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ABSTRACT: Novel psychoactive substances (NPS) pose one of
the greatest challenges across the illicit drug landscape. They can be
highly potent, and coupled with rapid changes in structure, tracking
and identifying these drugs is difficult and presents users with a
“Russian roulette” if used. Benzodiazepines, synthetic opioids,
synthetic cannabinoids, and synthetic cathinones account for the
majority of NPS-related deaths and harm. Detecting these drugs
with existing field-portable technologies is challenging and has
hampered the development of community harm reduction services
and interventions. Herein, we demonstrate that hybridizing
fluorescence and reflectance spectroscopies can accurately identify
NPS and provide concentration information with a focus on
benzodiazepines and nitazenes. The discrimination is achieved
through a deep learning algorithm trained on a library of preprocessed spectral data. We demonstrate the potential for these
measurements to be made using a low-cost, portable device that requires minimal user training. Using this device, we demonstrate
the discrimination of 11 benzodiazepines from “street” tablets that include bulking agents and other excipients. We show the
detection of complex mixtures of multiple drugs, with the key example of nitazene + benzodiazepine (metonitazene + bromazolam),
fentanyl + xylazine, and heroin + nitazene (etonitazene) combinations. These samples represent current drug trends and are
associated with drug-related deaths. When combined with the implementation of detection technology in a portable device, these
data point to the immediate potential to support harm reduction work in community-based settings. Finally, we demonstrate that the
approach may be generalized to other drug classes outside NPS discrimination.

The emergence and differentiation of novel psychoactive
substances (NPS)�synthetic drugs of six major classes

including stimulants, synthetic cannabinoid receptor agonists,
hallucinogens, opioid receptor agonists, sedatives/hypnotics,
and dissociatives�is of growing concern.1 NPS are structural
analogues of classical drugs of abuse. They are known to mimic
the physiological effects of these compounds by targeting the
same receptors or transporters that mediate their molecular
mechanisms.2,3 Clandestine synthesis is a major route of NPS
production, with the number of clandestine laboratories
increasing substantially in recent years.4 As NPS are made
increasingly available through these routes, their popularity has
risen due to low cost, ease of accessibility, and the perception
of reduced legal liability.5 Given their high potency,
unpredictable side effects, and widespread use, the increasing
incidence of overdose and drug-related death is perhaps not
surprising.6−8

As a useful example, benzodiazepines (BZDs) are a
prominent class of NPS with increasing trends of abuse and
drug-related death, being involved in over two-thirds of drug-
related deaths in Scotland in 2022.9 So-called “street” BZDs
are illicit drugs that fall into two distinct groups, diverted
prescription medications licensed for therapeutic use in some
countries and designer compounds synthesized by clandestine
chemists.10 Street BZD use is problematic due to the
prevalence of counterfeit medicines, mis-sold in pill form as
legitimate pharmaceuticals, where in fact potent NPS
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benzodiazepines are present in unknown quantities.11−13

Etizolam is a notable example of a street BZD that appears
in counterfeit medication in the UK, although it is legal in
some other countries. Etizolam produces pharmacological
effects at ten times the potency of the licensed drug
diazepam.14,15 People who use these drugs, therefore, are
doubly at risk in not knowing the drug or the dose that they
are taking.16 For example, data from Welsh Emerging Drugs
and Identification of Novel Substances (WEDINOS) from
June−July 2024, shows 59% of diazepam submissions
contained a drug other than diazepam.17 Similarly, the UK
and other countries have seen the very recent rise of synthetic
opioids (nitazenes), with potencies higher than fentanyl18,19

and, at the time of writing, are found in combination with
BZDs and other counterfeit pharmaceuticals as well as heroin
in the UK. This contrasts with the high prevalence of fentanyl
in the USA.

Detection of NPS drugs is almost exclusively via lab-based
analysis (typically GC−MS). However, to enable community
drug checking and testing, ideally one would be able to identify
NPS in the field instantly, with minimal technical training and
at low cost.20,21 A range of technologies have been used for this
purpose, including hand-held Raman, near-infrared, and FT-
IR. However, these technologies are severely challenged by the
typically low concentration of NPS in street samples, the
presence of bulking agents and other excipients, fluorescence
of the analyte, and complex analyte mixtures.22,23

As the example of BZDs shows, there is a need for rapid,
nontechnical drug identification and ideally concentration
discrimination. We have previously validated that fluorescence
spectral fingerprinting [FSF; enumerated excitation−emission
matrices (EEMS)] is an effective means to detect synthetic
cannabinoids.24 We have shown that FSFs can be used to
discriminate between individual compounds and structural
classes.24,25 We hypothesize that the varied heterocyclic core
structures of other NPS, including benzodiazepines and
nitazenes, render these compounds ideal candidates for
detection using this approach.

Here, we demonstrate that by expanding the FSF measure-
ment to include reflectance information, we are able to
distinguish individual BZDs and provide information on their
concentration. Moreover, we demonstrate that nitazenes can
be detected using this approach in the presence of other drugs,
including BZDs and seized heroin samples. We demonstrate
the implementation of these advances in portable device
design.

■ RESULTS AND DISCUSSION
Establishing the Potential of FSFs for BZD Discrim-

ination and Enabling Hardware for Their Measurement.
Figure 1 shows the FSF for exemplar BZDs from three
structural classes represented in the illicit designer BZD
market.26 From Figure 1, each of the different structural classes
produces a different FSF, even within the same class. We note
that the similarities within the same structural classes are
simple, tending to visually recognizable similarities. However,
from these data, it appears that even relatively minor
substitutions about the core benzodiazepine group produce a
unique FSF. For example, the presence of nitro groups on both
clonazepam and flunitrazolam may influence FSF structure due
to a strong electron-withdrawing effect, narrowing the energy
gap between electronic transitions and shifting fluorescence
emission toward the red end of the spectrum.27

These data directly mirror our previous findings with
synthetic cannabinoids.24 However, we note the fluorophore
in BZDs shows a relatively lower quantum yield compared to
synthetic cannabinoids (approximately 3 times lower) but
differs significantly for individual molecules. Our data therefore
suggests that the FSFs for benzodiazepines (Figure 1) could be
used to discriminate even structurally similar BZDs.

While FSFs appear to be discriminatory, clearly a benchtop
spectrofluorometer (as used to collect data shown in Figure 1)
is not a practical solution for community harm reduction,
owing to both its size, relative technical complexity to operate,
and the lack of inbuilt interpretive software. For this approach
to have potential in the community, an ultrasimple, portable,

Figure 1. Benzodiazepine structural classes represented in the illicit drug market, with measured fluorescence spectral fingerprints (FSFs) of
exemplar compounds. FSFs for 1,4-benzodiazepines (A,B), triazolobenzodiazepines (C,D), and thienotriazolobenzodiazepines (E,F). FSFs
measured at 100 μg/mL using a benchtop spectrofluorometer (Edinburgh Instruments, FS5). Excitation (λex) scanned at 5 nm intervals between
260 and 400 nm and emission (λem) scanned at 0.5 nm intervals between 275 and 600 nm. Recorded in triplicate and background subtracted.
Associated chemical structures for 1,4-benzodiazepines (G), triazolobenzodiazepines (H), and thienotriazolodiazepines (I).
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rugged system is required. We have recently suggested a design
for a miniature fluorimeter based on LED excitation and a
small, rugged spectrometer.24 We acknowledge that there are
many such designs reported. Figure 2 shows an implemented
design that is battery-operated and small. Briefly, the design
leverages recent advances in very bright UV LEDs (∼50 −100
mW) and exceptionally small, high-resolution spectrometers
(dimensions: 4, 4, 2.5 cm). The design uses 12 LEDs that span
the UV-A,B, and C ranges, limited only by the commercial
availability of LEDs.

In our design, the analyte is dissolved in EtOH. As we
discuss below, this enables concentration discrimination versus
% purity, which we argue is the more useful information to give
to a person intending on using the drug. The solubilized
sample is irradiated in a custom holder composed of a UV- and
chemically resistant material that is simple to wipe clean and
holds a 2.2 mL volume. The total cost of the device, as shown
in Figure 2 is ∼$2,000, with the cost being dominated by the
spectrometer. To analyze a sample using the device, we have
developed a standard operating procedure (SOP) where a
sample must be crushed, incubated in 2.5 mL ethanol for 2
min, and then filtered before 2 mL of this solution is
transferred to the sample holder.

The device benefits from being operated by a customizable
microcomputer, meaning that both data acquisition and
analysis can be controlled. The device operates by optimizing

the signal such that the detector integration time is
consecutively increased until the detector is at 80% saturation,
assuming a linear relationship between the signal size and
integration time, which is a reasonable approximation. Figure
2D,E shows the resultant output of the device with EtOH
present in the sample holder, both as a one-dimensional
spectrum (Figure 2D) and a contour plot (Figure 2E). The
data essentially show the specular- and diffuse-reflection from
the excitation sources since there is no analyte present, and we
note these data are not normalized for differences in
integration time. For clarity, in fluorescence spectroscopy
(e.g., Figure 1), the reflected excitation source data are almost
always excluded since they typically dwarf emission signals.
However, as we discuss below, we have found these data to be
useful, and so the geometry of the device shown in Figure 2 is
set up to achieve some approximate parity between these signal
sizes (acknowledging this varies widely for different molecules)
and fluorescence emission (discussed below). Note that the
contour plot graphic shown in Figure 2E interpolates between
the data points to give the illusion of a higher resolution scan
and is to aid the eye only.

Figure 2F,G shows the collected data with Diazepam at a
relatively low concentration (0.5 mg/mL) compared to the
pharmaceutical dose (we consider the concentration effect in
detail below). From these data, there is clear discrimination of
the emission resulting from the analyte, manifesting as new

Figure 2. (A) Schematic of device architecture. (B) LED ring, where 12 LEDs are in a 1-in. diameter ring arrangement, equally spaced. (C)
Spectrometer in a custom housing on the LED ring. Note the presence of a collimating lens in the front of the spectrometer. The entrance of the
collimating lens is 15 mm from the sample surface. (D) 1D spectra of 2 mL ethanol recorded with the device, showing the reflected LED light.
Emission (λem) captured between 185 and 655 nm with excitation (λex) performed by 12 LEDs between 255 and 400 nm. These data are not
averaged and have not been normalized. (E) Data in panel D shown as a contour plot. (F) 1D spectra of 2 mL 0.5 mg/mL diazepam standard in
the sample holder. Normalized for integration time by channel and then 0−1 normalized. These data are not averaged. (G) Data in panel F shown
as a contour plot. The color bar shown here is representative of all FSFs shown below. Corresponding unprocessed spectra are shown in Figure S1.
(H) Complete prototype device showing both multifunctional buttons and the display. Note the liquid sample holder is composed of black HDPE,
with a custom machined well (1 in. Wide, 10 mm deep, and of a true hemispherical construction). Note the device is shown in operation in Movie
S1. Figure created in BioRender.
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emission bands centered largely at ∼λem = 355 nm. We note
that LEDs >305 nm are not visable to the eye due to
normalization.

Hybridized Fluorescence and Reflectance Finger-
prints. With our device in hand, we consider how it can be
implemented to discriminate between the BZD type and
concentration. The magnitude of fluorescence emission is
related to the concentration of a fluorophore; however, the
magnitude of emission is usually a poor means to assess
concentration, owing to a raft of potential convolving effects
including collisional quenching, FRET, and the inner filter
effect. Figure S2 demonstrates this challenge for a range of
concentrations of diazepam, showing that the peak of the
emission saturates with increasing concentrations (∼2 ×
pharmaceutical dose). These data illustrate that fluorescence
emission alone becomes unreliable at high concentrations of an
analyte. Instead, the absorption of an analyte is a more
reproducible means to assess the concentration.

Absorbance spectra were measured for 24 benzodiazepine
standards, and these data are shown in Figure S3. As expected,
a significant variation in absorbance across different BZDs was
observed, consistent with the variation in the electronic
structure. Consistent absorption features between compounds
of the same structural class (Figure S3) were also observed.
While the variation in electronic absorption spectra with
variation in structure is not a surprise result, it demonstrates
the principle that different BZDs will absorb different
wavelengths of light preferentially and characteristically. As
such, we suggest that hybridizing both the FSF and
information from analyte absorption might provide a means

to both identify and quantify benzodiazepines, which we refer
to as hybrid spectral fingerprinting (HSF).

Potentially, the magnitude of the reflected excitation source
contains a wealth of information about the absorption of an
analyte. That is, as the concentration of a fluorophore
increases, the magnitude of the signal from the reflected
excitation source decreases owing to an increase in absorption.
Clearly, the closer in wavelength the excitation source is to the
absorption maximum, the more pronounced is this effect.
While not a “clean” absorption measurement like those shown
in Figure S3, the reflected LED light represents a
“pseudoabsorption” measurement, containing information on
the absorption of the analyte at the LED wavelengths used for
excitation. Indeed, so-called diffuse reflectance spectroscopy is
used very commonly for the analysis of opaque samples.28

We have considered whether the reflectance data provide
useful information on analyte concentration. Figure 3 shows a
comparison between structurally different BZDs, showing their
absorption spectra and HSFs. The HSFs are reported at three
different concentrations: a “low”, “medium”, and “high”
concentration relative to the pharmaceutical dose, respectively.
In all three examples, the basic structure of the fingerprint is
consistent with similar excitation emission maxima but shows
variance that is obvious even to the eye as the concentration
changes. These changes are apparent in both the emitted light
(intensity and wavelength variation) as well as in the reflected
excitation light (intensity variation). These data suggest that
combining both the information from LED reflectance and
fluorescence emission can not only identify different BZDs but
also report on variation in BZD concentration. When using the
device, the smallest difference in concentration that can be

Figure 3. Relationship between absorption spectra, concentration, reflectance, and emission. (A−D) Alprazolam, low dose 0.25 mg (in 2.5 mL, 0.1
mg/mL), medium dose 0.5 mg (0.2 mg/mL), high dose 1.5 mg (0.6 mg/mL), (E−H) Etizolam, low dose 0.75 mg (in 2.5 mL, 0.3 mg/mL),
medium dose 1.5 mg (0.6 mg/mL), high dose 3 mg (1.2 mg/mL), and (I−L) Lorazepam, low dose 0.5 mg (in 2.5 mL, 0.2 mg/mL), medium dose
2 mg (0.8 mg/mL), high dose 4 mg (1.6 mg/mL).
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effectively distinguished is 0.1 and 0.2 mg/mL (from 0.25 and
0.5 mg alprazolam tablets).

Deep Learning Enables High Accuracy Discrimina-
tion of Both BZD Identity and Concentration. Ultimately,
while the general principle of assessing concentration from a
hybridized emission and pseudoabsorption measurement is
feasible, we do not find an obvious generalizable model that
allows extrapolation to different concentrations. For example,
the inner filter effect will manifest differently for different
analytes, and different analytes will have varying extinction
coefficients. That is, the exact relationship is highly multi-
variate, making defining global rules for concentration
measurement challenging, though we do not say impossible.
Instead, we have explored whether deep learning can be
deployed not only to identify BZDs from the fingerprints but
also through exploiting the variants of drugs as well as their
concentrations. In this way, we can enable rule generation by
scanning a range of concentrations for each BZD into a data
library. Our device makes this technically tractable since data
are collected via high-intensity LEDs, with optimized
spectrometer positioning, resulting in full fingerprint scans
that are collected in ∼1 min, enabling very high sampling
volumes.

For data collection, we captured HSFs for 86 distinct drug-
variant-concentration classes, as shown in Table S1. Of these
classes, 11 are BZDs at a range of concentrations that relate to
relevant harm reduction advice: low, medium, and high
[relative to pharmaceutical dose or as harm reduction
information from community forums]29 and a range of other
relevant drugs in combination. We acquired 20 HSFs for each
condition where possible. However, for robustness, it was
important to have a model that could provide accurate
predictions for drugs even if very few samples were available
for it because this is expected to occur for many real-world
drug samples.

Raw data from each scan produces 18,192 rows of data
across 5 features, namely, (1) the LED currently active,
corresponding to the 12 LEDs that the device has and,
therefore, represents the current excitation wavelength; (2) an

emission wavelength being recorded by the spectrometer; (3)
the light intensity at the given emission wavelength; (4) the
integration time; and (5) the brightness of the LED, in the
range [0, 1], which is adjusted using pulse-width modulation
(PWM) to reduce excitation to levels below what the LEDs are
capable of.

Data from device scans comprise the data set used for
training predictive models (Table S1) and are each manually
labeled with drug, variant, and concentration information.
Before being used in training predictive models, the dataset
was preprocessed as follows: (i) nonspectral data, such as
excitation wavelengths and integration times, were removed;
(ii) spectral data were trimmed to only the range of
wavelengths containing useful fluorescence information; (iii)
spectral data of similar wavelengths were averaged together to
reduce its dimensionality; (iv) spectral data from each
excitation wavelength were normalized to the range [0,1] to
improve computational efficiency; and (v) data were padded
and reshaped into a 66 × 66 × 1 matrix.

The preprocessed data are passed to a convolutional neural
network (CNN) deep learning model, which uses the custom
architecture shown in Figure 4A. With this architecture, each
HSF is passed into the model’s input layer, which is then
processed through multiple hidden layers, namely, (i) three
occurrences of a convolution layer, which uses the rectified
linear unit (ReLU) activation function and max pooling; (ii)
data were then flattened to be fed into fully connected dense
layers, akin to a standard neural network, which also uses the
ReLU activation function; and (iii) the dense layers led to a
final output layer, which uses a Softmax activation function to
produce probabilities for each of the 86 classes listed in Table
S1.

The data set was established using the device itself by
scanning known substances, as well as various common
nondrug classes to aid model robustness, for example, caffeine,
paracetamol, and white paper. In total, the data set contains
1470 HSF examples. Most classes have 20 examples each, and
those with fewer than 20 had their data oversampled, with
replacement, to balance the data set and reduce model bias.

Figure 4. (A) Architecture of the CNN model, depicting its initial input layer, which corresponds to preprocessed spectral data that is padded and
reshaped into a 66 × 66 × 1 matrix, followed by hidden layers of convolution and pooling, and dense layers with rectified linear unit (ReLU) and
softmax activation functions, which result in probabilities for each of the 86 drug classes listed in Table S1. (B) Accuracy, precision, recall, and F1
scores of the candidate algorithms used to train potential models for the device: logistic regression (LR), random forest (RF), support vector
machine (SVM), and CNN. The CNN model yielded the highest accuracy and was chosen as the model to deploy onto the devices.
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This results in a total of 1720 HSF examples used by models:
20 examples for each of the 86 classes. The 1720 examples
were preprocessed, randomly shuffled, and split so that 80%
(1376) were used for model training and 20% (344) for
testing.

To ensure that a sophisticated deep learning model, such as
CNN, was the most appropriate choice of model for this task
despite its larger computational overhead, three standard
machine learning (ML) models were also trained with the
same data set, namely, LR, RF, and SVM. Adjustments were
made so that models from these three algorithms could
function in a comparable manner to CNN, as follows: (i) each
model was configured to be a One-vs-Rest (OvR) classifier so
that they could provide multiclass classification; (ii) a large
hyperparameter search was conducted for each model to
determine the optimal model configuration, for example, by
trying a range of regularization strengths {0.0, 0.2, 0.4, 0.6, 0.8,
1.0} and kernel functions {linear, polynomial, radial basis
function, sigmoid}; and (iii) a set of PCA values {25, 50, 75,
100} was used during the hyperparameter search so that
dimensionality reduction could be included in model design,
comparable to the use of max pooling in the CNN architecture.
The preprocessing used for CNN data was also used for the
data used by the ML models, resulting in the same feature set
and data dimensions for all models.

After training models for all four architectures, the models
with the highest accuracy per algorithm are shown in Figure
4B, alongside their respective scores for the Precision, Recall,
and F1 Score metrics. The results show that the CNN model
has the highest accuracy overall at 99.1%, followed by SVM at
98.8%, RF at 87.8%, and LR at 94.8%. The CNN model

yielded the greatest accuracy overall and was chosen for
deployment on the devices.

During testing, the CNN model made 3 incorrect
predictions, namely, (i) it predicted flubromazolam of high
concentration as flubromazolam of medium concentration
once, and (ii) it predicted ketamine from a specific sample with
ketamine from a different sample twice. It is encouraging that
these misclassifications are still correctly classifying the right
drug even if the variant and concentration are incorrect.
Although SVM is similar in accuracy to CNN, it confused two
different drugs, namely, flubromazolam with 2C−B.

Taken together, by leveraging a hybridized fluorescence and
pseudoabsorption measurement, implemented on an opti-
mized device geometry, we can apply deep learning to
discriminate not just BZD type but also variant and
concentration information that is relevant for harm reduction
information.

Effect of Excipients and Mixtures on BZD Discrim-
ination. The success of other field-deployable devices in
identifying designer benzodiazepines is limited by their poor
detection in samples of or prepared from tablet material.
Lactose monohydrate and microcrystalline cellulose are the
primary excipients used in pharmaceutical benzodiazepine
tablets and are compounds previously reported as producing
strong interfering signals in both Raman spectroscopy and
FTIR instruments.22,23 Having already validated the effective-
ness of resolving benzodiazepine standards via HSF, Figures S4
show the comparative absorbance spectra taken for four
compounds (clonazepam, diazepam, nitrazepam, and zopi-
clone) when extracted from pharmaceutical tablets. We find
that spectra are highly reproducible across tablet extracts and

Figure 5. Diazepam samples prepared from pharmaceutical tablet material in the presence of common cutting agents and other benzodiazepines.
(A) Diazepam 1 mg/mL tablet extract, (B) caffeine 0.25 mg/mL, (C) 20 mg/mL paracetamol, (D) 20 mg/mL ibuprofen, (E) 1 mg/mL clobazam
tablet extract, (F) diazepam and caffeine (concentrations preserved), (G) diazepam and paracetamol, (H) diazepam and ibuprofen, and (I)
diazepam and clobazam.
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standard solutions, where no additional peaks are present, and
all absorbance maxima are preserved. From Figure S4, the
HSFs are essentially identical, whether from a standard or
extracted from a tablet. That is, the approach is not affected by
the presence of typical excipients, and they do not contribute
to the measured HSFs.

Unlike licensed medication, street BZDs are manufactured
with little regard for quality control and are frequently cut with
over-the-counter painkillers, including paracetamol and
ibuprofen, in addition to stimulants such as caffeine.30 Many
of these adulterants contain conjugated ring structures that are
known to exhibit intrinsic fluorescence;31,32 therefore, we
sought to examine the potential impact of these compounds on
benzodiazepine FSF.

Figure 5 shows the resultant FSFs of 1 mg/mL diazepam
tablet extract combined with caffeine, paracetamol, and
ibuprofen. The ratio of cutting agents to benzodiazepine is
typical of what could be expected for a street tablet (∼20:1),
excluding caffeine, which was added at a lower concentration
owing to solubility in EtOH, recapitulating realistic extraction
from street tablet material.30 Diazepam fluorescence is readily
resolved across these samples where emission contributions
from caffeine (λex 265, λem = 310 nm), paracetamol (λex 285,
λem = 325 nm), and ibuprofen (λex 265, 275, 285 nm, λem = 290
nm) are also partially preserved. In Figure 5E,I, we show how
the spectral features of clobazam are also resolved in the
presence of diazepam.

These data highlight that spectral features arising from the
presence of multiple fluorescent species within a scanned
sample are generally additive in nature. We therefore posit that
positive identification of multiple benzodiazepines might be
achieved in a single sample of tablet material through the
training of a CNN predictive model that incorporates examples

of various compound combinations. However, we note that
while the fluorescence emission in Figure 5 is essentially
additive with additional emissive compounds, the reflected
LED light varies in a more complex manner. Moreover, we do
not anticipate that it will always be the case that emission
spectra will be additive, so we advocate for careful analysis of
known contaminants and likely or observed mixtures.

Discrimination of Complex Drug Mixtures Beyond
BZDs. Clearly, there are other potential drugs of abuse that
could be detected by using this approach. Figure 6 shows a
range of HSF data for different molecules, including drugs that
are topical because of their association with significant rates of
overdose and death, including fentanyl, xylazine, heroin, and
examples of nitazenes. From Figure 6, each of the fingerprints
is trivial to identify, even by eye.

While these drugs individually are responsible for drug
overdose, the combinations present a significantly enhanced
risk of harm and death,33,34 so their discrimination is critical to
useful harm reduction strategies that could employ the
approach. Figure 6C,F,I shows the fingerprint of the combined
drug mixture from the panels at left. Similar to our findings in
Figure 5, the HSFs are essentially additive with the key spectral
features of each drug being retained. We note that the main
peak for bromazolam (λEx = 283, λEm = ∼310 nm) is retained
in the mixture but is difficult to observe by the eye in the
contour plot shown in Figure 6F. Using our deep learning
approach described above (Figure 4), we find that these drugs
and mixtures are easily discriminated both from one another
from the rest of the library of benzodiazepines.

■ CONCLUSIONS
Our previous work discriminating synthetic cannabinoids using
EEMs suggested the potential of discrimination of other drugs

Figure 6. Detection of relevant mixtures of street drugs. (A) Street heroin containing heroin and noscapine, 1 mg/mL, (B) etonitazene, 0.5 mg/
mL, (C) heroin and etonitazene, (D) bromazolam, 0.2 mg/mL (low dose), (E) metonitazene 0.5 mg/mL, (F) bromazolam and metonitazene
(concentrations preserved), (G) fentanyl, 1 mg/mL, (H) xylazine 0.33 mg/mL, and (I) fentanyl and xylazine (concentrations preserved).

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.4c05247
Anal. Chem. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.4c05247/suppl_file/ac4c05247_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c05247?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c05247?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c05247?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.4c05247?fig=fig6&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.4c05247?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that are likely to be fluorescent.24 A survey of the structures of
some of the key drugs of abuse (synthetic opioids and
benzodiazepines and many others) suggests that fluorescence
is likely to be observable in a great many cases owing to the
prevalence of a conjugated ring system in many drugs, which
then have the potential for relatively bright emission. There are
many examples, including our own work with synthetic
cannabinoids, which demonstrate that minor substitutions to
conjugated ring systems and or to a network of cross-
conjugated bonds are sufficient to alter the profile of excitation
and emission and in a manner that is characteristic and
reproducible for a given solvent.

Our data show that this is the case with a range of
benzodiazepines, which we use as an example of a large class of
structurally diverse illicit drugs, but it also extends similarly to
opioids. We extend these measurements to include information
from reflectance, which we find enables not only enhanced
discrimination of the analyte but also supports concentration
discrimination. To establish the generality of this principle, we
show HSF data for key examples of illicit drugs in Figure 7A−I.
These examples now include four additional opioids that are
licensed medications in the UK (7A−D), common recreational
“party drugs” (7E−G; cocaine, MDMA, ketamine), and two
NPS not discussed in the main paper [7H,I; a synthetic
cathinone (mephedrone) and a psychedelic (2C−B)]. Even to
the eye, the HSFs are simple to discriminate and point to the
more general utility of this tool. We remind readers that these
data are collected on a field-portable device and so illustrate
the very high potential for these measurements to support
community harm reduction activities, including in outreach
settings, without the need for specialist device users. We note
the need to adhere to an SOP when analyzing samples using

our device, and deviation from this will invalidate results.
However, the SOP is simple to follow, requiring a single button
press to operate the device and obtain a sample result. We
acknowledge that some benchtop instruments (i.e., FT-IR) can
also be effectively used in community drug checking services;
however, these are still limited by lack of portability and cost
and still generally require specialist knowledge for operation.
Our device is further advantaged in these scenarios, as
connection to a laptop/monitor is not required for
interpretation of sample results.

Our data illustrate that HSF data are highly discriminatory
and can provide both identification and concentration
information. The HSF data are highly complex, and we find
that an implementation of discrimination by deep learning is
effective. While we do not suggest this approach will ever rival
lab-based analysis in terms of sensitivity or specificity, we
suggest it can be a powerful tool for use by nonexperts in the
field. We demonstrate the potential of this through a field-
portable prototype that is small, robust, and inexpensive.

■ MATERIALS AND METHODS
Device Design. Device design is outlined in the results text

in addition to mission-critical AIA and ML algorithms. Specific
components include an ST UV microspectrometer (Ocean
Insight), a TMP36 temperature sensor (Analog Devices), a
monochrome OLED display, and a triple-axis accelerometer
(Adafruit). Bespoke Python software was loaded on a
Raspberry Pi Zero 2 W microcomputer running the Raspberry
Pi operating system on a 32GB MicroSD card. Twelve LEDs
were driven at 350 mA using a custom PCB. Custom holder
for 12-channel LED ring, heat sink, and ST spectrometer 3D-
printed using an Ultimaker S3 printer using ABS plastic.

Figure 7. Detection of wider range of compounds, including a range of prescription opioids and club drugs. (A) tramadol 50 mg (20 mg/mL), (B)
oxycodone 10 mg (4 mg/mL), (C) buprenorphine 2 mg (0.8 mg/mL), (D) dihydrocodeine 30 mg (12 mg/mL), (E) cocaine 2 mg/mL, (F)
ketamine 2 mg/mL, (G) MDMA 2 mg/mL, (H) mephedrone 2 mg/mL, and (I) 2CB 2 mg/mL.
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Standard Solution and Tablet Sample Preparation.
All standards were purchased as 1 mg/mL solutions in
methanol (Merck/Cayman) and were diluted for absorption
and fluorescence measurements in 99.9% HPLC-grade 2-
propanol (VWR). Standards were stored at −20 °C according
to the manufacturer’s recommendations. Drug material
(including street benzodiazepine tablets and powders) was
provided by police from seizures, TICTAC Communications
Limited, and Manchester Drug Analysis & Knowledge
Exchange (MANDRAKE). Pharmaceutical tablets were
obtained from the School of Pharmacy at the University of
Bath through a commercial supplier. Solutions were prepared
from tablet material by crushing the whole tablet with a pestle
and mortar. Powder was suspended in 2.5 mL ethanol, and
material was shaken for 10 s then left to settle for 120 s.
Samples were filtered to remove insoluble debris, and pelleted
material was discarded.

Fluorescence and Absorption Spectroscopy. Emission
maps were acquired using a spectrofluorometer (Edinburgh
Instruments, FS5) paired with a temperature-controlled
cuvette holder (SC-25 TE Cooled-Standard) and a temper-
ature controller (TC1, Quantum Northwest). Emission maps
were captured at 20 °C with excitation scanned in 5 nm
intervals between 260 and 400 nm and emission scanned in 0.5
nm intervals between 275 and 600 nm. Quartz fluorescence
cuvettes were used to collect emission spectra for solutions of 1
mL sample volume. Data were background-subtracted to
remove contributions from Raman scattering peaks and
trimmed to remove the monochromator excitation peaks.
Data were normalized and then plotted using Origin Pro.

Absorption measurements of benzodiazepine standards and
tablet solutions were acquired using an Agilent Technologies
Cary 60 UV−visible (UV−Vis) spectrophotometer. Temper-
ature was maintained at 20 °C for all experiments using a
Peltier. Quartz fluorescence cuvettes were used to collect
absorbance spectra for solutions of 1 mL sample volume.
Absorbance was recorded between 800 and 200 nm with a
scan rate of 600 nm/min and 1 nm intervals between data
points.
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Psuja, B.; Panienśki, P.; Żaba, C. Clin. Toxicol. (Phila.) 2016, 54 (1),
66−68.
(15) Etizolam, D. E. A. Diversion Control Division. Drug & Chemical
Evaluation Section, 2023. 09. www.deadiversion.usdoj.gov/drug_
chem_info/etizolam.pdf.
(16) Hashim, A.; Mohammed, N. A.; Othman, A.; Gab-Allah, M. A.

K.; Al-Kahodary, A. H. M.; Gaber, E. R.; Hassan, A. M.; Aranda, M.;
Hussien, R.; Mokhtar, A.; Islam, M. S.; Lee, K. Y.; Asghar, M. S.;
Tahir, M. J.; Yousaf, Z. Heliyon 2022, 8 (8), No. e10084.
(17) WEDINOS (Welsh Emerging Drugs & Novel Substances

Project), https://www.wedinos.org/sample-results. (accessed-08-12,
2024).
(18) Kanamori, T.; Okada, Y.; Segawa, H.; Yamamuro, T.;

Kuwayama, K.; Tsujikawa, K.; Iwata, Y. T. Drug Test Anal 2023, 15
(4), 449−457.
(19) Shafi, A.; Berry, J.; Sumnall, H.; Wood, D. M.; Tracy, D. K.
Ther. Adv. Psychopharmacol. 2022, 12, 20451253221139616.
(20) Gozdzialski, L.; Wallace, B.; Hore, D. Harm Reduct. J. 2023, 20

(1), 39.
(21) Harper, L.; Powell, J.; Pijl, E. M. Harm Reduct. J. 2017, 14 (1),

52.
(22) Mullin, A.; Scott, M.; Vaccaro, G.; Gittins, R.; Ferla, S.;

Schifano, F.; Guirguis, A. Int. J. Environ. Res. Public Health 2023, 20
(6), 4793.
(23) Williams, S. F.; Stokes, R.; Tang, P. L.; Blanco-Rodriguez, A. M.
Anal. Methods 2023, 15 (26), 3225−3232.
(24) May, B.; Naqi, H. A.; Tipping, M.; Scott, J.; Husbands, S. M.;

Blagbrough, I. S.; Pudney, C. R. Anal. Chem. 2019, 91 (20), 12971−
12979.
(25) Andrews, R. C.; May, B.; Hernández, F. J.; Cozier, G. E.;

Townsend, P. A.; Sutcliffe, O. B.; Haines, T. S. F.; Freeman, T. P.;
Scott, J.; Husbands, S. M.; Blagbrough, I. S.; Bowman, R. W.; Lewis,
S. E.; Grayson, M. N.; Crespo-Otero, R.; Carbery, D. R.; Pudney, C.
R. Anal. Chem. 2023, 95 (2), 703−713.
(26) Zawilska, J. B.; Wojcieszak, J. Neurotoxicology 2019, 73, 8−16.
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