erfurt-Berge, Depression and quality of life in patients with 
chronic wounds: ways to measure their influence and their effect on daily 
life, Chronic Wound Care Manag. Res. 4 (2017) 143–151, http://dx.doi.org/
10.2147/CWCMR.S124917.

[16] M. Polikandrioti, G. Vasilopoulos, I. Koutelekos, G. Panoutsopoulos, G. Gero-
gianni, V. Alikari, E. Dousis, A. Zartaloudi, Depression in diabetic foot ulcer: 
Associated factors and the impact of perceived social support and anxiety on 
depression, Int. Wound J. 17 (4) (2020) 900–909, http://dx.doi.org/10.1111/
iwj.13348, URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/iwj.13348.

[17] M.M. Iversen, G.S. Tell, B. Espehaug, K. Midthjell, M. Graue, B. Rokne, L.I. 
Berge, T. Østbye, Is depression a risk factor for diabetic foot ulcers? 11-years 
follow-up of the Nord-Trøndelag Health Study (HUNT), J. Diabetes Complicat. 
29 (1) (2015) 20—25, http://dx.doi.org/10.1016/j.jdiacomp.2014.09.006.

[18] M. Iversen, J. Igland, H. Smith-Strøm, T. Østbye, G. Tell, S. Skeie, J. Cooper, 
M. Peyrot, M. Graue, Effect of a telemedicine intervention for diabetes-related 
foot ulcers on health, well-being and quality of life: secondary outcomes from a 
cluster randomized controlled trial (DiaFOTo), BMC Endocr. Disord. 20 (2020) 
http://dx.doi.org/10.1186/s12902-020-00637-x.

[19] C.K. Sen, Human wound and its burden: Updated 2020 compendium of 
estimates, Adv. Wound Care 10 (5) (2021) 281–292, http://dx.doi.org/10.1089/
wound.2021.0026, PMID: 33733885.

[20] F. Petrone, A. Giribono, L. Massini, L. Pietrangelo, I. Magnifico, U. Bracale, 
R. Di Marco, R. Bracale, G. Petronio Petronio, Retrospective observational 
study on microbial contamination of ulcerative foot lesions in diabetic patients, 
Microbiol. Res. 12 (2021) http://dx.doi.org/10.3390/microbiolres12040058.

[21] H. Rathur, A. Boulton, The neuropathic diabetic foot, Nat. Clin. Pr. Endocrinol. 
Metab. 3 (2007) 14–25.

[22] M.S. Bader, Diabetic foot infection, Am. Fam. Physician 78 (1) (2008).
[23] A.J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, J. Apelqvist, The global 

burden of diabetic foot disease, Lancet 366 (9498) (2005) 1719–1724, http://
dx.doi.org/10.1016/S0140-6736(05)67698-2, URL: https://www.sciencedirect.
com/science/article/pii/S0140673605676982.

[24] J. Van Netten, D. Clark, P. Lazzarini, M. Janda, L. Reed, The validity and 
reliability of remote diabetic foot ulcer assessment using mobile phone images, 
Sci. Rep. 7 (2017) http://dx.doi.org/10.1038/s41598-017-09828-4.

[25] J. Apelqvist, J. Larsson, C.-D. Agardh, Long-term prognosis for diabetic patients 
with foot ulcers, J. Intern. Med. 233 (6) (1993) 485–491, http://dx.doi.org/10.
1111/j.1365-2796.1993.tb01003.x.

[26] J. Larsson, C.-D. Agardh, J. Apelqvist, A. Stenström, Long term prognosis after 
healed amputation in patients with diabetes, Clin. Orthop. Relat. Res. 350 
(1998) 149–158, http://dx.doi.org/10.1097/00003086-199805000-00021.

[27] B. Cassidy, N.D. Reeves, J.M. Pappachan, N. Ahmad, S. Haycocks, D. Gillespie, 
M. Yap, A cloud-based deep learning framework for remote detection of diabetic 
foot ulcers, IEEE Pervasive Comput. (01) (2022) 1–9, http://dx.doi.org/10.
1109/MPRV.2021.3135686.

[28] N.D. Reeves, B. Cassidy, C.A. Abbott, M.H. Yap, Chapter 7 - Novel technologies 
for detection and prevention of diabetic foot ulcers, in: A. Gefen (Ed.), 
The Science, Etiology and Mechanobiology of Diabetes and its Complica-
tions, Academic Press, 2021, pp. 107–122, http://dx.doi.org/10.1016/B978-0-
12-821070-3.00007-6, URL: https://www.sciencedirect.com/science/article/pii/
B9780128210703000076.

[29] J.M. Pappachan, B. Cassidy, C.J. Fernandez, V. Chandrabalan, M.H. Yap, The 
role of artificial intelligence technology in the care of diabetic foot ulcers: the 
past, the present, and the future, World J. Diabetes 13 (2022) 1131–1139, 
http://dx.doi.org/10.4239/wjd.v13.i12.1131.

[30] K. Yammine, M. Estephan, Telemedicine and diabetic foot ulcer outcomes. 
A meta-analysis of controlled trials, Foot (2021) http://dx.doi.org/10.1016/
j.foot.2021.101872, URL: https://www.sciencedirect.com/science/article/pii/
S0958259221000985.

[31] A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, et al., 
Dermatologist-level classification of skin cancer with deep neural networks, 
Nature 542 (7639) (2017) 115–118.

[32] T.J. Brinker, A. Hekler, A.H. Enk, J. Klode, A. Hauschild, C. Berking, B. 
Schilling, S. Haferkamp, D. Schadendorf, S. Fröhling, J.S. Utikal, C. von 
Kalle, A convolutional neural network trained with dermoscopic images 
performed on par with 145 dermatologists in a clinical melanoma image 
classification task, Eur. J. Cancer 111 (2019) 148–154, http://dx.doi.org/10.
1016/j.ejca.2019.02.005, URL: http://www.sciencedirect.com/science/article/
pii/S0959804919301443.

[33] T.J. Brinker, A. Hekler, A.H. Enk, C. Berking, S. Haferkamp, A. Hauschild, 
M. Weichenthal, J. Klode, D. Schadendorf, T. Holland-Letz, C. von Kalle, S. 
Fröhling, B. Schilling, J.S. Utikal, Deep neural networks are superior to derma-
tologists in melanoma image classification, Eur. J. Cancer 119 (2019) 11–17, 
http://dx.doi.org/10.1016/j.ejca.2019.05.023, URL: http://www.sciencedirect.
com/science/article/pii/S0959804919303491.

[34] Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, R. 
Watanabe, N. Okiyama, K. Ohara, M. Fujimoto, Deep-learning-based, computer-
aided classifier developed with a small dataset of clinical images surpasses 
board-certified dermatologists in skin tumour diagnosis, Br. J. Dermatol. 180 
(2) (2019) 373–381, http://dx.doi.org/10.1111/bjd.16924.

[35] T.C. Pham, V.D. Hoang, C.T. Tran, M.S.K. Luu, D.A. Mai, A. Doucet, C.M. Luong, 
Improving binary skin cancer classification based on best model selection 
method combined with optimizing full connected layers of Deep CNN, in: 
2020 International Conference on Multimedia Analysis and Pattern Recognition, 
MAPR, 2020, pp. 1–6, http://dx.doi.org/10.1109/MAPR49794.2020.9237778.

[36] S. Jinnai, N. Yamazaki, Y. Hirano, Y. Sugawara, Y. Ohe, R. Hamamoto, The 
development of a skin cancer classification system for pigmented skin lesions 
using deep learning, Biomolecules 10 (8) (2020).

[37] H. Haenssle, J. Winkler, C. Fink, F. Toberer, A. Enk, W. Stolz, T. Kränke, R. 
Hofmann-Wellenhof, H. Kittler, P. Tschandl, C. Rosendahl, A. Lallas, A. Blum, 
M. Abassi, L. Thomas, I. Tromme, A. Rosenberger, M. Bachelerie, S. Bajaj, P. 
Zukervar, Skin lesions of face and scalp – Classification by a market-approved 
convolutional neural network in comparison with 64 dermatologists, Eur. J. 
Cancer 144 (2021) 192–199, http://dx.doi.org/10.1016/j.ejca.2020.11.034.

[38] P. Sheehan, P. Jones, A. Caselli, J. Giurini, A. Veves, Percent change in wound 
area of diabetic foot ulcers over a 4-week period is a robust predictor of 
complete healing in a 12-week prospective trial, Diabetes Care 26 (2003) 
1879–1882, http://dx.doi.org/10.2337/diacare.26.6.1879.

[39] M. Goyal, N. Reeves, S. Rajbhandari, M.H. Yap, Robust methods for real-time 
diabetic foot ulcer detection and localization on mobile devices, IEEE J. Biomed. 
Heal. Inform. (2018).

[40] B. Cassidy, M. Hoon Yap, J.M. Pappachan, N. Ahmad, S. Haycocks, C. O’Shea, 
C.J. Fernandez, E. Chacko, K. Jacob, N.D. Reeves, Artificial intelligence for 
automated detection of diabetic foot ulcers: A real-world proof-of-concept 
clinical evaluation, Diabetes Res. Clin. Pract. 205 (2023) 110951, http://dx.
doi.org/10.1016/j.diabres.2023.110951, URL: https://www.sciencedirect.com/
science/article/pii/S0168822723007143.

[41] M. Goyal, M.H. Yap, N.D. Reeves, S. Rajbhandari, J. Spragg, Fully convolutional 
networks for diabetic foot ulcer segmentation, in: 2017 IEEE International 
Conference on Systems, Man, and Cybernetics, SMC, 2017, pp. 618–623, http:
//dx.doi.org/10.1109/SMC.2017.8122675.

[42] C. Wang, D.M. Anisuzzaman, V. Williamson, M.K. Dhar, B. Rostami, J. Niez-
goda, S. Gopalakrishnan, Z. Yu, Fully automatic wound segmentation with deep 
convolutional neural networks, Sci. Rep. 10 (1) (2020) 1–9, http://dx.doi.org/
10.1038/s41598-020-78799-w.

[43] C. Wang, A. Mahbod, I. Ellinger, A. Galdran, S. Gopalakrishnan, J. Niezgoda, 
Z. Yu, FUSeg: The foot ulcer segmentation challenge, 2022, http://dx.doi.org/
10.48550/ARXIV.2201.00414, URL: https://arxiv.org/abs/2201.00414.

[44] A. Mahbod, R. Ecker, I. Ellinger, Automatic foot ulcer segmentation using 
an ensemble of convolutional neural networks, 2021, arXiv preprint arXiv:
2109.01408.

[45] G. Scebba, J. Zhang, S. Catanzaro, C. Mihai, O. Distler, M. Berli, W. Karlen, 
Detect-and-segment: a deep learning approach to automate wound image 
segmentation, 2021, arXiv preprint arXiv:2111.01590.

[46] S. Yang, J. Park, H. Lee, S. Kim, B.-U. Lee, K.-Y. Chung, B. Oh, Sequential 
change of wound calculated by image analysis using a color patch method 
during a secondary intention healing, PLOS ONE 11 (2016) http://dx.doi.org/
10.1371/journal.pone.0163092.

[47] B. Cassidy, C. Kendrick, N. Reeves, J. Pappachan, C. O’Shea, D. Armstrong, 
M.H. Yap, Diabetic foot ulcer grand challenge 2021: Evaluation and summary, 
2022, pp. 90–105, http://dx.doi.org/10.1007/978-3-030-94907-5_7.

[48] S. Thomas, Medetec, 2014, URL: http://www.medetec.co.uk/index.html. last 
access: 08/11/21.

Computers in Biology and Medicine 192 (2025) 110172 

18 

http://dx.doi.org/10.1111/wrr.12994
http://dx.doi.org/10.1111/wrr.12994
http://dx.doi.org/10.1111/wrr.12994
http://dx.doi.org/10.12968/jowc.2016.25.Sup6.S1
http://dx.doi.org/10.12968/jowc.2016.25.Sup6.S1
http://dx.doi.org/10.12968/jowc.2016.25.Sup6.S1
http://dx.doi.org/10.1038/s41598-019-46961-8
http://dx.doi.org/10.1038/s41598-020-74071-3
http://dx.doi.org/10.1038/s41598-020-74071-3
http://dx.doi.org/10.1038/s41598-020-74071-3
http://dx.doi.org/10.1016/j.dsx.2017.04.008
http://dx.doi.org/10.1016/j.dsx.2017.04.008
http://dx.doi.org/10.1016/j.dsx.2017.04.008
http://dx.doi.org/10.1055/a-1322-4811
http://dx.doi.org/10.2147/CWCMR.S124917
http://dx.doi.org/10.2147/CWCMR.S124917
http://dx.doi.org/10.2147/CWCMR.S124917
http://dx.doi.org/10.1111/iwj.13348
http://dx.doi.org/10.1111/iwj.13348
http://dx.doi.org/10.1111/iwj.13348
https://onlinelibrary.wiley.com/doi/abs/10.1111/iwj.13348
http://dx.doi.org/10.1016/j.jdiacomp.2014.09.006
http://dx.doi.org/10.1186/s12902-020-00637-x
http://dx.doi.org/10.1089/wound.2021.0026
http://dx.doi.org/10.1089/wound.2021.0026
http://dx.doi.org/10.1089/wound.2021.0026
http://dx.doi.org/10.3390/microbiolres12040058
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb21
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb21
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb21
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb22
http://dx.doi.org/10.1016/S0140-6736(05)67698-2
http://dx.doi.org/10.1016/S0140-6736(05)67698-2
http://dx.doi.org/10.1016/S0140-6736(05)67698-2
https://www.sciencedirect.com/science/article/pii/S0140673605676982
https://www.sciencedirect.com/science/article/pii/S0140673605676982
https://www.sciencedirect.com/science/article/pii/S0140673605676982
http://dx.doi.org/10.1038/s41598-017-09828-4
http://dx.doi.org/10.1111/j.1365-2796.1993.tb01003.x
http://dx.doi.org/10.1111/j.1365-2796.1993.tb01003.x
http://dx.doi.org/10.1111/j.1365-2796.1993.tb01003.x
http://dx.doi.org/10.1097/00003086-199805000-00021
http://dx.doi.org/10.1109/MPRV.2021.3135686
http://dx.doi.org/10.1109/MPRV.2021.3135686
http://dx.doi.org/10.1109/MPRV.2021.3135686
http://dx.doi.org/10.1016/B978-0-12-821070-3.00007-6
http://dx.doi.org/10.1016/B978-0-12-821070-3.00007-6
http://dx.doi.org/10.1016/B978-0-12-821070-3.00007-6
https://www.sciencedirect.com/science/article/pii/B9780128210703000076
https://www.sciencedirect.com/science/article/pii/B9780128210703000076
https://www.sciencedirect.com/science/article/pii/B9780128210703000076
http://dx.doi.org/10.4239/wjd.v13.i12.1131
http://dx.doi.org/10.1016/j.foot.2021.101872
http://dx.doi.org/10.1016/j.foot.2021.101872
http://dx.doi.org/10.1016/j.foot.2021.101872
https://www.sciencedirect.com/science/article/pii/S0958259221000985
https://www.sciencedirect.com/science/article/pii/S0958259221000985
https://www.sciencedirect.com/science/article/pii/S0958259221000985
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb31
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb31
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb31
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb31
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb31
http://dx.doi.org/10.1016/j.ejca.2019.02.005
http://dx.doi.org/10.1016/j.ejca.2019.02.005
http://dx.doi.org/10.1016/j.ejca.2019.02.005
http://www.sciencedirect.com/science/article/pii/S0959804919301443
http://www.sciencedirect.com/science/article/pii/S0959804919301443
http://www.sciencedirect.com/science/article/pii/S0959804919301443
http://dx.doi.org/10.1016/j.ejca.2019.05.023
http://www.sciencedirect.com/science/article/pii/S0959804919303491
http://www.sciencedirect.com/science/article/pii/S0959804919303491
http://www.sciencedirect.com/science/article/pii/S0959804919303491
http://dx.doi.org/10.1111/bjd.16924
http://dx.doi.org/10.1109/MAPR49794.2020.9237778
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb36
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb36
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb36
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb36
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb36
http://dx.doi.org/10.1016/j.ejca.2020.11.034
http://dx.doi.org/10.2337/diacare.26.6.1879
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb39
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb39
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb39
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb39
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb39
http://dx.doi.org/10.1016/j.diabres.2023.110951
http://dx.doi.org/10.1016/j.diabres.2023.110951
http://dx.doi.org/10.1016/j.diabres.2023.110951
https://www.sciencedirect.com/science/article/pii/S0168822723007143
https://www.sciencedirect.com/science/article/pii/S0168822723007143
https://www.sciencedirect.com/science/article/pii/S0168822723007143
http://dx.doi.org/10.1109/SMC.2017.8122675
http://dx.doi.org/10.1109/SMC.2017.8122675
http://dx.doi.org/10.1109/SMC.2017.8122675
http://dx.doi.org/10.1038/s41598-020-78799-w
http://dx.doi.org/10.1038/s41598-020-78799-w
http://dx.doi.org/10.1038/s41598-020-78799-w
http://dx.doi.org/10.48550/ARXIV.2201.00414
http://dx.doi.org/10.48550/ARXIV.2201.00414
http://dx.doi.org/10.48550/ARXIV.2201.00414
https://arxiv.org/abs/2201.00414
http://arxiv.org/abs/2109.01408
http://arxiv.org/abs/2109.01408
http://arxiv.org/abs/2109.01408
http://arxiv.org/abs/2111.01590
http://dx.doi.org/10.1371/journal.pone.0163092
http://dx.doi.org/10.1371/journal.pone.0163092
http://dx.doi.org/10.1371/journal.pone.0163092
http://dx.doi.org/10.1007/978-3-030-94907-5_7
http://www.medetec.co.uk/index.html


B. Cassidy et al.

[49] T.-Y. Liao, C.-H. Yang, Y.-W. Lo, K.-Y. Lai, P.-H. Shen, Y.-L. Lin, HarDNet-DFUS: 
An enhanced harmonically-connected network for diabetic foot ulcer image 
segmentation and colonoscopy polyp segmentation, 2022, http://dx.doi.org/10.
48550/ARXIV.2209.07313, URL: https://arxiv.org/abs/2209.07313.

[50] C.-H. Huang, H.-Y. Wu, Y.-L. Lin, HarDNet-MSEG: A simple encoder-decoder 
polyp segmentation neural network that achieves over 0.9 mean dice and 
86 FPS, 2021, http://dx.doi.org/10.48550/arXiv.2101.07172, ArXiv Preprint 
arXiv:2101.07172v2.

[51] P. Chao, C.-Y. Kao, Y. Ruan, C.-H. Huang, Y.-L. Lin, HarDNet: A low memory 
traffic network, 2019, pp. 3551–3560, http://dx.doi.org/10.1109/ICCV.2019.
00365.

[52] D. Ramachandram, J. Ramírez-GarcíaLuna, R. Fraser, M.A. Martínez-Jiménez, 
J. Arriaga-Caballero, J. Allport, Improving objective wound assessment: Fully-
automated wound tissue segmentation using deep learning on mobile devices, 
JMIR Mhealth Uhealth 10 (2022) http://dx.doi.org/10.2196/36977.

[53] M. Swerdlow, O. Guler, R. Yaakov, D.G. Armstrong, Simultaneous segmen-
tation and classification of pressure injury image data using mask-R-CNN, 
Comput. Math. Methods Med. 2023 (2023) 1–7, http://dx.doi.org/10.1155/
2023/3858997.

[54] S. Gowda, C. Yuan, ColorNet: Investigating the importance of color spaces for 
image classification, 2019, pp. 581–596, http://dx.doi.org/10.1007/978-3-030-
20870-7_36.

[55] P. Simon, B. Uma, DeepLumina: A method based on deep features and 
luminance information for color texture classification, Comput. Intell. Neurosci. 
2022 (2022) 1–16, http://dx.doi.org/10.1155/2022/9510987.

[56] C. McBride, B. Cassidy, C. Kendrick, N.D. Reeves, J.M. Pappachan, M.H. Yap, 
Multi-colour space channel selection for improved chronic wound segmentation, 
in: 2024 IEEE International Symposium on Biomedical Imaging, ISBI, 2024, pp. 
1–5, http://dx.doi.org/10.1109/ISBI56570.2024.10635155.

[57] D. Wen, S.M. Khan, A.J. Xu, H. Ibrahim, L. Smith, J. Caballero, L. Zepeda, C. 
de Blas Perez, A.K. Denniston, X. Liu, R.N. Matin, Characteristics of publicly 
available skin cancer image datasets: a systematic review, Lancet Digit. Heal. 
(2021) http://dx.doi.org/10.1016/S2589-7500(21)00252-1, URL: https://www.
sciencedirect.com/science/article/pii/S2589750021002521.

[58] M. Benčević, M. Habijan, I. Galić, D. Babin, A. Pižurica, Understanding 
skin color bias in deep learning-based skin lesion segmentation, Comput. 
Methods Programs Biomed. 245 (2024) 108044, http://dx.doi.org/10.1016/
j.cmpb.2024.108044, URL: https://www.sciencedirect.com/science/article/pii/
S0169260724000403.

[59] I. Dipto, B. Cassidy, C. Kendrick, N. Reeves, J. Pappachan, V. Chandrabalan, 
M.H. Yap, Quantifying the effect of image similarity on diabetic foot ulcer 
classification, 2023, pp. 1–18, http://dx.doi.org/10.1007/978-3-031-26354-5_1.

[60] B. Akkoca-Gazioğlu, M. Kamasak, Effects of objects and image quality on 
melanoma classification using Deep Neural Networks, 2020, http://dx.doi.org/
10.21203/rs.3.rs-35907/v1.

[61] B. Cassidy, C. Kendrick, A. Brodzicki, J. Jaworek-Korjakowska, M.H. Yap, 
Analysis of the ISIC image datasets: Usage, benchmarks and recommendations, 
Med. Image Anal. (2021) http://dx.doi.org/10.1016/j.media.2021.102305, 
URL: https://www.sciencedirect.com/science/article/pii/S1361841521003509.

[62] R. Daneshjou, C. Barata, B. Betz-Stablein, M.E. Celebi, N. Codella, M. Com-
balia, P. Guitera, D. Gutman, A. Halpern, B. Helba, H. Kittler, K. Kose, K. 
Liopyris, J. Malvehy, H.S. Seog, H.P. Soyer, E.R. Tkaczyk, P. Tschandl, V. 
Rotemberg, Checklist for evaluation of image-based artificial intelligence reports 
in dermatology: CLEAR derm consensus guidelines from the international skin 
imaging collaboration artificial intelligence working group, JAMA Dermatol. 
(2021) http://dx.doi.org/10.1001/jamadermatol.2021.4915.

[63] J. Winkler, K. Sies, C. Fink, F. Toberer, A. Enk, M. Abassi, T. Fuchs, H. 
Haenssle, Association between different scale bars in dermoscopic images 
and diagnostic performance of a market-approved deep learning convolutional 
neural network for melanoma recognition, Eur. J. Cancer 145 (2021) 146–154, 
http://dx.doi.org/10.1016/j.ejca.2020.12.010.

[64] J. Jaworek-Korjakowska, A. Wojcicka, D. Kucharski, A. Brodzicki, C. Kendrick, 
B. Cassidy, M.H. Yap, Skin_Hair Dataset: Setting the Benchmark for Effective 
Hair Inpainting Methods for Improving the Image Quality of Dermoscopic 
Images, Springer, 2023, pp. 167–184, http://dx.doi.org/10.1007/978-3-031-
25069-9_12.

[65] S.W. Pewton, B. Cassidy, C. Kendrick, M.H. Yap, Dermoscopic dark corner 
artifacts removal: Friend or foe? Comput. Methods Programs Biomed. 244 
(2024) 107986, http://dx.doi.org/10.1016/j.cmpb.2023.107986, URL: https://
www.sciencedirect.com/science/article/pii/S0169260723006521.

[66] B. Cassidy, N.D. Reeves, J.M. Pappachan, D. Gillespie, C. O’Shea, S. 
Rajbhandari, A.G. Maiya, E. Frank, A.J.M. Boulton, D.G. Armstrong, 
B. Najafi, J. Wu, R.S. Kochhar, M.H. Yap, The DFUC 2020 dataset: 
Analysis towards diabetic foot ulcer detection, TouchREVIEWS Endocrinol. 
17 (2021) 5–11, http://dx.doi.org/10.17925/EE.2021.17.1.5, URL: 
https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-
dataset-analysis-towards-diabetic-foot-ulcer-detection/1.

[67] M.H. Yap, B. Cassidy, J.M. Pappachan, C. O’Shea, D. Gillespie, N.D. Reeves, 
Analysis towards classification of infection and ischaemia of diabetic foot 
ulcers, in: 2021 IEEE EMBS International Conference on Biomedical and Health 

Informatics, BHI, 2021, pp. 1–4, http://dx.doi.org/10.1109/BHI50953.2021.
9508563.

[68] C. Kendrick, B. Cassidy, J.M. Pappachan, C. O’Shea, C.J. Fernandez, E. Chacko, 
K. Jacob, N.D. Reeves, M.H. Yap, Translating clinical delineation of diabetic 
foot ulcers into machine interpretable segmentation, in: M.H. Yap, C. Kendrick, 
R. Brüngel (Eds.), Diabetic Foot Ulcers Grand Challenge, Springer Nature 
Switzerland, Cham, 2025, pp. 1–14.

[69] M.H. Yap, R. Hachiuma, A. Alavi, R. Brüngel, B. Cassidy, M. Goyal, H. 
Zhu, J. Rückert, M. Olshansky, X. Huang, H. Saito, S. Hassanpour, C.M. 
Friedrich, D.B. Ascher, A. Song, H. Kajita, D. Gillespie, N.D. Reeves, J.M. 
Pappachan, C. O’Shea, E. Frank, Deep learning in diabetic foot ulcers detection: 
A comprehensive evaluation, Comput. Biol. Med. 135 (2021) 104596, http://dx.
doi.org/10.1016/j.compbiomed.2021.104596, URL: https://www.sciencedirect.
com/science/article/pii/S0010482521003905.

[70] M.H. Yap, C. Kendrick, N. Reeves, M. Goyal, J. Pappachan, B. Cassidy, 
Development of diabetic foot ulcer datasets: An overview, 2022, pp. 1–18, 
http://dx.doi.org/10.1007/978-3-030-94907-5_1.

[71] M.H. Yap, B. Cassidy, M. Byra, T. yu Liao, H. Yi, A. Galdran, Y.-H. Chen, 
R. Brüngel, S. Koitka, C.M. Friedrich, Y. wen Lo, C. hui Yang, K. Li, Q. 
Lao, M.A.G. Ballester, G. Carneiro, Y.-J. Ju, J.-D. Huang, J.M. Pappachan, 
N.D. Reeves, V. Chandrabalan, D. Dancey, C. Kendrick, Diabetic foot ulcers 
segmentation challenge report: Benchmark and analysis, Med. Image Anal. 94 
(2024) 103153, http://dx.doi.org/10.1016/j.media.2024.103153, URL: https:
//www.sciencedirect.com/science/article/pii/S1361841524000781.

[72] L. Alzubaidi, M.A. Fadhel, S.R. Oleiwi, O. Al-Shamma, J. Zhang, DFU_QUTNet: 
Diabetic foot ulcer classification using novel deep convolutional neural network, 
Multimedia Tools Appl. 79 (21–22) (2020) 15655–15677, http://dx.doi.org/10.
1007/s11042-019-07820-w.

[73] C. Wang, A. Mahbod, I. Ellinger, A. Galdran, S. Gopalakrishnan, J. Niezgoda, 
Z. Yu, FUSeg: The foot ulcer segmentation challenge, Information 15 (2024) 
140, http://dx.doi.org/10.3390/info15030140.

[74] M. Groh, C. Harris, L. Soenksen, F. Lau, R. Han, A. Kim, A. Koochek, O. Badri, 
Evaluating deep neural networks trained on clinical images in dermatology with 
the fitzpatrick 17k dataset, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2021, pp. 1820–1828.

[75] M. Kręcichwost, J. Czajkowska, A. Wijata, J. Juszczyk, B. Pyciński, M. Biesok, 
M. Rudzki, J. Majewski, J. Kostecki, E. Pietka, Chronic wounds multimodal 
image database, Comput. Med. Imaging Graph. 88 (2021) http://dx.doi.org/
10.1016/j.compmedimag.2020.101844, URL: https://www.sciencedirect.com/
science/article/pii/S0895611120301397.

[76] T.A. Pereira, R.C. Popim, L.A. Passos, D.R. Pereira, C.R. Pereira, J.P. Papa, 
ComplexWoundDB: A database for automatic complex wound tissue categoriza-
tion, in: 2022 29th International Conference on Systems, Signals and Image 
Processing, IWSSIP, Vol. CFP2255E-ART, 2022, pp. 1–4, http://dx.doi.org/10.
1109/IWSSIP55020.2022.9854419.

[77] S.R. Oota, V. Rowtula, S. Mohammed, M. Liu, M. Gupta, WSNet: Towards 
an effective method for wound image segmentation, in: Proceedings of the 
IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, 2023, 
pp. 3234–3243.

[78] A. Dutta, A. Gupta, A. Zissermann, VGG image annotator (VIA), 2016, http://
www.robots.ox.ac.uk/~vgg/software/via/. Version: 2.0.11, Accessed: 21st April 
2022.

[79] A. Dutta, A. Zisserman, The VIA annotation software for images, audio and 
video, in: Proceedings of the 27th ACM International Conference on Multimedia, 
MM ’19, ACM, New York, NY, USA, 2019, http://dx.doi.org/10.1145/3343031.
3350535.

[80] D.-J. Kroon, Snake: Active contour, 2022, Online. URL: https://www.
mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour.

[81] D. Jha, P.H. Smedsrud, M.A. Riegler, D. Johansen, T.D. Lange, P. Halvorsen, 
H. D. Johansen, ResUNet++: An advanced architecture for medical image seg-
mentation, in: Proceedings of the IEEE International Symposium on Multimedia, 
ISM, 2019, pp. 225–230.

[82] 4ui_iurz1, PyTorch implementation of UNet++ (Nested U-Net), 2020, https:
//github.com/4uiiurz1/pytorch-nested-unet. (Accessed 30 March 2023).

[83] S. Czekalski, Attention U-Net, 2020, https://github.com/sfczekalski/attention_
unet. Accessed: 30th March 2023.

[84] Q. Xu, Z. Ma, N. He, W. Duan, DCSAU-Net: A deeper and more compact 
split-attention U-Net for medical image segmentation, Comput. Biol. Med. 154 
(2023) 106626, http://dx.doi.org/10.1016/j.compbiomed.2023.106626, URL: 
https://www.sciencedirect.com/science/article/pii/S0010482523000914.

[85] S. Jin, S. Yu, J. Peng, H. Wang, Y. Zhao, A novel medical image segmentation 
approach by using multi-branch segmentation network based on local and 
global information synchronous learning, Sci. Rep. 13 (2023) http://dx.doi.org/
10.1038/s41598-023-33357-y.

[86] Y. Li, Human segmentation in Pytorch, 2023, https://github.com/cavalleria/
humanseg.pytorch. (Accessed 12 March 2023).

[87] B. Mayalı, Pretrained backbones with UNet, 2023, https://github.com/
mberkay0/pretrained-backbones-unet. (Accessed 30 March 2023).

[88] J.M.J. Valanarasu, V.M. Patel, UNeXt: MLP-based rapid medical image seg-
mentation network, 2022, http://dx.doi.org/10.48550/arXiv.2203.04967, arXiv 
preprint arXiv:2203.04967.

Computers in Biology and Medicine 192 (2025) 110172 

19 

http://dx.doi.org/10.48550/ARXIV.2209.07313
http://dx.doi.org/10.48550/ARXIV.2209.07313
http://dx.doi.org/10.48550/ARXIV.2209.07313
https://arxiv.org/abs/2209.07313
http://dx.doi.org/10.48550/arXiv.2101.07172
http://arxiv.org/abs/2101.07172v2
http://dx.doi.org/10.1109/ICCV.2019.00365
http://dx.doi.org/10.1109/ICCV.2019.00365
http://dx.doi.org/10.1109/ICCV.2019.00365
http://dx.doi.org/10.2196/36977
http://dx.doi.org/10.1155/2023/3858997
http://dx.doi.org/10.1155/2023/3858997
http://dx.doi.org/10.1155/2023/3858997
http://dx.doi.org/10.1007/978-3-030-20870-7_36
http://dx.doi.org/10.1007/978-3-030-20870-7_36
http://dx.doi.org/10.1007/978-3-030-20870-7_36
http://dx.doi.org/10.1155/2022/9510987
http://dx.doi.org/10.1109/ISBI56570.2024.10635155
http://dx.doi.org/10.1016/S2589-7500(21)00252-1
https://www.sciencedirect.com/science/article/pii/S2589750021002521
https://www.sciencedirect.com/science/article/pii/S2589750021002521
https://www.sciencedirect.com/science/article/pii/S2589750021002521
http://dx.doi.org/10.1016/j.cmpb.2024.108044
http://dx.doi.org/10.1016/j.cmpb.2024.108044
http://dx.doi.org/10.1016/j.cmpb.2024.108044
https://www.sciencedirect.com/science/article/pii/S0169260724000403
https://www.sciencedirect.com/science/article/pii/S0169260724000403
https://www.sciencedirect.com/science/article/pii/S0169260724000403
http://dx.doi.org/10.1007/978-3-031-26354-5_1
http://dx.doi.org/10.21203/rs.3.rs-35907/v1
http://dx.doi.org/10.21203/rs.3.rs-35907/v1
http://dx.doi.org/10.21203/rs.3.rs-35907/v1
http://dx.doi.org/10.1016/j.media.2021.102305
https://www.sciencedirect.com/science/article/pii/S1361841521003509
http://dx.doi.org/10.1001/jamadermatol.2021.4915
http://dx.doi.org/10.1016/j.ejca.2020.12.010
http://dx.doi.org/10.1007/978-3-031-25069-9_12
http://dx.doi.org/10.1007/978-3-031-25069-9_12
http://dx.doi.org/10.1007/978-3-031-25069-9_12
http://dx.doi.org/10.1016/j.cmpb.2023.107986
https://www.sciencedirect.com/science/article/pii/S0169260723006521
https://www.sciencedirect.com/science/article/pii/S0169260723006521
https://www.sciencedirect.com/science/article/pii/S0169260723006521
http://dx.doi.org/10.17925/EE.2021.17.1.5
https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-dataset-analysis-towards-diabetic-foot-ulcer-detection/1
https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-dataset-analysis-towards-diabetic-foot-ulcer-detection/1
https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-dataset-analysis-towards-diabetic-foot-ulcer-detection/1
http://dx.doi.org/10.1109/BHI50953.2021.9508563
http://dx.doi.org/10.1109/BHI50953.2021.9508563
http://dx.doi.org/10.1109/BHI50953.2021.9508563
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb68
http://dx.doi.org/10.1016/j.compbiomed.2021.104596
http://dx.doi.org/10.1016/j.compbiomed.2021.104596
http://dx.doi.org/10.1016/j.compbiomed.2021.104596
https://www.sciencedirect.com/science/article/pii/S0010482521003905
https://www.sciencedirect.com/science/article/pii/S0010482521003905
https://www.sciencedirect.com/science/article/pii/S0010482521003905
http://dx.doi.org/10.1007/978-3-030-94907-5_1
http://dx.doi.org/10.1016/j.media.2024.103153
https://www.sciencedirect.com/science/article/pii/S1361841524000781
https://www.sciencedirect.com/science/article/pii/S1361841524000781
https://www.sciencedirect.com/science/article/pii/S1361841524000781
http://dx.doi.org/10.1007/s11042-019-07820-w
http://dx.doi.org/10.1007/s11042-019-07820-w
http://dx.doi.org/10.1007/s11042-019-07820-w
http://dx.doi.org/10.3390/info15030140
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb74
http://dx.doi.org/10.1016/j.compmedimag.2020.101844
http://dx.doi.org/10.1016/j.compmedimag.2020.101844
http://dx.doi.org/10.1016/j.compmedimag.2020.101844
https://www.sciencedirect.com/science/article/pii/S0895611120301397
https://www.sciencedirect.com/science/article/pii/S0895611120301397
https://www.sciencedirect.com/science/article/pii/S0895611120301397
http://dx.doi.org/10.1109/IWSSIP55020.2022.9854419
http://dx.doi.org/10.1109/IWSSIP55020.2022.9854419
http://dx.doi.org/10.1109/IWSSIP55020.2022.9854419
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb77
http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.robots.ox.ac.uk/~vgg/software/via/
http://dx.doi.org/10.1145/3343031.3350535
http://dx.doi.org/10.1145/3343031.3350535
http://dx.doi.org/10.1145/3343031.3350535
https://www.mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour
https://www.mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour
https://www.mathworks.com/matlabcentral/fileexchange/28149-snake-active-contour
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb81
https://github.com/4uiiurz1/pytorch-nested-unet
https://github.com/4uiiurz1/pytorch-nested-unet
https://github.com/4uiiurz1/pytorch-nested-unet
https://github.com/sfczekalski/attention_unet
https://github.com/sfczekalski/attention_unet
https://github.com/sfczekalski/attention_unet
http://dx.doi.org/10.1016/j.compbiomed.2023.106626
https://www.sciencedirect.com/science/article/pii/S0010482523000914
http://dx.doi.org/10.1038/s41598-023-33357-y
http://dx.doi.org/10.1038/s41598-023-33357-y
http://dx.doi.org/10.1038/s41598-023-33357-y
https://github.com/cavalleria/humanseg.pytorch
https://github.com/cavalleria/humanseg.pytorch
https://github.com/cavalleria/humanseg.pytorch
https://github.com/mberkay0/pretrained-backbones-unet
https://github.com/mberkay0/pretrained-backbones-unet
https://github.com/mberkay0/pretrained-backbones-unet
http://dx.doi.org/10.48550/arXiv.2203.04967
http://arxiv.org/abs/2203.04967


B. Cassidy et al.

[89] T.-Y. Liao, C.-H. Yang, Y.-W. Lo, K.-Y. Lai, P.-H. Shen, Y.-L. Lin, HarDNet-DFUS: 
An enhanced harmonically-connected network for diabetic foot ulcer image 
segmentation and colonoscopy polyp segmentation, 2022, http://dx.doi.org/10.
48550/arXiv.2209.07313, arXiv preprint arXiv:2209.07313.

[90] H. Zhu, B. Chen, C. Yang, Understanding why ViT trains badly on small 
datasets: An intuitive perspective, 2023, http://dx.doi.org/10.48550/arXiv.
2302.03751, arXiv preprint arXiv:2302.03751.

[91] H. Gani, M. Naseer, M. Yaqub, How to train vision transformer on small-scale 
datasets? 2022, http://dx.doi.org/10.48550/arXiv.2210.07240, arXiv preprint 
arXiv:2210.07240.

[92] T. Fitzpatrick, The validity and practicality of sun-reactive skin types I through 
VI, Arch. Dermatol. 124 (1988) 869–871, http://dx.doi.org/10.1001/archderm.
124.6.869.

[93] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, 
J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, A. Dosovitskiy, MLP-
mixer: An all-MLP architecture for vision, 2021, http://dx.doi.org/10.48550/
arXiv.2105.01601, arXiv preprint arXiv:2105.01601.

[94] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional 
networks for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell. 37 
(2014) http://dx.doi.org/10.1109/TPAMI.2015.2389824.

[95] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in: 
Artificial Intelligence and Statistics, PMLR, 2015, pp. 562–570.

[96] D. Morales-Brotons, T. Vogels, H. Hendrikx, Exponential moving average of 
weights in deep learning: Dynamics and benefits, Trans. Mach. Learn. Res. 
(2024) URL: https://openreview.net/forum?id=2M9CUnYnBA.

[97] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for 
biomedical image segmentation, in: International Conference on Medical Image 
Computing and Computer-Assisted Intervention, Springer, 2015, pp. 234–241.

[98] International Telecommunication Union, Recommendation BT.709-4, 2000, 
Online. URL: https://www.itu.int/rec/R-REC-BT.709-4-200003-S/en.

[99] G. Bradski, The OpenCV library, Dr. Dobb’s J. Softw. Tools (2000) URL: 
https://github.com/opencv/opencv-python.

[100] X. Pan, P. Luo, J. Shi, X. Tang, Two at Once: Enhancing Learning and 
Generalization Capacities via IBN-Net: 15th European Conference, Munich, 
Germany, September 8-14, 2018, Proceedings, Part IV, 2018, pp. 484–500, 
http://dx.doi.org/10.1007/978-3-030-01225-0_29.

[101] D. Ulyanov, A. Vedaldi, V. Lempitsky, Instance normalization: The missing 
ingredient for fast stylization, 2017, http://dx.doi.org/10.48550/arXiv.1607.
08022.

[102] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training 
by reducing internal covariate shift, 2015, http://dx.doi.org/10.48550/arXiv.
1502.03167, arXiv preprint arXiv:1502.03167.

[103] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification, in: IEEE International Conference 
on Computer Vision, ICCV 2015, Vol. 1502, 2015, http://dx.doi.org/10.1109/
ICCV.2015.123.

[104] P. Luo, R. Zhang, J. Ren, Z. Peng, J. Li, Switchable normalization for learning-
to-normalize deep representation, IEEE Trans. Pattern Anal. Mach. Intell. 43 (2) 
(2021) 712–728, http://dx.doi.org/10.1109/TPAMI.2019.2932062.

[105] L. Alzubaidi, M.A. Fadhel, O. Al-Shamma, J. Zhang, J. Santamaría, Y. Duan, 
S. R. Oleiwi, Towards a better understanding of transfer learning for medical 
imaging: A case study, Appl. Sci. 10 (13) (2020) http://dx.doi.org/10.3390/
app10134523, URL: https://www.mdpi.com/2076-3417/10/13/4523.

[106] R. Brüngel, S. Koitka, C.M. Friedrich, Unconditionally generated and pseudo-
labeled synthetic images for diabetic foot ulcer segmentation dataset extension, 
in: Diabetic Foot Ulcers Grand Challenge: Third Challenge, DFUC 2022, Held in 
Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings, 
Springer, 2023, pp. 65–79.

[107] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, A.A. 
Kalinin, Albumentations: Fast and flexible image augmentations, Information 11 
(2) (2020) http://dx.doi.org/10.3390/info11020125, URL: https://www.mdpi.
com/2078-2489/11/2/125.

[108] T. Koo, M. Li, A guideline of selecting and reporting intraclass correlation 
coefficients for reliability research, J. Chiropr. Med. 15 (2016) http://dx.doi.
org/10.1016/j.jcm.2016.02.012.

[109] J.L. Fleiss, Reliability of measurement, in: The Design and Analysis of Clinical 
Experiments, John Wiley & Sons, Ltd, 1999, pp. 1–32, http://dx.doi.org/
10.1002/9781118032923.ch1, chapter 1. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781118032923.ch1.

[110] M.E. Celebi, C. Barata, A. Halpern, P. Tschandl, M. Combalia, Y. Liu, Guest 
editorial: Image analysis in dermatology, Med. Image Anal. 79 (2022) 102468, 
http://dx.doi.org/10.1016/j.media.2022.102468.

[111] D. Ramachandram, J.L. Ramirez-GarciaLuna, R.D.J. Fraser, M.A. Martínez-
Jiménez, J.E. Arriaga-Caballero, J. Allport, Fully automated wound tissue 
segmentation using deep learning on mobile devices: Cohort study, JMIR 
Mhealth Uhealth 10 (4) (2022) e36977, http://dx.doi.org/10.2196/36977.

[112] M. Combalia, N. Codella, V. Rotemberg, C. Carrera, S. Dusza, D. Gutman, B. 
Helba, H. Kittler, N. Kurtansky, K. Liopyris, M. Marchetti, S. Podlipnik, S. 
Puig, C. Rinner, P. Tschandl, J. Weber, A. Halpern, J. Malvehy, Validation 
of artificial intelligence prediction models for skin cancer diagnosis using 
dermoscopy images: the 2019 International Skin Imaging Collaboration Grand 
Challenge, Lancet Digit. Heal. 4 (2022) e330–e339, http://dx.doi.org/10.1016/
S2589-7500(22)00021-8.

[113] A. Drovandi, S. Wong, L. Seng, B. Crowley, C. Alahakoon, J. Banwait, M. 
Fernando, J. Golledge, Remotely delivered monitoring and management of 
diabetes-related foot disease: An overview of systematic reviews, J. Diabetes 
Sci. Technol. (2021) http://dx.doi.org/10.1177/19322968211012456.

[114] N.C. Okafor, B. Cassidy, C. O’Shea, J.M. Pappachan, The Effect of Image 
Preprocessing Algorithms on Diabetic Foot Ulcer Classification, Springer, Cham, 
2024, pp. 336–352, http://dx.doi.org/10.1007/978-3-031-66958-3_25.

[115] J. Jaworek-Korjakowska, A. Brodzicki, B. Cassidy, C. Kendrick, M.H. Yap, 
Interpretability of a deep learning based approach for the classification of 
skin lesions into main anatomic body sites, Cancers 13 (23) (2021) http://dx.
doi.org/10.3390/cancers13236048, URL: https://www.mdpi.com/2072-6694/
13/23/6048.

[116] R. Padilla, W.L. Passos, T.L.B. Dias, S.L. Netto, E.A.B. da Silva, A comparative 
analysis of object detection metrics with a companion open-source toolkit, 
Electronics 10 (3) (2021) http://dx.doi.org/10.3390/electronics10030279, URL: 
https://www.mdpi.com/2079-9292/10/3/279.

[117] R.S. Howell, H.H. Liu, A.A. Khan, J.S. Woods, L.J. Lin, M. Saxena, H. Saxena, 
M. Castellano, P. Petrone, E. Slone, E.S. Chiu, B.M. Gillette, S.A. Gorenstein, 
Development of a method for clinical evaluation of artificial intelligence–
based digital wound assessment tools, JAMA Netw. Open 4 (5) (2021) http:
//dx.doi.org/10.1001/jamanetworkopen.2021.7234.

Computers in Biology and Medicine 192 (2025) 110172 

20 

http://dx.doi.org/10.48550/arXiv.2209.07313
http://dx.doi.org/10.48550/arXiv.2209.07313
http://dx.doi.org/10.48550/arXiv.2209.07313
http://arxiv.org/abs/2209.07313
http://dx.doi.org/10.48550/arXiv.2302.03751
http://dx.doi.org/10.48550/arXiv.2302.03751
http://dx.doi.org/10.48550/arXiv.2302.03751
http://arxiv.org/abs/2302.03751
http://dx.doi.org/10.48550/arXiv.2210.07240
http://arxiv.org/abs/2210.07240
http://dx.doi.org/10.1001/archderm.124.6.869
http://dx.doi.org/10.1001/archderm.124.6.869
http://dx.doi.org/10.1001/archderm.124.6.869
http://dx.doi.org/10.48550/arXiv.2105.01601
http://dx.doi.org/10.48550/arXiv.2105.01601
http://dx.doi.org/10.48550/arXiv.2105.01601
http://arxiv.org/abs/2105.01601
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb95
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb95
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb95
https://openreview.net/forum?id=2M9CUnYnBA
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb97
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb97
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb97
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb97
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb97
https://www.itu.int/rec/R-REC-BT.709-4-200003-S/en
https://github.com/opencv/opencv-python
http://dx.doi.org/10.1007/978-3-030-01225-0_29
http://dx.doi.org/10.48550/arXiv.1607.08022
http://dx.doi.org/10.48550/arXiv.1607.08022
http://dx.doi.org/10.48550/arXiv.1607.08022
http://dx.doi.org/10.48550/arXiv.1502.03167
http://dx.doi.org/10.48550/arXiv.1502.03167
http://dx.doi.org/10.48550/arXiv.1502.03167
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/TPAMI.2019.2932062
http://dx.doi.org/10.3390/app10134523
http://dx.doi.org/10.3390/app10134523
http://dx.doi.org/10.3390/app10134523
https://www.mdpi.com/2076-3417/10/13/4523
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://refhub.elsevier.com/S0010-4825(25)00523-2/sb106
http://dx.doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://www.mdpi.com/2078-2489/11/2/125
https://www.mdpi.com/2078-2489/11/2/125
http://dx.doi.org/10.1016/j.jcm.2016.02.012
http://dx.doi.org/10.1016/j.jcm.2016.02.012
http://dx.doi.org/10.1016/j.jcm.2016.02.012
http://dx.doi.org/10.1002/9781118032923.ch1
http://dx.doi.org/10.1002/9781118032923.ch1
http://dx.doi.org/10.1002/9781118032923.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118032923.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118032923.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118032923.ch1
http://dx.doi.org/10.1016/j.media.2022.102468
http://dx.doi.org/10.2196/36977
http://dx.doi.org/10.1016/S2589-7500(22)00021-8
http://dx.doi.org/10.1016/S2589-7500(22)00021-8
http://dx.doi.org/10.1016/S2589-7500(22)00021-8
http://dx.doi.org/10.1177/19322968211012456
http://dx.doi.org/10.1007/978-3-031-66958-3_25
http://dx.doi.org/10.3390/cancers13236048
http://dx.doi.org/10.3390/cancers13236048
http://dx.doi.org/10.3390/cancers13236048
https://www.mdpi.com/2072-6694/13/23/6048
https://www.mdpi.com/2072-6694/13/23/6048
https://www.mdpi.com/2072-6694/13/23/6048
http://dx.doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
http://dx.doi.org/10.1001/jamanetworkopen.2021.7234
http://dx.doi.org/10.1001/jamanetworkopen.2021.7234
http://dx.doi.org/10.1001/jamanetworkopen.2021.7234

	An enhanced harmonic densely connected hybrid transformer network architecture for chronic wound segmentation utilising multi-colour space tensor merging
	Introduction
	Related Work
	Chronic Wound Datasets
	Expert Wound Delineation

	Method
	Metrics
	Baseline Experiments
	Construction of Training, Validation, and Test Sets
	HarDNet-DFUS Architecture
	HarDNet-CWS Architecture
	HarDNet Experimental Setup
	Multi-colour Space Tensor Merging
	Combined Instance-batch Normalisation
	Parameterised Rectified Linear Unit
	Switchable-Normalisation
	Refined HarDNet Block Harmonic Structure

	GAN-based Pretraining
	Cross-domain Weakly Supervised Training Using Animal Meat Dataset
	Augmentation and K-Fold Cross Validation
	Qualitative Analysis

	Results
	Quantitative Results for Test Set A
	Qualitative Results for Test Sets A and B
	Test Set Images with Blank Masks

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Ethical Approval and Informed Consent
	Declaration of competing interest
	Acknowledgements
	References


