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ABSTRACT
In recent years, there has been a surge in interest in indoor positioning systems that use visible light communication (VLC)
technology combined with light‐emitting diodes (LEDs). These systems have gained attention because of their ability to offer
high bandwidth, precise localisation, and potential for wireless communication to extend into the visible light spectrum in the
future, making VLC a notable candidate. Furthermore, the visible light spectrum proves advantageous in the industrial internet
of things setting, as it does not offer electromagnetic interference as in radio frequency (RF) spectrum. This paper analyses a
database made up of approximately 356 image samples obtained from a CMOS sensor. The database encompasses eight distinct
classes, each demonstrating frequency (bit rate) variations ranging from 1 to 4.5 kHz in 500 Hz increments. The aim is to
implement this database for classification applications as a first stage with several neural networks based on extreme learning
machines (ELM) in various forms: (1) standard ELM, (2) regularised ELM, (3) weighted ELM in two configurations, and (4)
multilayer ELM with 2 and 3 hidden layers. The findings of this study reveal that standard ELM is particularly promising,
achieving more than 99% in accuracy and G‐mean, while maintaining low computational complexity (measured in tenths of
seconds) when compared to convolutional neural networks and multilayer perceptrons, which offer superior performance,
however at the cost of significant computational demands.

1 | Introduction

The increasing technology‐driven requirement for high‐speed
indoor data transmission has become essential. Visible light
communication (VLC) is a specific type of wireless optical
communication technology that utilises the visible light spec-
trum of 400–800 THz to facilitate data transfer [1]. Known for its
rapid speed and effectiveness, VLC offers a promising approach
to meet the rising need for indoor connectivity [2].

An important use of VLC is visible light positioning (VLP), which
leverages the current lighting systems to both convey data and
accurately establish the position of devices within an indoor
space [3–5]. This technique could be applied in a wide range of
sectors, such as tracking assets in warehouses or identifying
machinery locations in subterranean mines among others [6].

Nowadays, there is a growing trend to use machine learning in
conjunction with evolutionary models [7]. For example, in 2D/
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3D location estimation within indoor VLP systems that utilise
imaging multiple‐input multiple‐output (MIMO) [8]. Mean-
while, neural networks show promising results as equalisers in
VLC [9]. In the realm of ELM, one example involves hybrid
location algorithms that employ extreme learning machine
(ELM) and clustering for positioning with a single light emitter
diode (LED) and a single rotatable photodetector [10].

Currently, VLP shows potential in multiple areas, such as public
places, industry, vehicle localisation, and hospital navigation
[11]. In public places, such as museums and markets, navigation
systems can be implemented to deliver proper information to
visitors [12]. At the same time, a hybrid VLC and radio fre-
quency (RF)‐based parking automation system has also been
introduced [13]. In industry, VLP can be applied in warehouses
for product monitoring, worker localisation, and robot naviga-
tion; a received signal strength (RSS)‐based VLP estimator for
industrial internet of things has likewise been presented [14].
Vehicle localisation has been suggested for intelligent mobility
via vehicle‐to‐vehicle and vehicle‐to‐infrastructure communi-
cation (using optical cameras [15]) [16], as well as for inter‐
vehicle tracking with CMOS cameras [17]. In electromagneti-
cally sensitive environments, it has been adopted for hospital
navigation [18].

Taxonomy of VLP systems is generally categorised into two
parts: (1) software algorithms and (2) hardware components. In
software algorithms, there are specialised lighting systems,
which may consist of a single LED or a matrix of LEDs. For
instance, with a single LED, fingerprinting can be employed to
create an environmental snapshot that enables proximity esti-
mation through triangulation and signal strength measurement.
LED matrices can also be utilised forming robust systems that
leverage not only signal intensity but also integrate QR code‐
based algorithms and computer vision techniques. For lights
not modified in their surroundings, costs are reduced but only a
limited number of algorithms, such as communication networks
and computer vision analytics, are available. Concerning hard-
ware, analysis involves the transmitter, modem, and receiver.
White LEDs, fluorescent lights, and infrared lights commonly
serve as transmitters. The modem evaluation includes investi-
gating the device and its optical parts, such as lenses. The
evaluation of the receiver centres around its photodiodes (PDs)
and image sensors (cameras) [19].

One challenge faced by VLP systems is effective processing of
incoming information while minimising uncertainty. To tackle
this, machine learning‐based approaches have been explored,
including (1) multi‐layer perceptron (MLP) and (2) Gaussian
processes (GP), as well as the simulation of noise conditions,
such as dust particles using wood shavings, which affects the
signal uncertainty due to the position of the transmitters (TX).
The work presented in ref. [20] highlights the potential appli-
cability of MLP and GP techniques for VLP systems.

Within the previous framework, the current article examines the
incorporation of machine learning via the ELM method, using
data from the VLP database obtained from a master's thesis [21],
which explored convolutional networks (CNN). Various forms of
ELMs, including standard, regularised, weighted versions, and
multilayer ELMs with 2 and 3 hidden neurons, are identified as

promising tools for efficiently handling the complex data of VLP
systems. In assessing ELM's efficacy within VLP, the utilised
database comprised 2840 samples alongside 8 distinct LED fre-
quency types (spanning 1 to 4.5 kpbs). These were derived from
an experimental setup detailed in ref. [22], featuring an LED
transmitter, an optical receiver, and an oscilloscope. In this work,
for the moment, the task is to classify the samples by LED fre-
quencies (bit‐rates) in the indoor VLP setting (image classifica-
tion and feature identification), thus not only identifying the light
source (that can be useful for visible light communication and
positioning system, where multiplexing is a mandatory task) but
also simplifying the digital signal processing behind the VLP
receiver and increasing the precision in regression task (i.e.,
considered for future research line).

On the one hand, the main objective is to evaluate and deter-
mine which of these variants better adapt to the presented
scenario, offering a practical orientation on the most effective
selection method to face the complexities associated with the
VLP data. On the other hand, the main contributions of this
article are the following: (1) The introduction of ELM ap-
proaches to classify and identify the source of the light (LED) in
a VLP system (a classification application). (2) A metaheuristic
optimisation procedure to find the hyperparameters that maxi-
mises the accuracy and G‐mean by avoiding the increment of
the training time for each ELM model. (3) The detailed com-
parison in terms of efficiency and complexity of ELM variants:
standard, regularised, weighted, and multilayer. In this sense,
the superior ELM approach is presented for the VLP scenario by
allowing a very fast learning phase using a commercial com-
puter. (4) Comparative results with CNN and MLP approaches
are realised in terms of efficiency and complexity by adding
confusion matrices to observe the type of error of classifiers.
Once again, the superiority of the ELM technique is evident for
all metrics.

The main novelty of this article is that it serves as an extension
and enhancement of the work that the authors presented in ref.
[23] following an invitation to this journal's special issue. It
offers a more detailed explanation of the hyperparameter search
for an ELM applied to multi‐signal VLP frequency classification,
where the inclusion of multilayer ELM is done, comparing its
performance with conventional methods, such as CNNs and
MLPs, and experimentally demonstrates the feasibility of ELM
in a multiple‐input single‐output (MISO) system. At the same
time, fundamentals, methodology, and optimisation of the ELM
hyperparameters are carefully explained in the new version of
the article in order not to leave the reader with frequently asked
questions. This is especially significant for the scientific com-
munity, as it relies on a publicly available dataset, enabling
continuous improvements by various research groups and
eventual practical applications in emerging technologies—
particularly in countries, such as Chile and elsewhere in Latin
America, where most of this paper's authors are based.

Finally, the study confirms the viability of using a standard ELM
(the simplest ELM model) that achieves high performance and
low computational cost. This approach addresses a frequent
limitation of machine learning models—namely complexity and
resource usage—while maintaining cost‐effectiveness and
robust classification of VLP signals via ELM.
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This document has the following organisation. Section 2 out-
lines the description of each ELM and the mathematical basis of
the algorithms used in this work. Section 3 shows the methods
and metrics used to evaluate the performance and complexity of
the algorithms, as well as the database used in this article.
Section 4 presents the optimisation of ELM hyperparameters, a
detailed comparison of the performance of the different ELM‐
based methods, and benchmarking machine learning ap-
proaches. Section 5 ends with the main conclusions and future
works.

2 | Extreme Learning Machine

An ELM is a machine learning algorithm used in the field of
artificial neural networks. A distinguishing feature of an ELM is
its focus on one hidden layer in neural networks [24]. Unlike
traditional training methods that adjust hidden‐layer weights
through an iterative process, ELM initialises the weights
randomly and then fixes them. Then it uses a single training
process to calculate the weights of the network output layer.
This means that the training time is significantly reduced since
the hidden layer acts as a set of random characteristics and the
output layer is efficiently trained using linear regression tech-
niques. According to literature review, ELM has the following
advantages over traditional methods based on the descent of
gradients: (1) ELM can provide the best performance for
generalisation in some cases and can learn faster than the
popular learning algorithms used for feed‐forward neural net-
works [25]. (2) ELM does not need to adjust the input weights or
the parameters of the activation functions, which simplifies the
learning process and reduces the risk of falling into local min-
imums. Next, the article explains the operation of the ELMs to
be used: standard ELM, regularised ELM, weighted ELM in two
versions, and multilayer ELM with 2 and 3 hidden layers. By
considering electrical/telecommunication engineers cannot be
experts in artificial intelligence area, this section will be care-
fully developed. The specialised literature (machine learning
community) could skip reading this section.

2.1 | Standard ELM

Standard ELM is a learning algorithm for single‐layer neural
feedforward networks that randomly select input weights and
analytically determine hidden layer output weights. The weights
between the output layer and the hidden layer are calculated
analytically with the generalised Moore–Penrose inverse [26].
The most basic type of neural network can be represented by the
following equation:

fL(xj) =∑
Ñ

i=1
βig(wixj + bi) = tj, j = 1,…,N, (1)

where N represents the set of random samples and Ñ represents
the number of hidden neurons; wi = [wi1,wi2,…,win ]

T is the
weight matrix that connects the i − th hidden node with the
j − th training example xj; bi are the biases of the hidden layer;
g(⋅) symbolises the activation function; βi = [ βi1, βi2,…, βin ]

T

are the weights of the output layer; and tj represents labels

corresponding to xj. The previous equation can also be written
as follows:

Hβ = T, (2)

where H is the output matrix of the hidden layer given by the
following equation:

H = [
g(w1 ⋅ x1 + b1) ⋯ g(wN ⋅ x1 + bN)

⋮ ⋱ ⋮
g(w1 ⋅ xN + b1) ⋯ g(wN ⋅ xN + bN)

], (3)

β = [βT
1 ,…, β

T
N]

T is the matrix of the output weights and
T = [tT1 ,…, tTN]

T is the matrix of the output results of the output
layer.

It has been theoretically proved that single hidden layer feed‐
forward neuronal networks (SLFNs) are random hidden nodes
that have a universal approximation capacity and that the hidden
nodes can be generated randomly regardless of the training data
[27]. Therefore, proportioning the training data is not necessary
to intervene the H out matrix. Consequently, the ELM training is
equivalent to finding the solution of a linear system of the β. The
Barlett theory [28] describes that for obtaining a better perfor-
mance of generalisation, the ELM must maximise the training
mistake ‖e‖, where e corresponds with the following equation:

e =Hβ − T. (4)

To find β, the least square method can be used, which is a
procedure to find the best parameters to minimise the difference
between the desired output and the real outputs of the model,
obtaining the following expression:

β =H†T, (5)

where H† represents the generalised Moore–Penrose inverse of
the output matrix in hidden layer H, which is possible to obtain
through orthogonal projection [29] and can be obtained through
the following expression:

H† = (HTH)
−1HT , (6)

this expression is valid when the number of samples is greater
than the number of hidden nodes (N > Ñ), which is the common
situation by considering the vast number of samples in databases.
However, when the number of samples is less than the number of
hidden neurons (N < Ñ), the connections between the hidden
and output nodes can be found in the following form:

β =HT (HHT)
−1T. (7)

Equation (6), known as the standard ELM, is the version used in
this work where the number of hidden neurons must be less
than the number of learning samples, which is the most com-
mon situation by simplicity architecture and numerous datasets.

Finally, Figure 1 provides a visual representation of the ELM
network for better compression purposes where inputs X with n
attributes, number of neurons Ñ, weights between the input and
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hidden nodes W , biases of hidden neurons b, activation function
g(⋅), weights between the hidden and output nodes β, and out-
puts T with m classes are also illustrated. As mentioned, in the
training process (when the hyperparameters, the number of
hidden neurons and the mapping function, must be fixed), W
and b are generated arbitrary by following a uniform distribu-
tion for instance, and β is calculated based on the generalised
Moore–Penrose inverse of the output matrix in hidden layer H
(expression (6)). Namely, in the ELM algorithm there is no
iterative process for establishing W , b, and β as it is in traditional
machine learning approaches.

2.2 | Regularised ELM

The regularised ELM [30] is a variant of the standard ELM that
integrates a regularisation term to mitigate model complexity
and prevent overfitting. Its primary aim is to achieve a balance
between empirical risk, indicated by training error, and struc-
tural risk, which seeks to enhance class separation. The mathe-
matical formulation of R‐ELM allows for the adjustment of the
trade‐off between these risks through a regularisation param-
eter C. By optimising the associated Lagrangian, optimality
conditions are derived, enabling efficient computation of the
adjustment parameter β. As the value of C increases, R‐ELM
simplifies and approaches the standard ELM, which primarily
focuses on minimising training error.

Bydeveloping the idea, ELMalgorithm is basedon theprinciple of
minimising empirical risk, which implies reducing the real risk of
an algorithm due to lack of knowledge of the distribution of data.
Consequently, it focuses on evaluating the performance of a
known set of training databases [31]. To solve the problem of
overfitting, an algorithm with good generalisability is used,
achieving an optimum balance between empirical risk and
structural risk [32].

In this approach, the real risk is represented by the weighting of
the sum of these two types of risk. The proportion between them
can be regularised by introducing a weight factor, where the
empirical risk is presented as the sum of the mean squared error
and the structural error is defined through the derivative that
maximises the distance of the separation margin between clas-
ses. Finally, to obtain a robust estimate that minimises inter-
ference between atypical values, the error variable is weighted
[32]. Then, the following result is obtained:

Minimizing :
1
2
‖β‖2 +

1
2
C‖Dε‖2,

according to : ∑
Ñ
i=1βig(wixj + bi) − tj = εj,

j = 1, 2,…, Ñ,

(8)

where εj is the training error that regularises parameter C, which
can be adjusted to the ratio between the empirical risk and the
structural risk, where the optimal compensation between the two
risks means an improvement in the model's performance, rep-
resented by ε[ε1, ε2,…, εÑ] and D = diag[v1, v2,…, vN]. The
Lagrangian for Equation (8) takes the form of:

L(β, ε,α) =
C
2
‖Dε‖2 +

1
2
‖β‖2 − α(Hβ − T − ε), (9)

where αj ε R(j = 1, 2,…, Ñ) represents the lagrangian multi-
plier. Equation (10) is adjusted to balance empirical and struc-
tural risk through a scalar function (lagrangian). This
adjustment is achieved by establishing the gradients for β, ε y α
when matched to 0. The result of this process satisfies the
optimal conditions posed by the Karush–Kuhn–Tucker theo-
rem, which tackles the conditions of the optimisation problem
by the restrictions of equality and inequality [32, 33]. Then, we
have the following equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂β

→ βT = αH,

∂L
∂ε

→ CεTD2 + α = 0,

∂L
∂α

→ Hβ − T − ε = 0.

(10)

When solving the systems of equations that describe the con-
nections between the hidden layer and the output layer, we get
the following expression:

β = (
I
C
+HTD2H)

−1

HTD2T, (11)

where I is the identity matrix sized Ñ × Ñ, where Ñ is the
number of hidden nodes as previously was established. In the
scenario where D = diag( v1, v2,…vÑ) is a unitary matrix, β is
simplified to the following:

β = (
I
C
+HTH)

−1

HTT, (12)

This equation represents the regularised ELM (ELM‐R) [32],
where C is known as the regularisation parameter and must be a
positive real number. Note that in the case of big Cs, the R‐ELM
tends to be the standard ELM. For the regularised ELM, the
architecture can be also represented by Figure 1. Compared to
the explanation of the standard ELM, we must only considered
that the weights of the output layer (β) are given by Equa-
tion (12), where an additional degree (C) of freedom exists (the
regularisation parameter) and should be setting at the begging
of the learning phase like the rest of the hyper‐parameters.

FIGURE 1 | ELM model along with its variables and constants.
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2.3 | Weighted ELM

The Weighted ELM (ELM‐W) [34] is a variant of the ELM that
incorporates weights in the hidden layer to address class imbal-
ance in datasets. Unlike the standard ELM, which employs fixed
weights, the ELM‐W utilises an adjusted weight vector that pri-
oritises samples with higher training errors. Its formulation is
like that of ELM‐R but includes a weighting matrix W. When
calculating the adjustment parameter β, this matrix is considered
to enhance the model's ability to manage data disproportion,
proposing formulae to define W based on the number of samples
in each class. As can be seen below, the weighted ELM models
differ in their methods for establishing these weights, with the
former achieving balance through sample quantity and the latter
applying principles of the golden ratio.

By reinforcing the explanation, ELM algorithm faces challenges
when operating with unbalanced data, where the quantity of
samples by class varies, leading to lower precision when
working with these types of data sets. To address this problem,
an ELM‐Wis introduced for the learning of unbalanced data,
which was initially proposed for binary classification problems
[34]. A diagonal matrix U is defined as the reciprocal of the
samples, associating the weight with each sample in training. In
general, if the sample comes from a minority class, the associ-
ated weight Uii is relatively higher than the other method. To
maximise the marginal distance and minimise the accumulated
error weighted with respect to each sample, the following
optimisation problem is proposed:

Minimizing : LPELM =
1
2
‖β‖2 + CU

1
2
∑
Ñ

i=1
‖εi‖2,

according to : h(xi)β = tTi − εTi , i = 1,…Ñ,

(13)

where εi is the training error of sample xi, the result of the
difference between hoped output ti and the actual output h(xi)β
[34]. According to Karus–Kush–Tucker theory [33], the equiv-
alent dual optimisation problem is expressed as follows:

LDELM =
1
2
‖β‖2 + CU

1
2
∑
Ñ

i=1
ε2i − ∑

Ñ

i=1
αi(h(xi)β − ti + εi), (14)

where the Lagrange multiplier αi is the constant factor of
sample xi in the linear combination to form the final decision
function. By deriving in regard to variables (β, εi, αi) and setting
equal to 0, you get the following:

β =HTα,
αi = CUε,

h(xi)β − ti + ε,
(15)

from these equations two versions are derived from β, depend-
ing on the number of samples and the number of hidden nodes
[34]. As previous ELM, in the common situation where the
number of samples is greater than the number of hidden neu-
rons, the right pseudo‐inverse is applied, obtaining:

β = (
I
C
+HTUH)

−1

HTUT. (16)

It is crucial to highlight that the weighted ELM depends on the
definition of the elements in the matrix U. Therefore, Weighted
ELM 1 (ELM‐W1) and Weighted ELM 2 (ELM‐W2) are intro-
duced as the most widely used solutions. In these cases, it is
necessary to define U, determining which type of ELM will be
used; U1 represents weighted 1 and U2 weighted 2. In the first
case, the weighted scheme is defined as follows:

W1: Uii =
1
(ati)

, (17)

where ati is the number of samples that belong to ti, i = 1,…,m.
This type of ELM is ideal when the database is mostly slanted
towards the border of the majority class. When the database is
mostly slanted towards the minority class border, ELM‐W2 is
used, whose diagonal matrix takes the shape of the following:

W2:
⎧⎪⎪⎨

⎪⎪⎩

Uii =
0, 618
a(ti)

si ti > mean(ti),

Uii =
1

a(ti)
in another case,

(18)

minimising the balance step in a 0.618:1 ratio. Note that it takes
the value of the golden ratio, since it represents perfection in
nature, between the minority and the majority classes [34]. The
architecture of the weighted ELM can be identified by Figure 1.
As happens with the regularised ELM, the change to be noted
with respect to the standard ELM comes to be the determination
of β. In this occasion, expression (16) must be taking into ac-
count, where the diagonal matrix U appears and it is given by
Equations (17) and (18) according to the version of the weighted
ELM. Based on previous explanations, the ELM algorithms in
their learning phase are presented below (Algorithm 1):

ALGORITHM 1 | ELM Training Algorithm.

Given the training set ϕ = {(xi, ti)∣i = 1,…,M} where M is the
number of samples, set the hyper-parameters of the ELM
model, including the activation function g(⋅), the number of
hidden neurons N, the regularisation parameter c, among
others.

1: Originate the input weights wi and biases bi by following a
random distribution.

2: Compute the output of the hidden layer matrix H by
exploiting input information xj, see Equation (3).

3: Calculate the output weights β, via expressions (6), (12),
and (16) for the standard, regularised, and weighted ELMs,
respectively. Here, the output information tj is also used.

The testing phase is only given by probe the ELM model for new
database (a testing set), all connections among the nodes remain
the same as those configured in training stage.

2.4 | Multilayer ELM

The multilayer extreme learning machine (ELM‐M) [35] is an
advanced version of the standard ELM, specifically designed to
handle larger and more complex datasets through a multi‐layer
neural network architecture. This model employs ELM autoen-
coders (ELM‐AE) [35] to achieve unsupervised learning in a
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layer‐wise manner, effectively compressing, dispersing, or
maintaining the dimensionality of input features. The ELM‐AE
utilises orthogonal random weights and biases to project input
data into a transformed space, calculating its output matrix via
least squares operations. Unlike traditional deep neural networks
that necessitate comprehensive training and weight tuning, the
ELM‐M initialises the hidden layer using an ELM‐AE and
directly optimises its output, employing activation functions that
are contingent on the relationship between the number of nodes
in successive layers. This approach not only accelerates the
training process but also enhances the ELM‐Ms ability to learn
and represent complex patterns within the data effectively.

In other words, the ELM‐M comes to be an evolution of ELM,
designed to create neural networks that process large and
complex data sets by using stepwise unsupervised learning,
similar to deep neural networks [36]. It works based on the
ELM‐AE, which uses singular value features to structure the
multilayer network.

ELM‐AE may represent input features in three ways: com-
pressed, sparse, and equal. The compressed representation re-
duces the dimension of the data, the sparse one increases it, and
the equal one keeps it constant. For unsupervised learning, it
uses the input data as output, choosing orthogonal weights and
random biases for the hidden nodes, optimising the perfor-
mance of the model in the following form [37]:

h = g(w ⋅ x + b),
wTw = I, bTb = 1, (19)

where w = [w1,…,wL] are the orthogonal random weights, and
b = [b1,…, bL] are the orthogonal random biases between the
input and hidden nodes. This projection is based on the
Johnson‐Lindenstrauss principle, which allows estimating
points into a lower‐dimensional space without losing significant
information about their distances. In an ELM‐AE, the output
weight matrix β learns the transformation from the feature
space to the input data. If the data is sparse or compressed, the
matrix β is determined as follows:

β = (
I
C
+HTH)

−1

HTX, (20)

where H represents the output matrix of the hidden layer of the
ELM‐AE, and X are the input data and the target output results
of the output layer. Expression (20) holds as long as the number
of samples (N) is greater than the number of neurons ( Ñ),
which is very common in the context of machine learning and
even more so in deep learning applications. For simplicity
purposes and for visualising the optimisation procedure (refer to
Section 4), we set C to infinity. In other words the ELM‐AE
considers an ELM standard.

As mentioned, ELM‐M differs from conventional deep neural
networks by using ELM‐AE for weight initialisation, elimi-
nating the need for exhaustive fine‐tuning [36]. In an ELM‐M,
the hidden layer activation function can be either linear or
piecewise nonlinear, depending on whether the number of
nodes in the current layer Ñk is equal to that in the previous

layer Ñ(k − 1); if they are equal, a linear function is used, and if
they are different, a nonlinear function such as sigmoid is
chosen, thus allowing it to adapt to various data structures. The
ELM‐M equation can be defined as follows [38]:

Hk = g((βk
)
T
Hk−1). (21)

The output matrix of the k‐th hidden layer is denoted as Hk, the
input layer X can be regarded as the 0th hidden layer, where
k = 0. The result of the connections between the last hidden
layer and the output node t (the target) is calculated analytically
using the regularised least squares method, that is, the method
proposed by ELM standard.

3 | Materials and Methods

Here, the experimental set‐up used for performing statistically
reliable measurements and, consequently, to execute the results
and discussion will be presented.

3.1 | Database

The methodology (experimental setup for image sampling and
the resulting database) used for the experimental sampling can
be found in ref. [22]. The database is created for VLP. This rep-
resents of photographs of the ceiling with the camera facing up
and diverse roll angles. The images are considered over a grid
with 5 regularly spaced reference points on the floor area. The
receiver corresponds to a Sony IMX219 CMOS sensor model,
which obtained an average of 356 images by LED class. During
the dataset acquisition, the image sensor was positioned parallel
to the floor at a height of 25.6 cm facing upwards. The camera is
rotated 5° between photographs and 65 images were acquired at
points (1.623,1.260,0) m, (1.873,1.260,0) m, (2.123,1.260,0) m,
(2.373,1.259,0) m, and (2.623,1.259,0) m on the floor surface. The
relationship between the 5 degress and 65 images comes to
represent the amount of images by class (5 × 65 = 325). Its
rotation is very relevant in VLP experiments, since this phe-
nomenon will happen in the reality due to random movements of
the receiver simply. In this form, the results obtained and dis-
cussion given can be considered valid. Note that the VLP dataset
belongs to a bidimensional space since it discards dimension of
the height. The database always takes into account that the re-
ceptor in the floor, by considering that the ceiling of the experi-
ment surface is 2.71 m. To conclude, we here present the most
representative information provided by the database builders.
For more details regarding the experiment space and the posi-
tions of the transmitter and the receiver with its movement, one
could write direct to authors of refs. [22, 39]. In fact, in these,
there are figures that represent the VLP system with details,
which are not presented here by copyright reasons. To evaluate
ELM, we used the database available for download in ref. [39],
which contains 2839 samples, where all images are 150 × 150
pixels. The configuration includes eight transmitters modulated
by On‐Off Keying (OOK), frequencies (data‐rates) that go from 1
to 4.5 kHz (1–4.5 kbps), and an increase between 500 Hz
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(0.5 kbps) LEDs, which will be the type of class (8 in total), as we
can see in Table 1. For clarification purposes, the VLP signal is
composed by an illumination signal, which is a DC voltage that
can turn on the LED (according to its requirements) and a
communication signal, which is an OOK signal characterised by
a data‐rate. In order to note each LED and, therefore, set up a
logical experiment for VLP, each communication signal has a
particular bit‐rate as can be seen in Table 1. It is worth to note
that this range of data‐rate are destined for low internet of things
or industry applications, which demands precise location and
real‐time tracking in indoor environments, such as mobile
warehouse robots [22].

As can be seen, the dataset can be considered balanced since all
classes almost have the same number of samples. In this sense,
it is expected that weighted ELMs do not present superior per-
formances without computational cost. These results could be
verified in the next section. Due to their differentiating feature,
each LED light presents a different pattern in the image ob-
tained by the receiver. The images were processed with Matlab,
rescaled to 50% (a factor of 2) in order to minimise the
computational cost without loss the performance of the pro-
posal, vectored to a row vector for processing purposes with the
ELM algorithms, and normalised from −1 to 1 to ensure and
optimise the ELM learning as recommend its creator [24]. In
Figure 2, a random sample of each class is displayed in order to

evidence inputs and values of the ELMs. According to the digital
signal processing, the y‐axis represents the input value to the
ELM algorithm, which is normalised from −1 to 1 to ensure
learning capacity, and the x‐axis the number of the inputs
(150/22 = 5625 attributes) to the ELM model, which come from
the rescaling and vectoring processes. It can be seen that with
the digital image processing a class can not be visually distin-
guished; nevertheless, this will not be the case for ELM methods
(see Section 4). In summary, the output nodes represent the
source of illumination (the LED class as can be seen in Table 1),
while the input to the ELM models are the sampled images as
can be seen in Figure 2, which are processed in order to simplify
the ELM architecture by maintaining its performance, that
come from the image sensors.

3.2 | Metrics

ELM methods are evaluated using the VLP database and
considering geometric median (G‐mean), accuracy, and training
time metrics [40]. Obviously, a model is considered efficient for
classifying when both the G‐mean and the accuracy are close to
1 (100%), and is considered simpler when the training time is
shorter.

The G‐mean, also called the geometric median, uses the
convention of calling classes positive and negative in binary
classification problems [41]. In this metric, the successes in the
positive and negative classes are considered equally important.
To begin, TP represents the number of positive elements that
were correctly identified, FP are false positives (number of
negative elements incorrectly identified as positives), TN in-
dicates the number of negative elements that were correctly
identified, and FN are false negatives (number of positive ele-
ments incorrectly identified as negatives). In Equation (22), FP
(false positives) is the number of LEDs from other classes that
were conveyed as LEDs in classes of interest, and FN (false
negatives) are the number of LEDs in classes of interest that
were conveyed as LEDs from other classes.

G ‐ mean =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
TP

TP + FN
) × (

TN
TN + FP

).

√

(22)

Nevertheless, the classification application in our work has eight
classes, one class for each led. In this situation, the G‐mean is
given by the following [42]:

G ‐ mean = (∏
cl

j=1
Accuracyj)

1/cl

, (23)

where cl denotes the number of classes and Accuracyj comes to
be the accuracy in the class j. In this sense, accuracy refers to the
ability to approach to the value of the real wanted magnitude
[43], determined by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (24)

This expression represents the ratio between the elements that
were correctly identified and the total. It is important to note

TABLE 1 | Luminary classes and their modulation bit‐rates.

Tx Bitrate (kpbs) Class Number of samples
Tx13 1 7 353

Tx7 1.5 3 354

Tx11 2 5 356

Tx4 2.5 2 356

Tx14 3 8 351

Tx8 3.5 4 356

Tx12 4 6 355

Tx3 4.5 1 358

FIGURE 2 | ELM inputs for (A) 4.5, (B) 2.5, (C) 1.5, (D) 3.5, (E) 2,
(F) 4, (G) 1, and (H) 3 kHz signals.
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that this metric is a general indicator of performance, which
means that the success of classifying each class has the same
weight. Notice that in our work, each LED is identified by one
class, since a LED can be characterised by an OOK communi-
cation signal with a particular oscillation frequency or bit‐rate
(see previous subsection).

Finally, to evaluate the complexity of the neural network, it is
essential to measure the training time (TT) in the different
versions of the ELM algorithm [44]. Taking into account the
underlying theory of ELM, complexity is mainly found when
determining the connections between the hidden layer and the
output layer. This measure depends on the hardware and soft-
ware utilised for the classification application. This study used
Matlab software to simulate each ELM and the rest of the ma-
chine learning approaches to be evaluated. Model training and
calculations were performed on a personal computer with the
following characteristics: Intel Core i5‐10300h 2.5 GHz (8 CPUs)
processor, 24 GB of RAM, and Nvidia GeForce GTX 1650Ti.

3.3 | Validation Schema

This study used five‐fold cross‐validation to evaluate system
performance (accuracy and G‐mean) [45]. Using five‐fold cross‐
validation is a methodology that provides a precise and unbiased
evaluation of the classifier performance. The database is divided
into five equal parts, each with 20% of the samples. For each
division, the artificial neural network is trained with 80% of the
data and validations are performed with the remaining 20%. The
overall results are presented as the mean of the metrics of the
execution of five independent validations of the dataset.

The Monte Carlo simulation technique is also used to analyse
the complexity (time training) of the classifier [46]. In this
context, a Monte Carlo simulation means repeating the experi-
ment many times by fixing the training and testing sets in order
to known statistically reliable results of learning speeds (means
and variances). In this form, the mean of the sampling distri-
bution with a minimum deviation standard sampling could be
more representative of the time training results. Notice that this
metric depends on the hardware and software used in the work,
which were presented in previous subsection.

4 | Results and Discussion

In this section, the hyperparameters that maximised the accu-
racy and G‐mean metrics without excessive computational cost
are initially found. After that, the optimised ELM models in
terms of performance and complexity are compared to each
other. Finally, the best ELM model is called into question with
classical and benchmarking neural networks where confusion
matrices are also included and analysed.

4.1 | Hyperparameter Optimisation

It is important to mention that the ELM variants used were
implemented with the sigmoid function g(x) = 1/[1 − exp(x)]

as the mapping function. This choice is based on the proven
generalisation of the sigmoid function [47]. The most important
results obtained are analysed and divided into six model cate-
gories: (1) standard ELM (ELM); (2) regularised ELM (ELM‐R);
and weighted ELM divided into two parts: (3) weighted ELM 1
(ELM‐W1), (4) weighted ELM 2 (ELM‐W2), (5) multilayer ELM
with 2 hidden layers (ELM‐M2), and (6) multilayer ELM with 3
hidden layers (ELM‐M3). Note that the optimisation procedure
is realised by force brute, namely by proving the system per-
formance in all possible combinations of the hyper‐parameters
of each ELM model (based on representative vectors) and,
then, selecting the best point of the performance (accuracy and
G‐mean) taking into account the minimisation of the architec-
ture network (training time). Of course, to estimate the optimal
hyper‐parameters of the ELM approaches, we used the results of
the validation sets. Consequently, we could appropriately
compare our results with the results reported in the state of the
art and determine with models is the best for diverse metrics.
For simplicity purposes, the hidden neurons will be identified
by only N in the rest of the paper.

4.1.1 | Standard ELM

This model is where the exclusive evaluation of hidden neurons
(N) is performed, as shown in Figure 3. The results show
optimal performance in the range of 100 to 2300 neurons,
exceeding 90% of performance. When the number of hidden
neurons match to the number of samples (2270), the perfor-
mance decreases significantly, overfitting issue always occurs
[24]. In this number, the generalised Moore‐Penrose becomes
simply an inverse matrix. To work with this database, a value of
200 hidden neurons (N) is selected, as it is a value that ensures
convergence on a stable ELM result (with precision and G‐mean
greater than 99%), which means that it is not overly complex
with respect to the number of neurons (learning speed). On the
one hand, we do not choose a value below 200 hidden neurons
to avoid the risk of leaving the optimisation zone. On the other
hand, we exclude numbers greater than 200 hidden nodes in
order to do not increase the computational efforts for specially
training phase in the ELM models. Note that for all ELM
models, the number of hidden neurons corresponds to a value

FIGURE 3 | Standard ELM performance: Accuracy and G‐mean in
terms of the hidden neurons of the standard ELM. The red line
corresponds to Accuracy, and the blue line is the G‐Mean.
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greater than the number of samples in the training stage, since
for this the maximum result should occur according to the ELM
theory [24].

4.1.2 | Regularised ELM

This model requires the evaluation of two hyperparameters: the
number of neurons in the hidden layer (N) and the regular-
isation parameter (C). In the following, the values of C will be
shown in logarithm scale for better visualisation of the optimal
zones. To efficiently visualise performance, the most efficient
areas are coloured yellow in the contour graph (refer to
Figure 4). If an N = 250 is selected with a C = 2− 4, it is
possible to see performances (accuracy and G‐mean) near to
99%, as can be identified by the markers, by minimising the
computational costs (number of hidden neurons). It is evident
that this metric is not affected by the regularisation parameter,
see expression (12). For smaller Cs than 2− 12, both performance
metrics tend to have lower values.

Notice that by comparing the results of ELM‐R given by C = 220

with standard ELM, we numerically confirm that ELM‐R has
the same behaviour that the standard ELM when C acquires a
big value, see Section 2. In the rest of the contour plots, we
adopt a colour bar from 0.7 to 1 in order to visually (easily)
compare these.

4.1.3 | Weighted ELM 1

The database used [22] can be considered a balanced one ac-
cording to Table 1, with a maximum difference of units in over
350 samples by class, therefore, this ELM model (ELM‐W1), as
well as weighted 2 (ELM‐W2), does not show a big difference or
improvement in performance when compared to the standard
ELM and ELM‐R. With the same criteria as above, the chosen
values for the ELM 1 imbalance hyperparameters are N equal to
300 and C having a value equal to 24, refer to the markers of
Figure 5. It can be seen that a superior performance demand a C
greater than 25. Namely, the regularisation parameter is more

important (the optimal zone is smaller) in the ELM‐W1 than in
the ELM‐R when dataset is balanced.

4.1.4 | Weighted ELM 2

As previously indicated, the database is relatively balanced.
Figure 6 with their markers shows that ELM‐W2 does not
improve its performance. On the contrary, it makes them worse,
specially for lower Cs. For comparison purposes in the next
section, the selected values for the hyperparameters are
N = 300 and C = 20, identified performances by markers once
again.

4.1.5 | Multilayer ELM With 2 Hidden Layers

Figure 7 displays the contour plots of (A) accuracy and (B) G‐
mean metrics in terms of the first and second hidden layers
for the ELM‐M2. It can be seen that in most combinations the
performance tends to be 0.97. In the cases, when the number of

FIGURE 4 | Performance of regularised ELM (ELM‐R). (A) Accuracy
and (B) G‐mean in terms of the regularisation parameter and number of
hidden neurons.

FIGURE 5 | Performance of weighted ELM 1 (ELM‐W1).
(A) Accuracy and (B) G‐mean as a function of the regularisation
parameter and the number of hidden nodes. Here, the yellow area
represents the best values for hyperparameters N and C, and the
blue zones show inferior performances.

FIGURE 6 | Performance of weighted ELM 2 (ELM‐W2).
(A) Accuracy and (B) G‐mean as a function of the regularisation
parameter and the number of hidden nodes.
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hidden nodes in the first layer is near to units or bigger than the
number of training samples, both metrics exhibit detrimental
results. As the accuracy and G‐mean are almost 1 in most
number of neurons of the first and second layers, subfigures (A)
and (B) seem identical, but for low values of these metrics,
differences are notorious. With the marker the number of hid-
den neurons (N1 = 70 and N2 = 70) that will be considered as
optimised hyper‐parameters with a minimum computational
complexity are indicated.

4.1.6 | Multilayer ELM With 3 Hidden Layers

Finally, (A) accuracy and (B) G‐mean of multilayer ELM with 3
hidden layers (ELM‐M3) in terms of the number of nodes in the
first (x‐axis), second (y‐axis), and third (z‐axis) hidden layers are
shown in Figure 8 using a 3‐D scatter plot, where performance
can be evaluated using a colour scale (best (1) and worst (0.7)
results are identified with black and clear colours, respectively).
Namely, Figure 8A,B displays the accuracy and G‐mean as a
function of the of the hidden number of nodes of the multilayer
ELM, respectively. It is a graphic (visual) form for representing
the optimisation points by considering three parameters at the
same time, which is the case of the ELM‐M3, where colour to
represent the fourth dimension. Consequently, each point
comes to be the performance metric in terms of the number
neurons in each hidden layer. Note that in the situation of 4
hyper‐parameters (for instance a multilayer ELM with 4 hidden
layers), a graphical representation of optimisation procedure is
not possible to the best author knowledge. While the yellow
marks are the worst results, the black crosses come to be the
superior trends. Configuration with regular results (near to 0.9)
can be identified with red colours. In ELM‐M3 occur again the
following observations of ELM‐M2, superior behaviour (acur-
accy and G‐mean) on most hyper‐parameters and, consequently,
similar performance of both metrics. For this reason and
simplicity purposes (in order to obtain a negligible training
time), we adopt the number of three hidden nodes equal to
N1 = N2 = N3 = 70, point identified with a box in subfigures 8
for visualisation purposes. Notice that given a value of N3 (a cut
on the z‐axis), we could represent the optimisation of the

multilayer ELM with a contour plot. Namely, in the same way
that regularised and weighted ELMs. Finally, it can be observed
that as the number of degrees of freedom increases (the ELM
model has more hyper‐parameters), the optimisation task de-
mands more computational efforts. In this sense, there are
generally lines, zones (areas), and volumes in the standard
ELM, regularised/weighted 1/weighted 2/multilayer with 2
hidden layers ELM, and multilayer with 3 hidden layers ELM,
respectively, when the optimisation tests are executed.

4.2 | Comparison Among ELM Models

After adjusting the key parameters of the algorithms based on
ELM, an exploration of different configurations was made in
terms of performance and complexity as illustrated in Table 2.
Performance evaluation is performed using general measures
such as accuracy and the G‐mean. In terms of complexity,
training time (expressed in seconds) is used as a metric to un-
derstand how efficient the algorithm is during the learning
phase and consequently its feasibility in a commercial notebook.
All these results are reported for hyper‐parameters that maxi-
mise accuracy and G‐mean and minimise the training time
(based on previous section), and are exposed along with their
standard deviations in order to see the confidence interval (to
choose the best ELM method more objectively).

FIGURE 8 | Performance of multilayer ELM with 3 hidden layers
(ELM‐M3). (A) Accuracy and (B) G‐mean in terms of the number of
nodes in the first, second, and third hidden layers.

FIGURE 7 | Performance of multilayer ELM with 2 hidden layers
(ELM‐M2). (A) Accuracy and (B) G‐mean in terms of the number of
nodes in the first and second hidden layers.
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Table 2 shows that all ELM perform well in terms of both
performance metrics (almost 100%) with a negligible deviation
standard. The multilayer ELM approaches do not enhance the
accuracy or G‐mean, namely not necessarily a deep learning
approach is better than a machine learning approach. However,
the standard ELM shows better results compared to the rest, in
terms of shorter training times, compared to ELM‐W1 and ELM‐
W2, which have a much longer training time. Note that for all
ELM models, the learning speed is in the order of decimal
seconds, which means that these can be considered as machine
learning approaches in real‐time. At the same time, ELM
learning stability (see low deviation standards) is close to 0,
which is a natural goal for reliability reasons. As can be seen, in
this section we compared diverse architectures of the ELM al-
gorithm by showing their benefits and problems in terms of
performance and complexity. In this form, the best model can
be chosen in order to contrast it with the reported approaches in
the state of the art (discussion of results).

4.3 | Discussion of Results

This article focuses on using ELM to tackle the VLP problem.
The key parameters of the ELM algorithms were adjusted to
achieve a balance between performance and complexity. As
mentioned, Table 2 shows a detailed comparison of the different
variants of the ELM in terms of accuracy, G‐mean, and training
time. The standard ELM has the same results as other variants
in terms of accuracy and G mean, but with significantly shorter
training time.

The results show the standard ELM as the less complex option
for a classification task, while the article [22] takes an approach
based on CNN for the VLP problem. This research has also
performed a CNN simulation in Python according to the pa-
rameters described in ref. [22]. The CNN architecture used in
this research comprises multiple layers designed for image
classification. The network starts with a 2D convolutional layer
featuring 32 filters of size 3 � 3. This layer applies the ReLU
activation function and accepts input images of 150 � 150 pixels
with three colour channels. It is followed by batch normal-
isation to stabilise learning and accelerate convergence. Next, a
MaxPooling layer of size 2 � 2 reduces spatial dimensionality,
and a Dropout layer with a rate of 0.25 mitigates overfitting. The
output is then flattened and sent to a fully connected dense layer
with 256 units and ReLU activation. This is followed by another
batch normalisation and a Dropout of 0.5 to enhance the
model's robustness. Finally, the network includes two additional
dense layers: one with 8 units and ReLU activation, and the last

with 8 units and softmax activation. This final layer produces
the probabilities for each of the classes. The training hyper-
parameters used correspond to a learning rate of 0.001 (default).
This work employs the Adam optimiser. The model trains for 30
epochs with a batch size of 64 images. The result of simulated
CNN achieves an accuracy greater than 99%, with 15 training
periods as seen in Figure 9A. This is confirmed by the evalua-
tion performed using the sparse categorical crossentropy loss
function. This function is suitable for multi‐class classification
problems where the target labels are integers representing
different classes. This loss function measures the discrepancy
between the predicted probabilities and the actual class labels.
During training, the model iteratively adjusts its weights to
minimise this loss. By minimising sparse categorical cross-
entropy over the specified number of epochs, the model grad-
ually improves its ability to predict the correct class labels for
new, unseen data. Figure 9B. As can be noted, ELM and CNN
present promising results, but choosing between the two de-
pends on several factors, including the nature of the data and
the specific requirements of the application. Standard ELM
stands out in terms of accuracy with a low computational cost in
training, while CNN also presents very good accuracy results,
but has a much more complex and extensive architecture as can
be explained and high training time (as can be seen below).
Note that the code implemented to obtain the CNN results is
available at https://github.com/RahumadaG/VLP (accessed on
11 October 2024).

TABLE 2 | Performance and complexity (training time, TT) comparison of ELM‐based algorithms.

ELM type Hyperparameters Accuracy G‐mean TT
ELM N = 200, C= does not apply 0.9938 ± 0.0037 0.9938 ± 0.0034 0.1562 ± 0.0482

ELM‐R N = 250, C = 2− 4 0.9944 ± 0.0023 0.9943 ± 0.0022 0.2125 ± 0.0178

ELM‐W1 N = 300, C = 24 0.9951 ± 0.0026 0.9950 ± 0.0024 0.3173 ± 0.0965

ELM‐W2 N = 300, C = 20 0.9951 ± 0.0026 0.9950± 0.0024 0.4250± 0.0639

ELM‐M2 N1 = N2 = 70 0.9725 ± 0.0048 0.9718 ± 0.0046 0.1977 ± 0.0090

ELM‐M3 N1 = N2 = N3 = 70 0.9708 ± 0.0057 0.9704 ± 0.0059 0.2019 ± 0.0073

FIGURE 9 | CNN Results. (A) Accuracy, (B) Loss function. The red
line corresponds to testing, and the blue line is training.
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Additionally, a predefined model for MLP was established in
MATLAB known as the Scaled Conjugate Gradient (SCG)
method [48], which only requires the loading of the dataset for
its operation. The SCG method, developed by Møller, is an
optimisation technique that minimises objective functions using
conjugate directions, eliminating the line search at each itera-
tion, and reducing computational costs. Its adaptability,
robustness to noise and outliers, and ability to automatically
adjust the step size make it effective for optimising complex
functions, including nonlinear and multimodal ones. MLP is
composed by two‐layer feedforward network with sigmoid
hidden neurons and softmax output neurons, suitable for clas-
sification tasks. This implementation is done in order to validate
and test the ELM‐based results with respect to a benchmarking
machine learning approach with the same architecture. In this
sense, the only hyperparameter is fixed to 200 hidden neurons
(identical to the standard ELM). Figure 10 displays the cross
entropy according to epochs in train and testing stages. It can be
seen that the initial and stoppted values correspond to 1.03 and
5.77 × 10− 8 in training phase by considering 50 epochs and,
hence, for 44 the best validation performance corresponds to
0.0026 where six validation checks were executed. The MLP
behaviour achieves testing results equals to 99.6% accuracy (this
metric along with G‐mean plus/minus standard deviations will
be presented in the following paragraph).

To conclude, Table 3 illustrates the comparison in terms of per-
formance and complexity for the superior proposal (ELM stan-
dard) and the reported in literature (CNN) [22] and
benchmarking ML technique (MLP). It can be seen that all
models get a performance near to 1 for accuracy as well as G‐
mean metrics. Nevertheless, the MLP results exhibit larger
standard deviations contrasted with ELM and CNN methods,
which means that MLP performances metrics re not so reliable.
In terms of training time, the advantage of the ELM standard
against the CNN and MLP approaches becomes unquestionable,
since it consumes tenths of seconds while the CNN and MLP are

in order in minutes and seconds, respectively. In other words, the
training time by adopting the ELM standard can be considered as
negligible. To sum up, the CNN is slightly superior to the stan-
dard ELM only in terms of performance (accuracy and G‐mean).
However, taking into account a complexity analysis, the standard
ELM outperforms the CNN by a factor of approximately 1000.
While the time training (the metric used to measure the
complexity architecture of the algorithm) is 0.1562 s for the ELM,
the CNN is characterised by a time training of 1228.2570 s. In VLP
practical applications, the training time and, therefore, archi-
tecture complexity, is a very important parameter since the op-
tical communications must be in real‐time by considering time‐
variant and/or frequency selective channels [9].

As a complement, the confusion matrices can confirmed and see
beyond the good performance of ELM standard, CNN, and MLP
methods. These are shown in Figures 11–13, respectively, and for
simplicity, do not consider the cross‐validation scheme that was
executed 5 times for the purpose of simplicity. As can be
observed, all of the confusion matrices have a good performance
(general and by class) of over 99%, with the chosen hyper-
parameter values. In particular, it can be observed that the class 8
is the most confused by class 4, which could be solved by further
separating the frequencies (bit‐rates) of the communication part
in the VLP system. This is the reason why the VP of the class 8
presents the lowest values among the rest of the classes.

As can be seen in this section, the comparison of the superior
ELM approach (standard ELM) with the benchmarking

FIGURE 10 | MLP results by showing the cross entropy according to
epochs.

TABLE 3 | Comparison in terms of performance and complexity.

Model Accuracy G‐mean TT
ELM standard 0.9938 ± 0.0037 0.9938 ± 0.0034 0.1562 ± 0.0482

CNN 0.9961 ± 0.0030 0.9961 ± 0.0030 1228.2570 ± 5.5676

MLP 0.9951 ± 0.0290 0.9883 ± 0.0560 0.2555 ± 0.0820

FIGURE 11 | Confusion matrix of the standard ELM given by
N = 200. The diagonal corresponds to the correctly classified
examples.
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methodologies (CNN and MLP) is carefully executed, by
showing not only performance metrics (accuracy and G‐mean)
but also complexity behaviour (training time). At the same time,
confusion matrices are reported by exposing the reasons behind
the ML and DL outcomes. As a future research line, this com-
parison should be considered in the context of positioning issue,
by determining the root mean square error in terms of distance
from the centre of the experiment space for the diverse VLP
methods. Note that the current work is limited to the classifi-
cation stage.

5 | Conclusion and Future Works

This paper has examined various forms of Extreme Learning
Machines, including: (1) standard ELM, (2) regularised ELM,

(3) two variations of weighted ELM, and (4) Multilayer ELM
with either 2 or 3 hidden layers, as applied to the VLP dataset
from [22]. The findings suggest that standard ELM is an
excellent option, achieving a performance rate exceeding 99%
with a shorter training duration than alternatives such as CNN
and MLP. An in‐depth analysis of the ELM variants, compared
to their outcomes on the VLP dataset, underlines the models'
effectiveness, especially in scenarios where class distribution is
balanced. The key contribution of this study is to offer a
practical framework for selecting the most efficient approach in
environments such as indoor VLP, where dealing with unbal-
anced samples and outliers presents notable challenges. These
insights provide important strategies for navigating the com-
plex issues associated with challenging datasets in the VLP
domain.

As future works, we considered applied the algorithms based on
ELM not only for classification purposes but also for positioning
issues for each visible LED luminaire and considering 3D po-
sitions for a single optical receiver. Taking into account more
datasets is also expected in order to test and validate the
exploitation of machine learning approaches in harsh environ-
ments such as including industrial facilities, subterranean
mines and local greenhouses where scattering and shadowing
effects, non‐line‐of‐sight links, among others impairments gain
importance. Simultaneously achieving a robust VLC with high
spectral efficiency and, finally, a VLP in the order of centimetres
could be explored to build a multifunctional 6G wireless
network and internet of things applications.
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