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ABSTRACT
Conventional laboratory investigation of rotavirus infection and its antigen in rectal swabs from infected persons uses Electron
microscopy (EM) (i.e., non-acute cases), genome, and antigen-detecting assays. A recent update involves sorting, trapping, con-
centrating, and identifying infectious rotavirus particles in clinical samples leveraging activated magnetic microparticles with
monoclonal antibodies. However, the routine detection of rotavirus in many specimens using the EM approach is laborious, costly,
and requires highly skilled workers. A sustainable healthcare system should leverage the Internet of Things to operate Smart
Health Infrastructures (SHI) for predictive control of contagious diseases such as the rotavirus. This paper proposes a biomed-
ical model for predictive control of the virus spread based on Susceptible, Breastfeeding, Vaccinated, Infected, and Recovered
(SBVIR) parameters. We introduce breastfeeding, vaccination, and saturated incidence rate variables to deconstruct the transmis-
sion dynamics. An efficiency test is conducted using RI control parameters B and V. Applying Lyapunov function analysis, we
prove that the global stability of disease-free and endemic equilibria exists under breastfeeding and vaccination conditions when
the primary reproduction number is less than unity. Numerical simulation results show that breastfeeding and vaccination are
optimal with SBVIR compared to SVIR, SBIR, and SIR parameters for rotavirus infection control by 99%, 26%, 19%, and 18%,
respectively. On top of these, we show that the SBVIR model strongly agrees with real-world data and can be used to forecast the
infected population in a production health facility. Finally, we show multiple Internet of Things applications in SHI to control
rotavirus transmission effectively.
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1 | Introduction

Despite the widespread implementation of interventions aimed
at revolutionizing the provision of health and social care,
rotaviruses persist as a primary and pervasive cause of diar-
rhea among newborns and young children [1, 2]. In context,
the oral–fecal pathway is the vector channel for the virus’s
spread [3]. This causes gastroenteritis, sometimes known as
the “stomach flu” by infecting and destroying the cells lin-
ing the small intestine in tropical countries, particularly South-
east, and Southern Asia, including Africa [2]. The traditional
method for diagnosing rotavirus involves Electron microscopy,
genome, and antigen detection tests [2]. Given its complex molec-
ular epidemiology, infants in hospitals and young children in
daycare facilities frequently exhibit the symptoms of diarrhea
caused by the infection. Most care homes and rural hospitals
still suffer from the spread of various similar communicable
diseases [1].

The World Health Organization (WHO) estimates that rotavirus
infection killed about 580,000 people worldwide in 2004 [3], and
this is largely in underdeveloped countries. It was estimated that
rotavirus diarrhea was responsible for 47,898 deaths annually
in under-five children in Nigeria [4]. Infection is the leading
cause of severe diarrheal illness in newborns and young chil-
dren. While many viral strains exist, five serotypes are respon-
sible for most human rotavirus infections [5]. Rotaviruses typ-
ically infect most children worldwide before the age of three,
and in many underdeveloped nations, before their first birth-
day. With each infection, immunity increases, making sub-
sequent infections less severe; as a result, adults are rarely
affected [6]. Rotavirus can enter the human body through the
fecal-oral route via contaminated hands, environmental sur-
faces, and objects, and occasionally through food and water [6].
Human rotavirus infections can cause a range of clinical symp-
toms, from mild illness with minor diarrhea to severe, recur-
ring diarrhea accompanied by high fever and vomiting. This can
lead to dehydration, electrolyte imbalance, and, in severe cases,
death [6].

Rotavirus infection often begins with a severe episode of vomit-
ing and fever lasting 3 to 7 days [7]. Vaccination can aid in pre-
vention, although it is not effective during the first 2 months [8],
while breastfeeding is believed to provide additional preventive
benefits [9]. The authors in [10] investigated the benefits, lim-
its, and potential development of artificial intelligence on predic-
tion models used to study gastroenterology infection. Recogniz-
ing that breastfeeding may reduce gastrointestinal infections due
to breast lymphocytes, the researchers in [11] carried out senti-
ment analysis using lexicon-based machine learning techniques.
In another study, breastfeeding is identified as helping to reduce
gastrointestinal infections [12]. This is because breast milk con-
tains lymphocytes, bactericidal lactoferrin, and oligosaccharides.
Additionally, breast milk is rich in immunoglobulins, which pro-
tect infants from diseases like pneumonia, diarrhea, ear infec-
tions, and asthma. It offers immediate defense against rotavirus
infection and aids in immunological activation [11]. Breastfed
infants tend to experience fewer acute illnesses, such as diarrhea,
which decreases morbidity and mortality from diarrheal diseases
during childhood [13, 14].

To enhance protection against rotavirus, the government of Nige-
ria, through the National Primary Health Care Development
Agency (NPHCDA), with support from the WHO and partners,
introduced the rotavirus vaccine into the Routine Immunization
(RI) Schedule on August 22, 2022. This initiative aims to address
the significant burden of rotavirus-related diarrheal disease and
is expected to prevent over 50,000 child deaths annually. The
vaccine is provided free of charge to all infants at the ages of
6, 10, and 14 weeks, alongside other vaccines included in the
RI program, and is available at healthcare facilities across the
country [15].

A robust solution to further control the spread of rotavirus
and other contagious diseases could be achieved by leverag-
ing a sustainable healthcare system that incorporates advanced
technologies. By utilizing the Internet of Things (IoT) to oper-
ate Smart Health Infrastructures (SHI), predictive control of
disease outbreaks can be significantly enhanced. This paper
proposes a biomedical model for the predictive control of
rotavirus spread based on Susceptible, Breastfeeding, Vacci-
nated, Infected, and Recovered (SBVIR) parameters. Our model
introduces variables for breastfeeding, vaccination, and a sat-
urated incidence rate to thoroughly analyze and deconstruct
the transmission dynamics of the virus. This approach aims to
improve the prediction and management of disease outbreaks
through advanced technological integration and data-driven
strategies.

To the best knowledge of the authors, this paper offers a novel
perspective on health informatics while addressing its limitations
and outlining potential future implementations. The main contri-
butions of this study include:

• developed a Biomedical model that captures the dynamics of
rotavirus infection for both symptomatic and asymptomatic
individuals;

• identified and designed epidemiologically and biologically
feasible regions within the infection dynamics model;

• derived models for disease equilibrium and stability to better
understand the conditions under which the disease can be
controlled or eradicated;

• formulated a differential equation that incorporates breast-
feeding and vaccination to model saturation incidence rates
for rotavirus;

• validated the model by comparing scenarios with controlled
and uncontrolled saturation incidence rates, assessing the
effectiveness of breastfeeding and vaccination in controlling
the spread of the infection;

• demonstration of multiple IoT applications in SHI to control
rotavirus transmission effectively.

The remaining parts of this study are organized as follows.
Section 2 highlights brief literature and gaps. Section 3 discusses
the main system assumptions and main methods. Section 4
presents the primary theory, while Section 5 presents the results.
Research discussions are presented in Section 6 and Section 7
concludes the paper with future directions.
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2 | Related Works

In this subsection, we discuss related efforts. In [16], the authors
used mathematical models to investigate variations in rotavirus
incidence among children under five in Ghana, fitting the mod-
els with case–control and surveillance data from three hospitals.
In [17], the authors demonstrated that vaccination is a successful
intervention against severe rotavirus-associated gastroenteritis
(RVGE) in sub-Saharan Africa. While the rotavirus vaccine shows
high effectiveness (85%–99%) in high-income countries (HICs),
its effectiveness is generally lower (50%–64%) in low-income
countries (LICs). In [18], researchers proposed agent-based com-
putational modeling to evaluate oncolytic viral effectiveness.
Works [19–21] used computational models to assess virus matrix
assembly kinetics.

In [22], the study examined the Atangana-Baleanu derivative-
based fractional-order model of the rotavirus epidemic, incor-
porating the effects of nursing and vaccination. The researchers
applied Krasnoselskii and Banach fixed-point theorems to estab-
lish the model’s existence and uniqueness. In [23], the authors
tested the stability of their vaccine using molecular dynamics
simulations for rotavirus multi-threading models. Their compu-
tational models aimed to advance epitope-based vaccination and
diagnostic tests for rotavirus-induced diarrhea in children.

Finally, [24] estimated the long-term effects of rotavirus vaccina-
tion on deaths and disability-adjusted life years across 112 low-
and middle-income countries from 2006 to 2034 using a trans-
mission model. This study also examined the relative contribu-
tions of direct and indirect effects and compared the efficacy of
one- versus two-dose vaccine series. The authors suggest that
infants should receive the rotavirus vaccine to enhance protection
against the disease [25].

The primary goal of predicting and controlling multiple transmis-
sions of rotavirus is to develop a suitable framework for address-
ing the communicable diseases during epidemics and pandemics.
A model for controlling rotavirus disease has been presented in
[26] using breastfeeding and vaccination as the control variables
in the presence of Susceptible 𝑆(𝑡), Breastfeeding 𝐵(𝑡), Infected
𝐼(𝑡), and Recovered 𝑅(𝑡) populations; this is the well-known
SBIR-Model. That study could not account for the saturated inci-
dence rate that describes the rate at which new infections change
with the increasing number of susceptible, breastfeeding and vac-
cinated individuals. It becomes particularly relevant in situations
where the transmission rate does not increase indefinitely with
more susceptible individuals due to limitations such as behav-
ioral changes, resource constraints, or other factors that prevent
an infinite rise in new infections. By incorporating these sat-
urated incidence rates, the model will more accurately reflect
how rotavirus spreads in a population with varying levels of sus-
ceptibility, breastfeeding, and vaccination. It acknowledges that
interventions have limits and that transmission dynamics are not
always linear. Understanding these saturation points allows pub-
lic health officials to make more informed decisions about how
to allocate resources, prioritize interventions, and set achievable
goals for controlling rotavirus infections. It prevents overestima-
tions of the impact of increasing breastfeeding or vaccination
rates beyond their saturation points.

The work [27, 28] introduced the saturated incidence rate 𝛽SI
1+𝛼I

which tends to a saturated level when 𝐼 gets large, 𝛽I measures
the infection force when the disease enters a fully susceptible
population, and 1

1+𝛼I
measures the inhibitory effect from the

behavioral change of susceptible individuals when their number
increases or forms the crowding effect of the infective individuals.

This saturated incidence rate was used in many epidemics and
the rotavirus models [19, 24, 29]. This paper then established a
biomedical computational model for studying the dynamics of
Rotavirus infection (RI) with saturation incidence and control.
Selected metrics used in the study population include saturation
incidence, breastfeeding, and vaccination.

Several articles have examined the dynamics of rotavirus trans-
mission and infection control using mathematical models. In
[30], a new model for RI that integrates vaccination was devel-
oped which was thoroughly examined and demonstrated that
an endemic equilibrium existed, (i.e., 𝐸∗ = (𝑆∗, 𝑉 ∗, 𝐼∗)). The
authors [26] developed a RI model that considers immuniza-
tion and saturation incidence. Their concept model was gen-
eralized considering the saturation incidence rate that occurs
when diseased people come into touch with immunized people.
Since rotavirus has a high shading rate among infected individu-
als, the environmental effect is often considered when analyzing
its transmission dynamics. Therefore, the authors [31] involved
both environmental-to-human and human-to-human transmis-
sion interactions in their model.

To examine breastfeeding on RI prevention, a model was devel-
oped to analyze the impact of B and V on rotavirus epidemics
[26]. Similarly, the work [32] investigated how time-lapse impacts
the effectiveness of the vaccine. It was observed that delays in
receiving booster shots or vaccination doses can reduce immu-
nity, raise the possibility of viral mutations, and lengthen the
pandemic by delaying the establishment of broad immunity. This
delay could impede efforts to stop the virus’s transmission and
result in more infections that emerge as breakthroughs and inad-
equate immunity.

The following gaps were identified from the existing works
[10, 26, 32, 33]:

i. There is a non-existent saturation incidence to shrink the
dynamics of infection among individuals who lose their
maternal antibody obtained through breastfeeding from
the existing studies.

ii. Limited works dealt with minimizing the infection due to
the waning of vaccines using saturation incidence rate.

iii. None of the existing models considered combining the
reduction in the size of the infected population due
to the loss of maternal antibodies from breastfeeding
and the waning of vaccine immunity, using a saturation
incidence rate.

3 | Materials and Methods

In mathematical epidemiology, data availability is often limited,
and integrating subsystem models into a comprehensive model
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is rarely straightforward. As a result, assumptions and estimates
are necessary at nearly every stage of the process. In this paper, we
clearly outline the assumptions and define the key nomenclature
used throughout. A computational numerical approach is used to
verify the results in Section 5.

3.1 | Model Assumptions

• The model demographic progression is through the recruit-
ment of newborns or migration of children under 5 years in
the population.

• All children under 5 years in the population are susceptible
to rotavirus.

• Rotavirus infection can be controlled through vaccination
and maternal antigen from breastfeeding.

• Both the maternal antibodies from breast milk and the vac-
cine may wane off since they are temporarily effective; how-
ever, the population should receive ongoing vaccinations
steadily.

• Systems and equations are used interchangeably.

3.2 | Nomenclature

Table 1 provides the nomenclature, meanings, and parameter val-
ues for various components of the disease models, comparing
scenarios with and without breastfeeding and vaccination, along
with the sources of these values.

4 | Theory and System Modeling

We consider the population of kids less than 5 years, divided
into five groups of susceptible (𝑆(𝑡)), breastfeeding (𝐵(𝑡)), vac-
cinated (𝑉 (𝑡)), infected (𝐼(𝑡)) and recovered (𝑅(𝑡)), all at time 𝑡.
This can be denoted as the SBVIR model where 𝑆 is the suscep-
tible children (those who are vulnerable to rotavirus infection),
𝐵 is the breastfeeding children (those who started breastfeeding
immediately after birth), 𝑉 is the vaccinated children (those who
have received vaccines protection against rotavirus infection), 𝐼
is infected (those who are already infected with rotavirus disease)
and 𝑅 is recovered (those who have recovered from the infection
due to treatment). The total population is expressed as

𝑁(𝑡) = 𝑆(𝑡) + 𝐵(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) + 𝑅(𝑡) (1)

The model in Equation (1) generally allows us to include a vari-
ety of population parameters relating to the rotavirus that impacts
the population. Since birth, immigration, emigration, and death
are non-constant factors, the population of children either rises
or falls. In most cases, children can develop some level of immu-
nity to rotavirus infection from maternal antibodies due to breast-
feeding, but this immunity does not last for a long time [30],
hence vaccination is necessary [14]. Rotavirus-infected children
are both symptomatic and asymptomatic [40] and immunity
develops with each infection, making subsequent infections less
severe. Due to developed immunity, children who are removed
from an infectious population do so in the recovered group.

Breastfed children can receive vaccinations because both 𝐵 and
𝑉 lower the risk of rotavirus infection. Figure 1 shows the move-
ment from one group to another.

The admission into vulnerable-susceptible, breastfeeding, and
vaccinated groups takes place at rates (1 − 𝜌 − 𝛼)𝜓, 𝜌𝜓, and 𝛼𝜓 ,
respectively. Susceptible children breastfeed at a rate Λ and the
antibodies from maternal breast milk waneoff at 𝜏. Now the kids
come back to the susceptible group. The vaccination rate of chil-
dren in the breastfeeding group is denoted as 𝜉. Children in the
susceptible group are vaccinated at a rate 𝜔 and the waning rate
of vaccine is denoted as 𝛾 . The transmission of rotavirus between
the susceptible and infected group is 𝛽SI while 𝛽 is the rotavirus
transmission rate. The anticipated decline in the infection risk is
because B and V are at a rate 𝜀 and 𝜂, respectively, where 𝜀, 𝜂 ∈
(0, 1). In addition, 𝜇 denotes the normal death trend of children
and 𝜙 represents the rotavirus-incited death rate of affected chil-
dren. Infected children who become sick kids may recover at a
rate 𝜃. We represent the saturation constant of incidence trans-
mission of 𝑆 and 𝐼 as 𝜎1, the constant of saturation incidence of
transmission of𝐵 and 𝐼 represented as 𝜎2 and the saturation inci-
dence of transmission of 𝑉 and 𝐼 as 𝜎3.

4.1 | Model Formulation

To control the rate of rotavirus contraction, we need to develop
a model for the spread of the virus as shown in (2). We start by
considering a population of susceptible children. Our model uses
a saturation incidence function, 𝑓 (𝜎, 𝛽) = 𝛽I

1+𝜎I
. We assume that

susceptible children enter the population at a rate of (1 − 𝜌 − 𝛼),
representing children born into the population at time 𝑡. These
children are breastfed at a rate Λ and vaccinated at a rate 𝜔.
Breastfeeding helps control the virus’s spread, and we denote the
rate at which breastfeeding protection wanes as 𝜏, while the vac-
cine’s waning rate is 𝛾 . Susceptible children get infected at a rate
of 𝛽SI

1+𝜎1𝐼
and die naturally at a rate 𝜇. Therefore, the rate of sus-

ceptibility of children to the virus can be expressed as

dS(𝑡)
dt

= (1 − 𝜌 − 𝛼)𝜓 + 𝜏B + 𝛾V −
(

𝛽I
1 + 𝜎1𝐼

+ Λ + 𝜔 + 𝜇

)
𝑆

(2a)

To protect the population, we need to manage the rates at which
children move between different compartments and face various
risks. Let’s discuss how the breastfeeding rate and related dynam-
ics work:

i. Newborn Children: Newborn children in the susceptible
group are breastfed at a rate Λ. As the maternal antibodies
from breast milk wane at a rate 𝜏, these children eventually
return to the susceptible compartment.

ii. Population Growth:
• The population of breastfed children increases by ρψ

from already breastfed children entering the population.
• The vaccinated population grows by 𝛼𝜓
• Susceptible children are vaccinated at a rate of 𝜔S

iii. Decrease in Breastfed Population:
• The population of breastfed children decreases due to

rotavirus infection at a rate of 𝜀𝛽I
1+𝜎2𝐼

.
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TABLE 1 | Basic nomenclature.

Nomenclature Meaning

Parameter values with
breastfeeding and

vaccination

Parameter values
without breastfeeding

and vaccination Source

SVIR Susceptible, vaccinated, infected
and recovered

— — —

SBIR Susceptible, breastfeeding, infected,
and recovered

— — —

SIR Susceptible, infected,
and recovered.

— — —

(S(t)) Susceptible children 2000 2000 [27]
(B(t)) Breastfeeding children 1500 1500 [27]
(V(t)) Vaccinated children 1500 1500 [27]
I(t) Infected children 100 100 [27]
R(t) Recovered children 10 10 [27]
𝜌 Multiplicative factors of

breastfeeding children
0.00188 0 [34]

𝜓 Multiplicative factor of the
susceptible children

13.6986 13.6986 [34]

𝛼 Multiplicative factor of the
vaccinated children

0.002669 0 [34]

(1 − ρ − α)ψ Recruitment rate into
susceptible group

13.6363 13.6986 Estimated

𝜌𝜓 Recruitment rate into
breastfeeding group

0.02575 0 Estimated

𝛼𝜓 Recruitment rate into
vaccination group

0.03656 0 Estimated

Λ Rate of breastfeeding
susceptible children

0.22756 0 [35]

𝜏 Waning rate of maternal antibody
from breast milk

0.054945 0.054945 [36]

𝜉 Vaccination rate of
breastfeeding children

0.002 0 Assumed

𝜔 Vaccination rate of
susceptible children

0.038191 0 [36]

𝛾 Waning rate of vaccine 0.002778 0 [37]
𝛽𝑆𝐼 RI transmission rate between

infected and susceptible
1.44 1.44 Estimated

𝛽 RI contact rate 0.0000072 0.0000072 Assumed
𝜀 Anticipated decline in the RI

because of breastfeeding
0.62 0.62 [38]

𝜂 Expected decrease in the risk of RI
because of vaccination

0.71 0.71 [34]

𝜇 Natural death rate 0.036529 0.036529 [34]
𝜙 Death rate due to infection 0.004466 0.004466 [39]
𝜃 Recovery rate due to treatment 0.8333 0.8333 [40]
σ1 Constant of incidence transmission

saturability for S and I
0.5 0.005 Assumed

σ2 Constant of incidence transmission
saturability for B and I

0.5 0.005 Assumed

σ3 Constant of incidence transmission
saturability for V and I

0.4 0.004 Assumed
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FIGURE 1 | Flow diagram of rotavirus infection transmission dynamics.

• The vaccinated breastfed population decreases at a rate
of 𝜉B

• Natural deaths reduce the breastfed population at a rate
of 𝜇

To effectively protect the population from rotavirus, children
need to be breastfed at a rate that compensates for these losses
and helps maintain immunity. The required breastfeeding rate is
given by the sum of these factors. By adjusting the breastfeeding
rate to meet this requirement, we can help control the spread of
rotavirus and protect the population.

To protect the population, children need to be breastfed at the
rate of

dB(𝑡)
dt

= 𝜌𝜓 + Λ𝑆 −
(

𝜀𝛽I
1 + 𝜎2𝐼

+ 𝜉 + 𝜏 + 𝜇

)
𝐵 (2b)

where 𝜉 denotes breastfed vaccinated children. The overall rate
of vaccination is expressed as:

dV(𝑡)
dt

= 𝛼𝜓 + 𝜉B + 𝜔S −
(

𝜂𝛽I
1 + 𝜎3𝐼

+ 𝜇 + 𝛾

)
𝑉 (2c)

where 𝜂𝛽I
1+𝜎3𝐼

represents infection rate, 𝜇, and 𝛾 are natural death
rate and waning rate of vaccine respectively. The infected popu-
lation is increased by the susceptible children infected at a rate
𝛽SI

1+𝜎1𝐼
, breastfed children infected at a rate 𝜀𝛽SI

1+𝜎2𝐼
, and vaccinated

children infected at a rate 𝜂𝛽SI
1+𝜎3𝐼

. On the other hand, this popu-
lation reduced by natural death, 𝜇, disease-induced death 𝜙 and
recovered due to treatment at a rate 𝜃. It follows that the rate of
infection of the group is given by:

dI(𝑡)
dt

=
(

𝛽S
1 + 𝜎1𝐼

+ 𝜀𝛽B
1 + 𝜎2𝐼

+ 𝜂𝛽V
1 + 𝜎3𝐼

− (𝜙 + 𝜃 + 𝜇)
)
𝐼 (2d)

The recovered population is increased by the recovered due to
treatment at a rate 𝜃 and decreased due to natural death at a rate
𝜇, so that

dR(𝑡)
dt

= 𝜃I − 𝜇R (2e)

If the initial conditions of system (2a–2e) are positive, then
𝑆(0) = 𝑆0 ≥ 0;𝐵(0) = 𝐵0 ≥ 0;𝑉 (0) = 𝑉0 ≥ 0; 𝐼(0) = 𝐼0 ≥
0;𝑅(0) = 𝑅0 ≥ 0. Since (2a–2e) monitors the human popu-
lation, the parameters, and all state variables will be positive.
Therefore, applying system (1) in (2a–2e), we have

𝑁(𝑡) = 𝑆(𝑡) + 𝐵(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) +𝑅(𝑡)

𝑁(𝑡) = (1 − 𝜌 − 𝛼)𝜓 + 𝜏B + 𝛾V −
(

𝛽I
1 + 𝜎1𝐼

+ Λ + 𝜔 + 𝜇

)
𝑆

+ 𝜌𝜓 + Λ𝑆 −
(

𝜀𝛽I
1 + 𝜎2𝐼

+ 𝜉 + 𝜏 + 𝜇

)
𝐵

+ 𝛼𝜓 + 𝜉B + 𝜔S −
(

𝜂𝛽I
1 + 𝜎3𝐼

+ 𝜇 + 𝛾

)
𝑉

+
(

𝛽S
1 + 𝜎1𝐼

+ 𝜀𝛽B
1 + 𝜎2𝐼

+ 𝜂𝛽V
1 + 𝜎3𝐼

− (𝜙 + 𝜃 + 𝜇)
)
𝐼

+ 𝜃I − 𝜇R

𝑁(𝑡) = 𝜓 − 𝜇(𝑆 + 𝐵 + 𝑉 + 𝐼 +𝑅) − 𝜙I.

This then resolves into (𝑡) ≤ 𝜓 − 𝜇N − 𝜙I.

𝑁(𝑡) ≤ 𝜓 − 𝜇N − 𝜙I (3)

At disease-free equilibrium (DFE), 𝜙I = 0, so that (3) reduces to

𝑁(𝑡) ≤ 𝜓 − 𝜇N (4)
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Let the integrating factor IF = 𝑒∫ 𝜇dt = 𝑒𝜇t, then we have from sys-
tem (4) that

𝑁(𝑡) ≤ 1
𝑒𝜇t

[
𝜓

𝜇
𝑒𝜇t + 𝑐

]

𝑁(𝑡) ≤ 𝜓

𝜇
+ 𝑐𝑒−𝜇t

where 𝑐 is the constant of integration. When 𝑡 = 0, 𝑁(0) = 𝑁1, we
obtain (5)

𝑁1 −
𝜓

𝜇
≤ 𝑐

Therefore,

𝑁(𝑡) ≤ 𝜓

𝜇
+

(
𝑁1 −

𝜓

𝜇

)
𝑒−𝜇t (5)

Applying Birkhoff and Rota’s [30] theorem on differential
inequality, we get

0 ≤ 𝑁 ≤
𝜓

𝜇
as 𝑡 −→∞

This 𝑁 would approach the stability point (carrying Capacity) at
𝜓

𝜇
. Therefore, the biologically feasible region

Γ =
{
(𝑆,𝐵, 𝑉 , 𝐼, 𝑅) ∈ ℝ5

+ ∶ (𝑆(𝑡) + 𝐵(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) +𝑅(𝑡)) ≤ 𝜓

𝜇

}
is a positively invariant set and attracts all solutions in ℝ5

+. It is
sufficient to consider the dynamic system (2a–2e) in the region
Γ. It follows that in this region, the model can be considered as
being epidemiologically and mathematically well-posed.

4.2 | Existence of Equilibrium Points

We proved that the disease-free and endemic equilibrium points
are real with respect to the basic reproduction number. Thus,
if the basic reproduction number is less than one, then the
disease-free equilibrium exists. Also, if the basic reproduction
number is greater than one, then the endemic equilibrium exists.
Recall that the DFE denotes the point at which the population
is free from the virus infection, and the endemic equilibrium is
the point at which the virus is resistant in the population. The
basic reproduction number of the virus will be considered in the
context of the two equilibria.

4.2.1 | Disease-Free Equilibrium Point of the System

Observe that the 𝑅(𝑡) exists in isolation from other models in
(2a–2e). At DFE, the population is free of infection, then 𝐼0 = 0
and 𝑅0 = 0. Thus, If we let 1 =

𝛽

1+𝜎1𝐼
, 2 =

𝛽

1+𝜎2𝐼
, and 3 =

𝛽

1+𝜎3𝐼
. The dynamic attributes are realized using system (6)

dS(𝑡)
dt

= (1 − 𝜌 − 𝛼)𝜓 + 𝜏B + 𝛾V −
(
1𝐼 + Λ + 𝜔 + 𝜇

)
𝑆

dB(𝑡)
dt

= 𝜌𝜓 + Λ𝑆 −
(
2𝜀I + 𝜉 + 𝜏 + 𝜇

)
𝐵

dV(𝑡)
dt

= 𝛼𝜓 + 𝜉B + 𝜔S −
(
3𝜂I + 𝜇 + 𝛾

)
𝑉

⎫⎪⎬⎪⎭ (6)

At the equilibrium state, the rate of change of each variable in (6)
becomes zero. Remember𝑅(𝑡) is the recovered children and since
there is no infection, then 𝑅(𝑡) will be eliminated thus, resulting
in (7)

dS(𝑡)
dt

= dB(𝑡)
dt

= dV(𝑡)
dt

= 0 (7)

The corresponding closed-form equilibrium parameters can be
expressed as

𝐸0 =
(
𝑆0, 𝐵0, 𝑉0, 𝐼0, 𝑅0

)
=

(
𝜓
[
𝓈1𝑟1 − 𝜌𝜇𝑟4

]
𝜇
[
𝑟3𝓇2 + 𝜏𝓇1 + 𝛾Λ

] , 𝜓
[
𝜌𝜇𝓇1 + Λ𝓈1

]
𝜇
[
𝑟3𝓇2 + 𝜏𝓇1 + 𝛾Λ

] , 𝜓[
𝛼𝜇𝑟2 + 𝜉𝓈2 + 𝜔𝓈3

]
𝜇
[
𝑟3𝓇2 + 𝜏𝓇1 + 𝛾Λ

] , 0, 0

)
(8)

where 𝑟1 = 𝜉 + 𝜏 + 𝜇, 𝑟2 = 𝜉 + 𝜏 + 𝜇 + Λ, 𝑟3 = 𝜉 + 𝜇, 𝑟4 = 𝜉 + 𝛾 +
𝜇, 𝓈1 = 𝜇 + 𝛾 − 𝛼𝜇, 𝓈2 = 𝜌𝜇 + Λ + ω, 𝓈3 = 𝜏 + 𝜇 − 𝜌𝜇, 𝓇1 = 𝜔 +
𝛾 + 𝜇, and 𝓇2 = Λ + 𝜔 + 𝛾 + 𝜇. Notice that we have introduced
𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝓈1, 𝓈2, 𝓈3𝓇1, and 𝓇2 in (8) for notational conve-
nience and will be used throughout the remaining parts of the
paper.

4.2.2 | Basic Reproduction Number (BRN)

The BRN of the virus is the anticipated number of subsequent
cases brought on by a single infection in a population that
is entirely susceptible [41]. The BRN is important to analyze
endemic disease in Biomedical models. Let 𝑅BV denote the basic
reproduction number of model system (2a–2e) in the presence of
𝐵 and 𝑉 . When 𝐵 and 𝑉 are not included, the model gives the
BRN as 𝑅0, that is, the transmission rate of rotavirus infection by
a single infected child in the absence of breastfeeding and vacci-
nation. Using the next-generation matrix [41], we derive the BRN
in the presence of B and V as

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0

𝛽𝜓
[(
𝑟1
)(
𝓈1

)
− 𝜌𝜇

(
𝑟4
)]

+𝜀𝛽𝜓
[
𝜌𝜇

(
𝓇1

)
+ Λ

(
𝓈1

)]
+𝜂𝛽𝜓

[
𝛼𝜇

(
𝑟2
)
+ 𝜉

(
𝓈2

)
+ 𝜔

(
𝓈2

)]
𝜇[(𝑟3)(𝓇2)+𝜏(𝓇1)+𝛾Λ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑉1 =

⎡⎢⎢⎢⎣
𝑟4 0 𝜀𝛽𝐵0

− 𝜉 𝜇 + 𝛾 𝜂𝛽𝑉0

0 0 𝜙 + 𝜃 + 𝜇

⎤⎥⎥⎥⎦

The matrix 𝐹 corresponds to the transmission part and it
describes the number of ways that new rotavirus infection
can arise. The matrix 𝑉1 corresponds to transition part, which
describes the number of ways that individuals can move between
compartments, and it includes removal by death.

It follows that

𝐹𝑉 −1
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0

𝛽𝜓[(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾 − 𝛼𝜇) − 𝜌𝜇(𝜉 + 𝛾 + 𝜇)]
+𝜀𝛽𝜓[𝜌𝜇(𝜔 + 𝛾 + 𝜇) + Λ(𝜇 + 𝛾 − 𝛼𝜇)]

+𝜂𝛽𝜓[𝛼𝜇(𝜉 + 𝜏 + 𝜇 + Λ) + 𝜉(𝜌𝜇 + Λ + ω) + 𝜔(𝜏 + 𝜇 − 𝜌𝜇)]

𝜇[(𝜉 + 𝜇)(Λ + 𝜔 + 𝛾 + 𝜇) + 𝜏(𝜔 + 𝛾 + 𝜇) + 𝛾Λ][𝜇 + 𝜃 + 𝜙]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝐹𝑉 −1
1 is the product of transmission 𝐹 and inverse of transi-

tion 𝑉 −1
1 which is used in computing the basic reproduction

number (9).

𝑅BV =
𝛽𝜓

𝜇(𝜙 + 𝜃 + 𝜇)⎡⎢⎢⎢⎢⎢⎢⎣

[(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾 − 𝛼𝜇) − 𝜌𝜇(𝜉 + 𝛾 + 𝜇)] + 𝜀[𝜌𝜇(𝜔 + 𝛾 + 𝜇) + Λ(𝜇 + 𝛾 − 𝛼𝜇)]

+𝜂[𝛼𝜇(𝜉 + 𝜏 + 𝜇 + Λ) + 𝜉(𝜌𝜇 + Λ + ω) + 𝜔(𝜏 + 𝜇 − 𝜌𝜇)]

[(𝜉 + 𝜇)(Λ + 𝜔 + 𝛾 + 𝜇) + 𝜏(𝜔 + 𝛾 + 𝜇) + 𝛾Λ]

⎤⎥⎥⎥⎥⎥⎥⎦
(9)

The BRN in the absence of B and V can be obtained by setting the
parameters relating to B and V to zero, (i.e.,Λ = 𝜏 = 𝜌 = 𝜉 = 𝜔 =
𝛾 = 𝛼 = 0); we then have (10)

𝑅0 =
𝛽𝜓

𝜇(𝜙 + 𝜃 + 𝜇)
(10)

To obtain the reproduction number in the absence of either B or
V , we set the parameters relating to either B or V to zero. Then,
we obtain the BRN in the presence of V or B respectively. For the
BRN in the presence of V only, we set the parameters relating to
B to zero, that is, 𝜌 = Λ = 𝜏 = 𝜉 = 0, and obtain (11)

𝑅𝑉 =
𝛽𝜓

𝜇(𝜙 + 𝜃 + 𝜇)

[
𝜔
(
𝜇 + 𝛼𝜇2) + 𝜇(𝛾 + 𝜇 + 𝛼𝜇)

𝜇(𝜔 + 𝛾 + 𝜇)

]
(11)

While in the presence of B only, we set the parameters relating to
V to zero, that is, 𝛼 = 𝜔 = 𝛾 = 𝜉 = 0 and we get

𝑅𝐵 =
𝛽𝜓

𝜇(𝜙 + 𝜃 + 𝜇)

[
(𝜇 + 𝜏)𝜇 − 𝜌𝜇2 + 𝜀𝜇(𝜌𝜇 + Λ)

[𝜏𝜇 + 𝜇(𝜇 + Λ)]

]
(12)

Using (10) we can express (9), (11), and (12) as

𝑅BV =

𝑅0

⎡⎢⎢⎢⎢⎢⎢⎣

[(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾 − 𝛼𝜇) − 𝜌𝜇(𝜉 + 𝛾 + 𝜇)] + 𝜀[𝜌𝜇(𝜔 + 𝛾 + 𝜇) + Λ(𝜇 + 𝛾 − 𝛼𝜇)]

+𝜂[𝛼𝜇(𝜉 + 𝜏 + 𝜇 + Λ) + 𝜉(𝜌𝜇 + Λ + ω) + 𝜔(𝜏 + 𝜇 − 𝜌𝜇)]

[(𝜉 + 𝜇)(Λ + 𝜔 + 𝛾 + 𝜇) + 𝜏(𝜔 + 𝛾 + 𝜇) + 𝛾Λ]

⎤⎥⎥⎥⎥⎥⎥⎦
(13)

𝑅𝑉 = 𝑅0

[
𝜔
(
𝜇 + 𝛼𝜇2) + 𝜇(𝛾 + 𝜇 − 𝛼𝜇)

𝜇(𝜔 + 𝛾 + 𝜇)

]
(14)

𝑅𝐵 = 𝑅0

[
(𝜇 + 𝜏)𝜇 − 𝜌𝜇2 + 𝜀𝜇(𝜌𝜇 + Λ)

[𝜏𝜇 + 𝜇(𝜇 + Λ)]

]
(15)

Equations (13), (14), and (15) represent the relationship between
𝑅BV and 𝑅0, 𝑅𝑉 , and 𝑅0, and 𝑅𝐵 and 𝑅0, respectively and the
efficiency of controls used in this paper. Therefore 𝑅BV is the
required basic reproduction number for our model and hence we
conclude that both B and V will be effective in controlling RI.
This is because 𝑅BV is the best-case scenario, that is 𝑅BV < 𝑅𝑉 <

𝑅𝐵 < 𝑅0. Thus, if 𝑅BV < 1, then RI will not spread within the
population. But if 𝑅BV > 1, the infection then spreads among the
populace.

TABLE 2 | Number of possible positive roots of 𝐹 (𝐼∗) for 𝑅BV > 1.

Cases 𝒂1 𝒂2 𝒂2 𝒂4 𝑹BV

No of
sign

change

No of
positive

roots

1 + + + − 𝑅BV > 1 1 1
2 + − − − 𝑅BV > 1 1 1
3 + − + − 𝑅BV > 1 3 1, 3
4 1 − − − 𝑅BV > 1 1 1

4.2.3 | Endemic Equilibrium Point (EEP)

The EEP, 𝐸∗, is the point where rotavirus infection cannot be
eradicated but remains in the population. For the disease to per-
sist in the population, 𝐸∗ ≠ 0, that is:

𝐸∗ = (𝑆∗, 𝐵∗, 𝑉 ∗, 𝐼∗, 𝑅∗) ≠ 0

We shall establish the existence of the endemic equilibrium point
of this study using Lemma 1 below.

Lemma 1. There exists a positive equilibrium point if 𝑅BV > 1.

Proof. See Appendix A, that is, from Equations (A1–A6). ◽

Observe that (A6) can be rewritten as

𝑎1𝐼
∗3 + 𝑎2𝐼

∗2 + 𝑎3𝐼
∗ + 𝑎4 = 0 (16)

where 𝑎4 can also be rewritten as𝑅BV − 1. From (16), 𝑎1 is positive
as shown in (A6) and we cannot state whether 𝑎2, 𝑎3, and 𝑎4 are
either positive or negative. It follows that 𝑎4 > 0 whenever 𝑅BV >

1, thus the number of positive real roots for (16) depends on the
signs of 𝑎2 and 𝑎3. The Equation (16) can be analyzed using the
Discartes rule of signs on polynomial functions such as in (17).
For example, let.

𝐹 (𝐼∗) = 𝑎1𝐼
∗3 + 𝑎2𝐼

∗2 + 𝑎3𝐼
∗ + 𝑎4 (17)

the different possibilities for the roots of 𝐹 (𝐼∗) are tabulated in
Table 2.

Equations (2a–2e) has a unique EEP where Table 2 satisfies cases
1, 2, and 4 respectively. The existence of multiple, that is, more
than one EEP when 𝑅BV > 1 and Case 3 are satisfied. Therefore,
(2) will always exhibit an EEP whenever 𝑅BV > 1.

4.3 | Stability Analysis of Equilibria

4.3.1 | Local Stability of Disease-Free Equilibrium

Theorem 1. The disease-free equilibrium (DEF) is locally
asymptotically stable if 𝑅BV < 1 and unstable if 𝑅BV > 1.

Proof. To prove the stability of the proposed SBVIR model from
the DFE of 𝐸0 =

(
𝑆0, 𝐵0, 𝑉0, 𝐼0, 𝑅0

)
, we linearize system (2a–2e)

of the dynamic system by determining the Jacobian matrix 𝐽
(
𝐸0

)
thus
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𝐽
(
𝐸0

)
=

⎡⎢⎢⎢⎢⎢⎣

− (Λ + 𝜔 + 𝜇) 𝜏 𝛾

Λ −(𝜉 + 𝜏 + 𝑢) 0
𝜔

0
𝜉

0
− (𝜇 + 𝛾)

0

𝛽𝑆0

− 𝜀𝛽𝐵0

− 𝜂𝛽𝑉0(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇)

⎤⎥⎥⎥⎥⎥⎦
The characteristic equation of 𝐽

(
𝐸0

)
of (2a–2e) at 𝐸0 is of the

form |||𝐽(𝐸0
)
− 𝜆I||| = 0 which results into

𝜆4 + 𝑑1𝜆
3 + 𝑑2𝜆

2 + 𝑑3𝜆 + 𝑑4 = 0 (18)
◽

where

𝑑1 =
(
1 −𝑅BV

)
(𝜙 + 𝜃 + 𝜇) + (Λ + 𝜔 + 𝜇) + (𝜉 + 𝜏 + 𝜇) + (𝜇 + 𝛾)

𝑑2 =
(
1 − 𝑅BV

)
(𝜙 + 𝜃 + 𝜇)((Λ + 𝜔 + 𝜇) + (𝜉 + 𝜏 + 𝜇) + (𝜇 + 𝛾))

+ Λ(𝜉 + 𝜇) + (𝜔 + 𝜇)(𝜉 + 𝜏 + 𝜇) + 𝜇(Λ + 𝜔 + 𝜇) + 𝛾(Λ + 𝜇)

+ (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

𝑑3 =
(
1 −𝑅BV

)
(𝜙 + 𝜃 + 𝜇)(Λ(𝜉 + 𝜇) + (𝜔 + 𝜇)(𝜉 + 𝜏 + 𝜇)

+ 𝜇(Λ + 𝜔 + 𝜇) + 𝛾(Λ + 𝜇) + (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)) + 𝜇Λ𝜉

+ 𝜇(𝜇 + 𝛾) + 𝜇(𝜔 + 𝜇)(𝜉 + 𝜏 + 𝜇) + 𝛾𝜇(𝜉 + 𝜏 + 𝜇)

𝑑4 =
(
1 −𝑅BV

)
(𝜙 + 𝜃 + 𝜇)(𝜇Λ𝜉 + 𝜇(𝜇 + 𝛾)

+ 𝜇(𝜔 + 𝜇)(𝜉 + 𝜏 + 𝜇) + 𝛾𝜇(𝜉 + 𝜏 + 𝜇)).

We observe in (18) that 𝑑1 > 0, 𝑑3 > 0 and 𝑑4 > 0 are automati-
cally satisfied if 𝑅BV < 0. Also, 𝑑1𝑑2𝑑3 −

(
𝑑2

3 + 𝑑2
1𝑑4

)
> 0. Hence,

by Routh-Hurwitz criterion we have that all roots of (24) have
negative real parts. Thus, the disease-free equilibrium point 𝐸0
is locally asymptotically stable for 𝑅BV < 0 which agrees with
findings in [30, 42].

4.3.2 | Local Stability of the Endemic Equilibrium
Point

Next, we compute the local stability of the endemic equilibrium
𝐸∗ of the system (2a–2e)

Theorem 2. The endemic equilibrium points 𝐸∗ of the system
(2a–2e) is locally asymptotically stable if 𝑅BV > 1.

Proof. Suppose that 𝑅BV > 1, we linearize system (2a–2e) by
determining the Jacobian matrix at the endemic equilibrium
point 𝐸∗(𝑆∗, 𝐵∗, 𝑉 ∗, 𝐼∗, 𝑅∗).

𝐽 (𝐸∗) =

⎡⎢⎢⎢⎢⎢⎣

−
(
𝓇2 − 𝛾

)
𝜏 𝛾 −2†

1 𝑆∗

Λ −𝑟2 0 −𝜀2†
2 𝐵∗

𝜔 𝜉 −
(
𝑟4 − 𝜉

)
−𝜂2†

3 𝐵∗

−2†
1 𝐼∗ −𝜀2†

2 𝐼∗ −𝜂2†
3 𝐼∗

(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇)

⎤⎥⎥⎥⎥⎥⎦
(19)

where 2†
1 = 𝛽∕

(
1 + 𝜎1𝐼

∗)2, 2†
2 = 𝛽∕

(
1 + 𝜎2𝐼

∗)2 and 2†
3 =

𝛽∕
(
1 + 𝜎3𝐼

∗)2. From (19), the characteristic equation of the Jaco-
bian matrix of system (2) at𝐸∗ is of the form |𝐽 (𝐸∗) − 𝜆I| = 0 and
can be simplified to Equation (20) (See Appendix B).

𝜆4 + 𝑘1𝜆
3 + 𝑘2𝜆

2 + 𝑘3𝜆 + 𝑘4 = 0 (20)
◽

We observe that 𝑘1 > 0, 𝑘2 > 0, 𝑘3 > 0 and 𝑘4 > 0 will be pos-
itive if 𝑅BV > 1 and 𝑘1𝑘2𝑘3 −

(
𝑘2

3 + 𝑘2
1𝑘4

)
> 0 is also, satisfied

if 𝑅BV > 1. From the Routh-Hurwitz theorem, we know that
all roots of (20) have negative real parts. Thus, the endemic
equilibrium point 𝐸∗ is locally asymptotically stable for 𝑅BV > 1
[35, 43].

4.3.3 | Global Stability of Equilibria

The global stability of equilibria determines the point at the
rotavirus interior. Considering the DFE, 𝐸𝑜, the global stability
is validated with the Lyapunov function [42, 44].

Theorem 3. The DFE of the system (2a–2e) is universally sta-
ble asymptotically in Γ if 𝑅BV < 1, where Γ, is the feasible region of
system (2a–2e).

Proof. We construct the following Lyapunov function as

 ∶ {(𝑆,𝐵, 𝑉 , 𝐼, 𝑅) ∈ Γ} −→ ℝ by (𝑆,𝐵, 𝑉 , 𝐼, 𝑅) = (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)𝐼
(21)

◽
Then, differentiating (21) with time 𝑡, we have

̇ = (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)
[
1SI +2𝜀BI + 𝜂3VI − (𝜙 + 𝜃 + 𝜇)𝐼

]
= (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

[
𝛽

(
𝑆

1 + 𝜎1𝐼
+ 𝜀B

1 + 𝜎2𝐼
+ 𝜂V

1 + 𝜎3𝐼

)
𝐼 − (𝜙 + 𝜃 + 𝜇)𝐼

]

≤ (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)[𝛽(𝑆 + 𝜀B + 𝜂V) − (𝜙 + 𝜃 + 𝜇)]𝐼

< (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)[𝛽(𝑆 + 𝐵 + 𝑉 + 𝐼 +𝑅) − (𝜙 + 𝜃 + 𝜇)]𝐼

= (𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)
[
𝛽
𝜓

𝜇
− (𝜙 + 𝜃 + 𝜇)

]
𝐼

=
(
𝑅0 − 1

)
(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)𝐼

Since 𝑅BV < 𝑅0, in 𝜀, 𝜂 ∈ (0, 1), these yields

̇ <
(
𝑅RBV − 1

)
(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)𝐼

Therefore, if 𝑅BV < 1, then the DFE is universally stable asymp-
totically in the feasible region Γ.

5 | Results

Numerical simulation is employed to verify the theoretical pre-
dictions discussed in Section 4. The Runge–Kutta method of
order four (RK4) is applied using MATLAB computational engine
[45]. Dynamic behavior of rotavirus infection is studied using
a distinct set of parameter values. Also, some of the parame-
ter values and the initial data were obtained from [26, 43], [31,
45–49]. The BRN in the presence of B and V were simulated
using the parameters 𝜌 and 𝛼, and the results were demonstrated
in Figures 2, 3, and 4 respectively. It was observed that both𝐵 and
V reduces the value of 𝑅BV effectively. In this case, vaccination
provides a stronger preventive measure than breastfeeding.

Notice that integrated control works more efficiently than either
of the controls. When 𝛽 = 0.0072, the value of 𝑅0 = 2.9525 >
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FIGURE 2 | Numerical simulation of the basic reproduction number in the presence of B and V with parameter values 𝜓 = 13.6986, 𝜏 = 0.054945,
𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333, 𝜙= 0.04466, Λ= 0.22756, 𝜔= 0.038191, 𝛽= 0.0072, 𝜀= 0.00062, 𝜂 = 0.00071, 𝜇= 0.036529, while 𝛼 and 𝜌 respectively
ranges from 0 to 1.

FIGURE 3 | Numerical simulation of model Equations (2a–2e) on the effect of breastfeeding newborn children (𝜌 = 0.0018) in the control of
RI where 𝜓 = 13.6986, 𝜌= 0.0018, 𝛼 = 0.002669, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333, 𝜙= 0.04466, Λ= 0.22756, 𝜔= 0.038191, 𝜇= 0.036529,
𝛽 = 0.072, 𝜎1 = 0.5, 𝜀= 0.00062, 𝜎2 = 0.5, 𝜂 = 0.00071, 𝜎3 = 0.4 and the initial variables S0 = 2000, B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10.

1 and 𝑅BV = 0.65115 < 1. From this fact, we observe that the
value of

[(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾 − 𝛼𝜇) − 𝜌𝜇(𝜉 + 𝛾 + 𝜇)] + 𝜀[𝜌𝜇(𝜔 + 𝛾 + 𝜇) + Λ(𝜇 + 𝛾 − 𝛼𝜇)]

+𝜂[𝛼𝜇(𝜉 + 𝜏 + 𝜇 + Λ) + 𝜉(𝜌𝜇 + Λ + ω) + 𝜔(𝜏 + 𝜇 − 𝜌𝜇)]

[(𝜉 + 𝜇)(Λ + 𝜔 + 𝛾 + 𝜇) + 𝜏(𝜔 + 𝛾 + 𝜇) + 𝛾Λ]

= 0.22054 < 1

therefore, 𝑅BV < 𝑅0. This simply shows that the combined effect
of B and V can reduce the spread of RI in the population. The
disease-free equilibrium point is locally and globally stable at

𝐸0 = (82.51, 202.23, 91.34, 0, 0). The eventual eradication of the
disease from the population is seen from an epidemiological
perspective.

Figure 2 illustrates the impact of V and B, separately, on the
Basic Reproduction Number (BRN) of the infection and the com-
bined effect of V and B on the BRN. Notably, we observed that
the BRN value is less than one when V or B is the only con-
trol and when B and V are combined. The observed reduction in
BRN signifies a decrease in the rate at which one infected child
transmits rotavirus infection within the population. The com-
bined effect of B and V had the most significant positive influence
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FIGURE 4 | Numerical simulation of model Equations (2a–2e) on the effect of breastfeeding newborn children (𝜌 = 0.00188) in the control of RI
where 𝜓 = 13.6986, 𝜌= 0.00188, 𝛼 = 0.002669, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333, 𝜙= 0.04466, Λ= 0.22756, 𝜔= 0.038191, 𝜇= 0.036529,
𝛽 = 0.072, 𝜎1 = 0.5, 𝜀= 0.00062, 𝜎2 = 0.5, 𝜂 = 0.00071, 𝜎3 = 0.4 and the initial variables S0 = 2000, B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10.

FIGURE 5 | Numerical simulation of model Equations (2a–2e) on the effect of vaccination on susceptible children (𝜔) in the control of RI where
𝜓 = 13.6986, 𝜌= 0.0018, 𝛼 = 0.002669, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333, 𝜙= 0.4466, Λ= 0.22756, 𝜔= 0.8191, 𝜇= 0.036529, 𝛽 = 0.072,
𝜎1 = 0.5, 𝜀= 0.00062, 𝜎2 = 0.5, 𝜂 = 0.00071, 𝜎3 = 0.4 and the initial variables S0 = 2000, B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10.

on diminishing RI transmission dynamics. Turning our atten-
tion to Figures 3 and 4, we can observe a decline in the num-
ber of susceptible children, while breastfed, vaccinated, infected,
and recovered children exhibited oscillations before stabilizing.
Importantly, Figure 4 shows an increased reduction in the num-
ber of infected children. This outcome can be attributed to a slight
increase in the population of breastfeeding children, suggesting
that the prevalence of rotavirus can be minimized in the popula-
tion through effective breastfeeding practices.

The impact of vaccinating susceptible children and the combi-
nation of breastfeeding and vaccination rates on the dynamics
of rotavirus infection are depicted in Figures 5 and 6, respec-
tively. It was observed that vaccination of susceptible children
in Figure 5 had a significant effect, resulting in a reduction in
the number of infections compared to breastfeeding in Figure 4.

Furthermore, the combination of breastfeeding and vaccination
positively influenced the dynamics of rotavirus infection; in other
words, the more children were breastfed and vaccinated (lead-
ing to an increase in 𝜌 and 𝛼), the fewer children were infected
with rotavirus. Figure 7 illustrates the combined effect of breast-
feeding and vaccination on different compartments of the SBVIR
model. An increase in the number of breastfeeding and vacci-
nated children led to a substantial reduction in the number of
infected children, consequently increasing the number of chil-
dren who recovered from RI. This implies that the combination of
breastfeeding and vaccination is more effective in controlling RI.

Figure 8 demonstrates the effect of vaccinating and breast-
feeding newborns and susceptible children on the dynamics of
RI in the population. It was observed that a slight increase
in parameters associated with breastfeeding and vaccination
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FIGURE 6 | Numerical simulation of model Equations (2a–2e) on the effect of breastfeeding and vaccination on the newly born children (𝜌 and 𝛼)
in the control of RI where 𝜓 = 13.6986, 𝜌= 0.00188, 𝛼 = 0.005, τ= 0.054945, γ= 0.002778, ξ= 0.002, 𝜃 = 0.0095, 𝜙= 0.004466, Λ= 0.22756, 𝜔= 0.001884,
𝜇= 0.0002537, 𝛽 = 0.0000072, 𝜎1 = 0.5, 𝜀= 0.62, 𝜎2 = 0.5, 𝜂 = 0.71, 𝜎3 = 0.4 and the initial variables S0 = 2000, B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10.

FIGURE 7 | Numerical simulation Equations (2a–2e) on the effect of breastfeeding on both the newly born and susceptible children (𝜌 and 𝛼) in
the control of RI where (i.e., individual groups were displayed)and 𝜓 = 13.6986, 𝜌= 0.00188, 𝛼 = 0.005, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.0095,
𝜙= 0.004466, Λ= 0.22756, 𝜔= 0.001884, 𝜇= 0.02537, 𝛽 = 0.0000072, 𝜎1 = 0.5, 𝜀= 0.62, 𝜎2 = 0.5, 𝜂 = 0.71, 𝜎3 = 0.4 and the initial variables S0 = 2000,
B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10.

(i.e., 𝛼, 𝜌, 𝜔,Λ and Λ) could lead to the eradication of RI. Figures 9
and 10 respectively illustrate the effects of vaccination and breast-
feeding on the dynamics of the infection. The results indicate that
both factors play crucial roles in preventing and eradicating RI in
the population, with vaccination having a greater impact on the
dynamics of the infection. This could be attributed to the fact that
maternal antibodies in humans tend to decrease over a period of 6

to 12 months. In other words, immunity in newborn babies is only
temporary and starts to decline after the first few months. There-
fore, it is essential to commence childhood vaccinations when the
baby is 2 months old.

The effect of saturated constants on the infected group was shown
in Figure 11 using different values such as 𝜎1 = 𝜎2 = 𝜎3 = 0.5,
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FIGURE 8 | Numerical simulation of model Equations (2a–2e) on the effect of vaccination and breastfeeding on both the newly born and susceptible
children in controlling RI (𝜌, 𝜔,Λ, 𝛼 and 𝜉) where ψ= 13.6986, 𝜌= 0.00188, 𝛼 =0.005, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.0025, 𝜃 = 0.0095, 𝜙= 0.004466,
Λ= 0.23756, 𝜔= 0.8191, 𝜇= 0.0002537, 𝛽 = 0.0000072, 𝜎1 = 0.5, 𝜀= 0.00062, 𝜎2 = 0.5, 𝜂 = 0.00071, 𝜎3 = 0.4 and the initial variables S0 = 2000, B0 = 1500,
V 0 = 1500, I0 = 100 and R0 = 10.

FIGURE 9 | Dynamic behavior of the system (2a–2e) on the effect of V on RI.

FIGURE 10 | Dynamic response of the system (2a–2e) on the effect of B on the infection.
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FIGURE 11 | Effect of the saturated incidence rate on RI dynamics using model system (2a–2e), that is, from 𝜎1 = 𝜎2 = 𝜎3 = 0.5 to 𝜎1 = 𝜎2 =
𝜎3 = 2.0.

FIGURE 12 | Numerical simulation of model Equations (2a–2e) when there is no vaccination and breastfeeding of children on RI {where
𝜓 = 13.6986, 𝜌= 0, 𝛼 = 0, 𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0, 𝜃 = 0.00095, 𝜙= 0.004466, Λ= 0, 𝜔= 0.038191, 𝜇= 0.00002537, 𝛽 = 0.72, 𝜎1 = 0.005, 𝜀= 0.62,
𝜎2 = 0.005, 𝜂 = 0.71, 𝜎3 = 0.004 and the initial variables S0 = 2000, B0 = 1500, V 0 = 1500, I0 = 100 and R0 = 10}.

𝜎1 = 𝜎2 = 𝜎3 = 0.8, 𝜎1 = 𝜎2 = 𝜎3 = 1.2, and 𝜎1 = 𝜎2 = 𝜎3 = 2.0.
We observe that the population of infected children decreases
when 𝜎1, 𝜎2, and 𝜎3 increases from 0.5 to 2.0. Observe that when
the size of sick children shrinks; however, the effect is very
insignificant. As a result, the saturated constant between suscep-
tible, breastfeeding, vaccinated, and infected has a slight effect
on the dynamic behavior of the model. The effect is because

1
1+𝜎1𝐼

,
1

1+𝜎2𝐼
, and 1

1+𝜎3𝐼
which is the inhibitory effect from behav-

ioral change of susceptible, breastfeeding, and vaccinated chil-
dren are respectively less than 1 and as such decreases the num-
ber of the infected children. Consequently, it will be advisable to
shrink contact between the infected with susceptible, breastfeed-
ing and vaccinated to the barest minimum.

Figure 12 illustrates the dynamics of rotavirus infection (RI) with-
out vaccination and breastfeeding interventions. The observation
suggests that rotavirus is likely to remain endemic, as a significant

number of children become infected. This highlights the impor-
tance of analytical interpretations in informing strategies for con-
trolling RI and achieving higher vaccination coverage, alongside
promoting breastfeeding practices at a saturation incidence rate.
Successfully vaccinating more infants, encouraging breastfeeding
to provide maternal antibodies, and reducing the spread of infec-
tion through an inhibitory constant (saturation incidence rate)
could potentially lead to the elimination of rotavirus from the
population.

5.1 | Model Fitting and Validations

We collected data on Rotavirus cases in children from Ahmadu
Bello University Teaching Hospital in Zaria, Nigeria [50]. To
validate the computational model, we used both real and sim-
ulated data. We fitted the real data, shown in Table 3, to the
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model described in Equations (2a–2e). This data, which details
the number of children who tested positive for Rotavirus from
September 2019 to August 2020, was gathered monthly. To sim-
plify the comparison between the real and simulated data, we
first interpolated the monthly data to a daily resolution. We then
applied the model’s parameters, as outlined in Table 1, to fit the
results.

From Figure 13, it is evident that the real data shows three peaks
on days 6, 122, and 215, respectively. However, in our simula-
tion data, we only observed one peak on day 12, which closely
aligns with the highest (second) peak in the real data. Addition-
ally, the simulated data intersects with the real data at the first
peak. Unfortunately, we were unable to replicate the remaining
peaks observed in the real data. This discrepancy may be due to
several factors. First, the real data only includes children who
tested positive after visiting the hospital, suggesting that other

TABLE 3 | Positive test cases for rotavirus (September 2019–August
2020).

Month
Number of infected

children in 2019
Number of infected

children in 2020

January — 7
February — 2
March — 4
April — 1
May — 2
June — 2
July — 2
August — 1
September 2 −
October 6 −
November 5 −
December 21 −

infected children who did not seek medical attention might not
be accounted for. Second, the model assumes a constant vacci-
nation rate during the period from September 2019 to August
2020, which may not reflect the actual day-to-day variations in
vaccination rates. Lastly, the model incorporates breastfeeding,
vaccination, and a saturated incidence rate to control rotavirus
infection. The inclusion of a saturated incidence rate accounts for
its inhibitory effect, reducing the infection rate when the number
of infected children exceeds a certain threshold.

Table 4 shows that the percentage of infected children decreases
when various control methods are applied, even when the inci-
dence rate is saturated.

From Table 5, the proposed SBVIR Biomedical model can assist in
planning and implementing public health interventions related
to rotavirus. For instance, the model can provide critical predic-
tions about the spread of rotavirus, helping public health officials
anticipate outbreaks and optimize resource allocation. By analyz-
ing various scenarios, the model can enable officials to prepare
effectively and direct resources like vaccines and medical supplies
to areas at high risk. It also aids in refining vaccination strategies
by determining the most effective timing and coverage rates to
curb transmission.

Furthermore, the model can identify high-risk groups based on
factors such as breastfeeding and vaccination status, allowing
for targeted interventions like specialized vaccination campaigns.
It supports ongoing monitoring and evaluation of intervention
effectiveness, providing evidence for successful strategies. The
model’s insights can influence public health policy and serve
as an early warning system for emerging outbreaks, ensuring a
proactive response to rotavirus challenges.

6 | Discussion

Further analysis on the results of the Biomedical model is pre-
sented in this section. Also, the generalized limitations and a

FIGURE 13 | Computational comparison between real and simulated data.
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TABLE 4 | Percentage decrease in number of infections with different control methods under saturated incidence rate.

Control type with saturation incidence rate Without control With control Percentage decrease (%)

Breastfeeding of newborn children (𝜌) 63.8659 54.8528 14.1125
Vaccination of newborn children (𝛼) 63.8659 54.5234 14.6283
Breastfeeding of susceptible children (Λ) 63.8659 34.2081 46.4376
Vaccination of susceptible children (𝜔) 63.8659 15.547 75.6568
B and Vof newborn children (𝜌 and 𝛼) 63.8659 31.3114 50.9732
Breastfeeding and Vaccination of susceptible
children (Λ and 𝜔)

63.8659 32.7179 48.7709

Vaccination of breastfed children (𝜉) 63.8659 54.0816 15.4140
Breastfeeding and Vaccination of newborn,
susceptible, and breastfed children
(𝜌, 𝛼,Λ, 𝜔 and𝜉)

2947.0953 28.7743 99.0236

Saturation Incidence Rate 89.5343 28.7743 64.5116

TABLE 5 | Comparison of different model types with the proposed
model.

Model type SBVIR SVIR SBIR SIR

Efficacy of control 99% 26% 19% 18%

practical use case for SMI are presented. Figures 2 and 3 showed
the effect of V and B on the BRN of the infection while Figure 4
represents the combined effect of V and B on the BRN with V hav-
ing the greatest positive effect. From Figures 5 and 6, it is seen
that the susceptible children decreased, breastfed, vaccinated,
infected, and recovered children oscillated before becoming con-
stant, but a significant reduction of the infected is observed in
Figure 6 because of a slight increase in the rate of breastfeed-
ing of newborn children. This means that rotavirus can only be
eradicated from the population if the control measures are effec-
tive. The performance of B and V rates to the dynamics of RI was
further displayed in Figures 7 and 8. It will be observed that B
and V can positively affect the dynamics of RI, that is, the more
children are breastfed and vaccinated (increase in 𝜌 and 𝛼), the
fewer the children are infected with rotavirus. Figure 9 shows
an increase in the number of breastfeeding and vaccinated chil-
dren while the number of infected children is drastically reduced
thereby increasing the recovered children from RI. Figure 10
illustrates the effect of vaccination and breastfeeding of the new-
born and susceptible children on the dynamics of RI in the popu-
lation from which we detected a slight increase in the parameters
associated with vaccination and breastfeeding (𝛼, 𝜌, 𝜔,Λ and Λ),
from which observed that RI will be eradicated. Figures 11 and
12, respectively show the effect of vaccination and breastfeeding
respectively on the dynamics of the infection. The result indicated
that both play a very important role in the prevention and eradi-
cation of RI in the population with vaccination having a greater
effect on the dynamic of the infection.

The effect of saturated constants on the infected group was
shown in Figure 13 which was plotted with 𝜎1 = 𝜎2 = 𝜎3 =
0.5, 0.8, .2 and 2.0. We observe that the population of infected
children decreases when 𝜎1, 𝜎2 and 𝜎3 increases from 0.5 to
2.0. As a result, the saturated constant between breastfeeding,

vaccinated, and infected has a slight effect on the dynamic
response of the model. Consequently, it will be advisable to
shrink contact between the infected and susceptible to the barest
minimum.

Figure 12 shows the response of RI in the absence of V and
B, from which we observed an increase in the population of
the infected, and this indicates rotavirus will be endemic in the
population.

It is observed from Figure A1 that the model fits well with real
data to project the infected population in real life and from
Table 4, that increasing vaccination and breastfeeding rates of
the newborn and susceptible children together with vaccinating
breastfed children, coupled with the introduction of saturation
incidence, resulted in a high percentage decrease in the spread
of RI and the number of infected children in the population.
This is illustrated in Table 5 as we observed that the proposed
model is more effective. Lastly, from numerical analysis, the pro-
posed model recommends that effective vaccination of suscepti-
ble children and breastfeeding is sufficient to diminish the spread
of RI in the population. The efficacy of breastfeeding B is ele-
vated through encouraging mothers to breastfeed their children
with the first breast milk immediately after birth and that breast-
feeding should continue for up to 6 months or more (exclusive
breastfeeding). Increasing access to breastfeeding education and
services and promoting a positive attitude toward breastfeeding
in the population can also elevate the efficacy of breastfeeding.
The study indicates that efforts should be made to improve the
efficiency of breastfeeding and enlarge the capacity of vaccina-
tion and inhibitory factors of the saturated incidence. The idea is
to control the spread of rotavirus infection efficiently.

In Figure 14, we showcase the SHI that leverages the IoT to enable
various use cases. These applications are designed to aid in man-
aging the dynamics of rotavirus infection transmission within
sampled populations. SHI with IoT enables environmental mon-
itoring to optimize conditions that affect virus survival, ensures
effective hand hygiene with sensor-equipped devices, and facil-
itates real-time data collection for targeted interventions. Wear-
able IoT devices help in the early detection of symptoms, while
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FIGURE 14 | Smart Health Infrastructure for RV disease prediction and control showcasing IoT-driven data analytics applications.

smart contact tracing tracks exposures to prevent further spread.
Remote patient monitoring reduces healthcare workers’ exposure
risk, and IoT manages the supply chain for timely resource distri-
bution. Additionally, IoT technologies enhance public awareness
and compliance by delivering real-time information on preven-
tive measures and outbreak alerts.

In summary, the use of Social and Health Informatics (SHI) for
disease analytics represents the future of infection prevention,
diagnosis, control, and intervention, particularly for communica-
ble diseases. This model can be applied in various settings, includ-
ing rural areas in developing countries, care homes, orphanages,
and hospitals, as well as during epidemics and pandemics. Health
systems with SHI can explore the insights provided in Figure 14,
especially with the advent of digital innovations in medicine such
as AI, machine learning, IoT, analytics, and telemedicine.

This study has limitations briefly discussed. For instance, the
work relies on advanced models to simulate rotavirus dynam-
ics, which are simplifications of complex real-world scenarios
and may not fully capture the nuances of disease spread due to
varying assumptions. The model assumes a homogeneous pop-
ulation, ignoring individual differences in susceptibility, behav-
ior, and healthcare access. Additionally, uncertainties in model
parameters like transmission rates or vaccine efficacy are not fully

addressed. External influences such as changes in public health
policies, societal behaviors, or economic conditions are not con-
sidered, nor are variations in human behavior that impact vacci-
nation and contact patterns. The analysis also does not explore
the interactions between vaccination, breastfeeding, and disease
transmission in depth, nor does it examine how sensitive the
results are to changes in real-world parameters. Furthermore, the
model does not account for factors like healthcare infrastructure,
population mobility, and the temporal dynamics of outbreaks,
such as seasonal variations and long-term trends.

7 | Conclusion

This paper introduces a novel computational SBVIR Biomedical
model with a saturated incidence function, designed to exam-
ine the impact of breastfeeding (B) and vaccination (V) on dis-
ease transmission dynamics. Within the framework of Biomedi-
cal epidemiology, it was observed that reducing the Basic Repro-
duction Number (BRN) related to B and V to below 1 (BRN
< 1) is crucial for eradicating the disease. The study highlighted
the importance of increasing the efficacy and capacity of B and
V to provide sufficient protection for susceptible children. We
demonstrated the global stability of the disease-free equilibrium
using the Lyapunov function. Additionally, we established that
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both the disease-free equilibrium and the endemic equilibrium
point 𝐸∗ are locally asymptotically stable when 𝑅BV < 1 and
𝑅BV > 1, respectively. By increasing parameters associated with
vaccination and breastfeeding—such as 𝜌,Λ, α,ω, ξ—to cover a
larger population of newborns and susceptible infants, the spread
of rotavirus infection (RI) can be significantly minimized. This
implies that maintaining the BRN below unity through enhanced
efforts in vaccinating and breastfeeding susceptible infants, along
with managing the saturation incidence rate, can lead to the
eradication of RI. Otherwise, the infection will persist endem-
ically in the population. The study also found that increasing
the saturation incidence rate, which acts as an inhibitory factor,
significantly reduces the number of rotavirus-infected infants.
The paper concludes that without effective control measures,
rotavirus will remain endemic. It is recommended that com-
prehensive vaccination programs and breastfeeding practices are
essential to reducing the spread of RI. Future research will focus
on utilizing artificial intelligence to predict the 3D structural
patterns of rotavirus spike proteins and deploying Smart Health
Infrastructure for similar disease prediction.
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Appendix A

To compute the EEP of the rotavirus epidemic model, we use system (2) and obtain.

0 = (1 − 𝜌 − 𝛼)𝜓 + 𝜏𝐵∗ + 𝛾𝑉 ∗ −
(

𝛽𝐼∗

1+𝜎1𝐼
∗ + Λ + 𝜔 + 𝜇

)
𝑆∗

0 = 𝜌𝜓 + Λ𝑆∗ −
(

𝜀𝛽𝐼∗

1+𝜎2𝐼
∗ + 𝜉 + 𝜏 + 𝜇

)
𝐵∗

0 = 𝛼𝜓 + 𝜉𝐵∗ + 𝜔𝑆∗ −
(

𝜂𝛽𝐼∗

1+𝜎3𝐼
∗ + 𝜇 + 𝛾

)
𝑉 ∗

0 = 𝛽𝑆∗𝐼∗

1+𝜎1𝐼
∗ +

𝜀𝛽𝐵∗𝐼∗

1+𝜎2𝐼
∗ +

𝜂𝛽𝑉 ∗𝐼∗

1+𝜎3𝐼
∗ − (𝜙 + 𝜃 + 𝜇)𝐼∗

0 = 𝜃𝐼∗ − 𝜇𝑅∗

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(A1)

From this we get

𝑆∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓
(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)][𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
− 𝜓𝜌𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)] − 𝜓𝜌𝜉𝜂𝛽𝐼∗
(
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∗)(1 + 𝜎2𝐼
∗)

− 𝜓𝜌𝜇𝜂𝛽𝐼∗
(
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∗)(1 + 𝜎2𝐼
∗) − 𝜓𝜌𝜉𝜇

(
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∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
− 𝜓𝜌𝜇(𝜇 + 𝛾)

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
− 𝜓𝛼𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
− 𝜓𝛼𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽𝐼∗
[
𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)][𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜉𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)

+Λ𝜉𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+Λ𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)

(
1 + 𝜎3𝐼

∗)]
+𝜔𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜔𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]
+𝜇𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜇(𝜇 + 𝛾)

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

𝐵∗ =

𝜌𝜓𝛽𝐼∗
(
1 + 𝜎2𝐼

∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)] + 𝜌𝜓𝜔𝜂𝛽𝐼∗
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)

+𝜌𝜓𝜔𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗) + 𝜌𝜓𝜇𝜂𝛽𝐼∗
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)

+𝜌𝜓𝜇(𝜇 + 𝛾)
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+Λ𝜓

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)

(
1 + 𝜎3𝐼

∗)]
−Λ𝜓𝛼𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗) − Λ𝜓𝛼𝜇(1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽𝐼∗
[
𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)][𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜉𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)

+Λ𝜉𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+Λ𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)

(
1 + 𝜎3𝐼

∗)]
+𝜔𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜔𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]
+𝜇𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜇(𝜇 + 𝛾)

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

20 of 24 Engineering Reports, 2025



𝑉 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼𝜓𝛽𝐼∗
(
1 + 𝜎3𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝛼𝜓Λ𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)

+𝛼𝜓Λ𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+𝛼𝜓𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]
+𝜉𝜌𝜓𝛽𝐼∗

(
1 + 𝜎2𝐼

∗)(1 + 𝜎3𝐼
∗)

+𝜉𝜌𝜓𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+𝜉Λ𝜓

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+𝜔𝜓

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]
−𝜔𝜓𝜌𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)

−𝜔𝜓𝜌𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽𝐼∗
[
𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)][𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜀𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)
(
1 + 𝜎3𝐼

∗)]
+Λ𝜉𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)

+Λ𝜉𝜇
(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)(1 + 𝜎3𝐼

∗)
+Λ𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎2𝐼
∗)[𝜂𝛽𝐼∗ + (𝜇 + 𝛾)

(
1 + 𝜎3𝐼

∗)]
+𝜔𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜔𝜇

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]
+𝜇𝜂𝛽𝐼∗

(
1 + 𝜎1𝐼

∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)
(
1 + 𝜎2𝐼

∗)]
+𝜇(𝜇 + 𝛾)

(
1 + 𝜎1𝐼

∗)(1 + 𝜎3𝐼
∗)[𝜀𝛽𝐼∗ + (𝜉 + 𝜏 + 𝜇)

(
1 + 𝜎2𝐼

∗)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

𝑅∗ = 𝜃𝐼∗

𝜇
(A5)

and ⎡⎢⎢⎢⎢⎢⎣
(𝜙 + 𝜃 + 𝜇)

⎛⎜⎜⎜⎜⎜⎝

𝜀𝜂𝛽3 + 𝜀𝛽2𝜎3(𝜇 + 𝛾) + 𝛽𝜎2𝜎3(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + Λ𝜂𝛽2𝜎1 + Λ𝜀𝛽𝜎2𝜎3(𝜇 + 𝛾)
+Λ𝜀𝜂𝛽𝜎1𝜎2 + Λ𝜉𝜇𝜎1𝜎2𝜎3 + Λ𝜇𝜂𝛽𝜎1𝜎2 + Λ𝜇𝜎1𝜎2𝜎3(𝜇 + 𝛾) + 𝜔𝜂𝜀𝛽𝜎1

+𝜔𝜂𝛽𝜎1𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜔𝜇𝜀𝛽𝜎1𝜎3 + 𝜔𝜇𝜎1𝜎2𝜎3(𝜉 + 𝜏 + 𝜇) + 𝜇𝜂𝜀𝛽2𝜎1

+𝜇𝜂𝛽𝜎1𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜀𝜇𝛽𝜎1𝜎3(𝜇 + 𝛾) + 𝜇𝜎1𝜎2𝜎3(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
𝐼∗3

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝜙 + 𝜃 + 𝜇)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀𝛽2(𝜇 + 𝛾) + 𝜂𝛽2(𝜉 + 𝜏 + 𝜇) + 𝛽𝜎3(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + 𝜂𝛽2𝜎2(𝜉 + 𝜏 + 𝜇)
+𝛽𝜎2(𝜉 + 𝜏 + 𝜇) + Λ𝜀𝜂𝛽2 + Λ𝜀𝛽𝜎3 + Λ𝜀𝛽𝜎1(𝜇 + 𝛾) + Λ𝜀𝜂𝛽

(
𝜎1 + 𝜎2

)
+Λ𝜉𝜇

(
𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3

)
+ Λ𝜇𝜂𝛽

(
𝜎1 + 𝜎2

)
+ Λ𝜇(𝜇 + 𝛾)

(
𝜎1𝜎3 + 𝜎2𝜎3

)
+Λ𝜇𝜎1𝜎2(𝜇 + 𝛾) + 𝜔𝜂𝜀𝛽2 + 𝜔𝜂𝛽𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜔𝜂𝛽𝜎1(𝜉 + 𝜏 + 𝜇) + 𝜇𝜂𝜀𝛽2

+𝜔𝜇𝜀𝛽
(
𝜎1 + 𝜎3

)
+ 𝜔𝜇(𝜉 + 𝜏 + 𝜇)

(
𝜎1𝜎2 + 𝜎2𝜎3

)
+ 𝜔𝜇𝜎1𝜎3(𝜉 + 𝜏 + 𝜇)

+𝜇𝜂𝛽𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜇𝜂𝛽𝜎1(𝜉 + 𝜏 + 𝜇) + 𝜀𝜇𝛽(𝜇 + 𝛾)
(
𝜎1 + 𝜎3

)
+𝜇(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

(
𝜎1𝜎2 + 𝜎2𝜎3

)
+ 𝜇𝜎1𝜎3(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 𝜀𝜂𝜓𝛽3 − 𝜓𝛽2𝜎3(𝜇 + 𝛾) − 𝜂𝜓𝛽2𝜎2(𝜉 + 𝜏 + 𝜇) − 𝜓𝛽𝜎2(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + 𝜉𝜌𝜂𝜓𝛽2𝜎2

+𝜇𝜉𝜌𝜓𝛽𝜎2𝜎3 + 𝜇𝜌𝜓𝜂𝛽2𝜎2 + 𝜇𝜌𝜓𝛽𝜎2𝜎3(𝜇 + 𝛾) + 𝜓𝜌𝜀𝜂𝛽3 + 𝜓𝜌𝜀𝛽2𝜎3 + 𝜓𝛼𝜀𝜂𝛽3

+𝜓𝛼𝜂𝛽2𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜓𝛼𝜇𝜀𝛽2𝜎3 + 𝜓𝛼𝜇𝛽𝜎2𝜎3(𝜉 + 𝜏 + 𝜇) − 𝜓𝜌𝜀𝜂𝛽3 − 𝜓𝜌𝜀𝛽2𝜎3(𝜇 + 𝛾)
− 𝜓𝜌𝜀𝜂𝛽2𝜎1 − 𝜓𝜌𝜀𝜔𝜇𝛽𝜎1𝜎2 − 𝜓𝜌𝜀𝜇𝜂𝛽2𝜎1 − Λ𝜓𝜀𝜂𝛽2𝜎1 − Λ𝜓𝜀𝛽𝜎1𝜎3(𝜇 + 𝛾) + Λ𝜓𝛼𝜀𝜂𝛽2𝜎1

+Λ𝜇𝜓𝛼𝜀𝛽𝜎1𝜎3 − 𝛼𝜓𝜀𝜂𝛽3 − 𝛼𝜓𝜂𝛽2(𝜉 + 𝜏 + 𝜇) − Λ𝜓𝛼𝜀𝛽2𝜎1 − 𝛬𝜇𝜓𝛼𝜂𝛽𝜎1𝜎2 − μ𝜓𝛼𝜂𝜀𝛽2𝜎1

− μ𝜓𝛼𝜂𝛽𝜎1𝜎2(𝜉 + 𝜏 + 𝜇) − 𝜉𝜓𝜂𝛽2𝜎2 − 𝜉𝜌𝜓𝜇𝜂𝛽𝜎1𝜎2 − 𝜉Λ𝜓𝜂𝛽𝜎1𝜎2 − 𝜔𝜓𝜂𝜀𝛽2𝜎1

−𝜔𝜓𝜂𝛽𝜎1𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜔𝜓𝜌𝜇𝜂𝛽𝜎1𝜎2 + 𝜔𝜓𝜌𝜀𝜂𝛽2𝜎1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐼∗2

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝜙 + 𝜃 + 𝜇)

⎛⎜⎜⎜⎜⎜⎝

𝛽(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + Λ𝜀𝛽(𝜇 + 𝛾) + Λ𝜀𝜂𝛽 + Λ𝜉𝜇
(
𝜎1 + 𝜎2 + 𝜎3

)
+ Λ𝜇𝜂𝛽

+Λ𝜇(𝜇 + 𝛾) + Λ𝜇(𝜇 + 𝛾)
(
𝜎1 + 𝜎3

)
+ 𝜔𝜂𝛽(𝜉 + 𝜏 + 𝜇) + 𝜔𝜇𝜀𝛽

+𝜔𝜇𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜔𝜇(𝜉 + 𝜏 + 𝜇)
(
𝜎1 + 𝜎3

)
+ 𝜇𝜂𝛽(𝜉 + 𝜏 + 𝜇)

+𝜀𝜇𝛽(𝜇 + 𝛾) + 𝜇𝜎2(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + 𝜇𝜎2(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)

⎞⎟⎟⎟⎟⎟⎠
− 𝜀𝜓𝛽2(𝜇 + 𝛾) − 𝜂𝜓𝛽2(𝜉 + 𝜏 + 𝜇) − 𝜓𝛽(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) − 𝜓𝛽𝜎2(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾)
+𝜉𝜌𝜂𝜓𝛽2 + 𝜇𝜉𝜌𝜓𝛽

(
𝜎2 + 𝜎3

)
+ 𝜇𝜌𝜓𝜂𝛽2 + 𝜇𝜌𝜓𝛽(𝜇 + 𝛾)

(
𝜎2 + 𝜎3

)
+ 𝜓𝜌𝜀𝛽(𝜇 + 𝛾)

+𝜓𝛼𝜂𝛽2(𝜉 + 𝜏 + 𝜇) + 𝜓𝛼𝜇𝜀𝛽2 + 𝜓𝛼𝜇𝛽𝜎2(𝜉 + 𝜏 + 𝜇) + 𝜓𝛼𝜇𝛽𝜎3(𝜉 + 𝜏 + 𝜇)
− 𝜓𝜌𝜀𝛽2(𝜇 + 𝛾) − 𝜓𝜌𝜀𝜂𝛽2 − 𝜓𝜌𝜀𝜔𝜇𝛽

(
𝜎1 + 𝜎3

)
− 𝜓𝜌𝜀𝜇𝜂𝛽2 − 𝜓𝜌𝜀𝜇𝛽𝜎1(𝜇 + 𝛾)

− Λ𝜓𝜀𝜂𝛽2 − Λ𝜓𝜀𝛽𝜎3(𝜇 + 𝛾) − Λ𝜓𝜀𝛽𝜎1(𝜇 + 𝛾) + Λ𝜓𝛼𝜀𝜂𝛽2 + Λ𝜓𝜇𝛼𝜀𝛽
(
𝜎1 + 𝜎3

)
− 𝛼𝜓𝜂𝛽2(𝜉 + 𝜏 + 𝜇) − Λ𝜓𝛼𝜀𝛽2 − 𝛬𝜇𝜓𝛼𝜂𝛽

(
𝜎1 + 𝜎2

)
− μ𝜓𝜀𝛽2 − μ𝜓𝛼𝜂𝛽𝜎2(𝜉 + 𝜏 + 𝜇)

− μ𝜓𝛼𝜂𝛽𝜎1(𝜉 + 𝜏 + 𝜇) − 𝜉𝜓𝜂𝛽2 − 𝜉𝜌𝜓𝜇𝜂𝛽
(
𝜎1 + 𝜎2

)
− 𝜉Λ𝜓𝜂𝛽

(
𝜎1 + 𝜎2

)
− 𝜔𝜓𝜂𝜀𝛽2

−𝜔𝜓𝜂𝛽(𝜉 + 𝜏 + 𝜇) − 𝜔𝜓𝜂𝛽𝜎1(𝜉 + 𝜏 + 𝜇) + 𝜔𝜓𝜌𝜇𝜂𝛽
(
𝜎1 + 𝜎2

)
+ 𝜔𝜓𝜌𝜀𝜂𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐼∗
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+

⎡⎢⎢⎢⎢⎢⎣

(𝜙 + 𝜃 + 𝜇)(Λ𝜉𝜇 + Λ𝜇(𝜇 + 𝛾) + 𝜔𝜇(𝜉 + 𝜏 + 𝜇) + 𝜇(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾))
− 𝜓𝛽(𝜉 + 𝜏 + 𝜇)(𝜇 + 𝛾) + 𝜇𝜉𝜌𝜓𝛽 + 𝜓𝜌𝜇𝛽(𝜇 + 𝛾) + 𝜓𝛼𝜇𝛽(𝜉 + 𝜏 + 𝜇) − 𝜓𝜌𝜀𝜔𝜇𝛽

− 𝜓𝜌𝜀𝜇𝛽(𝜇 + 𝛾) − Λ𝜓𝜀𝛽(𝜇 + 𝛾) + Λ𝜓𝜇𝛼𝜀𝛽 − 𝛬𝜇𝜓𝛼𝜂𝛽 − μ𝜓𝛼𝜂𝛽(𝜉 + 𝜏 + 𝜇) − 𝜉𝜌𝜓𝜇𝜂

𝛽 − 𝜉Λ𝜓𝜂𝛽 − 𝜔𝜓𝜂𝛽(𝜉 + 𝜏 + 𝜇) + 𝜔𝜓𝜌𝜇𝜂𝛽

⎤⎥⎥⎥⎥⎥⎦
= 0 (A6)

Appendix B

𝜆4 +
[(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇) +

(
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)
+

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)]
𝜆3

+
[(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇)

((
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)
+

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

))
+

(
𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+ Λ

(
𝜉 + +𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+

(
Λ + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+ 𝜔

(
𝜇 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+
(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+ 𝜂2𝛽2𝑉 ∗𝐼∗(

1 + 𝜎3𝐼
∗
)3 𝜆

2 +

(
𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)3

)]
𝜆2

+
[(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇)

((
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)
+
(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+ 𝜏Λ + 𝜔𝛾

)
+ Λ𝜉

(
𝜇 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+

(
𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+ 𝜔

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜇 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+ Λ

(
𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
+

(
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜀2𝛽2𝐵∗𝐼∗(
1 + 𝜎2𝐼

∗
)3

)

+

(
𝜉𝜂𝜀𝛽2𝐵∗𝐼∗(

1 + 𝜎2𝐼
∗
)2(1 + 𝜎3𝐼

∗
)) +

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝜀2𝛽2𝐵∗𝐼∗(
1 + 𝜎2𝐼

∗
)3

)
+ 𝛾𝜂𝛽2𝑉 ∗𝐼∗(

1 + 𝜎1𝐼
∗
)(

1 + 𝜎3𝐼
∗
)2 +

Λ𝜀𝛽2𝑆∗𝐼∗(
1 + 𝜎2𝐼

∗
)(

1 + 𝜎1𝐼
∗
)2

+
(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)3

)
𝜆 + 𝜔𝜂𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)2(1 + 𝜎3𝐼

∗
) +(

𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)3

)]
𝜆

+
[(
𝑅BV − 1

)
(𝜙 + 𝜃 + 𝜇)

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)((
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
+
(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
𝜏Λ +

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
𝜔𝛾 + 𝜉𝛾Λ

)
+

(
𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜂2𝛽2𝑉 ∗𝐼∗(
1 + 𝜎3𝐼

∗
)3

)

+ Λ
(
𝜉 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜂2𝛽2𝑉 ∗𝐼∗(
1 + 𝜎3𝐼

∗
)3

)
+

(
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜂2𝛽2𝑉 ∗𝐼∗(
1 + 𝜎3𝐼

∗
)3

)
+

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜂2𝛽2𝑉 ∗𝐼∗(
1 + 𝜎3𝐼

∗
)3

)

+
(
Λ + 𝜔 + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜉𝜂𝜀𝛽2𝐵∗𝐼∗(

1 + 𝜎2𝐼
∗
)2(1 + 𝜎3𝐼

∗
)) +

(
Λ + 𝜇 + 𝛽𝐼∗

1 + 𝜎1𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝜀2𝛽2𝐵∗𝐼∗(
1 + 𝜎2𝐼

∗
)3

)

+ 𝜔

(
𝜇 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝜀2𝛽2𝐵∗𝐼∗(
1 + 𝜎2𝐼

∗
)3

)
+

(
𝜀2𝛽2𝐵∗𝐼∗(
1 + 𝜎2𝐼

∗
)3

)
+ 𝜏𝜔𝜂𝜀𝛽2𝐵∗𝐼∗(

1 + 𝜎3𝐼
∗
)(

1 + 𝜎2𝐼
∗
)2 +

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
𝜏𝜀𝛽2𝐵∗𝐼∗(

1 + 𝜎1𝐼
∗
)(

1 + 𝜎2𝐼
∗
)2

+ 𝜏𝜀𝛽2𝐵∗𝐼∗(
1 + 𝜎1𝐼

∗
)(

1 + 𝜎2𝐼
∗
)2 +

𝛾Λ𝜀𝜂𝛽2𝑉 ∗𝐼∗(
1 + 𝜎2𝐼

∗
)(

1 + 𝜎3𝐼
∗
)2 +

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
𝛾𝜂𝛽2𝑉 ∗𝐼∗(

1 + 𝜎1𝐼
∗
)(

1 + 𝜎3𝐼
∗
)2 +

𝜉𝛾𝜀𝛽2𝐵∗𝐼∗(
1 + 𝜎1𝐼

∗
)(

1 + 𝜎2𝐼
∗
)2

+ Λ𝜉𝜂𝛽𝐼∗𝑆∗(
1 + 𝜎3𝐼

∗
)(

1 + 𝜎1𝐼
∗
)2 +

(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)
Λ𝜀𝛽2𝑆∗𝐼∗(

1 + 𝜎2𝐼
∗
)(

1 + 𝜎1𝐼
∗
)2 +

(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)
𝜔𝜂𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)2(1 + 𝜎3𝐼

∗
)

+
(
𝜉 + 𝜏 + 𝜇 + 𝜀𝛽𝐼∗

1 + 𝜎2𝐼
∗

)(
𝜇 + 𝛾 + 𝜂𝛽𝐼∗

1 + 𝜎3𝐼
∗

)(
𝛽2𝑆∗𝐼∗(

1 + 𝜎1𝐼
∗
)3

)]
= 0

where the characteristic equation of system (19) at 𝐸∗ is given as

Figures A1 and A2 depict the individual impacts of variables V and B on the Basic Reproduction Number (BRN) of the infection, respectively. It is
noteworthy that in Figures A1–A3, the BRN values consistently remain below one. This observation indicates a reduction in the BRN, indicating a
decline in the rate at which an infected child transmits the rotavirus infection within the population.
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FIGURE A1 | Numerical simulation of the basic reproduction number in the presence of B and V with parameter values 𝜓 = 13.6986, 𝜌= 0.00188,
𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333,𝜙= 0.04466,Λ= 0.22756,𝜔= 0.038191, 𝛽 = 0.0072, 𝜀= 0.00062, 𝜂 = 0.00071, 𝜇= 0.036529 and α ranging
from 0 to 1.

FIGURE A2 | Numerical simulation of the basic reproduction number in the presence of B and 𝑉 . with parameter values 𝜓 = 13.6986, 𝜌= 0.00188,
𝜏 = 0.054945, 𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333,𝜙= 0.04466,Λ= 0.22756,𝜔= 0.038191, 𝛽 = 0.0072, 𝜀= 0.00062, 𝜂 = 0.00071, 𝜇= 0.036529 and 𝛼 ranging
from 0 to 1.
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FIGURE A3 | Numerical simulation of the basic reproduction number in the presence of B and V with parameter values 𝜓 = 13.6986, 𝜏 = 0.054945,
𝛾 = 0.002778, 𝜉 = 0.002, 𝜃 = 0.8333, 𝜙= 0.04466, Λ= 0.22756, 𝜔= 0.038191, 𝛽 = 0.0072, 𝜀= 0.00062, 𝜂 = 0.00071, 𝜇= 0.036529 while 𝛼 and 𝜌 respectively
ranges from 0 to 1.
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