
Please cite the Published Version

Naeem, Muhammad Ali, Bashir, Ali Kashif and Meng, Yahui (2025) Dynamic cluster-based co-
operative cache management at the network edges in NDN-based Internet of Things. Alexandria
Engineering Journal, 125. pp. 297-310. ISSN 1110-0168

DOI: https://doi.org/10.1016/j.aej.2025.03.131

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/639593/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an open access article which appeared in Alexandria Engineering
Journal, published by Elsevier

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-7595-2522
https://doi.org/10.1016/j.aej.2025.03.131
https://e-space.mmu.ac.uk/639593/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Dynamic cluster-based cooperative cache management at the network
edges in NDN-based Internet of Things

Muhammad Ali Naeem a, Ali Kashif Bashir b, Yahui Meng a,*

a School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
b Department of Computing and Mathematics, at Manchester Metropolitan University, Manchester, United Kingdom

A R T I C L E I N F O

Keywords:
Caching
Internet of Things
Information-centric networking
Named data networking

A B S T R A C T

The Named Data Networking (NDN) has been postulated as a new paradigm for the Internet of Things (IoT). It
utilizes its data-centric networking model where content is acquired by name instead of position. Meanwhile, in
NDN networks, caching is included in the nodes for temporary storing or user request responses. However, nodes
in IoT networks have small cache storage compared to the huge amount of content transmitted, which poses
challenges in efficiency. This work introduces a new caching policy for NDN-IoT systems called Dynamic
Clustering-based Cooperative Caching (DCCC). DCCC determines and stores the content hitting rates concerning
the user desires, dynamic threshold, and dissemination of cooperation with inter-node adaptive clusters. In
detail, the results from growing numbers of simulations show that DCCC achieves better outcomes than prior
caching schemes in average cache hits per node, hops reduction per node, and the delay of content delivery.

1. Introduction

Currently, the global advancement of Internet of Things (IoT) ap-
plications, along with an even greater boost in Internet usage, has
generally catalyzed the greatest level of end-user demand [1,2]. IoT is
discussed globally as a revolutionary technology that offers effective
connections and spreads accurate real-time information back and forth
across the world [3,4]. To support these applications, a fair number of
architectures have been proposed, among which Named Data
Networking (NDN) is promising as a candidate to become the archi-
tecture of the future Internet, especially for IoT-based systems [5].

As useful as IoT devices may be, they are also very resource-limited
concerning fields like computation, power, or memory [6]. These limi-
tations question the applicability of NDN’s default caching policy to
cache anything anywhere, where all transmitted content is cached at
every node in the data delivery path [7]. As this strategy provides very
high data availability, it is infeasible for IoT settings due to resource
scarcity and, most importantly, the storage capabilities of IoT nodes [8,
9]. Further optimizing NDN caching strategies to be more acceptable
and within capacity on the IoT front is necessary [10,11].

The first and possibly the most significant problem is identifying
where different content in the network should be cached for the best
overall system performance. In addition, it is important to determine

how long content should be stored at a network node to optimize ben-
efits and limit resource consumption [12,13]. Although so many stra-
tegies have been provided to deal with these problems [5,14–19], most
of these strategies do not meet the special conditions and constraints of
IoT-based environments. For example, caching unnecessary and
repeated information brings extra expensive traffic in the network,
memory consumption, and a time delay in data access that works against
the purpose of caching [20].

As a result, determining the best caching solution becomes critical.
NDN-based caching should handle existing caching issues while also
successfully addressing restrictions in situations such as IoT-based ap-
plications [21,22]. Caching redundant content, on the other hand, may
increase network load and data retrieval latencies. As a result, the best
caching solution can minimize overall network latency by enhancing
demand for data availability [16,23]. In this situation, the best caching
solution may identify the most frequently downloaded items and cache
them for a long period at suitable network nodes, so subscribers can
easily and quickly get them in the future during their sessions [24,25].
As a result, the distance between subscribers and data provider nodes is
reduced, and data fetching time is cut dramatically. So, the gap for
improving the entire caching network remains, and to cover it, we
designed a Dynamic Clustering-based Cooperative Caching (DCCC)
technique to improve overall caching performance. The key goals of this

* Corresponding author.
E-mail addresses: malinaeem@gdupt.edu.cn (M.A. Naeem), dr.alikashif.b@ieee.org (A.K. Bashir), mengyahui@ggdupt.edu.cn (Y. Meng).

Contents lists available at ScienceDirect

Alexandria Engineering Journal

journal homepage: www.elsevier.com/locate/aej

https://doi.org/10.1016/j.aej.2025.03.131
Received 21 October 2024; Received in revised form 25 January 2025; Accepted 29 March 2025

Alexandria Engineering Journal 125 (2025) 297–310

Available online 16 April 2025
1110-0168/© 2025 Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:malinaeem@gdupt.edu.cn
mailto:dr.alikashif.b@ieee.org
mailto:mengyahui@ggdupt.edu.cn
www.sciencedirect.com/science/journal/11100168
https://www.elsevier.com/locate/aej
https://doi.org/10.1016/j.aej.2025.03.131
https://doi.org/10.1016/j.aej.2025.03.131
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2025.03.131&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

research are to improve cache usage at network edges and reduce data
delivery delays.

To reach these aims, we introduced a dynamic cluster-based caching
model that solves a number of important problems in the study of how
content is distributed and how well networks work. By tackling these
challenges, our approach makes multiple significant contributions to the
field. The following is the study’s main contribution:

• Popularity differentiation: The capacity to discern popular content
from less popular content is a significant difficulty in content dis-
tribution systems. Our solution uses dynamic criteria to precisely
identify content based on its level of popularity, ensuring that
network resources are directed to high-demand content in the most
effective manner possible.

• Interest-Based Clustering: Our strategy’s dynamic clustering method
efficiently addresses the issue of grouping network nodes with
similar Interests and preferences. Our technology dynamically pro-
duces clusters by taking into account Interest frequency and user
preferences. Furthermore, the cluster head is chosen based on the
node’s relevance and the proximity of the subscribers, guaranteeing
effective and localized content distribution.

• Cache Status Sharing: We take it a step further by suggesting a
method for determining the most essential node inside a cluster as
the cluster head. In addition to keeping its cache state, this cluster
head cooperatively distributes it with surrounding nodes. This
innovation improves data accessibility and cache hit rates.

• Adaptive Caching: A key component of our approach is the backup
caching mechanism, which addresses the issue of efficient cache
allocation. When the cluster head’s cache is full, it effectively evicts
and moves less popular content to the most important neighbor node
while recognizing and caching high-popularity content. Adaptive
caching constantly optimizes the network to serve the most popular
information, increasing network effectiveness overall.

The rest of the article is organized as follows: Section II defines the
related studies. Section III describes the proposed caching strategy.
Section IV provides details about the evaluation of the proposed caching
model. Section V provides the evaluation results. Finally, we concluded
the paper in Section VI.

2. Related studies

The caching module is regarded as the most important component in
NDN for improving the entire communication system since it is impor-
tant for splitting up data from its physical locations and delivering quick
data dissemination over the network [26,27]. From an IoT perspective,
the communication process consumes more energy than IoT-based tasks
performed on devices [28]. In this context, NDN-based caching plays an
important role in lowering the frequency of IoT node accesses and
minimizing total access time. As a result, the NDN-based caching mod-
ule can be used in an IoT-based network to speed up the network by
storing temporary data [12]. Several studies have recently been offered
to effectively increase the performance of NDN-based IoT setups. Hahm
et al. [29] investigated a sleep-based caching scheme for caching
transmitted material in an NDN-based IoT environment. It tries to in-
crease suitable data availability in order to improve network energy
efficiency. To save energy, the contents are cached at a node while it is
awake, while the node is mostly asleep the rest of the time. However, it
employs two replacement strategies that increase processing complexity
and data redundancy by caching contents across many nodes. Meddeb
et al. [30] introduced a caching system that uses a freshness technique to
determine the validity of cached contents while minimizing caching
costs. However, it raises the complexity overhead. Furthermore, Ama-
deo et al. [31] developed an NDN-based caching technique to increase
the performance of IoT-based networks in their study. Caching actions
are performed using freshness and data popularity values as

characteristics. As a result, caching actions are carried out autono-
mously on the edge node. However, because of the autonomous caching
activities conducted by each node, data replication is performed at
numerous places.

Rahul et al. [32] proposed a smart caching technique that uses an
extra table at each node to store information. This table stores all in-
bound requests for each content in order to determine popularity.
Content is cached based on the popularity and freshness of the data.
However, it promotes data redundancy and multiple duplications at
many nodes. Miwa et al. [31] offer a cooperative caching technique in
which a timer is coupled with the network to determine the lifespan of
an item. If many nodes require the same content, it is cached at all of
them via a cooperative updating technique. Caching contents at all
nodes along the data routing channel promotes data redundancy.
Furthermore, it updates information on the contents even if the contents
have expired, consuming more energy. Similarly, Asmat et al. [33]
presented a caching technique for NDN-based IoT called Central Control
Caching (CCC). Autonomous systems are deployed, and a central node is
chosen to cache incoming data. However, it includes numerous tables to
execute a single caching decision, which increases complexity. Naeem
et al. [34] offer an NDN-based caching approach called Efficient
Popularity-aware Probabilistic Caching (EPPC) to improve the perfor-
mance of IoT networks in a recent study. EPPC is broken into three
stages: data selection, caching, and replacement. It chooses the most
frequently requested contents and caches them at the leading node,
which is associated with a greater number of neighbor nodes. Dinh et al.
[35] proposed an energy-efficient way to cache data in which the energy
used for caching and retrieving data is used as a reward to measure how
energy-efficient the method is. The author suggests data insertion and
replacement algorithms based on the caching incentive to improve the
energy efficiency of caching decisions. However, it raises the complexity
overhead.

Amadeo et al. [36] offer a Popularity-aware Closeness (PoC) caching
approach in which contents are chosen based on the number of incoming
subscriber requests. If content has the most retrieval, it is designated as
popular and is advised to be cached at the nearest centrality node.
Finding the most popular content, on the other hand, has a higher
complexity overhead. Baltagiannis et al. [37] offer an energy-aware
caching approach called Fault-tolerant Probabilistic Caching in a
recent paper. When making caching decisions, it takes sensor defects
and energy consumption into account. On the other hand, it raises the
communication overhead required to detect sensor problems. On the
other hand, clustering techniques offer significant advantages in caching
NDN-based IoT environments, particularly in optimizing cached data
access for network efficiency and efficient use of scarce resources [38].
When a node is grouped in clusters, caching decisions can best be made
through collaboration within the cluster, eliminating repetition and
allowing faster access to data. Clusters provide an opportunity to
perform cooperative caching, which means the representatives of clus-
ters control cache decisions, including what should be cached and where
it should be cached based on user interests and the existing network
conditions. This approach also reduces the amount of data transmitted
over the networked space, has low latency as long-distance communi-
cation is not always necessary, and is economical as power is saved
through less traffic across the network. In addition, clustering improves
scalability, and thus NDN-based IoT networks will better cope with
increasing IoT traffic load while providing high performance and
resource utilization [39–42].

As a result, in order to optimize the cache management method, the
proposed caching strategy takes into account both the popularity of the
transmitted content and the caching site with the help of clustering. It
caches the contents collaboratively to solve the drawbacks of previous
caching systems. It offers novel solutions to long-standing problems in
content distribution and network optimization research. Our proposed
strategy provides novel approaches to long-standing issues in content
distribution and network optimization research. We greatly enhanced

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

298

content availability, user experience, and network efficiency by imple-
menting dynamic threshold, Interest-based clustering, cache status
sharing, and adaptive caching. The addition of dynamic threshold,
interest-based clustering, cache status sharing and adaptive caching has
significantly improved content availability, user experience, and
network efficiency. By putting our technique into practice, we can
transform how content is distributed and controlled inside networks,
raising the bar for quality in research. The next sections go over the
suggested caching strategy in depth.

3. Dynamic cluster-based cooperative caching

This section provides comprehensive details of the proposed caching
strategy. As mentioned in the above sections, several problems still exist
in NDN caching that hinder its full benefits for IoT-based networks.
Therefore, for NDN-based IoT networks to fully benefit from caching,
they need to implement a better caching strategy that can make caching
work better overall. Therefore, to efficiently manage cache at distrib-
uted locations, we proposed a Dynamic Clustering-based Cooperative
Caching (DCCC) strategy that can reduce communication overhead and
data downloading latency. It minimizes the data redundancy ratio and
improves the utilization of cache storage. DCCC is a three-fold caching
strategy that includes data collection, content placement, and data
caching mechanisms.

3.1. Data collection mechanism

In literature, studies show that popular content has a significant
impact on caching capabilities. Sometimes, popular content can
consume extra cache storage and slow down the cache hit rate when
cache storage is available. Similarly, the popularity of content is dy-
namic concerning subscribers’ Interests. Consequently, a static dynamic
threshold is not appropriate because it assigns equal importance to less
popular and highly popular content. This can result in increased
resource usage (cache) by using less popular content instead of more
popular content. Therefore, in DCCC, the cluster head nodes will cache
content that carries higher popularity values compared to the local
average popularity of cached content when the cache space has over-
flowed. To enhance cache utilization and avoid redundant data caching,
popular content will be cached only at selected nodes. Each node is
associated with a table called the Dynamic Threshold-based Popularity
Table (DTPT), which maintains dynamic threshold values. This table
(Table 1) contains the name of each content, the number of contents, the
number of Interests for each content item, and the total number of In-
terests generated for all content.

Currently, a huge number of contents are transmitted on the
network, but only a small number of contents are frequently fetched by a
large number of subscribers. Therefore, popular content has a significant
impact on improving overall caching performance by reducing data
retrieval latencies. Thus, designing an efficient Data Collection Mecha-
nism (DCM) by deploying an effective data collection algorithm is of

utmost importance. To measure the dynamic threshold value, each
content is weighted with a specific value equivalent to the subscribers’
Interest count, indicating how many times content item is retrieved
within a given cycle. Consequently, the threshold value is calculated
using the Weighted Average (WA), which can be determined using the
following equation. Let G(W,X) is a network graph where all the nodes
represent the total number of contents X with their total weight W and it
can be denoted by W(X) where X = {x1, x2,…, xn} is the set of content
for them the subscribers’ Interests are generated to fetch them from the
network and W = {w1,w2,…,wn} is the set of weights assigned to the
content according to the subscribers’ Interests. The Interests frequency
can be denoted by I(X) where I = {i1, i2,…, in} that shows the number of
contents downloaded at a network in a given cycle. Therefore, the
weight at each node represents the Interests frequency or we can say it is
equal to the Interests frequency and it can be denoted by W(X) = I(X).
Thus, the Dynamic Threshold (DT) can be measured by taking the
accumulation of all weights and it can be calculated through the
following equation:

DT =
(w(x1) + w(x2) + I + w(xn))

X
(α) (1)

Eq. 1 can be simplified and DT can be calculated by following Eq. 2.

DT =

∑n

1
w(xi)

∑n

1
xi

(α) (2)

where α shows the given cycle in which the threshold is calculated. For
the selection of popular content, the WA is calculated between the total
number of contents that were recently fetched by the subscribers in a
given cycle and the total number of Interests received for all contents.
The outcome value is considered the dynamic threshold. In Algorithm 1,
the dynamic threshold is determined, where TW shows the total weight
that can be defined as:

TW = {w(x1)+ w(x2)+ I+w(xn) (3)

Therefore, according to Algorithm 1, the DT is calculated at a node vi

to differentiate between the higher popular content and the less popular
content. Based on the threshold value derived from Algorithm 1, content
is considered popular or non-popular. If content shows its Interest fre-
quency is higher than the threshold value the content will be chosen as a
popular one and the selected names of content are pasted in another
table called Popular Data Table (PDT). As the content passes through the
node, the names are compared with names stored at the PDT table if the
popular content xi matches with its name at specific node vi the content
xi is recommended to be cached at the node vi. Let’s assume that two
subscribers’ sub-1 and sub-2 sent multiple Interests such as the total
weight is equal to 40 Interests to download content x1 and content x2

from a network node vi. As we know the w(x1) = I(x1) and when we
separate the weight for each content, the weight of x1 is calculated as
w(x1) = 27 while the weight of content x2 is measured as w(x2) = 13.

Table 1
Popularity Table.

Popular Data Table

C-Name I-Count Threshold Popularity S-Content

x1 27 20 27 Popular
x2 13 20 13 Non-popular

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

299

Algorithm 1. Calculate Dynamic Threshold

Thus, using Eq. 1, the threshold value can be calculated as:

DT =
w(x1) + w(x2)

x1 + x2
=

27(1) + 13(1)
1 + 1

=
40
2

= 20 (4)

To identify the popular content, let X = {x1, x2,…, xn} be the set
contents and W = {w1,w2…..wn} is corresponding weights which is
equivalent to the Interest frequency such as w(x) = I(x). If the content xi

has the Interests frequency I(xi) is greater than the threshold, the xi is
considered as popular. The popularity can be calculated using the
following Eq. 5:

Pxi = I(xi) > DT (5)

In the current above example (Eq. 4), the threshold is obtained as 20
and according to DCCC, the content xi will be selected as popular if it has
received a greater number of Interests as the threshold value. Therefore,
according to the current scenario, the content x1 is selected as popular
and recommended to be cached at the network nodes.

Algorithm 2. is developed to identify the set of higher popular con-
tents. It differentiates the content into sub-categories such as a set of
high frequently Interested content and a set of low frequently Interested
content based on the dynamic threshold value. Therefore, of the set of
content X = {x1, x2,…, xn}, the xi is considered as low frequently
Interested content and xj is considered as high frequently Interested
content where xiΛxj ∈ X. However, Algorithm 2, focuses on the highly
frequently requested content and the content is shown as xi in the given
algorithm.

3.2. Content placement mechanism

As the content selection process gets complete the Content Placement
Mechanism (CPM) is executed in which the selected popular content is
cached at the selected network nodes according to the data caching al-
gorithms. However, in the current strategy DCCC, the cluster-based
caching mechanism is developed and content caching is done based
on the cluster head selection.

Algorithm 2. Identify popular Content

3.2.1. Clustering
Clustering refers to the collection of network nodes concerning

different properties and resources that form a cooperative caching sys-
tem for load balancing, quality analysis, data processing, caching, and
forwarding in advanced networks. A cluster consists of two components:
the cluster head and cluster members. The cluster head is responsible for
collecting content from the server, receiving Interests from subscribers
and neighbor nodes, and forwarding them to the appropriate sources
and subscribers. The cluster members are interconnected nodes con-
nected to the cluster head or neighboring nodes.

3.2.2. Cluster head section
The cluster head selection is based on different factors like number of

nodes connected to one node, distance from the provider, and residual
energy. It improves network mobility and performance by selecting the
cluster head among the nodes. As a result, the data delivery latency and
energy consumption are reduced and cache hit performance is
improved. Moreover, the cluster head selection depends on diverse al-
gorithms, strategies, node power, node capacity, relative speed and node
degree. Moreover, some mechanisms, is also depend on centrality nodes
such as closeness centrality and betweenness centrality. The current
study selects the cluster head based on the shortest distance from the end

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

300

Fig. 1. Dynamic Clustering-based Cooperative Caching Scenario.

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

301

devices.

Algorithm 3. Clustering and Finding the Cluster Head.

Primarily, in DCCC, the edge node next to the subscribers is chosen as
the cluster head and the connected neighbor nodes make the cluster. The
reason is that we are proposing a dynamic cluster-based caching strategy
in which the cluster is dynamically selected based on the Interests
preference at a network node and after that, the cluster is created based
on the cluster head. If a node shows a higher preference (higher numbers
of Interests are received) of the subscribers, the node is selected as
cluster head. However, the data delivery path may consist of multiple
nodes that show similar Interests preference. Therefore, we already have

defined the condition of selecting cluster heads based on the shortest
distance from the subscribers.

When we choose an edge node as cluster head, it delivers several
benefits such as it minimizes the data delivery latency, and reducing the
path stretch between caching node and subscribers to fulfill the demands
of subsequent Interests. As a result, data availability and the cached ratio
are increased and it reduces the inefficient usage of restricted cache
memory. Therefore, most of the cache is used to accommodate the
higher popular content. This ensures that popular content is accom-
modated at the most important nodes along the data delivery path,
fulfilling the demands of a large number of Interests. This minimizes
data retrieval delay and stretch, leading to a higher cache hit rate. Let
G(V, E) be a network in which the V = {v1, v2,…, vn} shows the number
of network nodes while the E = {e1, e2,…, en} represents the set of links
or connections among the network nodes.

The d(u, v) is the distance between two network nodes u and v and
according to DCCC, the Edge Node (EN) is selected as cluster head and it
can be defined as: EN ∈ CH where CH = {ch1, ch2,…, chn} is the set of
cluster heads in a network and CH ⊆ V. Therefore, the edge node will be
selected as cluster head if node meets the following conditions:

∀ u ∈ V, d(EN, u) ≤ d(u, v) (5)

where for all v ∈ V, v ∕= EN. All the cluster heads are associated with a
number of neighbor nodes and it can be defined as: let the N(v) is the set
of neighbor nodes of a node v or it can be said that N(v) set of neighbor
nodes directly connected to node v. Therefore, a cluster can be defined
as: it is the collection of neighbor nodes and cluster head and it formed
by joining the neighbor nodes with cluster head. Let C = {c1, c2, …, cn}

be the set of clusters in a network and to find the ith cluster, the con-
dition can be defined as:

ci = {chi} ∪ N(chi) (6)

Fig. 1 shows two scenarios of DCCC, where the set of the nodes is
given by V = {v1, v2, v3, v4, v5, v6, v7} and according to DCCC, the set of
cluster is given as C = {c1, c2, c3, c4, c5}. Therefore, according to Fig. 1
five clusters can be obtained dynamically regarding the subscribers’
preference. Initially, the edge node (v4) received a number of Interests
for content (x2) form subscribers (sub-1 and sub-2) as shown in Scenario
(a). according to the DCCC, the Node (v4) is selected as cluster head
because, it has the shortest distance from the subscribers and all the
Interests are received at Node (v4). The Node (v4) forwards the sub-
scriber’s Interests to download the content (x2) from Data Provider.
According to DCCC, the content (x2) is selected as popular from the set of
contents X = {x1, x2, x3…,xn}. Therefore, the content x2 is cached at the
cluster head Node v4 and the caching status of v4 is shared with its
neighbor node (v3) and node (v7). Thus, the first cluster (c1) in Scenario
(a) is shown by a solid green line and it is consisting of three nodes such
as v3, v4, and v7 where v4 is the cluster head while v3 and v7 are the
cluster members. As a result, all the subsequent Interests for content x2

are satisfied from cluster head Node v4. The cluster c1 can be defined by
the given equation:

c1 = {ch(v4)} ∪ N(v3, v7)} (7)

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

302

Algorithm 3. illustrates the mechanism for creating a cluster using a
collection of nodes. Furthermore, the cluster head is chosen based on the
shortest distance from the subscribers who have already fetched the
demanded content, and the neighbor nodes are selected based on the
cluster head.

Algorithm 4. Content Freshness

The novelty of the DCCC strategy depends on the distinctive inte-
gration of its several elements. Nevertheless, several cluster head se-
lection mechanisms and algorithms are indeed available in the
literature. However, our proposed caching strategy stands out due to its
unique combination of several key factors. Primarily, our strategy takes
into account the number of users’ Interests which provides a more ac-
curate prediction of ideal cluster head candidates based on Interests
patterns. These predictive capabilities differentiate the proposed algo-
rithm from the traditional algorithms that often depend on historical
information. Moreover, our strategy incorporates dynamic network
parameters and selects the cluster head based on the dynamic conditions
of the network. These dynamic aspects differentiate it from the existing
mechanisms. In addition, the proposed strategy not only considers
traditional parameters like energy consumption and distance but also
integrates factors related to node centrality and Interest preference. This
comprehensive estimation of multiple criteria ensures a more balanced
and optimized cluster head selection, a feature that may not be as
prevalent in existing algorithms.

3.2.3. Content freshness
Each content has a specific lifetime, and once it expires, the content

is discarded from the cache storage. The popularity of cached contents is
calculated in the same way as it was before caching at the cluster head.
To address concerns about caching irrelevant content, DCCC considers
data freshness. Each content is assigned a specific freshness value by the
provider at the time of publication. Once the freshness value expires, the
content is evicted from the caching node. This ensures efficient use of
cache storage. In NDN-based IoT scenarios, data freshness plays a crucial

role in real-time applications, contrasting with traditional Internet ap-
proaches. The caching status of the popular content at the cluster head is
cooperatively shared with its neighbors within the cluster to inform
them about the caching status. This facilitates effective management of
the cache. The freshness value determines the content’s life, indicating
the period in which the content is considered valid and up-to-date.
Therefore, from a set of freshness F = {f1, f2,…, fn} of the set of con-
tents X = {x1, x2,…, xn} cached in a network, the fi for a content
xi cached at a network node ni can be defined by the Eq. 8:

fi = ti(xi) (8)

For any of the content xi in vi is about to expire the freshness become
zero. Where xi ∈ X while vi ∈ V and X = {x1, x2,…, xn} shows the
number of contents in a network node while V = {v1, v2, …, vn}.
Therefore, the freshness is given by Eq. 9:

fi ≤ 0 (9)

The Eq. 9 shows when the life span of content is over the freshness
becomes zero and the content is considered as expired. The algorithm
(content freshness) defines the mechanism to find the content freshness
value.

Algorithm 5. Find the Cooperative Node

3.2.4. Cooperative node selection
In this case, we will discuss the selection of the cluster head when

incoming Interests are received from more than one subscriber. Conse-
quently, when Interests are received from multiple subscribers, the
cluster head is selected based on the shortest distance and the Cooper-
ative Node (CN). The CN is the node where the multiple edge nodes are
directly linked or connected. Basically, in DCCC, the dynamic clusters
are obtained according to the frequency of Interests. If a node shows a
higher Interest frequency, the node is selected as the cluster head, and
the neighboring nodes become cluster members. Therefore, the content
is also cached at the CN, and the CN will be selected as the cluster head,
and the connected nodes become the cluster members. Thus, a copy of
popular content will travel from the edge node to the CN gradually,
considering the Interest frequency that appears at a node along the data
downloading path.

Let the set of cluster heads such as CH = {ch1, ch2,…, chn} and the

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

303

V = {v1, v2,…, vn} is the set of nodes in a network and the CN also be-
longs to the set of nodes such as CN ∈ V. Therefore, according to DCCC
the CN is the node connected to the multiple cluster heads or edge nodes
where the number of Interests was received from the multiple sub-
scribers. Thus, the number of cluster heads from the set of CH = {ch1,

ch2,…, chn} connected to the CN can be defined as:

∃ ch1, ch2 ∈ CH (10)

Moreover, to meet the second condition of CN the Interests should be
generated from more than one subscriber such as Interests from the
subscriber can be defined as Ifre = {Isub1 > 0, Isub2 > 0,…, Isubn > 0}.
Therefore, a cluster heads cannot be selected as CN:

∀ch ∈ CH Λch ∕= CN (11)

This equation guarantees the CN is a network node from the set of
network nodes and it is connected with more than one edge node or
cluster head nodes. Algorithm 5 describes the selection of a CN node in a
network while the network receives Interests from multiple edge nodes
of cluster head nodes. In scenario (b) in Fig. 1, the CN node selection is
illustrated where three subscribers (Sub-1, Sub-2, and Sub-3) sent
several Interests to download x2 from Data Provider. Therefore, the
content x2 is considered as popular and let the x2 be cached at Node v3.
In this transmission, the Node v3 is considered as the cluster head
because it satisfies the second condition of choosing CN defined by
DCCC. The Node v3 fulfils both requirements such as the node should be
selected based on the shortest distance from all subscribers and meets
the requirements of the CN node. Therefore, the Node v3 is selected as
cluster head and the connected neighbors are by the following equation:

N(v3) = {v2, v4, v6, v7} (12)

where N(v3) represents the neighbors of v3. The whole cluster c2 is
denoted by the blue solid line in Fig. 1 (Scenario (b)). Therefore, the
cluster c2 can be defined as:

c2 = {ch(v3)} ∪ N(v2, v4, v6, v7) (13)

Therefore, the selected popular content x2 cached at Node v3 (CN)
and its popularity is reinitiated with 1. Algorithm 5 defines the method
to choose the CN as a cluster head for the caching of popular content x2.
The popular contents that are selected are cached at the cluster head,
and their popularity is reinitialized with a count of 1 in order to compare
their popularity when new content will arrive to accommodate higher
frequently Interested content at the most important location. When a
cached popular content x2 will receives more Interests the Interest count
will be incremented. Therefore, the popularity of already cached content
x2 is calculated in the same way it was calculated before caching it at the
cluster head. Algorithm 6 shows the initialization after the caching of
popular content at the cluster head. Moreover, the popularity of cached
content is measured and the content x2 will be stayed based on the
content freshness value or lifetime.

3.3. Backup caching mechanism

In the Backup Caching Mechanism (BCM), if the cache of the cluster
head overflows and new popular content arrives to accommodate the
contents at the cluster head, the popularities of the cached content are
compared with the popularity of the incoming content. If the incoming
content has greater popularity than the popularities of the cached con-
tents, the incoming content is cached at the cluster head, and the content
showing the lowest popularity is evicted from the cluster head and

cached at the upstream cluster member. The current popularity of the
cached content is compared with the popularity of the incoming content.

Algorithm 6. Backup Caching Mechanism

Each Interest is added with an extra field in which the interest count
is calculated, and a popularity value is attached to the demanded con-
tent. If a new content, let’s say xj, arrives at the cluster head, and the
cache of the cluster head is overflowed then the popularity of the new
content xj is compared with the

old content xi, where xi and xj are elements of X. The content will be
cached at cluster head based on two conditions as given by Eqs. 11 and
12:

∀ xi, xj ∈ X (14)

P
(
xj
)
> P(xi) (15)

If the new content xj has a greater popularity value than the old
content xi, the new content xj is cached at the cluster head node. As the
new popular content xj is cached, the count is reinitialized to zero, and it
will be incremented as new Interests are received. Consequently, the
efficient utilization of the cache in the cluster head node is important
because it may happen that popular content will be cached at one node
for a long time, and the new content may have slightly less popularity,
but it should still be allowed to cache at the cluster head. All the contents
at the cluster head node will be checked for popularity, and the content
that shows the least popularity will be chosen for eviction and cached at
a neighbor node within the cluster. The old popularity and current
popularity are saved in a popularity table. Fig. 1, Scenario (c), illustrates
the BCM in which several Interests are generated to fetch content x1

from the Data Provider. Currently, according to Scenario (c) in Fig. 1,
content x1 has received three Interests from subscribers (Sub-1 and Sub-
2), while content x2 has received two Interests from subscribers (Sub-1
and Sub-2). According to DCCC, x1 is considered the more popular
content and is recommended to be cached at cluster head Node v4.
Therefore, when the content x1 arrives at cluster head node v4, the cache

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

304

of node v4 overflows. Thus, the popularity of the arrived content x1 is
compared with the cached content x2 and x3. As a result, content x3

shows a lower popularity value, and it is evicted from cluster head node
v4 and cached at neighbor upstream node v3. Content x1 is cached at
cluster head node v4 because of its higher popularity compared to con-
tents x2 and x3. Algorithm 6 shows the BCM for newly Interested
contents.

4. Performance evaluation

The performance evaluation and experiments to check the effec-
tiveness of the proposed DCCC NDN-based IoT caching strategy are
conducted using ndnSIM which is an extension of Network Simulator 3
(NS3). We evaluate the proposed DCCC and compare strategies on a
common platform to identify the performance of DCCC as compared to
the earlier caching strategy with varying parameters. We compare our
proposed caching strategy with four other strategies, such as Cache
Everything Everywhere (CEE) [43], Hierarchical Cluster-based Caching
(HCC) [44], Collaborative Filtering-based Content Caching (CFCC) [45]
and Priority-based Content Popularity-Aware Caching (PCPA) [46].

4.1. Simulation settings and parameters

We used an Intel Core i7 machine with the following specifications:
16 GHz CPU and 8 GB of memory. The ndnSIM platform was chosen for
the evaluation of the proposed DCCC with alternative caching strategies,
as defined above. We selected a tree topology with five levels, where
each parent node is connected to 0–3 child nodes, and the data provider
is directly linked with the network core node at level one. The amount of
content considered was 10,000, and each piece of content has the same
size of 500 MB. Initially, all the content is cached at the data provider.
The links among the intermediate nodes have capacities of 1 Gbps, while
the links between edge nodes and subscribers have capacities of 100
Mbps. The poisson arrival process is chosen, and 20 Interests per second
are disseminated to the edge node. The Zipfian content distribution law
is modeled with a skewness value (α) chosen from 0.5 to 1.5. Table 2
shows the selected simulation parameters.

4.2. Performance metrics

The performance of the proposed DCCC caching strategy is evaluated
in terms of Average Cache Hit Ratio (ACHR), Average Hop Reduction
Ratio (AHRR), Server Hit Reduction Ratio (SHRR), and Content
Retrieval Delay (CRD). The metrics and simulation experiments are
given below:

4.2.1. Average cache hit ratio
ACHR is known as the typical parameter to evaluate the system

performance of caching-based strategies, algorithms, and schemes. It is
the ratio between the subscribers’ Interests and the responses given by a
cache that enables the network to the subscribers’ Interests. The higher
the value of ACHR the more efficient caching system is considered. It can
be defined as:

ACHR =
∑n

i=1

I − countr
Itotal

(16)

where α shows the time cycle in which the hit rate is calculated, while
I − countr represents the number of responses to the subscribers’ Interests
by caching nodes and Itotal indicates the total number of Interests sent by
the subscribers to the network.

4.2.2. Average hop reduction ratio
AHRR is the ratio between the number of hops that subscribers’ In-

terest go through to fetch the demanded content by following a certain
caching algorithm and the number of hops that subscribers’ Interests to
fetch content without caching nodes from the data provider or server. It
is also known as the response distance of the path stretch. The AHRR will
increase if the Interests follow the shortest path, and it can be measured
as:

AHRR =

∑n

i=1
h − countcs

∑|N|

i=1
h − counts

(17)

where
∑n

i=1 h − countcs represents the hops go through by the sub-
scribers’ Interests to fetch content from node cs, while

∑|N|

i=1 h − counts
denotes that the Interests go through the number of hops to download
contents from the server s.

4.2.3. Content retrieval delay
CRD represents the average number of time cycles in which a sub-

scriber’s Interests are sent to the caching node and the content is
downloaded, or we can say the time required to fetch the content from
the caching node. The shorter delay improves the caching performance
of the caching network.

Table 2
Evaluation Parameters.

Parameters Values

System warmup time 50 s
Execution time 3550 s
Number of executions 20
Catalogue Size 10,000 contents
Interest Size 100 MB
Content Size 500 MB
CS size 10–50 contents
Interest rate λ 50 Interests/sec
Popularity model Zipfian law
alpha parameter values 0.5–1.5
Total number of nodes 121
Data provider 1 node
Number of Subscribers 81
Tree topology 5 level
Child node 0–3
Caching node 39

Table 3
Abbreviations and corresponding Description.

Abbreviations Descriptions

NDN Named Data Networking
IoT Internet of Things
DCCC Dynamic Clustering-based Cooperative Caching
CCC Central Control Caching (
EPPC Efficient Popularity-aware Probabilistic Caching
PoC Popularity-aware Closeness
DCM A. Data Collection Mechanism
DTPT Dynamic Threshold-based Popularity Table
DCM Data Collection Mechanism
CH Cluster Head
WA Weighted Average
PDT Popular Data Table
CPM Content Placement Mechanism
CN Cooperative Node
BCM Backup Caching Mechanism
ACHR Average Cache Hit Ratio
AHRR Average Hop Reduction Ratio
CRD Content Retrieval Delay
CEE Cache Everything Everywhere
HCC Hierarchical Cluster-based Caching
CFCC Collaborative Filtering-based Content Caching
PCPC Priority-based Content Popularity-Aware Caching
QoS Quality of Service

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

305

Fig. 2. Simulation on ACHR, AHRR, and CRD with Constant Cache Size.

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

306

CRD =
∑n

t=1
DI +

∑n

t=1
DC (18)

where
∑n

t=1 DI represents the delay in which the caching node receives

Interests and
∑n

t=1 DC shows the delay in which demand reaches the
subscribers.

Fig. 3. Simulation on ACHR, AHRR, and CRD with Constant α Parameters.

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

307

5. Results and discussion

The evaluation is divided to present the experiment as defined in two
phases based on different parameters. For the present study, we estab-
lished an NDN-based IoT scenario, and the parameters are already
defined in Table 3. Therefore, performance is measured based on ACHR,
AHRR, and CRD to check the feasibility of the current proposed DCCC
strategy. Constant and the cache size are taken as varying from 10
contents to 50 contents. The whole experiment is presented in two
phases, where the cache size is taken as constant (10 contents and 50
contents) and the value of the weight factor is taken as varying from 0.5
to 1.5, while in the second phase the

value of the weight factor is taken as constant. Moreover, the average
value of several executions is taken as the final result.

5.1. Phase I: constant cache size

We run tests on ACHR, AHRR, and CRD using the suggested caching
strategy. We also compare the DCCC to four other strategies, including
CEE, CFCC, HCC, and PCPA. Fig. 2(a, b) shows the simulation of cache
hit performance by comparing strategies with the proposed one. The (c,
d) shows the results on AHRR, while the (e, f) represents the outcomes of
retrieval delay. Fig. 2 shows different performances with different con-
stant cache sizes (10 contents and 50 contents). From Fig. 2, we can see
that the performance of all caching strategies increases with an
increasing α parameter. DCCC shows better cache hit, hop count, and
retrieval delay results throughout the simulation process with both
cache sizes and α parameters. The reason is that DCCC caches content
according to the subscribers’ Interest preferences at the network node
where most of the Interests pass through to download content. In this
way, the cache hit increases, and the delay and the number of hops to
fetch the requested content get reduced. However, CEE performs poorly
compared to other comparing strategies because it caches all the content
at all the network nodes it goes through, increasing the unwanted cache
usage of unpopular content. Therefore, for popular content, the
incoming Interests need to traverse several hops to find the contents
from the server, increasing the path stretch between the data provider
and subscribers. As a result, delay and hop count are increased. More-
over, PCPA and HCC perform better than CEE and CFCC, and their
performance increases relatively with different cache sizes and α pa-
rameters. CFCC shows better results than CEE because it caches contents
in the cluster head situated near the end subscribers. However, all the
caching strategies show better performance with a larger cache size (50
contents) compared to a smaller cache size (10 contents) because all the
network nodes may accommodate more contents with a large cache size.

5.2. Phase II: weight factor α parameter

In this phase, the weight factor α is taken as constant, and its value is
considered both maximum (1.5) and minimum (0.5), while the cache
size is varied from 10 contents to 50 contents that can be cached at a
network node. To check the effectiveness of the proposed DCCC model,
we have divided our experiments into two different phases based on
different caching sizes and weight factor α parameters. Fig. 3(a, b, c, d, e,
and f) shows how well DCCC, PCPA, HCC, CFCC, and CEE work in terms
of cache hit ratio, hop count reduction, and retrieval delay when cache
sizes and content parameter values are changed. In the given figure, (a,
b) shows the cache hit performance, (b, c) represents the performance on
hop reduction ratio, and (e, f) demonstrates the performance on data
retrieval delay. From all the results, it is clear that the performance of all
comparing strategies is increasing as the cache size increases. However,
the DCCC achieves better outcomes because of its structure of caching
contents at the next node for the subscribers.

Moreover, it also provides an extra feature to cache content on
cooperative nodes, from which most of the subscribers can easily fetch
highly popular content within a short time interval. Additionally, it

implements a backup caching mechanism that allows accommodating
slightly less popular contents at neighbor nodes rather than deleting
them from the caching node. In this way, the cache hit performance
becomes improved because all the incoming Interests are satisfied at the
caching of the neighbor nodes rather than having to retrieve contents
from the origin (server). So, the performance in terms of the hop
reduction ratio gets better, and it takes less time to get popular content
from neighbor nodes. CEE represents lower performance with all metrics
and parameters. However, PCPA and HCC show better outcomes and
perform relatively well because the contents are cached at the network
edges according to both strategies. Therefore, both show relative per-
formance. While CFCC shows lower performance because it executes
several mechanisms like collaboration and clustering to perform one
caching operation, Thus, the DCCC improves the overall network per-
formance because it accommodates the demanded contents next to the
subscriber nodes, fulfilling subsequent Interests within a short time. The
reason is that DCCC provides an efficient content selection mechanism
to select the optimal popular content and caches the selected popular
content using a resourceful caching mechanism, placing it near the
subscribers. This increases the cache hit and hop reduction performance
while reducing the delay significantly.

6. Conclusion and future work

This research presents Dynamic Clustering-based Cooperative
Caching (DCCC), a newly designed strategy that improves performance
for IoT systems that use NDN. The DCCC model addresses key challenges
in caching by incorporating three core mechanisms: Our caching system
has three parts, such as DCM, CPM, and BCM, that work together effi-
ciently. In DCM, we use a threshold value to find popular content,
helping the system store and access it more effectively. CPM forms
clusters by choosing nodes based on their connection to other nearby
nodes and which content users want to access frequently, making it
easier for servers to store and serve content that consumers need most
often. With BCM, neighbors nearby in the network bundle cache servers
to store moderately sought-after content, making this information easier
to access and faster to load. The proposed model puts cache servers
closer to where users live, which means data can reach them faster and
they can find what they need more quickly, leading to better data
retrieval performance. To validate the effectiveness of DCCC, we con-
ducted extensive simulations using the NS3-based ndnSIM platform,
comparing it against four existing caching strategies: We look at four
different strategies in our study: CEE, HCC, CFCC, and PCPA. Our
analysis showed that DCCC beat all other caching methods by showing
better results in ACHR, AHRR, and CRD metrics while varying simula-
tion parameters.

DCCC strategy brings remarkable improvements in caching in NDN-
based IoT networks, but several valuable directions for the future are
noted. Optimizing the strategy by recently implementing more sophis-
ticated algorithms might expand the dynamic approach that would
allow, in turn, identifying the most popular contents and applying, for
instance, machine learning approaches to select the best caching de-
cisions in real-time. Cooperating with other mobility models as well as
using more complicated dynamic parameters, like changing network
traffic intensity and nodes’ failures, can improve the anti-robustness of
the strategy in the actual world. Another field of interest is calculating
the energy efficiency of cluster head selection and its consequences for
sustainable IoT networks. Also, the improvement of the algorithms of
content freshness concerning various applications or guaranteeing
secure storing of data in cooperative caching can solve problems con-
nected with privacy and reliability. These extensions may result in an
adaptive, efficient, and secure caching framework for applications of the
emerging IoT.

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

308

CRediT authorship contribution statement

Meng Yahui: Validation, Formal analysis. Naeem Muhammad Ali:
Writing – original draft. Bashir Ali Kashif: Supervision.

Declaration of Competing Interest

In this article, we provide a broad view and insights regarding
Named Data Networking-based Internet of Things (NDN-IoT) caching
strategies. We discuss in detail how an NDN in-network caching feature
can be a game changer for the IoT scenarios and how it can overcome the
limitations of IoT, network analytics, and wireless sensor networks
because of IP-based network system. This involved integrating surviv-
ability techniques with NDN principles, optimizing the caching strategy
for improved content retrieval, and addressing network reliability
challenges specific to IoT environments. To this end, we provide a
comparative overview of the most recent studies and discuss various
problems in IoT mechanisms with the objective to improve the overall
network performance for IoT scenarios at the network edges. After that,
we proposed an NDN-based IoT caching strategy to overcome the
challenges of earlier caching strategies. We provide an extensive
comparative performance analysis of NDN-IoT caching strategies.
Through extensive simulations, we have observed that the NDN-IoT
caching strategies can bring significant performance improvement in
IoT-based environment due to its in-networking caching feature that in
turn affect the content retrieval day and reduces the usage of resources
in the network. We expect this study will open opportunities for a better
understanding of Wireless Sensor Network (WSN) survivability through
innovative approaches, including the application of Human-Inspired
Deep Learning, network coding-based survivability, and addressing
energy efficiency in real-time wireless networks. Finally, we confirm
that the authors do not have any conflict regarding the paper
contributions.

References

[1] A. Morchid, Z. Oughannou, R.El Alami, H. Qjidaa, M.O. Jamil, H.M. Khalid,
Integrated internet of things (IoT) solutions for early fire detection in smart
agriculture, Results Eng. 24 (2024) 103392.

[2] A. Morchid, I.G.M. Alblushi, H.M. Khalid, R. El Alami, S.R. Sitaramanan,
S. Muyeen, High-technology agriculture system to enhance food security: a concept
of smart irrigation system using Internet of Things and cloud computing, J. Saudi
Soc. Agric. Sci. (2024).

[3] Q. Wang, B. Lee, N. Murray, Y. Qiao, ECE: exactly once computation for
collaborative edge in IoT using information centric networking, IEEE Internet
Things J. (2023).

[4] M.A. Naeem, Y.B. Zikria, R. Ali, U. Tariq, Y. Meng, A.K. Bashir, Cache in fog
computing design, concepts, contributions, and security issues in machine learning
prospective, Digit. Commun. Netw. (2022).

[5] D. Doan Van, Q. Ai, In-network caching in information-centric networks for
different applications: a survey, Cogent Eng. 10 (2023) 2210000.

[6] L. Leira, M. Luís, S. Sargento, Context-based caching in mobile information-centric
networks, Comput. Commun. 193 (2022) 214–223.

[7] I.U. Din, S. Hassan, A. Almogren, F. Ayub, M. Guizani, PUC: Packet update caching
for energy efficient IoT-based information-centric networking, Future Gener.
Comput. Syst. 111 (2020) 634–643.

[8] A.C. Castillo, An overview of information-centric network: concepts, network
architecture, comparison, and difficulties, Intell. Commun. Technol. Virtual Mob.
Netw. (2023) 27–42.

[9] J. Quevedo, D. Corujo, Selective content retrieval in information-centric
networking, Sensors 22 (2022) 8742.

[10] A. Abrar, A.S.C.M. Arif, K.M. Zaini, A systematic analysis and review on producer
mobility management in named data networks: research background and
challenges, Alex. Eng. J. 69 (2023) 785–808.

[11] A. Abrar, A.S.C.M. Arif, K.M. Zaini, M.H. Omar, Y. Meng, Advancing producer
mobility management in named data networking: a comprehensive analytical
model, J. King Saud. Univ. -Comput. Inf. Sci. 36 (2024) 102045.

[12] Y. Meng, M.A. Naeem, M. Sohail, A.K. Bashir, R. Ali, Y.B. Zikria, Elastic caching
solutions for content dissemination services of ip-based internet technologies
prospective, Multimed. Tools Appl. 80 (2021) 16997–17022.

[13] Z. Ali, M.A. Shah, A. Almogren, I. Ud Din, C. Maple, H.A. Khattak, Named data
networking for efficient iot-based disaster management in a smart campus,
Sustainability 12 (2020) 3088.

[14] Y. Meng, M.A. Naeem, R. Ali, B.-S. Kim, EHCP: an efficient hybrid content
placement strategy in named data network caching, IEEE Access 7 (2019)
155601–155611.

[15] Y. Meng, M.A. Naeem, M. Sohail, A.K. Bashir, R. Ali, Y.B. Zikria, Elastic caching
solutions for content dissemination services of ip-based internet technologies
prospective, Multimed. Tools Appl. 80 (2021) 16997–17022.

[16] M.A. Naeem, R. Ullah, Y. Meng, R. Ali, B.A. Lodhi, Caching content on the network
layer: a performance analysis of caching schemes in ICN-based Internet of Things,
IEEE Internet Things J. 9 (2021) 6477–6495.

[17] R. Alubady, M. Salman, A.S. Mohamed, A review of modern caching strategies in
named data network: overview, classification, and research directions,
Telecommun. Syst. (2023) 1–46.

[18] S. Alduayji, A. Belghith, A. Gazdar, S. Al-Ahmadi, PF-ClusterCache: popularity and
freshness-aware collaborative cache clustering for named data networking of
things, Appl. Sci. 12 (2022) 6706.

[19] H. Al-Ward, C.K. Tan, W.H. Lim, Caching transient data in Information-Centric
Internet-of-Things (IC-IoT) networks: a survey, J. Netw. Comput. Appl. (2022)
103491.

[20] M.A. Naeem, R. Ali, B.-S. Kim, S.A. Nor, S. Hassan, A periodic caching strategy
solution for the smart city in information-centric Internet of Things, Sustainability
10 (2018) 2576.

[21] S. Deep, X. Zheng, A. Jolfaei, D. Yu, P. Ostovari, A. Kashif Bashir, A survey of
security and privacy issues in the Internet of Things from the layered context,
Trans. Emerg. Telecommun. Technol. 33 (2022) e3935.

[22] R. Abbasi, A.K. Bashir, A.O. Almagrabi, M.B.B. Heyat, G. Yuan, Efficient lossless
based secure communication in 6G Internet-of-Things environments, Sustain.
Energy Technol. Assess. 57 (2023) 103218.

[23] M.A. Naeem, M.A.U. Rehman, R. Ullah, B.-S. Kim, A comparative performance
analysis of popularity-based caching strategies in named data networking, IEEE
Access 8 (2020) 50057–50077.

[24] S. Fayyaz, M.A.U. Rehman, M.S. ud Din, M.I. Biswas, A.K. Bashir, B.-S. Kim,
Information-centric mobile networks: a survey, discussion, and future research
directions, IEEE Access (2023).

[25] M.A. Saleem, X. Li, K. Mahmood, S. Shamshad, M.F. Ayub, A.K. Bashir, M. Omar,
Provably secure conditional-privacy access control protocol for intelligent
customers-centric communication in VANET, IEEE Trans. Consum. Electron.
(2023).

[26] J. Li, J. Wu, C. Li, W. Yang, A.K. Bashir, J. Li, Y.D. Al-Otaibi, Information-centric
wireless sensor networking scheme with water-depth-awareness content caching
for underwater IoT, IEEE Internet Things J. 9 (2021) 858–867.

[27] Q. Zhang, J. Wu, M. Zanella, W. Yang, A.K. Bashir, W. Fornaciari, Sema-IIoVT:
emergent semantic-based trustworthy information-centric fog system and testbed
for intelligent internet of vehicles, IEEE Consum. Electron. Mag. 12 (2021) 70–79.

[28] A.U. Rehman, Y. Alamoudi, H.M. Khalid, A. Morchid, S. Muyeen, A.Y. Abdelaziz,
Smart agriculture technology: an integrated framework of renewable energy
resources, IoT-based energy management, and precision robotics, Clean. Energy
Syst. 9 (2024) 100132.

[29] O. Hahm, E. Baccelli, T.C. Schmidt, M. Wahlisch, and C. Adjih, A named data
network approach to energy efficiency in IoT, in 2016 IEEE Globecom Workshops
(GC Wkshps), 2016, pp. 1-6.

[30] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, S. AlAhmadi, Cache
freshness in named data networking for the internet of things, Comput. J. 61
(2018) 1496–1511.

[31] T. Miwa and S. Kimura, Cooperative update mechanism of cache update method
based on content update dynamic queries for named data networking, in 2019
Seventh International Symposium on Computing and Networking Workshops
(CANDARW), 2019, pp. 33-39.

[32] R. Shrimali, H. Shah, R. Chauhan, Proposed caching scheme for optimizing trade-
off between freshness and energy consumption in name data networking based IoT,
Adv. Internet Things 7 (2017) 11–24.

[33] H. Asmat, F. Ullah, M. Zareei, A. Khan, E.M. Mohamed, Energy-efficient centrally
controlled caching contents for information-centric internet of things, IEEE Access
8 (2020) 126358–126369.

[34] M.A. Naeem, T.N. Nguyen, R. Ali, K. Cengiz, Y. Meng, T. Khurshaid, Hybrid cache
management in IoT-based named data networking, IEEE Internet Things J. 9
(2021) 7140–7150.

[35] N. Dinh, Y. Kim, An energy reward-based caching mechanism for information-
centric Internet of Things, Sensors 22 (2022) 743.

[36] M. Amadeo, C. Campolo, G. Ruggeri, A. Molinaro, Popularity-aware closeness
based caching in NDN edge networks, Sensors 22 (2022) 3460.

[37] N. Baltagiannis, I.A. Kapetanidou, and V. Tsaoussidis, EFPCaching: Energy-aware
and Fault-tolerant Probabilistic Caching of popular IoT content in ICN, in NOMS
2023-2023 IEEE/IFIP Network Operations and Management Symposium, 2023, pp.
1-4.

[38] W. Huang, T. Song, Y. Yang, Y. Zhang, Cluster-based cooperative caching with
mobility prediction in vehicular named data networking, IEEE Access 7 (2019)
23442–23458.

[39] K. Devi Murugavel, P. Ramadass, R.K. Mahendran, A.A. Khan, M.A. Haq,
S. Alharby, A. Alhussen, Maintaining effective node chain connectivity in the
network with transmission power of self-arranged AdHoc routing in cluster
scenario, Electronics 11 (2022) 2455.

[40] M.A.R. Khan, S.N. Shavkatovich, B. Nagpal, A. Kumar, M.A. Haq, V.J. Tharini,
S. Karupusamy, M.B. Alazzam, Optimizing hybrid metaheuristic algorithm with
cluster head to improve performance metrics on the IoT, Theor. Comput. Sci. 927
(2022) 87–97.

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

309

http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref1
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref1
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref1
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref2
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref2
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref2
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref2
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref3
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref3
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref3
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref4
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref4
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref4
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref5
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref5
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref6
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref6
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref7
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref7
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref7
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref8
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref8
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref8
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref9
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref9
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref10
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref10
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref10
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref11
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref11
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref11
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref12
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref12
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref12
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref13
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref13
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref13
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref14
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref14
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref14
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref15
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref15
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref15
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref16
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref16
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref16
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref17
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref17
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref17
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref18
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref18
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref18
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref19
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref19
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref19
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref20
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref20
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref20
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref21
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref21
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref21
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref22
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref22
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref22
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref23
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref23
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref23
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref24
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref24
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref24
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref25
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref25
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref25
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref25
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref26
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref26
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref26
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref27
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref27
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref27
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref28
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref28
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref28
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref28
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref29
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref29
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref29
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref30
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref30
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref30
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref31
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref31
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref31
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref32
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref32
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref32
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref33
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref33
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref34
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref34
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref35
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref35
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref35
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref36
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref36
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref36
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref36
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref37
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref37
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref37
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref37

[41] A. Kumar, J.L. Webber, M.A. Haq, K.K. Gola, P. Singh, S. Karupusamy, M.
B. Alazzam, Optimal cluster head selection for energy efficient wireless sensor
network using hybrid competitive swarm optimization and harmony search
algorithm, Sustain. Energy Technol. Assess. 52 (2022) 102243.

[42] S.S.L.P.J. Shabu, K. Yadav, E. Kariri, K.K. Gola, M. AnulHaq, A. Kumar, Trajectory
clustering and query processing analysis framework for knowledge discovery in
cloud environment, Expert Syst. 40 (2023) e12968.

[43] D. Gupta, S. Rani, S.H. Ahmed, R. Hussain, Caching policies in NDN-IoT
architecture, Integr. WSN IoT Smart Cities (2020) 43–64.

[44] H. Yan, D. Gao, W. Su, C.H. Foh, H. Zhang, A.V. Vasilakos, Caching strategy based
on hierarchical cluster for named data networking, IEEE Access 5 (2017)
8433–8443.

[45] D. Gupta, S. Rani, S.H. Ahmed, S. Verma, M.F. Ijaz, J. Shafi, Edge caching based on
collaborative filtering for heterogeneous ICN-IoT applications, Sensors 21 (2021)
5491.

[46] Y. Meng, A.B. Ahmad, Performance measurement through caching in named data
networking based Internet of Things, IEEE Access (2023).

M.A. Naeem et al. Alexandria Engineering Journal 125 (2025) 297–310

310

http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref38
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref38
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref38
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref38
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref39
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref39
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref39
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref40
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref40
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref41
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref41
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref41
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref42
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref42
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref42
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref43
http://refhub.elsevier.com/S1110-0168(25)00440-5/sbref43

	Dynamic cluster-based cooperative cache management at the network edges in NDN-based Internet of Things
	1 Introduction
	2 Related studies
	3 Dynamic cluster-based cooperative caching
	3.1 Data collection mechanism
	3.2 Content placement mechanism
	3.2.1 Clustering
	3.2.2 Cluster head section
	3.2.3 Content freshness
	3.2.4 Cooperative node selection

	3.3 Backup caching mechanism

	4 Performance evaluation
	4.1 Simulation settings and parameters
	4.2 Performance metrics
	4.2.1 Average cache hit ratio
	4.2.2 Average hop reduction ratio
	4.2.3 Content retrieval delay

	5 Results and discussion
	5.1 Phase I: constant cache size
	5.2 Phase II: weight factor α parameter

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

