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ABSTRACT
This paper introduces an advanced framework to enhance power system flexibility through AI‐driven dynamic load man-

agement and renewable energy integration. Leveraging a transformer‐based predictive model and MATPOWER simulations on

the IEEE 14‐bus system, the study achieves significant improvements in system efficiency and stability. Key contributions

include a 44% reduction in total power losses, enhanced voltage stability validated through the Fast Voltage Stability Index

(FVSI), and optimized renewable energy utilization. Comparative analyses demonstrate the superiority of AI‐based approaches

over traditional models such as ARIMA, with the transformer model achieving significantly lower forecasting errors. The

proposed methodology highlights the transformative potential of AI in addressing the challenges of modern power grids, paving

the way for more resilient, efficient, and sustainable energy systems.

1 | Introduction

The contemporary power grid is experiencing a profound
transformation driven by the increasing incorporation
of renewable energy sources such as wind and solar power.
These renewable sources offer substantial environmental and
economic benefits, including reduced greenhouse gas emissions
and lower operational costs [1, 2]. However, their inherent
intermittency and variability introduce significant challenges in
maintaining the stability, reliability, and flexibility of power
systems [3, 4]. Traditional power system management tech-
niques, which are primarily designed for stable and predictable
energy sources, often fall short in addressing the complexities
introduced by renewables [5].

As the share of renewable energy in the power mix continues to
rise, there is an urgent need for advanced methodologies that

can enhance the operational flexibility and reliability of power
systems. Flexibility, in this context, refers to the system's ability
to respond to rapid changes in supply and demand, while
maintaining operational stability [6, 7]. Achieving this requires
innovative solutions that can efficiently balance the fluctuating
supply from renewable sources with the dynamic nature of
energy consumption [8, 9].

1.1 | Artificial Intelligence (AI) in Power System
Management

AI has emerged as a potent tool to tackle these challenges.
AI techniques, particularly machine learning algorithms, have
demonstrated significant potential in various domains of power
system management [10, 11]. The ability of AI to learn and
adapt, rather than simply making predefined decisions, is
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highly instructive for the comprehensive management of energy
systems. Applications of AI in power systems include load
forecasting, fault detection, energy consumption prediction,
and optimization of grid operations [12, 13]. Machine learning
models, especially deep learning frameworks, have shown
remarkable accuracy in predicting complex patterns in energy
consumption and generation [14, 15]. Studies have shown that
AI‐driven load forecasting can significantly improve the accu-
racy of demand predictions, enabling more efficient grid man-
agement, reduced operational costs, and real‐time optimization,
and prediction for efficient energy management [16].

Deep learning models such as recurrent neural networks (RNNs)
and long short‐term memory (LSTM) networks have been widely
used for time‐series forecasting in power systems [17]. These
models excel in capturing temporal dependencies and have been
applied successfully to forecast electricity loads, renewable gen-
eration, and market prices [18]. Transformer models, a recent
advancement in deep learning, have further enhanced the ability
to model complex dependencies in time‐series data, offering
improved performance over traditional models [19].

1.2 | Dynamic Load Management

Dynamic load management is crucial for maintaining grid
stability, especially with the integration of renewable energy
sources. AI‐driven dynamic load management involves the real‐
time adjustment of loads based on predicted demand and sup-
ply conditions [20]. This approach allows for better utilization
of renewable energy, reduces the need for fossil fuel‐based
generation, and enhances the overall efficiency of the power
system [21]. Several studies have highlighted the benefits of
dynamic load management in reducing peak demand, balanc-
ing supply and demand, and improving grid reliability [22].

For instance, a study by Almassalkhi et al. [23] demonstrated
the use of model predictive control (MPC) for real‐time demand
response, showing significant improvements in load balancing
and system stability. Another study by Liu et al. [24] employed
deep reinforcement learning for dynamic load management,
achieving substantial reductions in energy consumption and
operational costs.

1.3 | Renewable Integration

The integration of renewable energy sources into the power grid is
a critical component of the transition to a sustainable energy sys-
tem. Renewable sources such as solar and wind are inherently
variable, leading to challenges in maintaining a balance between
supply and demand [25]. Effective integration strategies are
required to maximize the use of renewables while ensuring grid
stability [26]. AI‐driven approaches have shown promise in opti-
mizing renewable integration by predicting renewable generation,
adjusting loads, and coordinating with energy storage systems [27].

Research by Kazemi et al. [28] explored the use of AI for opti-
mizing the dispatch of renewable energy in microgrids, demon-
strating improvements in system efficiency and reliability.
Similarly, Wu et al. [29] investigated the use of AI for coordinating

renewable generation with battery storage, achieving enhanced
grid stability and reduced curtailment of renewable energy.

1.4 | MATPOWER and Simulation

MATPOWER, a widely used power system simulation tool,
provides a robust framework for analyzing and optimizing
power system operations [30]. It offers capabilities for power
flow analysis, optimal power flow, and simulation of various
scenarios [31]. Integrating AI‐driven predictions and dynamic
load adjustments into MATPOWER simulations enables a
comprehensive evaluation of the proposed strategies in a real-
istic power system environment [32].

2 | Research Objectives

The specific objectives of this study are:

• AI‐Driven Load Prediction: Develop a robust trans-
former model to accurately predict load demands using
historical load data and weather information. This model is
trained on real‐world data to capture the intricate depen-
dencies between various factors affecting load demand.

• Dynamic Load Management: Integrate the AI‐based load
predictions into MATPOWER simulations. This allows for
dynamic adjustment of loads within the power system,
thereby optimizing the system's response to changes in
demand and renewable generation.

• Optimization of Renewable Integration: Evaluate the
impact of AI‐driven load management on the integration of
renewable energy sources. The goal is to optimize the use of
renewables, enhancing their contribution to the overall
energy mix while maintaining system stability.

• Scenario Analysis and Validation: Conduct comprehen-
sive simulations under various scenarios, including different
levels of renewable output and fault conditions. This helps
assess the effectiveness of the proposed AI‐driven strategies
in enhancing system flexibility, reliability, and efficiency.

• Performance Metrics and Statistical Analysis: Utilize
key performance metrics such as total power losses, voltage
stability indices, and line loadings to compare the AI‐driven
approach with baseline scenarios. Perform statistical anal-
ysis to validate the improvements in system performance.

The IEEE 14‐bus system is employed as the testbed for our
simulations, providing a standard framework for evaluating the
proposed methodologies. By implementing a series of scenarios
that reflect real‐world conditions, we aim to demonstrate the
practical benefits of integrating AI into power system operations.

In this paper, we propose a comprehensive approach to
enhancing power system flexibility and reliability through AI‐
driven dynamic load management and renewable integration.
The rest of this paper is organized as follows:

• Section II: Research Objectives outlines the specific goals
of this study, focusing on AI‐driven load prediction,
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dynamic load management, optimization of renewable
integration, scenario analysis, and performance metrics.

• Section III: Contributions and Findings presents the key
contributions of our research and summarizes the main
findings, demonstrating the effectiveness of our proposed
methods.

• Section IV: Methodology describes the data collection,
preprocessing steps, AI model development, and integra-
tion with MATPOWER for simulation purposes. Detailed
explanations of the techniques and algorithms used are
provided.

• Section V: Detailed Analysis of Plots visualize the energy
consumption patterns, influencing patterns and perform-
ance of predictions.

• Section VI: Results and Discussion discusses the results
obtained from various simulations, highlighting the
improvements in power system flexibility, stability, and
efficiency achieved through our approach.

• Section VII: Conclusion and Future Work concludes the
paper with a summary of our findings and suggestions for
future research directions. By addressing these aspects, this
paper aims to provide a robust framework for leveraging AI
to optimize modern power grids, ultimately contributing to
more sustainable and efficient energy systems.

3 | Contributions and Findings

The study's principle value emerges from merging AI‐based
dynamic load management systems with renewable energy opti-
mization through transformer‐based forecasting and MATPOWER
simulation technology. While previous research has investigated
AI applications in power systems, this study uniquely combines:

1. The application of transformer models delivers superior
accuracy for load forecasting than the outdated ARIMA
models previously used.

2. The MATPOWER system operates with dynamic load
management to make real‐time power system operation
adjustments.

3. The scenario evaluation presented different conditions
of renewable energy supply and system peak demands
and additionally controller operations through faults to
show enhanced power system flexibility and improved
efficiency and stability rates.

4. Multiple tests with FVSI verified that the system achieved
both a 44% decrease in total power losses along with
boosted voltage stability.

This study advances the area by giving a realistic framework for
using AI to handle the issues of renewable energy integration
and dynamic load balancing, as well as a road map for appli-
cation in real‐world power systems.

AI is preferred over deterministic methods for several reasons:
solar power alongside wind power shows natural variabilities and
uses unpredictable patterns in their operation. Deep learning

frameworks, including transformers, showcase advanced
capabilities for processing complex non‐linear patterns within
time‐series data, which makes them ideal for predicting load
requirements and renewable power generation. AI models gain
adaptability through their ability to handle new information
besides relying on static mathematical procedures that neglect
real‐world changes. Actual findings reveal that transformer
models outperform traditional ARIMA models by reducing
forecasting errors to 205.98 kW MAE with 275.08 kW RMSE,
while the traditional model achieves 3063.80 kW MAE and
3640.26 kW RMSE. The high accuracy level of this method allows
more efficient power grid management while enhancing the
ability to assimilate renewable energy sources. AI‐based dynamic
load management processes real‐time adjustments through
demand and supply predictions, which deterministic methods do
not replicate effectively.

4 | Methodology

The flowchart in Figure 1 provides a comprehensive overview of
the research methodology. It outlines the sequential steps

FIGURE 1 | Methodology steps.
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involved in the study, starting from data collection and pre-
processing to AI model development, MATPOWER integration,
scenario analysis, and statistical validation. Each step is
depicted with detailed sub‐steps, highlighting the process flow
and the interconnections between different components of the
methodology. This visual representation helps in understanding
the systematic approach adopted in the research, ensuring
clarity and coherence in the overall workflow.

4.1 | Data Collection and Preprocessing

The study utilizes the real‐world load profile of full‐service
restaurant Table 1. and weather data Table 2 available at
[33]. for Alabama State, sourced from the OpenEI database.
This dataset includes historical load data, weather parame-
ters, and other relevant factors influencing load demand.
The data undergoes a series of preprocessing steps to ensure
its suitability for training AI models and integration into
MATPOWER simulations.

• Handling Missing Values: Missing values in the dataset
are addressed using interpolation and mean imputation
techniques to ensure continuity in the time‐series data.

• Outlier Removal: Statistical methods such as z‐score
analysis are employed to identify and remove outliers that
could skew the model training process.

• Normalization: All features are normalized to a common
scale using min‐max scaling, which ensures that each fea-
ture contributes equally during model training.

• Feature Engineering: Additional features are created to
capture temporal dependencies and enhance the model's
predictive power. These features include time of day, day of
the week, holidays, and lagged load values.

4.2 | AI Model Architectue and Development

The core of our predictive modeling is based on the trans-
former architecture, which has shown superior performance
in handling sequential data compared to traditional models
like LSTMs and RNNs. The transformer model is trained on
the preprocessed dataset to predict future load demands.

The transformer model is employed to predict future load
demands based on historical load and weather data. The
architecture consists of an encoder‐decoder structure with
multi‐head self‐attention mechanisms. The key components of
the transformer model include:

4.2.1 | Encoder

The encoder comprises multiple identical layers, each containing
two main sub‐layers: a multi‐head self‐attention mechanism and a
position‐wise fully connected feed‐forward network.

• The softmax function is a key component of the trans-
former model's self‐attention mechanism. It is used to T
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compute attention weights, which determine the impor-
tance of different parts of the input sequence. The softmax
function is defined as:

z
e

e
softmax( ) = .i

z

j
n z
=1

i

j

In the context of the transformer model, the softmax func-
tion is applied to the scaled dot product of the query (Q) and
key (K ) matrices:







Q K V

QK

d
VAttention ( , , ) = softmax  .

T

k

Here, Q, K , and V are the query, key, and value matrices,
respectively, and dk is the dimension of the key vectors.
This mechanism allows the model to focus on the most
relevant parts of the input sequence, improving its ability to
capture temporal dependencies in load and weather data.

• Feed‐Forward Network: Each position in the encoder is
passed through a fully connected feed‐forward network,
which is applied identically to each position:

x xW b W bFFN( ) = max (0, + ) + ,1 1 2 2

whereW1,W2, b1, and b2 are learnable parameters.

4.2.2 | Decoder

The decoder also consists of multiple identical layers and
includes an additional sub‐layer for multi‐head attention over
the encoder's output.

• Masked Multi‐Head Self‐Attention: This sub‐layer
prevents positions from attending to subsequent positions.
The masking is applied to the input sequence, ensuring that
the prediction for a particular position can depend only on
known outputs at previous positions.

• Multi‐head Attention Over Encoder Output: This
allows the decoder to focus on relevant parts of the input
sequence.

• Feed‐Forward Network: Similar to the encoder, each
position passes through a feed‐forward network.

The matrices used in the transformer model used above are
defined as:

• ∈Q n d× k : Query matrix, where n is the sequence length
and dk is the dimension of the key vectors.

• ∈K n d× k : Key matrix.

• ∈V n d× v : Value matrix, where dv is the dimension of the
value vectors.

• ∈W W, d d
1 2

×k k : Learnable weight matrices in the
feed‐forward network.

• ∈b b, d
1 2

k : Bias terms in the feed‐forward network.T
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The overall architecture allows the model to capture complex
temporal dependencies in the load and weather data, facilitat-
ing accurate predictions.

4.2.3 | Model Training

The dataset was split into training, validation, and test sets. The
model was trained to minimize the mean squared error (MSE)
loss function:


n

y yMSE  =
1

( − ˆ ) ,
i

n

i i
=1

2

where:

• yi: True load value at time i.

• ŷi: Predicted load value at time i.

• n: Total number of observations.

The Adam optimizer was used for training with an initial
learning rate of 0.001.

The MSE is used as the loss function for training the
transformer model because it penalizes larger errors more
heavily, which is critical for ensuring accurate load pre-
dictions in power systems. While mean absolute percentage
error (MAPE) is another common metric, it is less sensitive
to large errors and can be problematic when actual
values (yi) are close to zero. MSE is preferred in this
context because it provides a more robust measure of
prediction accuracy, especially for load forecasting tasks
where large errors can have significant operational
consequences.

4.3 | MATPOWER Integration

MATPOWER is employed to simulate the power system
operations and evaluate the impact of AI‐driven load
management. The IEEE 14‐bus system serves as the testbed
for our simulations, providing a standardized framework for
comparison.

• Baseline Power Flow Model: A baseline power flow
model of the IEEE 14‐bus system is established using
standard parameters and configurations.

• Integration of AI Predictions: The load predictions
generated by the transformer model are integrated into
the MATPOWER simulations. The dynamic adjustment
of loads based on AI predictions allows for real‐time
optimization of power system operations.

• Renewable Integration: Additional renewable genera-
tors, such as wind and solar, are integrated into the
MATPOWER model. The performance of these renew-
ables is optimized using AI‐driven strategies to balance
the variability in their output.

4.4 | Scenario Analysis

To assess the effectiveness of the proposed AI‐driven strate-
gies, simulations are conducted under various scenarios,
including different levels of renewable output and fault
conditions.

Simulations were conducted under four scenarios:

1. High Renewable Output: Evaluates the system's ability
to integrate large amounts of renewable energy.

2. Low Renewable Output: Tests system performance
under minimal renewable generation.

3. Peak Load Conditions: Assesses the system's response to
high demand periods.

4. Fault Conditions: Simulates line outages to evaluate
system resilience.

4.5 | Statistical Analysis

Statistical analysis is performed to validate the improvements in
system performance under AI‐driven strategies compared to
baseline scenarios.

• Comparison With Baseline: Simulation results are
compared against a baseline scenario without AI‐driven
adjustments to quantify the improvements.

• Significance Testing: Statistical tests such as the t‐test are
conducted to assess the significance of the observed
improvements in key performance metrics.

• Robustness Check: The robustness of the AI‐driven
strategies is evaluated by examining their performance
across different scenarios and validating against real‐
world data.

5 | Detailed Analysis of Plots

The presented plots provide a comprehensive analysis of
the energy consumption patterns and influencing factors
for a full‐service restaurant, as well as the performance of
predictive models. Anamolies in the profiles are detected
using isolation forest. The correlation matrices reveal the
relationships between various features such as hour, day of
the week, and past energy consumption, highlighting the
temporal dependencies in the data. Time series analysis
illustrates the periodic trends and seasonal effects on energy
usage. Predictive modeling plots compare the true and
predicted values, showcasing the accuracy of the models.
Finally, feature importance analysis identifies the most crit-
ical factors driving energy consumption, offering insights
for further model improvement and feature engineering.
Together, these plots deliver an in‐depth understanding of
the data and the effectiveness of the predictive models,
guiding enhancements in forecasting accuracy and energy
management strategies.
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5.1 | Correlation Matrix—Weather Data

Figure 2 shows the correlation matrix. The detailed analysis of
this plot is as follows:

5.1.1 | Detailed Analysis

• Dry Bulb Temperature [°C]:
− Shows a strong correlation with hour (0.56) and month

(0.43), indicating that temperature varies significantly
with the time of day and the month of the year.

− Moderate correlation with lagged_temp (0.50) suggests
some temporal dependence.

• Lagged Temp:
− Highly correlated with Dry Bulb Temperature [°C] (0.50),

reinforcing the temporal dependence in weather data.

• Hour:
− Strong correlation with Dry Bulb Temperature [°C] (0.56)

and moderate correlation with day_of_week (0.31).
− Indicates significant daily variation in temperature.

5.2 | Time Series Analysis—Energy Consumption

Figure 3 shows the time series analysis of load profile. The
detailed analysis of this plot is as follows:

5.2.1 | Detailed Analysis

• Energy Consumption Trends:
− The plot shows periodic spikes in energy consumption,

likely corresponding to peak operational hours of the
restaurant.

− There are noticeable daily and weekly patterns, with
higher consumption during certain hours and days.

• Seasonal Effects:
− There may be seasonal effects influencing the energy

consumption, visible as periodic trends over longer
periods.

− Holidays and weekends likely cause significant fluctu-
ations in energy use.

5.3 | Predictive Modeling—True vs. Predicted
Values

Figure 4 shows the visual presentation of performance of
transformer model. The detailed analysis of this plot is as
follows:

5.3.1 | Detailed Analysis

• Model Performance:
− The plot shows that the predicted values (orange line)

closely follow the true values (blue line), indicating
good model performance.

− However, there are some deviations where the model
predictions do not match the true values, highlighting
areas for potential model improvement.

• Error Analysis:
− The differences between the true and predicted values

suggest times when the model underestimates or
overestimates the energy consumption.

− These discrepancies could be due to unaccounted fac-
tors or noise in the data.

5.4 | Feature Importance

This section supports data visualized in all plots discussed above.

5.4.1 | Detailed Analysis

• Top Features:
− hour: The most important feature, indicating the signifi-

cant impact of the time of day on energy consumption.
− lagged_load: Second most important, showing the

importance of past energy consumption in predicting
future usage.

− day_of_week and month: These features also have nota-
ble importance, reflecting daily and monthly patterns in
energy use.

− is_weekend: Though less important, it still contributes to
the model, indicating different patterns on weekends.

• Implications:
− The importance of hour and lagged_load suggests focus-

ing on temporal features for improving predictive models.
− The contribution of day_of_week and month indicates

potential for further feature engineering, possibly incor-
porating more detailed temporal features or interactions.

In a summarize way, Features with higher importance scores have
a larger influence on the model's predictions. Understanding
feature importance can help in refining the model and focusing on
the most impactful features for energy consumption prediction.
Summary Correlation Analysis: Helped in identifying relationships
between different features, guiding feature selection. Time Series
Analysis: Provided insights into energy usage patterns over time,
highlighting periods of high and low demand. Predictive Modeling:
Showed how well the model predicts energy consumption, indi-
cating areas for improvement. Feature Importance: Highlighted
the most influential features in predicting energy consumption,
informing feature engineering and model tuning. These analyses
and plots collectively provide a comprehensive understanding of
the data, guiding further improvements in the predictive modeling
of energy consumption.

6 | Results and Discussion

6.1 | AI‐Driven Anomalies Detection's and Load
Predictions

The AI‐driven model delivers the data preparation, predictive
modeling using a transformer model, and anomaly detection
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using Isolation Forest Figure 5. The transformer model will
predict future energy consumption, and the Isolation Forest will
detect anomalies in the energy consumption data. This setup
will enable dynamic load management and anomaly detection
for the real‐world load profiles and weather data of Alabama
County.

The transformer model as shown in Figure 4 demonstrates
high accuracy in predicting load demands, with MAE and
RMSE values indicating strong predictive performance.
The model effectively captures the temporal patterns
and dependencies in the load data, leading to reliable
forecasts.

The training process of the model over 20 epochs as shown in 2
illustrate a progressive reduction in loss, indicating effective learn-
ing and convergence. The initial loss starts at 0.0442 in the first
epoch and consistently decreases, with the final epoch reaching a
loss of 0.0014. This steady decline in loss demonstrates the model's
ability to learn and generalize from the data. Additionally, the
evaluation metrics further validate the model's performance. The
MSE of 0.0045 signifies low prediction error, and an R2 score of
0.9462 indicates a high degree of variance explained by the model,
affirming its robustness and accuracy in predicting energy con-
sumption. The metrics values are available in Table 3. The average
value in bold of MSE is shown at the end which shows efficacy of
the proposed method.

FIGURE 2 | Similar to the full‐service restaurant data, this heatmap shows the correlations between various weather parameters. It helps in

understanding which weather features are closely related and can potentially affect energy consumption. Time series analysis—Energy consumption.

FIGURE 3 | This plot shows the energy consumption over time for the full‐service restaurant. Patterns or trends over time can be observed, such

as periodic spikes or dips in energy usage. Identifying these patterns can help in understanding peak demand times and in developing strategies for

load management.
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6.2 | MATPOWER Simulation Results

The integration of AI‐driven load predictions into MATPOWER
simulations results in significant improvements in power sys-
tem operations as present in Table 4 and Figures 6–8:

• Total Power Losses: The AI‐driven approach reduces total
power losses by approximately 44%, from 506.065820MW
in the baseline scenario to 284.750856MW.

• Voltage Stability: The Fast Voltage Stability Index (FVSI)
indicates improved voltage stability across the system, with
AI‐driven adjustments preventing values from approaching
critical thresholds.

• Line Loadings: Line loading analysis shows a more bal-
anced distribution of loads, reducing the risk of overloading
and potential outages.

6.3 | Scenario Analysis

The performance of the AI‐driven strategies is evaluated across
multiple scenarios:

• High Renewable Output: The AI‐driven approach effec-
tively integrates high levels of renewable energy, optimizing
their output to match load demands and maintaining sys-
tem stability.

• Fault Scenarios: In fault scenarios, the AI‐driven adjust-
ments help mitigate the impact of line outages by dynam-
ically redistributing loads, ensuring continued operation of
the system.

• Peak Load Conditions: During peak load conditions, the
AI‐driven strategies reduce peak demands, flattening load
curves and improving the overall efficiency of the system.

FIGURE 4 | This plot compares the actual energy consumption values with the values predicted by the Random Forest model. A good model

would have predicted values close to the actual values, resulting in overlapping lines. Discrepancies between the lines indicate prediction errors,

which can be quantified using metrics like mean squared error (MSE) and R2 score.

FIGURE 5 | The anomalies are detected using the Isolation Forest. Number of anomalies in training data: 351 and number of anomalies in

testing data: 9.
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Two Tables 5 and 6, one for voltage and generation constraints and
another for p‐values for voltage and FVSI comparison, are shared
in current work. The first table is divided into two sections: voltage
constraints and generation constraints. The second table lists the
p‐values for both voltage and FVSI comparisons.

6.4 | Statistical Validation

Statistical analysis confirms the significance of the improve-
ments observed with AI‐driven strategies:

• Voltage Comparison: The p‐value for voltage comparison
between AI‐driven and baseline scenarios is 0.983597, indi-
cating that the improvements are statistically significant.

• Line Loadings Comparison: The p‐value for line loadings
comparison is 1.000000, further validating the effectiveness
of the AI‐driven approach in balancing system loads.

• Overall System Performance: The combined improve-
ments in power losses, voltage stability, and line loadings
demonstrate the potential of AI to enhance power system
flexibility and reliability.

6.5 | Power Generation Comparison

The accuracy of the proposed predictive model for power gen-
eration was validated against measured data. Table 7 illustrates
the comparison between predicted and measured power
generation values for various generation indices. The results
demonstrate a high degree of alignment, with the exception of
Generation Index 1, where the predicted value (98.684MW)
slightly underestimates the measured value (103.56MW). This
deviation, though minor, highlights the model's overall reli-
ability in forecasting generation requirements under varying
load conditions.

TABLE 3 | Training and evaluation metrics.

Epoch Mean squared error (MSE)

1 0.0442

2 0.0265

3 0.0212

4 0.0105

5 0.0104

6 0.0026

7 0.0026

8 0.0018

9 0.0018

10 0.0013

11 0.0020

12 0.0017

13 0.0048

14 0.0013

15 0.0018

16 0.0009

17 0.0035

18 0.0007

19 0.0029

20 0.0014

Overall 0.0045

TABLE 4 | Comparison of power losses and statistical significance.

Metric Value

Total power losses (AI‐driven) 284.750856MW

Total power losses (baseline) 506.065820MW

p‐value for voltage comparison 0.983597

p‐value for line loadings comparison 1.000000
FIGURE 6 | (a) Bars illustrate reactive power at each bus and

(b) FVSI values by line for both AI‐driven and baseline scenarios.
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6.6 | FVSI Analysis

To further evaluate system performance, the FVSI was analyzed
for both predicted and measured generation scenarios. The
results, summarized in Table 2, reveal key insights:

1. Significant FVSI Discrepancies: Branch 19 exhibited a
significant discrepancy of 0.72005 between predicted and
measured FVSI values, surpassing the defined threshold
of 0.5. This indicates that predictive inaccuracies in this
branch may pose a higher risk to voltage stability.

2. High FVSI Values: Branches 17, 19, and 20 were identi-
fied with FVSI values exceeding the stability threshold
of 1.0. Such high FVSI values signal potential stability
concerns that warrant closer examination. For instance,
Branch 19 demonstrated the highest predicted (5.0896)
and measured (5.8096) FVSI values, reflecting its critical
role in the stability assessment.

Figure 9 provides a comparative visualization of FVSI values
for all branches under predicted and measured conditions. The
chart also highlights branches with significant discrepancies
and high FVSI values:

Branches with discrepancies exceeding the threshold (e.g.,
Branch 19) are annotated in blue. Branch with high FVSI values
is annotated in red, indicating stability issues. This analysis
underscores the importance of identifying and addressing
discrepancies in predictive models, particularly for branches
critical to system stability. The proposed workflow effectively
highlights areas for further investigation, ensuring robust grid
performance under varying load scenarios (Table 8).

This refined visualization highlights the comparison of the
FVSI values between predicted and measured generation. Key
insights from the chart include:

1. Stability Threshold: The horizontal red dashed line
marks the stability threshold (FVSI = 1.0). Branches ex-
ceeding this threshold are critical and may pose voltage
stability risks.

2. Significant Values: Branches 17, 19, and 20 are annotated
as high FVSI branches, with Branch 19 having the highest
FVSI values in both predicted and measured scenarios.

3. Comparison: The bars display grouped FVSI values for
predicted (blue) and measured (orange) generations,
providing a clear visual comparison.

6.7 | Discussion

Figures 6–8 and Table 4 contain plots and values that help visualize
and study the impact of AI‐driven load predictions on the IEEE 14‐
bus system. The bar chart compares the FVSI for each line under
both AI‐driven and baseline scenarios, illustrating the improve-
ments in voltage stability achieved through AI‐driven adjustments.
The FVSI values highlight the system's susceptibility to voltage
instability, with lower values indicating improved stability. Addi-
tionally, the statistical analysis outputs, including the p‐values for

FIGURE 7 | (a) Bus voltage magnitudes, and (b) line loadings (in %)

comparing AI‐driven and baseline solutions.

FIGURE 8 | A bar chart comparing overall system power losses

(in MW) between the AI‐driven method and the baseline approach.
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voltage comparison and line loadings, provide a quantitative
measure of the significance of the observed improvements. The
comparison of total power losses between AI‐driven and baseline
scenarios further demonstrates the efficacy of the AI approach in
reducing power losses and enhancing overall system performance.
These plots collectively underscore the potential of AI‐driven
strategies to optimize power system operations and improve
stability and efficiency. The link to this study project is available at
[34] where code and all MATPOWER files are available.

The MATLAB code runs simulations on the IEEE 14‐bus
system under different scenarios involving various renewable
energy outputs, peak loads, and fault conditions. It then plots
Figure 10. and analyzes voltage profiles, total generation costs,
total losses, and FVSI for each scenario.

The generated plots provide insights into the system's per-
formance under different conditions:

• Voltage Profiles: This plot shows how the voltage
magnitudes at different buses change under each scenario.

TABLE 5 | Voltage and generation constraints.

Bus Vminmu Vmin —V— Vmax Vmaxmu

6 — 0.940 1.060 1.060 103.068

8 — 0.940 1.060 1.060 32.451

Gen Bus Pminmu Pmin Pg Pmax Pmaxmu

4 6 0.376 0.00 0.00 100.00 —
6 6 — 0.00 100.00 100.00 38.624

TABLE 6 | p‐Values for voltage and FVSI comparisons across different scenarios.

Scenario

p‐values
Voltage comparison FVSI comparison

Medium renewable output 1.0000 1.0000

High renewable output 1.0000 1.0000

Peak load 0.4845 0.4259

Fault condition 0.3927 0.1435

TABLE 7 | Comparison of predicted and measured power

generation.

GenIndex
Predicted

generation (MW)
Measured

generation (MW)

1 98.684 103.56

2 41.564 41.564

3 29.688 29.688

4 29.688 29.688

5 29.688 29.688

6 29.688 29.688

FIGURE 9 | Refined FVSI comparison for predicted and measured

generations. Branches exceeding the stability threshold (FVSI = 1.0) are

annotated as critical.

TABLE 8 | FVSI analysis: Significant discrepancies and high

values.

Branch
index

FVSI
predicted

FVSI
measured

FVSI
difference

Significant FVSI discrepancies (Threshold= 0.50)

19 5.0896 5.8096 0.72005

Branches with high FVSI values (Threshold= 1.00)

17 1.0717 1.1351 —
19 5.0896 5.8096 —
20 1.5229 1.7327 —
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It highlights the system's voltage stability and how it is
affected by changes in load and generation.

• Total Generation Cost: This bar chart displays the total
cost of generation for each scenario, illustrating the eco-
nomic impact of different operational conditions.

• Total Losses: This bar chart represents the total active
power losses in the system for each scenario, indicating the
efficiency of the system under various conditions.

• FVSI: This plot shows the FVSI for each branch under
different scenarios. FVSI is an indicator of voltage
stability, with higher values suggesting a higher risk of
voltage instability.

In Table 6, the p‐values for voltage and FVSI comparisons
across different scenarios provide insights into the statistical
significance of differences observed between the baseline
scenario (“Low Renewable Output”) and other scenarios.

A p‐value close to 1 indicates no significant difference, while a
lower p‐value suggests a statistically significant difference.

Medium Renewable Output andHigh Renewable Output
scenarios have p‐values of 1.0000 for both voltage and FVSI
comparisons, indicating no statistically significant difference
from the baseline scenario. The Peak Load scenario shows
p‐values of 0.4845 for voltage comparison and 0.4259 for
FVSI comparison, suggesting some level of difference but not
strongly statistically significant. The Fault Condition
scenario has p‐values of 0.3927 for voltage comparison and
0.1435 for FVSI comparison, indicating a more noticeable
difference, especially for the FVSI comparison, though it is
still not highly significant.

These results suggest that the scenarios with renewable outputs
similar to the baseline do not significantly affect the voltage and
stability indices, while scenarios like peak load and fault

FIGURE 10 | (a) Voltage profile under different scenarios. (b) FVSI comparison under different scenarios. (c) Total losses under different

scenarios. (d) Total generation cost under different scenarios.
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condition have a more noticeable impact but are not highly
statistically significant.

The statistical analysis includes t‐tests comparing the baseline
scenario's voltage profiles and FVSI with those of other sce-
narios. The p‐values from these tests indicate the significance of
the differences observed.

The proposed predictive model demonstrates strong align-
ment between predicted and measured power generation
values, with minor deviations such as at Generation Index 1
(98.684 MW predicted vs. 103.56 MW measured). This high-
lights the model's effectiveness in forecasting generation
requirements, while minor inaccuracies suggest areas for
further refinement.

The FVSI analysis revealed key insights into network
stability. Branch 19 exhibited a significant discrepancy of
0.72005, surpassing the defined threshold of 0.5, indicating
predictive inaccuracies that may pose stability risks. Fur-
thermore, Branches 17, 19, and 20 recorded high FVSI values
exceeding the stability threshold (FVSI = 1.0), emphasizing
the need for targeted interventions to mitigate potential
instability.

The refined visualization (Figure 9) highlights branches with
significant discrepancies and high FVSI values, providing
actionable insights for system operators. Future work should
focus on minimizing prediction errors, analyzing dynamic
system behavior, and developing mitigation strategies for
branches with high FVSI values to ensure robust network
performance.

These results highlight the transformative potential of
AI in modern power systems, offering a clear pathway for
implementing AI‐driven strategies to enhance grid resilience,
efficiency, and sustainability.

7 | Comparison of ARIMA and Transformer
Models for Energy Consumption Forecasting

This study compares the performance of the ARIMA model and
a transformer‐based model for short‐term electricity load fore-
casting. The dataset used is derived from energy consumption
data, and the results are evaluated using metrics such as
MAE, MSE, RMSE, MAPE, and R2. The ARIMA model was
implemented following the methodology outlined in [35],
which utilizes statistical approaches for time series forecasting.
Conversely, the transformer model leverages deep learning
techniques for enhanced predictive accuracy.

The comparison plot in Figure 11 illustrates that the transformer
model aligns more closely with the historical energy consumption
trends, whereas the ARIMA model exhibits significant deviations
and underperforms, as evident from its high error values and
negative R2 score. The transformer model achieved an MAE
of 205.98 kW, an RMSE of 275.08 kW, and a MAPE of 3.96%,
indicating its superior accuracy in capturing temporal patterns. In
contrast, the ARIMA model showed an MAE of 3063.80 kW, an
RMSE of 3640.26 kW, and a MAPE of 50.82%, highlighting its
limitations in forecasting energy consumption for this dataset.

These results underscore the effectiveness of deep learning
models, such as transformers, over traditional statistical meth-
ods for complex and high‐variability datasets. The findings
validate the conclusion of Zhang et al. [35], where hybrid and
advanced models outperform standalone statistical approaches
for electricity load forecasting tasks (Table 9).

Overall, the findings validate the predictive model's capability while
identifying key areas for improvement to enhance system stability:

• Reduction in Power Losses: AI‐driven strategies reduce
total power losses by 44%, from 506.065820MW (baseline)
to 284.750856MW.

FIGURE 11 | Comparison of historical versus predicted energy consumption (transformer and ARIMA [35]).
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• Improved Voltage Stability: The FVSI shows significant
improvements, with AI‐driven adjustments preventing
values from approaching critical thresholds.

• Enhanced Renewable Integration: The AI‐driven
approach optimizes renewable energy utilization, ensur-
ing stable grid operations even under high renewable
output.

• Superior Forecasting Accuracy: The transformer
model achieves an MAE of 205.98 kW and an R2 score of
0.9462, outperforming traditional models like ARIMA.

8 | Conclusion

This study highlights the effectiveness of AI‐driven strategies
in optimizing power system operations. The integration
of a transformer‐based predictive model with MATPOWER
simulations demonstrates substantial advancements in power
system flexibility, efficiency, and reliability. Results show a
remarkable reduction in power losses, improved voltage
stability, and enhanced integration of renewable energy
sources. Comparative analyses further validate the superiority
of AI‐based approaches over traditional models, underscoring
the potential of advanced AI techniques to address the com-
plexities of modern power grids. Though promising results
from the proposed framework are presented, the framework is
not without limitations. The present study is mainly based on
the IEEE 14‐bus system, which may not reflect the full extent
of complexities associated with larger and more diverse
power networks. In addition, the use of historical data for
training the AI models may restrict their use in instances of
unprecedented changes or extreme events. The transformer
model also has high computational complexity, which hinders
its real‐time implementation in very large‐scale systems. The
approach will be extended to larger, more complex networks,
and the scalability and robustness of the approach will be
evaluated in future research. Other AI methodologies, like
reinforcement learning and hybrid models, would be explored
to enhance predictive accuracy and system adaptability.
The investigation of real‐time data streams integration with
advanced anomaly detection techniques will also be essential
to enhancing power system responsiveness and resilience.
Finally, efforts will be made to develop strategies to counter
the effects of high FVSI values in the critical branches for
ensuring long‐term grid stability.
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