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Abstract
Background In response to exercise, protein kinases and signaling networks are engaged to blunt homeostatic threats gener-
ated by acute contraction-induced increases in skeletal muscle energy and oxygen demand, as well as serving roles in the 
adaptive response to chronic exercise training to blunt future disruptions to homeostasis. High-intensity interval training 
(HIIT) is a time-efficient exercise modality that induces superior or similar health-promoting skeletal muscle and whole-
body adaptations compared with prolonged, moderate-intensity continuous training (MICT). However, the skeletal muscle 
signaling pathways underlying HIIT’s exercise intensity-specific adaptive responses are unknown.
Objective We mapped human muscle kinases, substrates, and signaling pathways activated/deactivated by an acute bout 
of HIIT versus work-matched MICT.
Methods In a randomized crossover trial design (Australian New Zealand Clinical Trials Registry number 
ACTRN12619000819123; prospectively registered 6 June 2019), ten healthy male participants (age 25.4 ± 3.2 years; BMI 
23.5 ± 1.6 kg/m2; V̇O

2
max 37.9 ± 5.2 ml/kg/min, mean values ± SD) completed a single bout of HIIT and MICT cycling 

separated by ≥ 10 days and matched for total work (67.9 ± 10.2 kJ) and duration (10 min). Mass spectrometry-based phos-
phoproteomic analysis of muscle biopsy samples collected before, during (5 min), and immediately following (10 min) 
each exercise bout, to map acute temporal signaling responses to HIIT and MICT, identified and quantified 14,931 total 
phosphopeptides, corresponding to 8509 phosphorylation sites.
Results Bioinformatic analyses uncovered exercise intensity-specific signaling networks, including > 1000 differentially phos-
phorylated sites (± 1.5-fold change; adjusted P < 0.05; ≥ 3 participants) after 5 min and 10 min HIIT and/or MICT relative 
to rest. After 5 and 10 min, 92 and 348 sites were differentially phosphorylated by HIIT, respectively, versus MICT. Plasma 
lactate concentrations throughout HIIT were higher than MICT (P < 0.05), and correlation analyses identified > 3000 phos-
phosites significantly correlated with lactate (q < 0.05) including top functional phosphosites underlying metabolic regulation.
Conclusions Collectively, this first global map of the work-matched HIIT versus MICT signaling networks has revealed rapid 
exercise intensity-specific regulation of kinases, substrates, and pathways in human skeletal muscle that may contribute to 
HIIT’s skeletal muscle adaptations and health-promoting effects.
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Key Points 

The breadth of common and unique signaling networks 
underlying human skeletal muscle adaptive responses 
to high-intensity interval training (HIIT) versus work-
matched moderate-intensity continuous training (MICT) 
is unknown.

Global phosphoproteomic analysis of skeletal muscle 
biopsies from ten healthy male participants’ randomized 
crossover trials mapped rapid exercise signaling network 
responses to an acute bout of HIIT versus workload- and 
duration-matched MICT.

Pre-trial standardization achieved highly reproducible 
baseline signaling signatures between crossover trials.

More phosphosites were down- versus up-regulated 
in response to each exercise intensity and timepoint, 
suggesting acute exercise-regulated inhibition of kinase 
activity and/or activation of phosphatases.

Networks of exercise intensity-specific kinases, sub-
strates, and pathways highly associated with plasma lac-
tate concentrations were identified that may contribute to 
exercise’s health-promoting effects.

1 Introduction

Exercise training confers numerous beneficial physiologi-
cal adaptations in skeletal muscle, imparting a wide range 
of whole-body health benefits that can prevent, delay, and/
or treat a range of chronic metabolic conditions including 
obesity, type 2 diabetes, and cardiovascular disease [1, 2]. 
Protein kinases and downstream signal transduction net-
works are activated/deactivated in contracting skeletal 
muscles in response to an acute bout of exercise in order to 
meet increased energy and oxygen demands and maintain 
cellular energy homeostasis. Over time (weeks to months), 
these repeated bouts of exercise lead to beneficial training 
adaptations [3, 4]. Protein phosphorylation is a key post-
translational modification that regulates nearly all cellular 
biological processes, including skeletal muscle adaptations 
to exercise. Such adaptations are influenced by factors such 
as the mode, intensity, duration, and frequency of exercise 
by engaging distinct molecular transducers [5].

High-intensity interval training (HIIT) has attracted 
widespread scientific and popular interest as a low-volume, 
time-effective exercise intervention capable of inducing 
superior [6] or similar [7] physiological adaptations (e.g., 
increased cardiorespiratory fitness) and reductions in 

cardiometabolic disease risk factors compared with higher-
volume, moderate-intensity continuous training (MICT). 
HIIT-based exercise protocols involve multiple (i.e., 4–10) 
work bouts of high-intensity exercise (≥ 80% V̇O2 max ) 
interspersed with periods of rest or active recovery [8, 9]. A 
single bout of HIIT activates several key exercise-regulated 
kinases in skeletal muscle, including the AMP-activated 
protein kinase (AMPK) and p38 mitogen-activated protein 
kinase (p38MAPK), stimulating mitochondrial biogenesis 
and leading to increased mitochondrial content and enzyme 
activity in as little as 24 h post-exercise [10, 11]. Relative 
to a workload-matched bout of MICT, a single bout of HIIT 
elicits similar skeletal muscle exercise-induced increases 
in AMPK signaling [12], as well as p38MAPK and p53 
tumor suppressor protein (p53) signaling responses that 
underpin mitochondrial biogenesis in human skeletal mus-
cle [13]. In contrast, increased activation of key signaling 
pathways, including AMPK, p38 MAPK, and  Ca2+/calm-
odulin-dependent protein kinase II (CAMKII), has also 
been detected in response to work-matched interval versus 
continuous exercise [14]. However, in-depth analyses of 
the signaling networks engaged by HIIT versus MICT are 
lacking, with studies to date having analyzed only a sub-
set of key exercise-regulated kinases, without investigating 
the breadth of potential signaling pathways underlying each 
exercise intervention.

Global mass spectrometry (MS)-based phosphoproteom-
ics has the capability of identifying and quantifying thou-
sands of protein phosphorylation events occurring within 
the complex and interconnected signaling networks engaged 
in response to exercise [15]. The first global phosphopro-
teomic analysis of exercise signaling in human skeletal 
muscle uncovered > 1000 sites differentially phosphoryl-
ated after a short bout of continuous intense exercise (i.e., 
8–12 min) versus rest [16]. Recently, Blazev et al. utilized 
phosphoproteomics to map human skeletal muscle canonical 
signaling network responses to an acute bout of endurance 
(90 min cycling at 60% V̇O2 max ), sprint (cycling all-out 
for 3 × 30 s), and resistance exercise (six sets of ten repeti-
tion maximum knee extensions) in eight healthy male par-
ticipants, revealing 420 core phosphosites common to all 
exercise modalities [17]. This study also identified divergent 
signaling responses to these different modalities of exer-
cise, although the exercise bouts were not matched for total 
workload nor duration. As such, it is difficult to isolate the 
divergent signaling responses related to exercise intensity, 
as kinase regulation can display different time profiles of 
activation/deactivation [17]. Furthermore, the common and 
unique kinases and downstream signaling pathways engaged 
by work-matched HIIT versus MICT in human skeletal mus-
cle remain unexplored with no global phosphoproteomic 
analyses of work-matched exercise performed to date.
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Therefore, the overall aim of this study was to determine 
the temporal regulation of kinases and downstream signaling 
pathways by an acute bout of HIIT versus MICT within the 
same human participants while controlling for total exercise 
duration, workload, and diet. We hypothesized that HIIT 
would engage a unique subset of kinases and signaling path-
ways owing to the intense, intermittent nature of this exer-
cise modality, including increased activation of signaling 
networks underlying mitochondrial biogenesis. Utilizing a 
phosphoproteomic approach, this is the first study to map 
the human skeletal muscle signaling networks underlying an 
acute bout of HIIT and across different work-matched exer-
cise intensities. We identify > 1000 sites significantly regu-
lated during (5 min) and immediately following (10 min) 
HIIT and/or MICT, including known and novel exercise-
regulated signaling events. Furthermore, we identify a subset 
of kinases, substrates, and pathways differentially regulated 
by HIIT relative to MICT and highly associated with plasma 
lactate responses to exercise, revealing the molecular frame-
work underlying adaptive responses to HIIT that become 
rapidly engaged and potentially contribute to HIIT’s muscle 
physiological adaptations and whole-body health benefits.

2  Methods

2.1  Human Participants

Ten healthy males aged 18–30 years with a body mass 
index 18.5–27.0 kg/m2 were recruited to participate in this 
study. Participant characteristics are shown in Fig. 1B. 
Inclusion criteria were physical inactivity (i.e., inactive 
in terms of exercise training and job, < 150 min/week 
moderate-intensity exercise, and no structured physical 
activity for 6 months prior to recruitment); no cardiopul-
monary abnormalities; no injuries; the ability to pass the 
Exercise and Sport Science Australia (ESSA) pre-exercise 
screening tool and/or obtain general practitioner clearance 
to exercise; and the ability to ride a stationary cycle at 
high intensity. Exclusion criteria were known cardiovas-
cular disease or diabetes mellitus; major or chronic ill-
ness that impairs mobility and/or eating/digestion; taking 
prescription medications (i.e., beta-blockers, anti-arrhyth-
mic drugs, statins, insulin sensitizing drugs, or drugs that 
increase the risk of bleeding [anticoagulants, antiplatelets, 
novel oral anticoagulants, nonsteroidal anti-inflammatory 
drugs, selective norepinephrine reuptake inhibitors, or 
selective serotonin reuptake inhibitors]; or known bleed-
ing disorders (i.e., hemophilia A [factor VIII deficiency], 
von Willebrand disease, or other rare factor deficiencies 
including I, II, V, VII, X, XI, XII, and XIII).

2.2  Participant Baseline Measurements, Exercise 
Testing, and Familiarization

Participants arrived at the laboratory (Melbourne, Aus-
tralia) following a 10–12 h overnight fast for dual-energy 
X-ray absorptiometry (DXA)-based body composition 
analysis (Lunar iDXA; GE HealthCare, Chicago, IL, USA). 
Upon arrival each participant’s height and body mass were 
recorded, bladder was voided, and any metal jewelry or 
clothing items containing metal were removed prior to DXA 
scanning. Next, resting metabolic rate (RMR) testing was 
performed using a calibrated TrueOne 2400 (Parvo Med-
ics, Sandy, UT, USA) with expired air collected for a total 
of 25 min, including a 10 min baseline measurement and 
15 min data collection. Following RMR, resting blood pres-
sure and heart rate (HR) were recorded in a seated position.

Following baseline measurements, each participant 
completed an incremental fitness test to volitional fatigue 
on an electronically braked cycle ergometer (Lode Excali-
bur Sport; Lode, Groningen, the Netherlands) to determine 
V̇O2peak and maximal aerobic power (MAP). During the 
maximal exercise capacity test, expired gas was collected 
every 30 s via open-circuit respirometry (TrueOne 2400; 
Parvo Medics) with continuous HR monitoring (Polar Heart 
Rate Monitor; Polar Electro, Kempele, Finland). Before each 
test, gas analyzers were calibrated with commercially avail-
able gases (16%  O2, 4%  CO2), and volume flow was cali-
brated using a 3 L syringe. Following a 5 min warm-up at 
1 W/kg, resistance was increased by 25 W every 150 s until 
volitional fatigue, determined as the inability to maintain a 
cadence > 60 rpm. Individual V̇O2peak and MAP were deter-
mined, with MAP calculated as Wfinal + (t/150 × 25) if the 
final stage was not completed, to calculate the work rate 
for subsequent work (67.9 ± 10.2 kJ) and duration (10 min) 
matched HIIT and MICT exercise trials. At least 72 h prior 
to the first randomized exercise trial, participants returned 
to the laboratory for exercise trial familiarization. Follow-
ing a 5 min warm-up at 1 W/kg, participants completed two 
cycling-based exercise sessions consisting of a single bout 
of HIIT and MICT (10 min total each) to confirm their abil-
ity to successfully complete exercise trials at the prescribed 
intensities.

2.3  Dietary Control and Standardized Meals

Participants recorded dietary information using the Easy 
Diet Diary mobile phone application [18]. Food and fluid 
intake for all meals and snacks was recorded over a 3-day 
period and analyzed by an accredited research dietician. The 
habitual diet record and baseline DXA/RMR data were used 
to prescribe a standardized meal, which was provided with 
cooking instructions and consumed at the participant’s home 
for dinner between 18:00–20:00 h before each trial day. The 
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macronutrient composition of the standardized dinner was 
50% carbohydrate, 30% fat, and 20% protein. Participants 
refrained from consuming any other food or fluids other than 
water from 20:00 h the evening prior to each trial. Partici-
pants also refrained from caffeine consumption after 12:00 h 
and alcohol consumption and ibuprofen 24 h prior to each 
trial.

2.4  Exercise Trials and Skeletal Muscle Biopsy 
Collection

In a randomized crossover design, participants were assigned 
their first exercise trial (i.e., HIIT or MICT, with half of 
participants randomly assigned to perform the HIIT session 
first) prior to commencing trial days and did not perform 
any exercise in the 72 h prior to each trial day. The HIIT ses-
sion consisted of 10 min total cycling with 1-min intervals 
at 85 ± 0.1% of individual MAP (176 ± 34 W) interspersed 
with 1-min active recovery intervals at 50 W. The MICT 
protocol was work- and duration-matched and consisted of 

an acute bout of continuous cycling at 55 ± 2% of individual 
MAP (113 ± 17 W). A schematic of the overall study design 
is shown in Fig. 1A. The two HIIT and MICT exercise tri-
als were separated by ≥ 10 days, and it was not possible to 
blind participants nor the principal researchers to the order 
of these trials. All trials were completed between June 2019 
and November 2019.

On trial days participants arrived at the laboratory at 
07:00–08:00 h, having fasted overnight since consuming 
the standardized dinner the evening prior, and only con-
sumed water during the trials. Each participant’s preferred 
arm was cannulated for blood collections (detailed below) 
and local anesthetic (1% lignocaine hydrochloride in saline; 
McFarlane; Surrey Hills, Victoria Australia; 11037-AS) 
was administered to the vastus lateralis by a highly expe-
rienced medical doctor. A percutaneous skeletal muscle 
biopsy was collected at rest prior to commencing exercise 
(0 min) using a Bergstrom needle modified with suction 
and immediately snap-frozen, placed in liquid nitrogen and 
stored at − 80 °C until analysis. Additional skeletal muscle 
biopsy samples were collected from each participant mid-
exercise (5 min) and immediately post-exercise (10 min), 
with the total 10 min cycling duration consistent for each 
exercise intensity. All three biopsies for each exercise trial 
were taken from the same leg, with each subsequent biopsy 
collected 3–5 cm distal to the previous biopsy(ies). For the 
HIIT trial, the mid-exercise biopsy was collected during an 
active recovery interval on a bed placed directly behind the 
cycle ergometer (~ 30 s), and participants re-commenced 
cycling immediately after the biopsy was collected. For the 
MICT trial, participants stopped cycling (~ 30 s) for the mid-
exercise biopsy collection and re-commenced cycling imme-
diately after the biopsy was collected. HR (Polar Heart Rate 
Monitor; Polar Electro) and rating of perceived exhaustion 
(RPE; Borg RPE Scale out of 20) were recorded at 1 min 
(i.e., following completion of the first HIIT “on” interval), 
5 min, and 10 min during each participant’s HIIT and MICT 
trials.

2.5  Blood Sampling and Analyses

Upon arrival to the laboratory, a cannula (22 G; Terumo, 
Tokyo, Japan) was inserted into an antecubital vein of each 
participant. Two vacutainers of venous blood (6 mL each) 
were collected via cannula at the same timepoints as skeletal 
muscle biopsies above, including pre-exercise (0 min), mid-
exercise (5 min), and immediately post-exercise (10 min). 
Lipid panels (Roche Diagnostics, Basel, Switzerland; 
6380115190) including triglycerides, total cholesterol, 
high-density lipoproteins (HDL) and low-density lipopro-
teins (LDL) were immediately measured from an aliquot 
of whole blood (~ 19 μL) using the COBAS b 101 system 
(Roche Diagnostics). Following inversion ten times, one 

Fig. 1  Preliminary testing and randomized crossover trial design, 
participant baseline characteristics, and plasma lactate and glu-
cose responses to HIIT and MICT. As detailed in the overall study 
schematic (A), participants first underwent preliminary testing and 
dietary control prior to each experimental HIIT or MICT trial day. 
Participants arrived at the laboratory following overnight fasting for 
baseline measurements, a dual-energy X-ray absorptiometry (DXA) 
body composition scan and resting metabolic rate (RMR) testing. 
Each participant then completed an incremental fitness test to voli-
tional fatigue on a cycle ergometer to determine peak oxygen uptake 
( V̇O2peak ) and maximal aerobic power (MAP) to calculate the work 
rate for the subsequent two workload (67.9 ± 10.2 kJ) and total dura-
tion (10  min) matched HIIT and MICT exercise trials. Participants’ 
food and fluid intake for all meals and snacks was recorded over a 
3-day period using a mobile phone application and analyzed by an 
accredited research dietician. A standardized dinner was consumed 
by each participant the evening prior to each exercise trial, with no 
caffeine or alcohol consumed 20 or 24 h prior, respectively. In a ran-
domized crossover design, participants were randomly assigned their 
first exercise trial (i.e., HIIT or MICT) prior to commencing trial days 
and did not perform any exercise in the 72 h prior to each trial day. 
HIIT and MICT exercise trials were separated by at least a 10-day 
recovery period. On each experimental day, participants reported to 
the laboratory following overnight fasting, and vastus lateralis skel-
etal muscle biopsies and venous blood samples were collected pre-
exercise (0 min), mid-exercise (5 min), and immediately post-exercise 
(10 min). Participant characteristics are listed in (B). Plasma (C) lac-
tate and (D) glucose concentrations across the acute HIIT and MICT 
exercise bouts were determined using a YSI Analyzer. No interaction 
effect was observed for plasma lactate in (C); P = 0.0573. Heart rate 
(E) and rating of perceived exhaustion (F; RPE; Borg RPE scale out 
of 20) were recorded at 1 min (i.e., following completion of the first 
HIIT “on” interval), 5 min, and 10 min during HIIT or MICT trials. 
Data are presented as mean ± SD; two-way ANOVA with repeated 
measurements, Tukey’s test for multiple comparisons; **P < 0.01 ver-
sus 0 min (or 1 min in E and F); ***P < 0.001 versus 0 min (or 1 min 
in E and F); ****P < 0.0001 versus 0  min (or 1  min in E and F); 
#P < 0.05 versus 5  min; n = 10 for each exercise intensity and time-
point

◂
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EDTA-coated vacutainer collected for plasma (Interpath, 
Somerton, Victoria, Australia; 454036) was immediately 
placed on ice, centrifuged at 1500g for 10 min at 4 °C, ali-
quoted, and stored at − 80 °C until analysis. Simultaneous 

measurement of glucose and lactate from plasma aliquots 
was performed in duplicate using a calibrated YSI 2900 
Biochemistry Analyzer (YSI Incorporated, Yellow Springs, 
OH, USA).
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2.6  Immunoblotting

Snap-frozen human skeletal muscle biopsy samples were 
lysed in homogenization buffer containing 50 mM Tris–HCl 
(pH 7.5), 1 mM ethylenediaminetetraacetic acid (EDTA), 
1 mM egtazic acid (EGTA), 10% glycerol, 1% Triton-X, 
50 mM sodium fluoride, 5 mM sodium pyrophosphate with 
cOmplete Protease Inhibitor Cocktail and PhosSTOP phos-
phatase inhibitor (Sigma-Aldrich, St. Louis, MO, USA). 
Samples were centrifuged at 16,000g for 30 min at 4 °C 
and the protein content of the supernatant was determined 
using bicinchoninic acid (BCA) assay (Pierce, Rockford, 
IL, USA). Lysates (10 µg protein per well) suspended in 
Laemmli sample buffer were run on 4–15% pre-cast stain-
free gels (Bio-Rad, Hercules, CA, USA) and transferred to 
polyvinylidene fluoride (PVDF) membranes (Merck Milli-
pore, Burlington, MA, USA). Membranes were blocked with 
7.5% bovine serum albumin (BSA) in Tris-buffered saline 
containing 0.1% Tween 20 (TBS-T) for 1 h at room tem-
perature then incubated with primary antibodies overnight 
with rocking at 4 °C. After washing with TBS-T, membranes 
were incubated with secondary antibody for 1 h at room tem-
perature. Antibodies against phospho-AMPK T172 (2535S), 
phospho-ACC S79 (11818S), and horseradish peroxidase-
conjugated anti-rabbit (7074) IgG secondary antibodies were 
purchased from Cell Signaling Technology (Danvers, MA, 

USA). Proteins were detected via chemiluminescence using 
Bio-Rad Clarity Western ECL Substrate and imaged using 
the ChemiDoc Imaging System (Bio-Rad). The volume den-
sity of each target band was quantified using Bio-Rad Image 
Lab and normalized to total protein in each lane using stain-
free imaging technology and Image Lab software (version 
6.1, Bio-Rad).

2.7  Phosphoproteomic Sample Preparation

As depicted in Fig. 2A and detailed below, proteins from 
each human skeletal muscle biopsy sample were extracted, 
digested to peptides with trypsin, and isobarically labeled 
prior to phosphopeptide enrichment, fractionation, and 
analysis by liquid chromatography with tandem mass spec-
trometry (LC–MS/MS). Briefly, ~ 30 mg of each snap-frozen 
human skeletal muscle was lysed as previously described 
[17] in 6 M guanidine HCL (Sigma, St. Louis, MO, USA; 
G4505) and 100 mM Tris pH 8.5 containing 10 mM tris(2-
carboxyethyl)phosphine (Sigma; 75259) and 40 mM 2-chlo-
roacetamide (Sigma; 22790) using tip-probe sonication. 
The resulting lysate was heated at 95 °C for 5 min and cen-
trifuged at 20,000g for 10 min at 4 °C, and the resulting 
supernatant was diluted 1:1 with water and precipitated 
with 5 volumes of acetone at − 20 °C overnight. Lysate was 
then centrifuged at 4000g for 5 min at 4 °C and the protein 
pellet was resuspended in Digestion Buffer (10% 2,2,2-tri-
fluoroethanol [Sigma; 96924] in 100 mM HEPES pH 8.5). 
Protein content was determined using BCA (Thermo Fisher 
Scientific, Waltham, MA, USA). Four hundred μg protein 
(normalized to 100 μL final volume in Digestion Buffer) was 
digested with sequencing grade trypsin (Sigma; T6567) and 
LysC (Wako Chemicals, Richmond, VA, USA; 129-02541) 
at a 1:50 enzyme:substrate ratio at 37 °C overnight with 
shaking at 2000 rpm.

Digested peptides were labeled with 800 μg of 10-plex 
tandem mass tags (TMT) in 50% acetonitrile to a final vol-
ume of 200 μL at room temperature for 1.5 h. The TMT reac-
tion was deacylated with 0.3% (w/v) of hydroxylamine for 
10 min at room temperature and quenched to final volume 
of 1% trifluoroacetic acid (TFA). Each experiment consist-
ing of seven TMT labeled peptides (ten total experiments, 
each including all six timepoints from a single participant’s 
HIIT and MICT trials and a pooled internal reference mix 
of peptides consisting of peptides from all ten participants) 
was then pooled, resulting in a final amount of 4 mg pep-
tide per TMT 10-plex experiment. The sample identity and 
labeling channels have been uploaded as a table with the 
raw proteomic data to the ProteomeXchange Consortium 
via the PRIDE partner repository (see Resource Availability 
for login details).

In total, 20 μg of TMT-labeled peptide was removed for 
total proteome analysis (data not shown, as only 5–10 min 

Fig. 2  Human skeletal muscle phosphoproteomic analysis reveals 
effective pre-exercise standardization and distinct signaling profile 
clusters in response to HIIT versus MICT after 5  min and 10  min. 
Vastus lateralis skeletal muscle biopsies were collected pre-exer-
cise (0  min), mid-exercise (5  min), and immediately post-exercise 
(10 min) from each participant during the HIIT and MICT exercise 
trials (A). The 10  min HIIT cycling session consisted of alternat-
ing 1  min intervals at 85 ± 0.1% of individual MAP (176 ± 34 W) 
and 1 min active recovery intervals at 50 W. The total duration- and 
work-matched MICT cycling session consisted of 10 min cycling at 
55 ± 2% of individual MAP (113 ± 17 W). Each of the 60 total mus-
cle biopsy samples were prepared and subjected to LC–MS/MS 
analysis to accurately identify and quantity skeletal muscle protein 
phosphorylation sites at 0  min (pre-exercise), 5  min (mid-exercise), 
and 10 min (post-exercise) for both the HIIT and MICT exercise tri-
als (A). Principal component analysis (B) and hierarchical clustering 
(C) of the phosphoproteomic datasets resulting from LC–MS/MS 
analysis of the 60 muscle biopsy samples were performed using the 
PhosR phosphoproteomic data analysis package (Kim et al. 2021 Cell 
Reports). Each individual point (B) or line (C) represents a unique 
biological sample, and samples are color-coded by exercise intensity 
and timepoint. Overall, 19% of the total variance in the overall phos-
phoproteomic dataset was explained by principal component (PC)1, 
while PC2 explained 6% of the variance. The total number of phos-
phopeptides and phosphosites identified and quantified using MS are 
shown (D), in addition to the number of differentially regulated phos-
phosites (± 1.5-fold change and adjusted P < 0.05) from each time-
point and/or exercise intensity comparison (F). Volcano plot shows 
the median phosphopeptide  log2 fold change (x-axis) plotted against 
the −  log10 P-value (y-axis) for each pre-exercise condition, with no 
differentially regulated phosphosites at rest between crossover trials 
(E)

◂
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of exercise does not affect total muscle protein content) 
and phosphopeptides were enriched from the remaining 
digestion of pooled peptides from each experiment using 
a modified version of the EasyPhos protocol [19]. Briefly, 
samples were diluted to a final concentration of 50% iso-
propanol containing 5% TFA and 0.8 mM  KH2PO4. Dilu-
tions were then incubated with 15 mg of  TiO2 beads (GL 
Sciences, Tokyo, Japan; 5010–21315) for 8 min at 40 °C 
with shaking at 2000 rpm. Beads were washed four times 
with 60% isopropanol containing 5% TFA and resuspended 
in 60% isopropanol containing 0.1% TFA. The bead slurry 
was transferred to in-house packed C8 microcolumns (3 M 
Empore; 11913614) and phosphopeptides were eluted with 
40% acetonitrile containing 5% ammonium hydroxide. The 
enriched phosphopeptides and 20 μg aliquot for total pro-
teome analysis were acidified to a final concentration of 1% 
TFA in 90% isopropanol and purified by in-house packed 
SDB-RPS (Sigma; 66886-U) microcolumns. The purified 
peptides and phosphopeptides were resuspended in 2% ace-
tonitrile in 0.1% TFA and stored at − 80 °C prior to offline 
fractionation using neutral phase C18BEH HPLC as previ-
ously described [17].

2.8  LC–MS/MS Data Acquisition and Processing

Peptides were analyzed on a Dionex 3500 nanoHPLC, cou-
pled to an Orbitrap Eclipse mass spectrometer (Thermo 
Fisher Scientific) via electrospray ionization in positive 
mode with 1.9 kV at 275 °C and RF set to 30%. Separation 
was achieved on a 50 cm × 75 μm column (PepSep, Marslev, 
Denmark) packed with C18-AQ (1.9  μm; Dr Maisch, 
Ammerbuch, Germany) over 120 min at a flow rate of 300 
nL/min. The peptides were eluted over a linear gradient of 
3–40% Buffer B (Buffer A: 0.1% formic acid; Buffer B: 80% 
acetonitrile, 0.1% v/v FA) and the column was maintained 
at 50 °C. The instrument was operated in data-dependent 
acquisition (DDA) mode with an MS1 spectrum acquired 
over the mass range 350–1550 m/z (120,000 resolution, 
1 ×  106 automatic gain control [AGC] and 50 ms maximum 
injection time) followed by MS/MS analysis with a fixed 
cycle time of 3 s via HCD fragmentation mode and detec-
tion in the orbitrap (50,000 resolution, 1 ×  105 AGC, 150 ms 
maximum injection time, and 0.7 m/z isolation width). Only 
ions with charge state 2–7 triggered MS/MS with peptide 
monoisotopic precursor selection and dynamic exclusion 
enabled for 30 s at 10 ppm.

DDA data were searched against the UniProt 
human database (June 2020; UP000005640_9606 and 
UP000005640_9606_additional) with MaxQuant v1.6.7.0 
using default parameters with peptide spectral matches, pep-
tide, and protein false discovery rate (FDR) set to 1% [20]. 
All data were searched with oxidation of methionine set as 
a variable modification and cysteine carbamidomethylation 

set as a fixed modification. For analysis of phosphopeptides, 
phosphorylation of serine, threonine, and tyrosine was set 
as a variable modification, and for analysis of TMT-labeled 
peptides, TMT was added as a fixed modification to peptide 
N-termini and lysine. First search MS1 mass tolerance was 
set to 20 ppm followed by recalibration and main search 
MS1 tolerance set to 4.5 ppm, while MS/MS mass toler-
ance was set to 20 ppm. MaxQuant output data were ini-
tially processed with Perseus [21] to remove decoy data, 
potential contaminants, and proteins only identified with a 
single peptide containing oxidized methionine. The “expand 
site” function was additionally used for phosphoproteomic 
data to account for multi-phosphorylated peptides prior to 
statistical analysis.

2.9  Bioinformatic Analysis

For analysis of human muscle phosphopeptides with TMT-
based quantification, data were first  log2 transformed and 
each phosphosite abundance was corrected by subtracting 
the abundance of the pooled sample in the same TMT batch. 
The phosphoproteomic data were processed using the pipe-
line implemented in the PhosR package [22]. Filtering was 
performed to retain phosphosites present in at least three 
participants (out of ten total participants), in at least one 
timepoint (out of six total timepoints). Missing values in 
the retained phosphosites were imputed first by a site- and 
sample condition-specific imputation method, where for a 
phosphosite that contains missing values in a condition, 
if more than three samples were quantified in that condi-
tion, the missing values were imputed on the basis of these 
quantified values for that phosphosite in that condition, and 
then by a random-tail imputation method [23]. The imputed 
data were normalized using the “combat” function in the 
sva package [24] for removing batch effects and then the 
“RUVphospho” function in PhosR for the removal of addi-
tional unwanted variation with a set of stably phosphoryl-
ated sites as negative controls [25]. The batch-corrected data 
were further converted to ratios relative to the pre-exercise 
samples (i.e., “0 min” controls). Baseline reliability and 
variability of phosphosite quantification between trials 
were assessed using the intraclass correlation coefficient 
(ICC) and coefficient of variation (CV). CV was calculated 
as SD/|mean|× 100, and ICC was computed using a two-
way random effects model, measuring absolute agreement 
between conditions (Supplementary Table 4). Reproducibil-
ity classification of ICC values followed Cicchetti’s thresh-
olds (i.e., excellent ≥ 0.75, good 0.60–0.74, fair 0.40–0.59, 
and poor < 0.40) [26].

Differentially phosphorylated sites were identified using 
the limma R package [27]. Phosphosites with ± 1.5-fold 
change and FDR-adjusted P value < 0.05 from each time-
point and exercise intensity comparison were considered as 
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differentially phosphorylated (Fig. 3A–H). Kinase activi-
ties at post- or mid-exercise for both HIIT and MICT were 
inferred on the basis of the changes in phosphorylation 
(relative to the corresponding pre-exercise control sam-
ples) of their known substrates using the KinasePA pack-
age [28] and the PhosphoSitePlus annotation database [29] 
(Fig. 4A). Pathway enrichment analysis was then performed, 
whereby phosphosites were first summarized into their host 
protein levels by taking the maximum  log2 fold change for 
each comparison between conditions, and then the pathway 
enrichment was performed on the basis of the inferred host 
protein changes using the KinasePA package and Reactome 
database [30] (Fig. 4B).

Putative substrates of kinases for HIIT and MICT were 
predicted using the “kinaseSubstrateScore” function in 
the PhosR package, and the results were represented as 
heatmaps (Fig. 5A, B). Pathway over-representation anal-
ysis was performed on protein sets identified from the 
kinase–substrate scoring analysis (i.e., kinase–substrate 
pairs with a score > 0.85 were selected) per kinase using 
the “enrichKEGG” function implemented in the clusterPro-
filer R package [31], and P values were adjusted for mul-
tiple testing using Benjamini–Hochberg FDR correction 
at α = 0.05 (Fig. 5C, D). The prediction scores were subse-
quently used for constructing signalome networks. Pearson’s 
correlation was performed on pairwise kinases, and then the 
correlation matrix was binarized on the basis of the correla-
tion score threshold of 0.85. Undirected graphs were built 
from the binary adjacency matrix using the “graph_from_
adjacency_matrix” function from the igraph package [32], 
and results from this analysis were presented as network 
diagrams (Fig. 6A, B).

Five protein modules were identified by clustering pro-
teins with phosphosites sharing similar dynamic phospho-
rylation profiles and kinase regulation across both HIIT and 
MICT. The proportion of phosphosites that were phospho-
rylated by kinases for each protein module was calculated 
and presented as bubble plots (Fig. 6C, D). The activity of 
each protein module was then inferred. The regulated phos-
phosites were first obtained across all conditions (i.e., analy-
sis of variance [ANOVA] test with adjusted P < 0.05) and 
the average  log2 fold change of the regulated phosphosites 
for each of the five modules (relative to the correspond-
ing pre-exercise control) were calculated (Supplementary 
Fig. 2A–E).

2.10  Statistical Analysis

Statistical analysis was performed using GraphPad Prism 
(version 9.4). A two-way ANOVA with repeated measure-
ments was used to determine the effects of time and exer-
cise intensity, with Tukey’s test applied for multiple com-
parisons (P < 0.05 considered as significant; sample size 

and statistical parameters are reported in the Fig. 1 legend). 
Spearman correlation of individual phosphorylation sites 
with plasma lactate concentrations at each timepoint and 
exercise intensity was performed to determine significantly 
correlated phosphosites, with Benjamini–Hochberg false 
discovery rate applied (q < 0.05 considered as significant; 
sample size and statistical parameters are reported in the 
Fig. 7 legend).

3  Results

Ten healthy male participants were recruited and success-
fully completed all preliminary testing and the HIIT and 
MICT exercise bouts. The randomized crossover trial design 
permitted signaling responses to workload- and duration-
matched HIIT and MICT exercise to be mapped and inter-
rogated within the same participant (Fig. 1A). Baseline 
whole-body anthropometric measurements and blood analy-
ses confirmed these participants (age 25.4 ± 3.2 years; BMI 
23.5 ± 1.6 kg/m2) were metabolically healthy, and maximal 
exercise capacity testing confirmed they were untrained (rel-
ative peak oxygen uptake [ V̇O2peak] 37.9 ± 5.2 mL/kg/min) 
in line with our recruitment strategy to maximize detection 
of skeletal muscle signaling responses to exercise (Fig. 1B). 
MAP (208 ± 40 W) achieved during the incremental fitness 
test to volitional fatigue was used to prescribe the relative 
work-matched intensities for HIIT and MICT exercise. 
Lean mass from the DXA scan and resting metabolic rate 
(Fig. 1B) were used to prescribe a standardized meal for 
each participant to consume prior to each exercise trial day.

Following the consumption of a standardized dinner the 
evening before each trial, blood and skeletal muscle biopsy 
samples were collected in the fasted state at baseline and at 
5 min and 10 min of each respective exercise bout (Fig. 1A). 
Participants completing the acute bout of HIIT cycling, 
which consisted of 5 × 1 min work bouts at 85 ± 0.1% of 
individual MAP (176 ± 34 W) with 5 × 1-min active recov-
ery intervals at 50 W, displayed increased plasma lactate 
concentrations at 5 and 10 min of exercise relative to pre-
exercise baseline (Fig. 1C; P < 0.0001 and P < 0.001, respec-
tively; main effect of time P < 0.0001) with no changes in 
plasma glucose levels (Fig. 1D). In response to a total work- 
and duration-matched acute bout of MICT (55 ± 2% indi-
vidual MAP; 113 ± 17 W), participants displayed increased 
plasma lactate concentrations at 5 and 10 min of exercise 
compared with baseline (Fig. 1C; P < 0.001; main effect of 
time P < 0.0001) with no changes in plasma glucose concen-
trations (Fig. 1D). There was a main effect of higher plasma 
lactate levels in response to HIIT versus MICT across the 
exercise bout (Fig. 1C; P < 0.05), but no interaction effect 
(Fig. 1C; P = 0.0573). Associated increases in HR (Fig. 1E) 
and RPE (Fig. 1F) were observed at 5 and 10 min of HIIT 
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and MICT relative to baseline with a main effect of time, 
but no HIIT versus MICT or interaction effects detected 
(Fig. 1E, F).

To map the signaling networks regulated by HIIT and 
MICT, proteins from each skeletal muscle biopsy sample 
were extracted, reduced/alkylated, digested to peptides, and 

isobarically labeled prior to phosphopeptide enrichment, 
fractionation, and liquid chromatography with tandem MS 
(LC–MS/MS) phosphoproteomic analysis (Fig. 2A). Prin-
cipal component analysis (PCA; Fig. 2B) and hierarchical 
clustering (Fig. 2C) using the PhosR phosphoproteomic data 
analysis pipeline [22] revealed a high level of consistency 

Fig. 3  Human skeletal muscle phosphorylation sites differentially 
regulated by an acute bout of work- and duration-matched HIIT and/
or MICT. Volcano plots showing the median phosphopeptide  log2 
fold change (x-axis) are plotted against the −  log10 P value (y-axis) for 
each individual exercise intensity versus the respective timepoint (A–
F). From the ~ 15,000 total phosphopeptides detected, significantly 

up-regulated (red dots) and down-regulated (blue dots) phosphosites 
are shown (± 1.5-fold change and adjusted P < 0.05), with black dots 
representing phosphosites that were detected but not significantly reg-
ulated by exercise. Volcano plots comparing signaling responses with 
each exercise intensity (i.e., HIIT versus MICT) at each timepoint are 
shown in G, H 
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in the overall baseline signaling signature at rest (0 min) 
prior to the HIIT and MICT exercise trials, confirming our 
pre-exercise standardization strategies were effective. Dis-
tinct clusters were observed in response to the two divergent 
exercise challenges, with the 5 and 10 min HIIT signaling 
profiles clustering farthest away from the pre-exercise con-
trol profile (Fig. 2B, C). Overall, 19% of the total variance 
in the phosphoproteomic dataset was explained by principal 
component (PC)1, while PC2 explained 6% of the variance 
(Fig. 2B). Global phosphoproteomics identified and quanti-
fied a total of 14,931 phosphopeptides (Fig. 2D; Supple-
mentary Table 1), corresponding to 8509 phosphorylation 

sites (Fig. 2D; Supplementary Table 2). The distributions 
of phosphosite quantifications are shown in Supplementary 
Fig. 1A and detailed in Supplementary Table 2 for each of 
these 8509 phosphosites, with the largest proportion of sites 
quantified in all ten participants, and a median of 70% of 
samples in which sites were quantified (i.e., seven out of ten 
total participants).

Bioinformatic analyses of these phosphoproteomic data 
using PhosR [22] identified > 1000 phosphosites signifi-
cantly regulated (± 1.5-fold change; adjusted P < 0.05; iden-
tified and quantified in ≥ 3 participants and ≥ 1 timepoint) 
by HIIT and/or MICT after 5 and 10 min, with < 400 of 

Fig. 4  Kinase and pathway enrichment uncovers common and unique 
kinases and pathways regulated by HIIT and/or MICT. Kinase activ-
ity (A) was inferred via direction analysis using kinase perturbation 
analysis (KinasePA; [28]) to annotate and visualize how kinases and 
their known substrates are perturbed by each exercise intensity and 
timepoint. Pathway enrichment analysis (B) was performed using 
the Reactome database [30] to determine biological pathways that 
are enriched within the lists of significantly regulated genes (corre-

sponding to their respective phosphoproteins) for each exercise inten-
sity and timepoint relative to its respective pre-exercise control. For 
kinase activity inference (A) and pathway enrichment (B), z-scores 
above and below the dotted lines (corresponding to |z-score|> 1.64) 
were considered as increased or decreased by exercise, respectively, 
as they correspond to a one-tailed P value of ~ 0.05 in normally dis-
tributed data
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these sites differentially regulated post- versus mid-exercise 
(Fig. 2F; Supplementary Table 3). Analysis of the base-
line signaling signatures between the two crossover trials 
revealed no significantly regulated phosphosites (Fig. 2E), 
highlighting the high level of control and reproducibility in 
the resting phosphoproteome between trials. Reproducibil-
ity classification of ICC values for the 8509 total quantified 
phosphosites showed 50% of phosphosites (4256) had excel-
lent reproducibility at baseline between trials. The remaining 
4253 phosphosites had either good (1603), fair (1281), or 
poor (1369) baseline reproducibility classification (Supple-
mentary Table 4).

Significantly regulated phosphosites observed in response 
to HIIT and/or MICT included kinases and substrates shown 
to be regulated by an acute bout of continuous high-inten-
sity cycling, such as those within the AMPK pathway ([16]; 
e.g., ACACB S222 [HIIT and MICT], AKAP1 S107 [MICT 
only], RPTOR S722 [HIIT and MICT], STBD1 S175 [HIIT 

and MICT]; [33]), TBC1D1 S237 [HIIT and MICT], and 
TBC1D4 S704 [5 min HIIT only]). Multiple substrates of 
protein kinase A (PKA; PHKA1 S1018, and HSBP6 S16) 
were increased by both HIIT and MICT, while the PKA sub-
strate CDK16 S110 was only increased after 10 min of HIIT. 
In addition, the known Akt substrate IRS1 S629 was only 
regulated after 10 min of both HIIT and MICT [16]. Immu-
noblot analysis of the canonical exercise-regulated AMPK 
signaling pathway confirmed exercise-induced increases in 
phosphorylation across the HIIT and MICT exercise bouts 
in AMPK T172 (Supplementary Fig. 1B; main effect of time 
P < 0.01; no HIIT versus MICT or interaction effects) and 
downstream ACC (ACACA) S80 (Supplementary Fig. 1C; 
main effect of time P < 0.0001; main effect of HIIT versus 
MICT P < 0.01; interaction effect P = 0.001, with higher lev-
els of phosphorylation in response to HIIT).

In response to HIIT, a total of 1697 phosphosites 
(Fig. 3A; including 1235 and 462 down- and up-regulated, 

Fig. 5  Kinase–substrate predictions and pathway enrichment analysis 
identify differential regulation of downstream substrates and path-
ways in response to HIIT versus MICT. Kinase–substrate associations 
were predicted in response to HIIT and MICT via the phosphopro-
teome signaling profiles and kinase recognition motif of known sub-
strates using PhosR [22]. This analysis generated prediction matri-
ces, with columns corresponding to kinases, rows corresponding to 

phosphosites, and values in the heatmaps denoting how likely a phos-
phosite is phosphorylated by a given kinase in response to HIIT (A) 
and MICT (B). Pathway enrichment analysis was performed using 
kinase–substrate predictions (i.e., phosphosites with a high predic-
tion score for each kinase) to determine how kinases regulate com-
mon and/or distinct signaling pathways in response to HIIT (C) and 
MICT (D)
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respectively) and 2127 phosphosites (Fig.  3B; includ-
ing 1580 and 547 down- and up-regulated, respectively) 
were significantly regulated after 5 and 10 min of exercise, 
respectively (Fig. 2F; Supplementary Table 3). The top ten 

significantly regulated sites displaying the most robust fold 
change increases in phosphorylation in response to HIIT at 
5 min versus rest included MYLPF T10, ZAC S454, FGA 
S285, MTFP1 S129, EEF2 T59, MAPRE2 S229, LMNA 

Fig. 6  Signalome network highlights distinct HIIT and MICT kinase 
clusters and differential signaling trajectories in response to each 
exercise intensity. Signalome networks for HIIT (A) and MICT (B) 
exercise were constructed using the PhosR phosphoproteomic data 
analysis package [22]. This “signalome” construction method utilized 
the phosphoproteome signaling profile and kinase recognition motif 
of known substrates to visualize the interaction of kinases and their 

collective actions on signal transduction. Kinases clustered together 
are highly correlated in terms of kinase–substrate predictions. Visu-
alization of five phosphoprotein clusters from the phosphoproteomic 
dataset highlights distinct kinase–substrate regulation within the HIIT 
and MICT signaling networks, with shared and unique signaling tra-
jectories shown for a panel of kinases in response to HIIT (C) and 
MICT (D)
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T424, HRC T207, ADSSL1 S7, and MTFP1 S128. The ten 
phosphosites’ fold changes decreasing the most in response 
to HIIT at 5 min compared with rest included RTN4 S738, 
PDHA1 S262, DCLK1 S358, PDHA1 S201 and S269, 
SYNM T1109, MAP1B S1793, NGFR S217, SLC4A1 
S349, and TRIP10 S354 (Fig. 3A; Supplementary Table 3). 
After 10 min, top phosphosite fold changes most robustly 
increased by HIIT versus rest included CBX1 S89, MAPRE2 
S229, MTFP1 S129, HRC T207, EEF2 T59, STBD1 S175, 
EEF2 T57, HRC S299, ZAK S454, and CIC S1371. Sites 
displaying the most decreased fold changes in phosphoryla-
tion by HIIT at 10 min included RTN4 S738, PDHA1 S201, 
SLC4A1 S349, KRI1 S142, NGFR S217, DCLK1 S358, 
CMYA5 S2825, TXNIP T294, CLASP2 S326, and SRRMS 

S2398 (Fig. 3B; Supplementary Table 3). A total of 352 
sites were differentially regulated after 10 min versus 5 min 
HIIT (Fig. 2F), including 212 down- and 140 up-regulated 
phosphosites (Fig. 3C; Supplementary Table 3).

MICT induced changes in a lower number of significantly 
regulated phosphosites including a total of 1158 phospho-
sites after 5 min (Figs. 2F and 3D; 758 and 400 down- and 
up-regulated, respectively) and 1125 phosphosites after 
10 min (Figs. 2F and 3E; 788 and 337 down- and up-regu-
lated, respectively). A total of 110 sites were differentially 
regulated after 10 min versus 5 min MICT, including 79 
down- and 31 up-regulated phosphosites (Figs. 2F and 3F; 
Supplementary Table 3).

Fig. 7  Correlation of HIIT and MICT phosphosites and plasma lac-
tate levels identifies > 3000 lactate-correlated sites including func-
tional phosphosites that govern protein activity and metabolic regu-
lation. Spearman correlation of individual phosphorylation sites 
(n = 8509 total) with plasma lactate concentrations at each timepoint 
and exercise intensity (n = 60 total plasma samples analyzed) are 
shown for four of the most significantly correlated sites (q < 0.05 

with Benjamini–Hochberg FDR) with annotated functional roles in 
governing their respective phosphoprotein’s activation state and reg-
ulating a range of key metabolic processes (e.g., glycolysis, glucose 
transport, and mitochondrial biogenesis) including PDHA1 S201 (A), 
RPTOR S859 (B), TFEB S123/S128/S136 (C), and TBC1D4 S588 
(D)
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To identify unique sites regulated by a single bout of HIIT 
relative to MICT, the signaling responses to each exercise 
intensity were next compared. After 5 min of HIIT, 92 total 
phosphosites were differentially regulated, including 71 sites 
down-regulated and 21 sites up-regulated, relative to MICT 
(Figs. 2F and 3G; Supplementary Table 3). These exercise 
intensity-specific signaling responses to HIIT were observed 
to be more robust at 10 min, with 348 total phosphosites 
differentially regulated compared with MICT (Figs.  2F 
and 3H; Supplementary Table 3; 275 and 73 down- and 
up-regulated, respectively). Top exercise intensity-specific 
phosphosites most robustly up-regulated by HIIT relative 
to MICT in terms of fold change included MTFP1 S128/
S129 (increased by 5 and 10 min HIIT; S129 also increased 
by 5 and 10 min MICT), MYL5 S20/S21/S25 (increased by 
10 min HIIT; decreased by 5 min MICT), and TDRD9 Y546/
S552 (increased by 10 min HIIT; decreased by 5 min MICT). 
Exercise intensity-specific phosphosites down-regulated the 
most by HIIT versus MICT in terms of fold change included 
GP1BB T193 (decreased by 5 and 10 min HIIT; increased 
by 5  min MICT), ATAD2B S374 (decreased by 5 and 
10 min HIIT; decreased by 10 min MICT), MAPK1 T181 
(decreased by 5 min HIIT; not regulated by MICT), ADD2 
S532 and GP1BA S606 (decreased by 5 and 10 min HIIT; 
increased by 5 min MICT), and RYR1 T1399 (decreased by 
5 and 10 min HIIT; decreased by 10 min MICT) (Fig. 3G, 
H; Supplementary Table 3).

Kinase enrichment analyses were next performed to 
identify common and divergent activation/deactivation of 
kinases in response to the two exercise bouts (Fig. 4A). 
Kinase activities were inferred via direction analysis using 
kinase perturbation analysis (kinasePA; [28]), to anno-
tate and visualize how kinases with at least five quantified 
known substrates were perturbed by each exercise intensity 
and timepoint. These analyses confirmed activation/deac-
tivation of known exercise-regulated kinases in response 
to both HIIT and MICT relative to pre-exercise, with sig-
nificant kinase activity enrichments considered as kinases 
displaying a |z-score|> 1.64 (corresponding to a one-tailed P 
value of 0.05 in normally distributed data). Kinases display-
ing similar increases in the levels of inferred kinase activity 
in response to both HIIT and MICT after 5 and/or 10 min 
included eukaryotic elongation factor 2 kinase (EEF2K), 
AKT1, AMPK alpha 1 catalytic subunit (PRKAA1), pro-
tein kinase cGMP-dependent 1 (PRKG1), PKA subunit 
alpha (PRKACA), serum/glucocorticoid regulated kinase 
1 (SGK1), ribosomal protein S6 kinase alpha-1 subunit 
(RPS6KA1), and MAP kinase-activated protein kinase 2 
(MAPKAPK2). Moreover, exercise-induced decreases in the 
kinase activity of mammalian target of rapamycin (MTOR) 
were observed in response to both HIIT and MICT after 5 
and 10 min.

Kinase enrichment analyses also revealed unique 
kinases that were differentially activated/deactivated (i.e., 
|z-score|> 1.64) in response to HIIT versus MICT after 5 
and/or 10 min (Fig. 4A). For example, activation of unique 
protein kinase C (PKC) conventional/atypical isoforms 
were observed to be differentially regulated by HIIT ver-
sus MICT, with increased activity of the conventional 
PKC alpha isoform (PRKCA; z-score > 1.64) in response 
to 10 min HIIT only. In contrast, activity of the atypical 
PKC zeta isoform (PRKCZ) was increased only by 5 and 
10 min MICT (z-score > 1.64). Other kinases shown to be 
uniquely activated by HIIT or MICT included S6 kinase 
beta-2 subunit (RPS6KB2; increased only by 5 and 10 min 
HIIT; z-score ≥ 1.64) and CAMK2A (increased only by 5 
and 10 min MICT; z-score ≥ 1.64). Pathway enrichment 
analyses were next performed using the Reactome database 
to determine biological pathways that were enriched within 
the lists of significantly regulated genes (corresponding to 
their respective phosphoproteins) for each exercise inten-
sity and timepoint relative to pre-exercise, with significant 
enrichment considered as pathways displaying |z-score 
|> 1.64 (Fig. 4B). Up-regulated reactome pathways (i.e., 
z-scores > 1.64) enriched in response to both HIIT and MICT 
after 5 and/or 10 min included expected exercise-regulated 
biological pathways such as “chromosome maintenance,” 
“transcription,” “opioid signaling,” “pyruvate metabolism 
and citric acid TCA cycle,” “glucose metabolism,” and 
“gluconeogenesis.” Down-regulated reactome pathways 
(i.e., z-scores <  − 1.64) enriched in response to both HIIT 
and MICT after 5 and/or 10 min included “L1CAM interac-
tions,” “PI3K Akt activation,” and “platelet activation sign-
aling and aggregation.”

The only reactome pathway observed to be positively 
enriched in response to HIIT after 5 and/or 10 min but not 
enriched by MICT was “RNA polymerase I and III and mito-
chondrial transcription” (Fig. 4B). The only two pathways 
observed to be negatively enriched in response to HIIT after 
5 and/or 10 min but not MICT included “P75 NTR receptor 
mediated signaling” and “regulation of mRNA stability by 
proteins that bind AU rich elements.” In contrast, reactome 
pathways positively enriched in response to MICT after 5 
and/or 10 min but not enriched by HIIT included “integra-
tion of energy metabolism,” “TCA cycle and respiratory 
electron transport,” “phospholipid metabolism,” “metabo-
lism of nucleotides,” and “fatty acid triacylglycerol and 
ketone body metabolism.” Pathways negatively enriched 
in response to MICT after 5 and/or 10 min that were not 
enriched by HIIT included “SLC mediated transmembrane 
transport,” “GAB1 signalosome,” “3′ UTR mediated trans-
lational regulation,” and “gastrin CREB signaling pathway 
via PKC and MAPK.”

Kinase–substrate associations were next predicted in 
response to HIIT and MICT via the phosphoproteomic 
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signaling profiles and kinase recognition motifs of known 
substrates using kinasePA (Fig. 5; [28]). This analysis gen-
erated prediction matrices, with columns corresponding to 
kinases, rows corresponding to phosphosites, and values 
denoting how likely a phosphosite is phosphorylated by 
a given kinase in response to HIIT (Fig. 5A) and MICT 
(Fig. 5B). Pathway enrichment analyses were then per-
formed using phosphosites with a high prediction score for 
each kinase to observe how biological pathways contain-
ing substrate phosphosites are commonly and/or uniquely 
regulated by HIIT (Fig. 5C) versus MICT (Fig. 5D). Col-
lectively, these analyses revealed that a range of kinases dis-
played unique patterns and/or significance levels of signaling 
pathway regulation in response to each exercise intensity, 
including HIPK2, GSK3B, CDK6, CDK2, CDK1, CDK7, 
MAPK14, MAPK3, CHEK1, PRKCG, CDK5, PRKDC, 
PIM2, PRKCQ, PRKCD, CSNK2A1, PLK1, AKT1, 
PRKCB, and PRKCA (Fig. 5C, D).

Using these matrices, signalome networks were then 
reconstructed on the basis of the correlation between 
kinases to visualize how kinases and substrates are regu-
lated in response to HIIT (Fig. 6A) versus MICT (Fig. 6B). 
This revealed distinct signalome profiles between HIIT and 
MICT, with kinases clustered closer together more highly 
correlated in terms of their kinase–substrate predictions. To 
determine the proportion of common and unique substrates 
targeted by specific kinases in response to HIIT versus 
MICT, phosphoproteins were clustered into protein modules 
according to their prediction matrices, shown in Fig. 5A, B. 
This clustering revealed five unique clusters of HIIT and 
MICT kinase–substrate signaling profiles (Supplementary 
Fig. 2A–E; modules 1–5). Visualization of these five clusters 
for individual kinases revealed shared or unique substrate 
signaling trajectories in response to HIIT (Fig. 6C) versus 
MICT (Fig. 6D) within their unique signalome networks. 
For example, widely studied exercise-regulated kinases, 
including AKT1, CAMK2A, MAPK1, MAPK3, MTOR, 
and PRKAA1, displayed similar substrate clusters between 
exercise intensities, while other kinases, such as ABL2, 
MAPK14, PLK1, PRKCA, PRKCE, RPS6KA1, and STK38, 
regulated unique substrate clusters in response to HIIT ver-
sus MICT (Fig. 6C, D).

Finally, to leverage the global phosphoproteomic dataset 
and test the hypothesis that higher plasma lactate concentra-
tions across the HIIT exercise bout associate with the skele-
tal muscle exercise-regulated signaling proteins that become 
engaged, correlation analyses were performed to interrogate 
individual phosphorylation site responses within the dataset 
relative to the plasma lactate responses to HIIT and MICT 
exercise. A total of 3084 phosphosites were significantly 
correlated with plasma lactate concentrations from each 
timepoint and exercise intensity (Supplementary Table 5; 
q < 0.05 with Benjamini–Hochberg false discovery rate 

[FDR]). Among these phosphosites, 9 of the top 50 most sig-
nificantly correlated phosphosites have annotated functional 
roles in regulating their respective protein’s activation state 
in the PhosphoSitePlus annotation database (Fig. 7A–D; 
[29]). For example, four of these top nine phosphosites 
that were significantly correlated with plasma lactate have 
experimentally validated roles in governing their respec-
tive protein’s activity and are involved in a range of key 
acute and chronic exercise-regulated metabolic processes 
(e.g., glycolysis, glucose transport, and mitochondrial bio-
genesis) including PDHA1 S201 (Fig. 7A), RPTOR S859 
(Fig. 7B), TFEB S123/S128/S136 (Fig. 7C), and TBC1D4 
S588 (Fig. 7D). Other phosphosites among the top 10% most 
significantly correlated sites with plasma lactate concentra-
tions included known AMPK-regulated sites (e.g., ACACB 
S222 and mitochondrial fission regulator-1 like protein 
[MTFR1L] S141 [34]), as well as novel phosphosites with 
no known functional role (e.g., DENND4C S989, a phos-
phoprotein present in glucose transporter GLUT4 vesicles, 
and MTFP1 S128/S129, a phosphoprotein involved in inner 
mitochondrial membrane fission/fusion) that may respec-
tively be involved in regulating skeletal muscle glucose 
transport and mitochondrial network dynamics in response 
to an acute bout of exercise and/or exercise training.

4  Discussion

For the first time, this analysis of the HIIT signaling net-
work in human skeletal muscle has revealed the early time 
course of acute signaling events underlying muscle adaptive 
responses to work-matched HIIT versus MICT. Our global 
phosphoproteomic approach has revealed the rapid activa-
tion/deactivation of a complex network of common and 
exercise intensity-specific kinases, substrates, and pathways 
regulated by a single bout of HIIT versus work-matched 
MICT after just 5 min of exercise, which were highly cor-
related with the prevailing plasma lactate responses across 
each exercise bout. To the best of our knowledge, this is 
the first phosphoproteomic study of exercise signaling that 
has matched for workload and duration to assess divergent 
signaling responses between exercise intensities.

The matching of total workload and duration between 
exercise bouts is important and contrasts previous phospho-
proteomic studies that have compared exercise signaling 
responses with divergent workloads of differing durations 
and modalities [17]. Such an approach permitted resolution 
of time-sensitive profiles of distinct signaling responses 
comparing the effects of a moderate-intensity continuous 
exercise challenge to a high-intensity interval-based exer-
cise protocol within the same participants in a crossover 
study design, allowing sufficient recovery (i.e., > 10 days) 
to ensure no residual effects of the previous exercise bout. 
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Standardized meal provision before each trial prescribed in 
accordance with each participant’s body composition, rest-
ing metabolic rate, and food diary records led to a highly 
reproducible resting “baseline” signaling signature for each 
participant (Fig. 2B, E), confirming a high level of control 
and reinforcing the importance of utilizing dietary standardi-
zation in addition to just overnight fasting to help control for 
potential differences in nutrient/energy availability between 
trials.

This study utilized a metabolically healthy, but untrained 
participant cohort to induce robust signaling responses, 
as available evidence indicates exercise-induced signaling 
responses in skeletal muscle, such as AMPK activation, are 
more pronounced in untrained relative to trained human 
participants [35, 36]. All ten participants were able to suc-
cessfully complete both work-matched exercise trials, with 
the HIIT protocol eliciting higher plasma lactate concen-
trations compared with MICT. The two exercise intensities 
both provided a robust contractile stimulus that engaged a 
range of known exercise-regulated kinases, including acti-
vation of AMPK (regulated by AMP/ATP and ADP/ATP 
ratios), EEF2K (regulated by  Ca2+/calmodulin), PKA (reg-
ulated by cAMP), and PRKG1 (regulated by NO/cGMP). 
Activation of AKT1 increased after 10 min (e.g., inferred 
via known substrate IRS1 S629), while surrogate markers of 
MTOR activation decreased (e.g., NDRG2 T248 decreased 
only after 10 min HIIT; NDRG2 S344 increased only after 
5 and 10 min MICT), in response to both exercise intensi-
ties. Overall, a higher number of phosphosites were down-
regulated versus up-regulated at each timepoint and exer-
cise intensity, suggestive of acute exercise-regulated kinases 
becoming inhibited and/or phosphatases becoming activated 
early after commencing exercise.

Collectively, our phosphoproteomic datasets challenge 
the existing exercise physiology literature showing a lack of 
signaling differences in key energy stress pathways such as 
AMPK [12], p38MAPK, and p53 [13] in response to acute 
bouts of work-matched HIIT and MICT, which to date has 
primarily involved only targeted approaches such as immu-
noblotting. Specifically, phosphoproteomics has identified a 
wider breadth and complexity of kinase and substrate regula-
tion, including a subset of unique HIIT- versus MICT-regu-
lated kinases, substrates, and pathways that may have exer-
cise intensity-specific functional significance. The unique 
signaling regulation by acute work-matched HIIT and MICT 
observed in this study supports previous theories [5, 8, 37] 
and targeted findings in human skeletal muscle [14] from the 
exercise physiology field that have suggested distinct molec-
ular metabolic responses to interval-based exercise translate 
to HIIT-specific kinase and substrate signaling signatures.

For example, in this study, mitochondrial fission pro-
cess 1 (MTFP1; also known as MTP18) S128/S129 were 
identified among the top HIIT-regulated sites, with S128 

only regulated by HIIT and more robust phosphorylation 
of S129 observed following HIIT versus MICT. The inner 
mitochondrial membrane protein MTFP1 has known roles 
in mitochondrial fission/fusion and was previously identified 
as having increased abundance in rat diaphragm following 
endurance exercise training [38], but has not been implicated 
in acute exercise signaling to date. MTFP1 has recently 
emerged as a key regulator of liver mitochondrial and meta-
bolic activity, with liver-specific deletion of MTFP1 in mice 
conferring protection against high fat diet-induced metabolic 
dysfunction and hepatosteatosis via upregulating oxidative 
phosphorylation activity and mitochondrial respiration [39]. 
MTFP1 has been identified as a gene target of peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) in C2C12 myotubes [40], with its translation reg-
ulated by mTORC1 activity [41]. Human skeletal muscle 
MTFP1 gene expression, concomitant with PGC-1α expres-
sion, was recently shown to be reduced by leg immobiliza-
tion and increased upon resumption of physical activity and 
resistance exercise training [42]. Collectively, this growing 
body of evidence suggests that the unique phosphorylation 
of MTFP1 in response to HIIT may represent a novel mech-
anism underlying exercise-regulated mitochondrial inner 
membrane fission and/or fusion. Further investigation of 
MTFP1’s potential functional roles in maintaining skeletal 
muscle mitochondrial networks and metabolic homeostasis 
is warranted.

The observed differences in work-matched HIIT versus 
MICT signaling responses may be due to stochastic changes 
or accumulation of intracellular calcium and/or other metab-
olites in response to fluctuating energy demands during 
HIIT’s repeated work-rest cycles [43], and is consistent with 
other studies investigating effects of acute work-matched 
bouts of HIIT versus MICT [13, 44]. Indeed, investiga-
tions that have determined metabolic fluctuations occurring 
in work-matched interval versus continuous exercise have 
observed a greater level of activation of kinases such as 
AMPK, CaMKII, and p38 MAPK, suggesting that buildup 
of upstream stimuli for these kinases (e.g., increased AMP/
ATP and/or ADP/ATP ratios, and intracellular calcium) may 
trigger greater activation in response to interval-based exer-
cise [14]. While levels of AMPK activation were similar 
between HIIT and MICT in this study, differential activa-
tion of PKC conventional/atypical isoforms (i.e., calcium-
responsive conventional PRKCA activity only increased 
by HIIT, while atypical PRKCZ activity only increased by 
MICT) suggests intracellular calcium spikes during HIIT 
intervals may contribute to its unique activation of PKC iso-
forms versus MICT. Furthermore, activation of the calcium-
responsive CAMK2A, which is rapidly activated in human 
muscle in response to continuous exercise [45, 46], was dif-
ferentially regulated by HIIT versus MICT (i.e., CAMK2A 
activity only increased by MICT). This suggests differential 
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signaling mechanisms underlying calcium homeostasis may 
potentially contribute to acute signaling programming of 
chronic skeletal muscle adaptations to high-intensity exer-
cise such as stimulation of mitochondrial biogenesis [47].

Rates of carbohydrate oxidation are increased, while rates 
of fat oxidation are reduced, in response to a single bout of 
HIIT compared with MICT [44]. Acute HIIT increases lev-
els of skeletal muscle glucose transport, glycogenolysis, and 
glycolysis, leading to accumulation of glycolytic products 
such as muscle lactate that can act as signaling molecules 
and influence exercise-regulated signaling networks within 
skeletal muscle, as well as be released into the bloodstream 
to facilitate inter-organ communication with other tissues 
such as the heart, liver, and brain [4, 48]. Plasma lactate 
responses to acute HIIT in the present study were increased 
relative to MICT, with > 3000 phosphosites identified as 
being significantly correlated with the prevailing plasma lac-
tate concentrations. Among the most highly correlated phos-
phosites with plasma lactate were PDHA1 S201 (Fig. 7A) 
and TBC1D4 S588 (Fig. 7D), with annotated functional 
roles in the regulation of glycolysis and glucose transport, 
respectively. PDHA1 is a subunit of the PDH enzyme com-
plex, which is regulated by pyruvate and ADP and becomes 
activated by calcium during exercise, serving as a key link 
between glycolysis and the tricarboxylic acid (TCA) cycle 
by converting pyruvate to acetyl-CoA [4]. TBC1D4 is a key 
nexus in skeletal muscle glucose transport regulation via 
control of glucose transporter (GLUT4) translocation in 
response to insulin and muscle contraction during exercise 
[49]. Given the strong associations (i.e., |r|> 0.80) observed 
between plasma lactate concentrations and these key regula-
tory phosphosites in the present study, and in light of other 
studies investigating signaling-metabolite correlations in 
response to distinct exercise modalities and workloads [17], 
these correlation data support the hypothesis that plasma 
lactate accumulation across an exercise bout associates with 
muscle signaling responses [8]. Collectively, differences in 
muscle and circulating metabolites and counterregulatory 
hormones in response to HIIT versus MICT may therefore 
influence metabolite–protein interactions during/after exer-
cise, potentially leading to beneficial physiological adapta-
tions. In addition to increasing plasma lactate concentra-
tions, the higher exercise intensity of HIIT versus MICT may 
also lead to differential muscle fiber type recruitment that in 
turn influences fiber type- and/or isoform expression-specific 
signaling pathway responses, such as AMPK [50, 51], which 
were undetectable given the present study’s focus on analyz-
ing whole muscle biopsy samples.

There are several limitations of this study that warrant 
further investigation in future work examining human skel-
etal muscle exercise signaling. First, we studied only male 
participants to allow us to benchmark observed signaling 
responses to previous studies investigating continuous 

exercise protocols in males. The acute responses of skeletal 
muscle to HIIT in female human participants remain unchar-
acterized and are being actively investigated in our ongoing 
research. While each participant in the present study under-
went full exercise protocol familiarization sessions prior to 
their HIIT and MICT trials to help minimize potential stress 
responses to unfamiliar exercise (i.e., “first bout effect”), it 
is not clear how much of the observed signaling network 
response is specifically due to the response to the muscle 
biopsy procedure and/or stress response to the exercise 
exposure versus mechanisms underlying the actual adapta-
tion to exercise [52]. The HIIT and MICT protocols utilized 
were selected on the basis of the feasibility of untrained 
participants to complete each exercise bout. As a result, 
5–10 min of HIIT or MICT at the prescribed intensities may 
not have engaged the full repertoire of shared and exercise 
intensity-specific signaling pathways in muscle and may 
require longer exercise durations and/or greater differences 
in exercise intensities in future studies. For example, patterns 
of substrate oxidation change during more prolonged exer-
cise and differ between sexes, which may affect signaling 
responses more robustly between exercise intensities and/or 
sexes. Additional metabolic readouts, such as muscle lactate 
and phosphocreatine, were not feasible in this study owing 
to limited remaining muscle biopsy sample following phos-
phoproteomic analysis, but would improve understanding 
of the potential differences in metabolic perturbations and 
associated signaling responses to acute HIIT versus MICT 
in future studies.

While the focus of this study was on the early phosphoryla-
tion dynamics in response to each acute exercise bout, analysis 
of additional recovery biopsies in the hours and days follow-
ing exercise in future studies may reveal longer term adap-
tations in the phosphoproteome and how they translate into 
more chronic physiological muscle adaptations. However, the 
signaling responses and potential programmed muscle adap-
tations to an acute bout of HIIT or MICT may not be able to 
predict chronic training adaptations [53]. For example, recent 
transcriptomic and proteomic analyses of mammalian skeletal 
muscle have highlighted that acute changes may not be predic-
tive of chronic exercise training-induced changes [54], such 
as HIIT-induced remodeling of the skeletal muscle proteome 
after repeated training [55, 56]. Future follow-up longitudinal 
studies with clearly defined clinical outcomes are warranted 
to determine which signaling events within these complex net-
works are associated with specific longer-term adaptations and 
health benefits in response to HIIT and/or MICT. Extensive 
total proteome analysis was not performed in this study, as only 
5–10 min of exercise has been previously observed to not affect 
total muscle protein content [16]. While not analyzed, given 
the acute nature of the exercise bouts in this study, repeated 
HIIT training (i.e., six sessions per week for 2 weeks) can 
stimulate more robust mitochondrial adaptations (i.e., greater 
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exercise-induced increases in citrate synthase maximal activity 
and mitochondrial respiration) compared with total work- and 
duration-matched MICT in human skeletal muscle, suggesting 
that exercise intensity and/or the pattern of muscle contrac-
tion may drive peripheral adaptations to exercise [57]. The 
amplification of human skeletal muscle signaling and mRNA 
responses underlying mitochondrial biogenesis in response to 
acute low-volume, high-intensity exercise may be due to more 
robust induction of metabolic stress relative to more prolonged, 
moderate-intensity exercise [8, 58]. In this regard, it has been 
speculated that accumulation of skeletal muscle intracellular 
AMP, ADP, calcium, and/or other metabolites such as lactate 
during HIIT intervals may differentially affect skeletal mus-
cle signaling responses and adaptations to exercise, such as 
mitochondrial biogenesis, relative to continuous bouts of exer-
cise [37]. However, with repeated chronic HIIT versus MICT 
training, exercise training volume may become more important 
than intensity in increasing skeletal muscle mitochondrial con-
tent over time [59].

Finally, the functional relevance of HIIT and/or MICT 
regulation of unique kinase activation patterns including 
isoform-specific PKC activation and novel HIIT-regulated 
phosphosites, such as MTFP1 S128/S129, remains unknown. 
Furthermore, it is currently unknown how much of the gen-
eralized exercise signaling network response (i.e., activa-
tion/deactivation of the breadth of kinases and substrates 
quantified in this study) are related to substrate utilization 
and disruption of energy homeostasis versus how much is 
mechanistically involved in the adaptive response to exer-
cise. Functional validation experiments (e.g., target knock-
down, overexpression, and/or mutagenesis) in cellular and/
or animal models are required to determine their respective 
roles in regulating exercise-induced muscle adaptations and 
molecular processes, such as MTFP1’s potential functional 
role in regulating inner mitochondrial membrane fission/
fusion in response to acute exercise.

5  Conclusions

Collectively, the present study has uncovered a previously 
unknown breadth of shared and exercise intensity-specific 
molecular machinery engaged by a single bout of HIIT 
versus MICT in untrained healthy males. Our phosphopro-
teomic datasets have confirmed several canonical exercise 
signaling pathways known to be regulated by acute exercise 
independent of intensity. However, by uncovering the wider 
complexity of acute exercise-regulated molecular transduc-
ers including a subset of unique exercise intensity-specific 
phosphosites, our global approach also challenges the exist-
ing exercise physiology dogma established primarily using 
targeted approaches that a lack of skeletal muscle signaling 

differences exists in response to acute work-matched HIIT 
versus MICT. Exercise signaling pathways and molecular 
transducers within the exercise intensity-specific HIIT and 
MICT signaling networks warrant further functional valida-
tion and can be reinforced with longer interventions and/or 
repeated exercise training to potentially stimulate cardio-
metabolic health-promoting effects and help combat a range 
of chronic metabolic conditions in populations with disease.
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