Please cite the Published Version

Birdsey, Laurence , Evans, Dan, Runacres, Adam , Dos'Santos, Thomas , Weston, Matthew and Field, Adam (2024) National-standard middle-distance runners maintain maximal 1500 m running performance on successive days. In: European Congress of Sport Science, 1 July 2024 - 5 July 2024, Glasgow. (Unpublished)

Version: Presentation

Downloaded from: https://e-space.mmu.ac.uk/639678/

Usage rights: © In Copyright

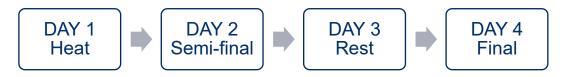
Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

National-standard middle-distance runners maintain maximal 1500 m running performance on successive days

Dr Laurence Birdsey, Dan Evans, Dr Adam Runacres, Dr Thomas Dos'Santos, Dr Matthew Weston and Dr Adam Field

A.Field@mmu.ac.uk



BACKGROUND

- 3 rounds of competition, separated by 24 & 48 h
- Winners adopt championship pacing strategies (Hanley and Hettinga, 2018)
 - Running sub-maximal speeds & Qualifying (doing "enough")
 - Progressing times to produce fastest time in the final
- Yet, some athletes slow in the final (Hanley and Hettinga, 2018)
 - Attributed to running more maximally in earlier rounds and accumulating fatigue
- Performance margins are small

WC Budapest 2023	Difference (s)	Difference (%)
Top 8	1.40	0.67
Top 3	0.30	0.14
Medal vs. Non-medal	0.21	0.10

- Large performance impact of enhancing performance through rounds of competition
- However, why performance changes between rounds is unclear

PURPOSE & AIM

PURPOSE: To investigate why performance changes through successive 1500 m time-trials

AIM: To examine the impact of successive 1500 m maximal self-paced time-trials on running performance, physiology and biomechanics

METHODS

Overview

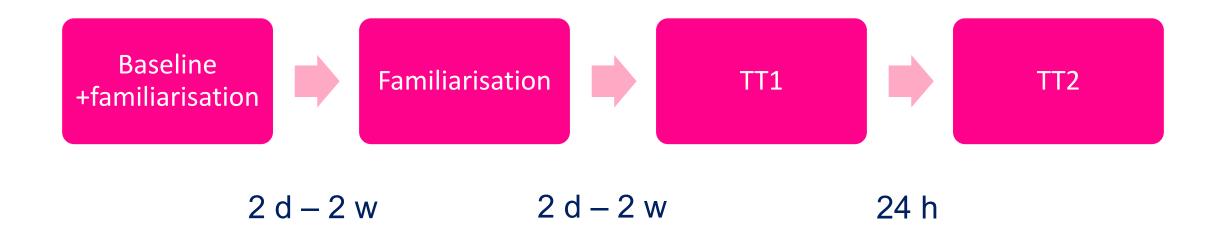
- National-standard middle-distance specialists (tier 3)
- Familiarisation 1500 m TT
- 2 x 1500m TT separated by 24 h

Protocol

- Standardised warm-up
- Self-paced TT(Gaitway 3D, h/p/cosmos)
- No structured recovery or training

Measures

- Internal (HR, [BLA], dRPE, expired gas analysis)
- External (speed)
- Time


N = 12 (10♂ 2♀)	Mean ± SD
Age (y)	27 ± 7
Height (m)	1.8 ± 0.1
Mass (kg)	66 ± 8
1500m SB (s)	244.1 ± 18.8
1500 m SB (%)	86.5 ± 3.9
Weekly mileage (km)	85 ± 24
Running experience (y)	14 ± 8
LT (km·h ⁻¹)	14.7 ± 1.1
LTP (km·h ⁻¹)	16.7 ± 1.1
VVO₂peak (km·h⁻¹)	20.6 ± 1.3
VO₂peak (ml·kg·min⁻¹)	58.3 ± 3.6

METHODS

Data analysis

Matt to write a summary as I've no idea!

TIME

- Fixed effects of time-trial on running time was -0.6% (95%CI -1.6, 0.3)
- Most of the variance in running time was explained by random effect of athlete
 - ICC=0.98
 - Marginal R2 of 0.002

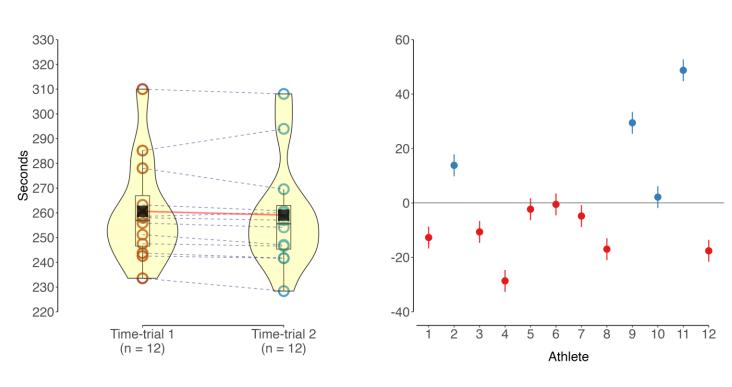


Figure 1. Violin plots, boxplots, mean time-trial 1500 m running time (black square) and individual athlete data points (left panel) along with the random effect estimates and 95% confidence intervals for athlete (right panel).

PEAK PHYSIOLOGICAL RESPONSES

- Fixed effects of TT were:
 - Peak HR: -0.5% (-1.4, 0.4)
 - Peak VO₂: -0.4% (-1.8, 1.1)
 - Peak BLA: 0.8% (-6.0, 8.1)
 - Peak RER: 1.2% (-1.6, 4.1)
- Mostly accounted for by athlete random effect
 - ICCs from 0.62 to 0.96
 - Low marginal R2 (0.0009 to 0.016)

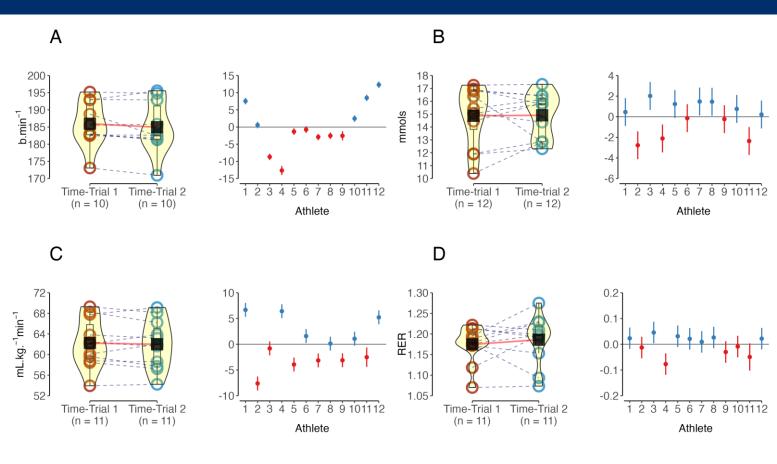


Figure 2. Violin plots, boxplots, mean time-trial response (black square) and individual athlete data points (left panel) along with the random effect estimates and 95% confidence intervals for athlete (right panel) for peak heart rate (A), blood lactate (B), peak VO₂ (C), and peak RER (D)

MEAN PHYSIOLOGICAL RESPONSES

- Fixed effects of TT were:
 - Mean HR: -0.6% (-1.0, -0.2)
 - Mean RE: 0.1% (-0.9, 1.1)
 - Mean VO₂: 0.2% (-1.4, 1.8)
 - Mean RER: 1.8% (-0.8, 4.4)
- Mostly accounted for by athlete random effect
 - ICCs from 0.68 to 0.99
 - Low marginal R2 (0.0001 to 0.033)

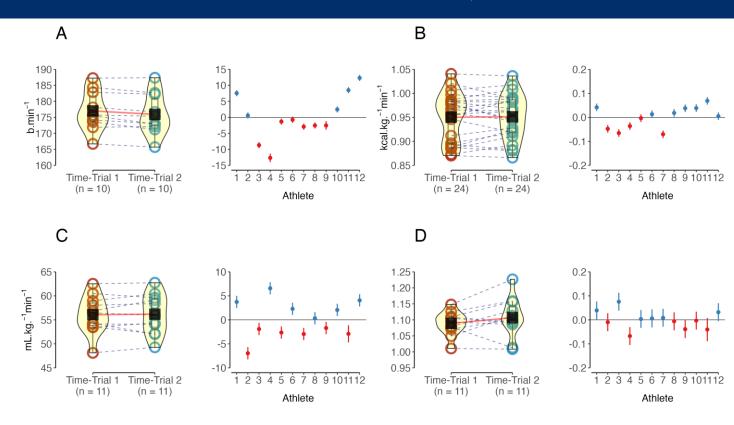


Figure 3. Violin plots, boxplots, mean time-trial response (black square) and individual athlete data points (left panel) along with the random effect estimates and 95% confidence intervals for athlete (right panel) for mean heart rate (A), running economy (B), mean VO_2 (C), and mean RER (D)

EQUIVALENCES

- Statistical equivalence is observed for 1500 m time, mean and peak heart rates, VO₂, RE, BLA.
- Differences are within measurement error
- All remaining variables are not statistically equivalent to the previously reported measure error

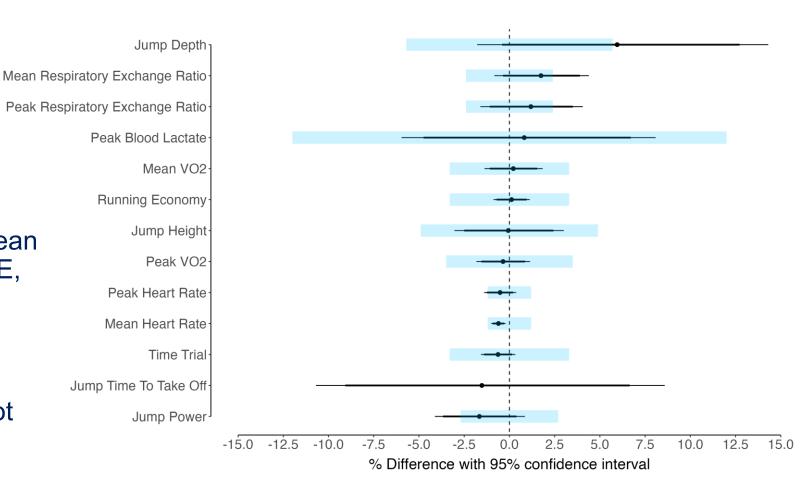


Figure 4. Forest plot of the between-trial difference and 95% confidence intervals, expressed as %'s, for all performance and physiological variables. The previously reported %CV's for each respective variable are displayed via the light blue shaded area.

PERCEPTUAL MEASURES

- Athletes were 1.5-2.4 x more likely to rate exertion and mood higher in TT2
- But with considerable uncertainty surrounding the estimates

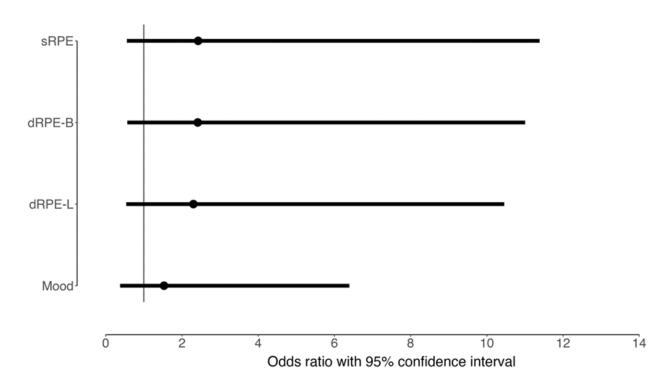


Figure 5: Forest plots showing the odds ratios and 95% confidence interval for the fixed effect of time trial performance on all perceptual measures,

PRACTICAL APPLICATION

- 1. Highly trained runners, who are highly accustomed to race demands, can maintain performance across successive time-trials
- 2. Observed increases in performance in championships is likely due to tactical approaches, or minimising effort in prior rounds
- 3. Those who must perform maximally in heats are unlikely to improve performance in the semi-final

Limitations

Treadmill vs over-ground

Lack of competition/ motivation for "extreme" performance?

Competitions have significantly different demands (e.g., impaired sleep, media commitments, cognitive load etc)

