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A B S T R A C T

The Named Data Networking (NDN) has been postulated as a new paradigm for the Internet of Things (IoT). It 
utilizes its data-centric networking model where content is acquired by name instead of position. Meanwhile, in 
NDN networks, caching is included in the nodes for temporary storing or user request responses. However, nodes 
in IoT networks have small cache storage compared to the huge amount of content transmitted, which poses 
challenges in efficiency. This work introduces a new caching policy for NDN-IoT systems called Dynamic 
Clustering-based Cooperative Caching (DCCC). DCCC determines and stores the content hitting rates concerning 
the user desires, dynamic threshold, and dissemination of cooperation with inter-node adaptive clusters. In 
detail, the results from growing numbers of simulations show that DCCC achieves better outcomes than prior 
caching schemes in average cache hits per node, hops reduction per node, and the delay of content delivery.

1. Introduction

Currently, the global advancement of Internet of Things (IoT) ap
plications, along with an even greater boost in Internet usage, has 
generally catalyzed the greatest level of end-user demand [1,2]. IoT is 
discussed globally as a revolutionary technology that offers effective 
connections and spreads accurate real-time information back and forth 
across the world [3,4]. To support these applications, a fair number of 
architectures have been proposed, among which Named Data 
Networking (NDN) is promising as a candidate to become the archi
tecture of the future Internet, especially for IoT-based systems [5].

As useful as IoT devices may be, they are also very resource-limited 
concerning fields like computation, power, or memory [6]. These limi
tations question the applicability of NDN’s default caching policy to 
cache anything anywhere, where all transmitted content is cached at 
every node in the data delivery path [7]. As this strategy provides very 
high data availability, it is infeasible for IoT settings due to resource 
scarcity and, most importantly, the storage capabilities of IoT nodes [8, 
9]. Further optimizing NDN caching strategies to be more acceptable 
and within capacity on the IoT front is necessary [10,11].

The first and possibly the most significant problem is identifying 
where different content in the network should be cached for the best 
overall system performance. In addition, it is important to determine 

how long content should be stored at a network node to optimize ben
efits and limit resource consumption [12,13]. Although so many stra
tegies have been provided to deal with these problems [5,14–19], most 
of these strategies do not meet the special conditions and constraints of 
IoT-based environments. For example, caching unnecessary and 
repeated information brings extra expensive traffic in the network, 
memory consumption, and a time delay in data access that works against 
the purpose of caching [20].

As a result, determining the best caching solution becomes critical. 
NDN-based caching should handle existing caching issues while also 
successfully addressing restrictions in situations such as IoT-based ap
plications [21,22]. Caching redundant content, on the other hand, may 
increase network load and data retrieval latencies. As a result, the best 
caching solution can minimize overall network latency by enhancing 
demand for data availability [16,23]. In this situation, the best caching 
solution may identify the most frequently downloaded items and cache 
them for a long period at suitable network nodes, so subscribers can 
easily and quickly get them in the future during their sessions [24,25]. 
As a result, the distance between subscribers and data provider nodes is 
reduced, and data fetching time is cut dramatically. So, the gap for 
improving the entire caching network remains, and to cover it, we 
designed a Dynamic Clustering-based Cooperative Caching (DCCC) 
technique to improve overall caching performance. The key goals of this 
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research are to improve cache usage at network edges and reduce data 
delivery delays.

To reach these aims, we introduced a dynamic cluster-based caching 
model that solves a number of important problems in the study of how 
content is distributed and how well networks work. By tackling these 
challenges, our approach makes multiple significant contributions to the 
field. The following is the study’s main contribution: 

• Popularity differentiation: The capacity to discern popular content 
from less popular content is a significant difficulty in content dis
tribution systems. Our solution uses dynamic criteria to precisely 
identify content based on its level of popularity, ensuring that 
network resources are directed to high-demand content in the most 
effective manner possible.

• Interest-Based Clustering: Our strategy’s dynamic clustering method 
efficiently addresses the issue of grouping network nodes with 
similar Interests and preferences. Our technology dynamically pro
duces clusters by taking into account Interest frequency and user 
preferences. Furthermore, the cluster head is chosen based on the 
node’s relevance and the proximity of the subscribers, guaranteeing 
effective and localized content distribution.

• Cache Status Sharing: We take it a step further by suggesting a 
method for determining the most essential node inside a cluster as 
the cluster head. In addition to keeping its cache state, this cluster 
head cooperatively distributes it with surrounding nodes. This 
innovation improves data accessibility and cache hit rates.

• Adaptive Caching: A key component of our approach is the backup 
caching mechanism, which addresses the issue of efficient cache 
allocation. When the cluster head’s cache is full, it effectively evicts 
and moves less popular content to the most important neighbor node 
while recognizing and caching high-popularity content. Adaptive 
caching constantly optimizes the network to serve the most popular 
information, increasing network effectiveness overall.

The rest of the article is organized as follows: Section II defines the 
related studies. Section III describes the proposed caching strategy. 
Section IV provides details about the evaluation of the proposed caching 
model. Section V provides the evaluation results. Finally, we concluded 
the paper in Section VI.

2. Related studies

The caching module is regarded as the most important component in 
NDN for improving the entire communication system since it is impor
tant for splitting up data from its physical locations and delivering quick 
data dissemination over the network [26,27]. From an IoT perspective, 
the communication process consumes more energy than IoT-based tasks 
performed on devices [28]. In this context, NDN-based caching plays an 
important role in lowering the frequency of IoT node accesses and 
minimizing total access time. As a result, the NDN-based caching mod
ule can be used in an IoT-based network to speed up the network by 
storing temporary data [12]. Several studies have recently been offered 
to effectively increase the performance of NDN-based IoT setups. Hahm 
et al. [29] investigated a sleep-based caching scheme for caching 
transmitted material in an NDN-based IoT environment. It tries to in
crease suitable data availability in order to improve network energy 
efficiency. To save energy, the contents are cached at a node while it is 
awake, while the node is mostly asleep the rest of the time. However, it 
employs two replacement strategies that increase processing complexity 
and data redundancy by caching contents across many nodes. Meddeb 
et al. [30] introduced a caching system that uses a freshness technique to 
determine the validity of cached contents while minimizing caching 
costs. However, it raises the complexity overhead. Furthermore, Ama
deo et al. [31] developed an NDN-based caching technique to increase 
the performance of IoT-based networks in their study. Caching actions 
are performed using freshness and data popularity values as 

characteristics. As a result, caching actions are carried out autono
mously on the edge node. However, because of the autonomous caching 
activities conducted by each node, data replication is performed at 
numerous places.

Rahul et al. [32] proposed a smart caching technique that uses an 
extra table at each node to store information. This table stores all in
bound requests for each content in order to determine popularity. 
Content is cached based on the popularity and freshness of the data. 
However, it promotes data redundancy and multiple duplications at 
many nodes. Miwa et al. [31] offer a cooperative caching technique in 
which a timer is coupled with the network to determine the lifespan of 
an item. If many nodes require the same content, it is cached at all of 
them via a cooperative updating technique. Caching contents at all 
nodes along the data routing channel promotes data redundancy. 
Furthermore, it updates information on the contents even if the contents 
have expired, consuming more energy. Similarly, Asmat et al. [33]
presented a caching technique for NDN-based IoT called Central Control 
Caching (CCC). Autonomous systems are deployed, and a central node is 
chosen to cache incoming data. However, it includes numerous tables to 
execute a single caching decision, which increases complexity. Naeem 
et al. [34] offer an NDN-based caching approach called Efficient 
Popularity-aware Probabilistic Caching (EPPC) to improve the perfor
mance of IoT networks in a recent study. EPPC is broken into three 
stages: data selection, caching, and replacement. It chooses the most 
frequently requested contents and caches them at the leading node, 
which is associated with a greater number of neighbor nodes. Dinh et al. 
[35] proposed an energy-efficient way to cache data in which the energy 
used for caching and retrieving data is used as a reward to measure how 
energy-efficient the method is. The author suggests data insertion and 
replacement algorithms based on the caching incentive to improve the 
energy efficiency of caching decisions. However, it raises the complexity 
overhead.

Amadeo et al. [36] offer a Popularity-aware Closeness (PoC) caching 
approach in which contents are chosen based on the number of incoming 
subscriber requests. If content has the most retrieval, it is designated as 
popular and is advised to be cached at the nearest centrality node. 
Finding the most popular content, on the other hand, has a higher 
complexity overhead. Baltagiannis et al. [37] offer an energy-aware 
caching approach called Fault-tolerant Probabilistic Caching in a 
recent paper. When making caching decisions, it takes sensor defects 
and energy consumption into account. On the other hand, it raises the 
communication overhead required to detect sensor problems. On the 
other hand, clustering techniques offer significant advantages in caching 
NDN-based IoT environments, particularly in optimizing cached data 
access for network efficiency and efficient use of scarce resources [38]. 
When a node is grouped in clusters, caching decisions can best be made 
through collaboration within the cluster, eliminating repetition and 
allowing faster access to data. Clusters provide an opportunity to 
perform cooperative caching, which means the representatives of clus
ters control cache decisions, including what should be cached and where 
it should be cached based on user interests and the existing network 
conditions. This approach also reduces the amount of data transmitted 
over the networked space, has low latency as long-distance communi
cation is not always necessary, and is economical as power is saved 
through less traffic across the network. In addition, clustering improves 
scalability, and thus NDN-based IoT networks will better cope with 
increasing IoT traffic load while providing high performance and 
resource utilization [39–42].

As a result, in order to optimize the cache management method, the 
proposed caching strategy takes into account both the popularity of the 
transmitted content and the caching site with the help of clustering. It 
caches the contents collaboratively to solve the drawbacks of previous 
caching systems. It offers novel solutions to long-standing problems in 
content distribution and network optimization research. Our proposed 
strategy provides novel approaches to long-standing issues in content 
distribution and network optimization research. We greatly enhanced 
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content availability, user experience, and network efficiency by imple
menting dynamic threshold, Interest-based clustering, cache status 
sharing, and adaptive caching. The addition of dynamic threshold, 
interest-based clustering, cache status sharing and adaptive caching has 
significantly improved content availability, user experience, and 
network efficiency. By putting our technique into practice, we can 
transform how content is distributed and controlled inside networks, 
raising the bar for quality in research. The next sections go over the 
suggested caching strategy in depth.

3. Dynamic cluster-based cooperative caching

This section provides comprehensive details of the proposed caching 
strategy. As mentioned in the above sections, several problems still exist 
in NDN caching that hinder its full benefits for IoT-based networks. 
Therefore, for NDN-based IoT networks to fully benefit from caching, 
they need to implement a better caching strategy that can make caching 
work better overall. Therefore, to efficiently manage cache at distrib
uted locations, we proposed a Dynamic Clustering-based Cooperative 
Caching (DCCC) strategy that can reduce communication overhead and 
data downloading latency. It minimizes the data redundancy ratio and 
improves the utilization of cache storage. DCCC is a three-fold caching 
strategy that includes data collection, content placement, and data 
caching mechanisms.

3.1. Data collection mechanism

In literature, studies show that popular content has a significant 
impact on caching capabilities. Sometimes, popular content can 
consume extra cache storage and slow down the cache hit rate when 
cache storage is available. Similarly, the popularity of content is dy
namic concerning subscribers’ Interests. Consequently, a static dynamic 
threshold is not appropriate because it assigns equal importance to less 
popular and highly popular content. This can result in increased 
resource usage (cache) by using less popular content instead of more 
popular content. Therefore, in DCCC, the cluster head nodes will cache 
content that carries higher popularity values compared to the local 
average popularity of cached content when the cache space has over
flowed. To enhance cache utilization and avoid redundant data caching, 
popular content will be cached only at selected nodes. Each node is 
associated with a table called the Dynamic Threshold-based Popularity 
Table (DTPT), which maintains dynamic threshold values. This table 
(Table 1) contains the name of each content, the number of contents, the 
number of Interests for each content item, and the total number of In
terests generated for all content.

Currently, a huge number of contents are transmitted on the 
network, but only a small number of contents are frequently fetched by a 
large number of subscribers. Therefore, popular content has a significant 
impact on improving overall caching performance by reducing data 
retrieval latencies. Thus, designing an efficient Data Collection Mecha
nism (DCM) by deploying an effective data collection algorithm is of 

utmost importance. To measure the dynamic threshold value, each 
content is weighted with a specific value equivalent to the subscribers’ 
Interest count, indicating how many times content item is retrieved 
within a given cycle. Consequently, the threshold value is calculated 
using the Weighted Average (WA), which can be determined using the 
following equation. Let G(W,X) is a network graph where all the nodes 
represent the total number of contents X with their total weight W and it 
can be denoted by W(X) where X = {x1, x2,…, xn} is the set of content 
for them the subscribers’ Interests are generated to fetch them from the 
network and W = {w1,w2,…,wn} is the set of weights assigned to the 
content according to the subscribers’ Interests. The Interests frequency 
can be denoted by I(X) where I = {i1, i2,…, in} that shows the number of 
contents downloaded at a network in a given cycle. Therefore, the 
weight at each node represents the Interests frequency or we can say it is 
equal to the Interests frequency and it can be denoted by W(X) = I(X). 
Thus, the Dynamic Threshold (DT) can be measured by taking the 
accumulation of all weights and it can be calculated through the 
following equation: 

DT =
(w(x1) + w(x2) + I + w(xn))

X
(α) (1) 

Eq. 1 can be simplified and DT can be calculated by following Eq. 2. 

DT =

∑n

1
w(xi)

∑n

1
xi

(α) (2) 

where α shows the given cycle in which the threshold is calculated. For 
the selection of popular content, the WA is calculated between the total 
number of contents that were recently fetched by the subscribers in a 
given cycle and the total number of Interests received for all contents. 
The outcome value is considered the dynamic threshold. In Algorithm 1, 
the dynamic threshold is determined, where TW shows the total weight 
that can be defined as: 

TW = {w(x1)+ w(x2)+ I+w(xn) (3) 

Therefore, according to Algorithm 1, the DT is calculated at a node vi 

to differentiate between the higher popular content and the less popular 
content. Based on the threshold value derived from Algorithm 1, content 
is considered popular or non-popular. If content shows its Interest fre
quency is higher than the threshold value the content will be chosen as a 
popular one and the selected names of content are pasted in another 
table called Popular Data Table (PDT). As the content passes through the 
node, the names are compared with names stored at the PDT table if the 
popular content xi matches with its name at specific node vi the content 
xi is recommended to be cached at the node vi. Let’s assume that two 
subscribers’ sub-1 and sub-2 sent multiple Interests such as the total 
weight is equal to 40 Interests to download content x1 and content x2 

from a network node vi. As we know the w(x1) = I(x1) and when we 
separate the weight for each content, the weight of x1 is calculated as 
w(x1) = 27 while the weight of content x2 is measured as w(x2) = 13. 

Table 1 
Popularity Table.

Popular Data Table

C-Name I-Count Threshold Popularity S-Content

x1 27 20 27 Popular
x2 13 20 13 Non-popular
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Algorithm 1. Calculate Dynamic Threshold

Thus, using Eq. 1, the threshold value can be calculated as: 

DT =
w(x1) + w(x2)

x1 + x2
=

27(1) + 13(1)
1 + 1

=
40
2

= 20 (4) 

To identify the popular content, let X = {x1, x2,…, xn} be the set 
contents and W = {w1,w2…..wn} is corresponding weights which is 
equivalent to the Interest frequency such as w(x) = I(x). If the content xi 

has the Interests frequency I(xi) is greater than the threshold, the xi is 
considered as popular. The popularity can be calculated using the 
following Eq. 5: 

Pxi = I(xi) > DT (5) 

In the current above example (Eq. 4), the threshold is obtained as 20 
and according to DCCC, the content xi will be selected as popular if it has 
received a greater number of Interests as the threshold value. Therefore, 
according to the current scenario, the content x1 is selected as popular 
and recommended to be cached at the network nodes. 

Algorithm 2. is developed to identify the set of higher popular con
tents. It differentiates the content into sub-categories such as a set of 
high frequently Interested content and a set of low frequently Interested 
content based on the dynamic threshold value. Therefore, of the set of 
content X = {x1, x2,…, xn}, the xi is considered as low frequently 
Interested content and xj is considered as high frequently Interested 
content where xiΛxj ∈ X. However, Algorithm 2, focuses on the highly 
frequently requested content and the content is shown as xi in the given 
algorithm.

3.2. Content placement mechanism

As the content selection process gets complete the Content Placement 
Mechanism (CPM) is executed in which the selected popular content is 
cached at the selected network nodes according to the data caching al
gorithms. However, in the current strategy DCCC, the cluster-based 
caching mechanism is developed and content caching is done based 
on the cluster head selection. 

Algorithm 2. Identify popular Content

3.2.1. Clustering
Clustering refers to the collection of network nodes concerning 

different properties and resources that form a cooperative caching sys
tem for load balancing, quality analysis, data processing, caching, and 
forwarding in advanced networks. A cluster consists of two components: 
the cluster head and cluster members. The cluster head is responsible for 
collecting content from the server, receiving Interests from subscribers 
and neighbor nodes, and forwarding them to the appropriate sources 
and subscribers. The cluster members are interconnected nodes con
nected to the cluster head or neighboring nodes.

3.2.2. Cluster head section
The cluster head selection is based on different factors like number of 

nodes connected to one node, distance from the provider, and residual 
energy. It improves network mobility and performance by selecting the 
cluster head among the nodes. As a result, the data delivery latency and 
energy consumption are reduced and cache hit performance is 
improved. Moreover, the cluster head selection depends on diverse al
gorithms, strategies, node power, node capacity, relative speed and node 
degree. Moreover, some mechanisms, is also depend on centrality nodes 
such as closeness centrality and betweenness centrality. The current 
study selects the cluster head based on the shortest distance from the end 
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Fig. 1. Dynamic Clustering-based Cooperative Caching Scenario.
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devices. 

Algorithm 3. Clustering and Finding the Cluster Head.

Primarily, in DCCC, the edge node next to the subscribers is chosen as 
the cluster head and the connected neighbor nodes make the cluster. The 
reason is that we are proposing a dynamic cluster-based caching strategy 
in which the cluster is dynamically selected based on the Interests 
preference at a network node and after that, the cluster is created based 
on the cluster head. If a node shows a higher preference (higher numbers 
of Interests are received) of the subscribers, the node is selected as 
cluster head. However, the data delivery path may consist of multiple 
nodes that show similar Interests preference. Therefore, we already have 

defined the condition of selecting cluster heads based on the shortest 
distance from the subscribers.

When we choose an edge node as cluster head, it delivers several 
benefits such as it minimizes the data delivery latency, and reducing the 
path stretch between caching node and subscribers to fulfill the demands 
of subsequent Interests. As a result, data availability and the cached ratio 
are increased and it reduces the inefficient usage of restricted cache 
memory. Therefore, most of the cache is used to accommodate the 
higher popular content. This ensures that popular content is accom
modated at the most important nodes along the data delivery path, 
fulfilling the demands of a large number of Interests. This minimizes 
data retrieval delay and stretch, leading to a higher cache hit rate. Let 
G(V, E) be a network in which the V = {v1, v2,…, vn} shows the number 
of network nodes while the E = {e1, e2,…, en} represents the set of links 
or connections among the network nodes.

The d(u, v) is the distance between two network nodes u and v and 
according to DCCC, the Edge Node (EN) is selected as cluster head and it 
can be defined as: EN ∈ CH where CH = {ch1, ch2,…, chn} is the set of 
cluster heads in a network and CH ⊆ V. Therefore, the edge node will be 
selected as cluster head if node meets the following conditions: 

∀ u ∈ V, d(EN, u) ≤ d(u, v) (5) 

where for all v ∈ V, v ∕= EN. All the cluster heads are associated with a 
number of neighbor nodes and it can be defined as: let the N(v) is the set 
of neighbor nodes of a node v or it can be said that N(v) set of neighbor 
nodes directly connected to node v. Therefore, a cluster can be defined 
as: it is the collection of neighbor nodes and cluster head and it formed 
by joining the neighbor nodes with cluster head. Let C = {c1, c2, …, cn}

be the set of clusters in a network and to find the ith cluster, the con
dition can be defined as: 

ci = {chi} ∪ N(chi) (6) 

Fig. 1 shows two scenarios of DCCC, where the set of the nodes is 
given by V = {v1, v2, v3, v4, v5, v6, v7} and according to DCCC, the set of 
cluster is given as C = {c1, c2, c3, c4, c5}. Therefore, according to Fig. 1
five clusters can be obtained dynamically regarding the subscribers’ 
preference. Initially, the edge node (v4) received a number of Interests 
for content (x2) form subscribers (sub-1 and sub-2) as shown in Scenario 
(a). according to the DCCC, the Node (v4) is selected as cluster head 
because, it has the shortest distance from the subscribers and all the 
Interests are received at Node (v4). The Node (v4) forwards the sub
scriber’s Interests to download the content (x2) from Data Provider. 
According to DCCC, the content (x2) is selected as popular from the set of 
contents X = {x1, x2, x3…,xn}. Therefore, the content x2 is cached at the 
cluster head Node v4 and the caching status of v4 is shared with its 
neighbor node (v3) and node (v7). Thus, the first cluster (c1) in Scenario 
(a) is shown by a solid green line and it is consisting of three nodes such 
as v3, v4, and v7 where v4 is the cluster head while v3 and v7 are the 
cluster members. As a result, all the subsequent Interests for content x2 

are satisfied from cluster head Node v4. The cluster c1 can be defined by 
the given equation: 

c1 = {ch(v4)} ∪ N(v3, v7)} (7) 
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Algorithm 3. illustrates the mechanism for creating a cluster using a 
collection of nodes. Furthermore, the cluster head is chosen based on the 
shortest distance from the subscribers who have already fetched the 
demanded content, and the neighbor nodes are selected based on the 
cluster head.

Algorithm 4. Content Freshness

The novelty of the DCCC strategy depends on the distinctive inte
gration of its several elements. Nevertheless, several cluster head se
lection mechanisms and algorithms are indeed available in the 
literature. However, our proposed caching strategy stands out due to its 
unique combination of several key factors. Primarily, our strategy takes 
into account the number of users’ Interests which provides a more ac
curate prediction of ideal cluster head candidates based on Interests 
patterns. These predictive capabilities differentiate the proposed algo
rithm from the traditional algorithms that often depend on historical 
information. Moreover, our strategy incorporates dynamic network 
parameters and selects the cluster head based on the dynamic conditions 
of the network. These dynamic aspects differentiate it from the existing 
mechanisms. In addition, the proposed strategy not only considers 
traditional parameters like energy consumption and distance but also 
integrates factors related to node centrality and Interest preference. This 
comprehensive estimation of multiple criteria ensures a more balanced 
and optimized cluster head selection, a feature that may not be as 
prevalent in existing algorithms.

3.2.3. Content freshness
Each content has a specific lifetime, and once it expires, the content 

is discarded from the cache storage. The popularity of cached contents is 
calculated in the same way as it was before caching at the cluster head. 
To address concerns about caching irrelevant content, DCCC considers 
data freshness. Each content is assigned a specific freshness value by the 
provider at the time of publication. Once the freshness value expires, the 
content is evicted from the caching node. This ensures efficient use of 
cache storage. In NDN-based IoT scenarios, data freshness plays a crucial 

role in real-time applications, contrasting with traditional Internet ap
proaches. The caching status of the popular content at the cluster head is 
cooperatively shared with its neighbors within the cluster to inform 
them about the caching status. This facilitates effective management of 
the cache. The freshness value determines the content’s life, indicating 
the period in which the content is considered valid and up-to-date. 
Therefore, from a set of freshness F = {f1, f2,…, fn} of the set of con
tents X = {x1, x2,…, xn} cached in a network, the fi for a content 
xi cached at a network node ni can be defined by the Eq. 8: 

fi = ti(xi) (8) 

For any of the content xi in vi is about to expire the freshness become 
zero. Where xi ∈ X while vi ∈ V and X = {x1, x2,…, xn} shows the 
number of contents in a network node while V = {v1, v2, …, vn}. 
Therefore, the freshness is given by Eq. 9: 

fi ≤ 0 (9) 

The Eq. 9 shows when the life span of content is over the freshness 
becomes zero and the content is considered as expired. The algorithm 
(content freshness) defines the mechanism to find the content freshness 
value. 

Algorithm 5. Find the Cooperative Node

3.2.4. Cooperative node selection
In this case, we will discuss the selection of the cluster head when 

incoming Interests are received from more than one subscriber. Conse
quently, when Interests are received from multiple subscribers, the 
cluster head is selected based on the shortest distance and the Cooper
ative Node (CN). The CN is the node where the multiple edge nodes are 
directly linked or connected. Basically, in DCCC, the dynamic clusters 
are obtained according to the frequency of Interests. If a node shows a 
higher Interest frequency, the node is selected as the cluster head, and 
the neighboring nodes become cluster members. Therefore, the content 
is also cached at the CN, and the CN will be selected as the cluster head, 
and the connected nodes become the cluster members. Thus, a copy of 
popular content will travel from the edge node to the CN gradually, 
considering the Interest frequency that appears at a node along the data 
downloading path.

Let the set of cluster heads such as CH = {ch1, ch2,…, chn} and the 
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V = {v1, v2,…, vn} is the set of nodes in a network and the CN also be
longs to the set of nodes such as CN ∈ V. Therefore, according to DCCC 
the CN is the node connected to the multiple cluster heads or edge nodes 
where the number of Interests was received from the multiple sub
scribers. Thus, the number of cluster heads from the set of CH = {ch1,

ch2,…, chn} connected to the CN can be defined as: 

∃ ch1, ch2 ∈ CH (10) 

Moreover, to meet the second condition of CN the Interests should be 
generated from more than one subscriber such as Interests from the 
subscriber can be defined as Ifre = {Isub1 > 0, Isub2 > 0,…, Isubn > 0}. 
Therefore, a cluster heads cannot be selected as CN: 

∀ch ∈ CH Λch ∕= CN (11) 

This equation guarantees the CN is a network node from the set of 
network nodes and it is connected with more than one edge node or 
cluster head nodes. Algorithm 5 describes the selection of a CN node in a 
network while the network receives Interests from multiple edge nodes 
of cluster head nodes. In scenario (b) in Fig. 1, the CN node selection is 
illustrated where three subscribers (Sub-1, Sub-2, and Sub-3) sent 
several Interests to download x2 from Data Provider. Therefore, the 
content x2 is considered as popular and let the x2 be cached at Node v3. 
In this transmission, the Node v3 is considered as the cluster head 
because it satisfies the second condition of choosing CN defined by 
DCCC. The Node v3 fulfils both requirements such as the node should be 
selected based on the shortest distance from all subscribers and meets 
the requirements of the CN node. Therefore, the Node v3 is selected as 
cluster head and the connected neighbors are by the following equation: 

N(v3) = {v2, v4, v6, v7} (12) 

where N(v3) represents the neighbors of v3. The whole cluster c2 is 
denoted by the blue solid line in Fig. 1 (Scenario (b)). Therefore, the 
cluster c2 can be defined as: 

c2 = {ch(v3)} ∪ N(v2, v4, v6, v7) (13) 

Therefore, the selected popular content x2 cached at Node v3 (CN) 
and its popularity is reinitiated with 1. Algorithm 5 defines the method 
to choose the CN as a cluster head for the caching of popular content x2. 
The popular contents that are selected are cached at the cluster head, 
and their popularity is reinitialized with a count of 1 in order to compare 
their popularity when new content will arrive to accommodate higher 
frequently Interested content at the most important location. When a 
cached popular content x2 will receives more Interests the Interest count 
will be incremented. Therefore, the popularity of already cached content 
x2 is calculated in the same way it was calculated before caching it at the 
cluster head. Algorithm 6 shows the initialization after the caching of 
popular content at the cluster head. Moreover, the popularity of cached 
content is measured and the content x2 will be stayed based on the 
content freshness value or lifetime.

3.3. Backup caching mechanism

In the Backup Caching Mechanism (BCM), if the cache of the cluster 
head overflows and new popular content arrives to accommodate the 
contents at the cluster head, the popularities of the cached content are 
compared with the popularity of the incoming content. If the incoming 
content has greater popularity than the popularities of the cached con
tents, the incoming content is cached at the cluster head, and the content 
showing the lowest popularity is evicted from the cluster head and 

cached at the upstream cluster member. The current popularity of the 
cached content is compared with the popularity of the incoming content. 

Algorithm 6. Backup Caching Mechanism

Each Interest is added with an extra field in which the interest count 
is calculated, and a popularity value is attached to the demanded con
tent. If a new content, let’s say xj, arrives at the cluster head, and the 
cache of the cluster head is overflowed then the popularity of the new 
content xj is compared with the

old content xi, where xi and xj are elements of X. The content will be 
cached at cluster head based on two conditions as given by Eqs. 11 and 
12: 

∀ xi, xj ∈ X (14) 

P
(
xj
)
> P(xi) (15) 

If the new content xj has a greater popularity value than the old 
content xi, the new content xj is cached at the cluster head node. As the 
new popular content xj is cached, the count is reinitialized to zero, and it 
will be incremented as new Interests are received. Consequently, the 
efficient utilization of the cache in the cluster head node is important 
because it may happen that popular content will be cached at one node 
for a long time, and the new content may have slightly less popularity, 
but it should still be allowed to cache at the cluster head. All the contents 
at the cluster head node will be checked for popularity, and the content 
that shows the least popularity will be chosen for eviction and cached at 
a neighbor node within the cluster. The old popularity and current 
popularity are saved in a popularity table. Fig. 1, Scenario (c), illustrates 
the BCM in which several Interests are generated to fetch content x1 

from the Data Provider. Currently, according to Scenario (c) in Fig. 1, 
content x1 has received three Interests from subscribers (Sub-1 and Sub- 
2), while content x2 has received two Interests from subscribers (Sub-1 
and Sub-2). According to DCCC, x1 is considered the more popular 
content and is recommended to be cached at cluster head Node v4. 
Therefore, when the content x1 arrives at cluster head node v4, the cache 
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of node v4 overflows. Thus, the popularity of the arrived content x1 is 
compared with the cached content x2 and x3. As a result, content x3 

shows a lower popularity value, and it is evicted from cluster head node 
v4 and cached at neighbor upstream node v3. Content x1 is cached at 
cluster head node v4 because of its higher popularity compared to con
tents x2 and x3. Algorithm 6 shows the BCM for newly Interested 
contents.

4. Performance evaluation

The performance evaluation and experiments to check the effec
tiveness of the proposed DCCC NDN-based IoT caching strategy are 
conducted using ndnSIM which is an extension of Network Simulator 3 
(NS3). We evaluate the proposed DCCC and compare strategies on a 
common platform to identify the performance of DCCC as compared to 
the earlier caching strategy with varying parameters. We compare our 
proposed caching strategy with four other strategies, such as Cache 
Everything Everywhere (CEE) [43], Hierarchical Cluster-based Caching 
(HCC) [44], Collaborative Filtering-based Content Caching (CFCC) [45]
and Priority-based Content Popularity-Aware Caching (PCPA) [46].

4.1. Simulation settings and parameters

We used an Intel Core i7 machine with the following specifications: 
16 GHz CPU and 8 GB of memory. The ndnSIM platform was chosen for 
the evaluation of the proposed DCCC with alternative caching strategies, 
as defined above. We selected a tree topology with five levels, where 
each parent node is connected to 0–3 child nodes, and the data provider 
is directly linked with the network core node at level one. The amount of 
content considered was 10,000, and each piece of content has the same 
size of 500 MB. Initially, all the content is cached at the data provider. 
The links among the intermediate nodes have capacities of 1 Gbps, while 
the links between edge nodes and subscribers have capacities of 100 
Mbps. The poisson arrival process is chosen, and 20 Interests per second 
are disseminated to the edge node. The Zipfian content distribution law 
is modeled with a skewness value (α) chosen from 0.5 to 1.5. Table 2
shows the selected simulation parameters.

4.2. Performance metrics

The performance of the proposed DCCC caching strategy is evaluated 
in terms of Average Cache Hit Ratio (ACHR), Average Hop Reduction 
Ratio (AHRR), Server Hit Reduction Ratio (SHRR), and Content 
Retrieval Delay (CRD). The metrics and simulation experiments are 
given below:

4.2.1. Average cache hit ratio
ACHR is known as the typical parameter to evaluate the system 

performance of caching-based strategies, algorithms, and schemes. It is 
the ratio between the subscribers’ Interests and the responses given by a 
cache that enables the network to the subscribers’ Interests. The higher 
the value of ACHR the more efficient caching system is considered. It can 
be defined as: 

ACHR =
∑n

i=1

I − countr
Itotal

(16) 

where α shows the time cycle in which the hit rate is calculated, while 
I − countr represents the number of responses to the subscribers’ Interests 
by caching nodes and Itotal indicates the total number of Interests sent by 
the subscribers to the network.

4.2.2. Average hop reduction ratio
AHRR is the ratio between the number of hops that subscribers’ In

terest go through to fetch the demanded content by following a certain 
caching algorithm and the number of hops that subscribers’ Interests to 
fetch content without caching nodes from the data provider or server. It 
is also known as the response distance of the path stretch. The AHRR will 
increase if the Interests follow the shortest path, and it can be measured 
as: 

AHRR =

∑n

i=1
h − countcs

∑|N|

i=1
h − counts

(17) 

where 
∑n

i=1 h − countcs represents the hops go through by the sub
scribers’ Interests to fetch content from node cs, while 

∑|N|

i=1 h − counts 
denotes that the Interests go through the number of hops to download 
contents from the server s.

4.2.3. Content retrieval delay
CRD represents the average number of time cycles in which a sub

scriber’s Interests are sent to the caching node and the content is 
downloaded, or we can say the time required to fetch the content from 
the caching node. The shorter delay improves the caching performance 
of the caching network. 

Table 2 
Evaluation Parameters.

Parameters Values

System warmup time 50 s
Execution time 3550 s
Number of executions 20
Catalogue Size 10,000 contents
Interest Size 100 MB
Content Size 500 MB
CS size 10–50 contents
Interest rate λ 50 Interests/sec
Popularity model Zipfian law
alpha parameter values 0.5–1.5
Total number of nodes 121
Data provider 1 node
Number of Subscribers 81
Tree topology 5 level
Child node 0–3
Caching node 39

Table 3 
Abbreviations and corresponding Description.

Abbreviations Descriptions

NDN Named Data Networking
IoT Internet of Things
DCCC Dynamic Clustering-based Cooperative Caching
CCC Central Control Caching (
EPPC Efficient Popularity-aware Probabilistic Caching
PoC Popularity-aware Closeness
DCM A. Data Collection Mechanism
DTPT Dynamic Threshold-based Popularity Table
DCM Data Collection Mechanism
CH Cluster Head
WA Weighted Average
PDT Popular Data Table
CPM Content Placement Mechanism
CN Cooperative Node
BCM Backup Caching Mechanism
ACHR Average Cache Hit Ratio
AHRR Average Hop Reduction Ratio
CRD Content Retrieval Delay
CEE Cache Everything Everywhere
HCC Hierarchical Cluster-based Caching
CFCC Collaborative Filtering-based Content Caching
PCPC Priority-based Content Popularity-Aware Caching
QoS Quality of Service
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Fig. 2. Simulation on ACHR, AHRR, and CRD with Constant Cache Size.
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CRD =
∑n

t=1
DI +

∑n

t=1
DC (18) 

where 
∑n

t=1 DI represents the delay in which the caching node receives 

Interests and 
∑n

t=1 DC shows the delay in which demand reaches the 
subscribers.

Fig. 3. Simulation on ACHR, AHRR, and CRD with Constant α Parameters.
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5. Results and discussion

The evaluation is divided to present the experiment as defined in two 
phases based on different parameters. For the present study, we estab
lished an NDN-based IoT scenario, and the parameters are already 
defined in Table 3. Therefore, performance is measured based on ACHR, 
AHRR, and CRD to check the feasibility of the current proposed DCCC 
strategy. Constant and the cache size are taken as varying from 10 
contents to 50 contents. The whole experiment is presented in two 
phases, where the cache size is taken as constant (10 contents and 50 
contents) and the value of the weight factor is taken as varying from 0.5 
to 1.5, while in the second phase the

value of the weight factor is taken as constant. Moreover, the average 
value of several executions is taken as the final result.

5.1. Phase I: constant cache size

We run tests on ACHR, AHRR, and CRD using the suggested caching 
strategy. We also compare the DCCC to four other strategies, including 
CEE, CFCC, HCC, and PCPA. Fig. 2(a, b) shows the simulation of cache 
hit performance by comparing strategies with the proposed one. The (c, 
d) shows the results on AHRR, while the (e, f) represents the outcomes of 
retrieval delay. Fig. 2 shows different performances with different con
stant cache sizes (10 contents and 50 contents). From Fig. 2, we can see 
that the performance of all caching strategies increases with an 
increasing α parameter. DCCC shows better cache hit, hop count, and 
retrieval delay results throughout the simulation process with both 
cache sizes and α parameters. The reason is that DCCC caches content 
according to the subscribers’ Interest preferences at the network node 
where most of the Interests pass through to download content. In this 
way, the cache hit increases, and the delay and the number of hops to 
fetch the requested content get reduced. However, CEE performs poorly 
compared to other comparing strategies because it caches all the content 
at all the network nodes it goes through, increasing the unwanted cache 
usage of unpopular content. Therefore, for popular content, the 
incoming Interests need to traverse several hops to find the contents 
from the server, increasing the path stretch between the data provider 
and subscribers. As a result, delay and hop count are increased. More
over, PCPA and HCC perform better than CEE and CFCC, and their 
performance increases relatively with different cache sizes and α pa
rameters. CFCC shows better results than CEE because it caches contents 
in the cluster head situated near the end subscribers. However, all the 
caching strategies show better performance with a larger cache size (50 
contents) compared to a smaller cache size (10 contents) because all the 
network nodes may accommodate more contents with a large cache size.

5.2. Phase II: weight factor α parameter

In this phase, the weight factor α is taken as constant, and its value is 
considered both maximum (1.5) and minimum (0.5), while the cache 
size is varied from 10 contents to 50 contents that can be cached at a 
network node. To check the effectiveness of the proposed DCCC model, 
we have divided our experiments into two different phases based on 
different caching sizes and weight factor α parameters. Fig. 3(a, b, c, d, e, 
and f) shows how well DCCC, PCPA, HCC, CFCC, and CEE work in terms 
of cache hit ratio, hop count reduction, and retrieval delay when cache 
sizes and content parameter values are changed. In the given figure, (a, 
b) shows the cache hit performance, (b, c) represents the performance on 
hop reduction ratio, and (e, f) demonstrates the performance on data 
retrieval delay. From all the results, it is clear that the performance of all 
comparing strategies is increasing as the cache size increases. However, 
the DCCC achieves better outcomes because of its structure of caching 
contents at the next node for the subscribers.

Moreover, it also provides an extra feature to cache content on 
cooperative nodes, from which most of the subscribers can easily fetch 
highly popular content within a short time interval. Additionally, it 

implements a backup caching mechanism that allows accommodating 
slightly less popular contents at neighbor nodes rather than deleting 
them from the caching node. In this way, the cache hit performance 
becomes improved because all the incoming Interests are satisfied at the 
caching of the neighbor nodes rather than having to retrieve contents 
from the origin (server). So, the performance in terms of the hop 
reduction ratio gets better, and it takes less time to get popular content 
from neighbor nodes. CEE represents lower performance with all metrics 
and parameters. However, PCPA and HCC show better outcomes and 
perform relatively well because the contents are cached at the network 
edges according to both strategies. Therefore, both show relative per
formance. While CFCC shows lower performance because it executes 
several mechanisms like collaboration and clustering to perform one 
caching operation, Thus, the DCCC improves the overall network per
formance because it accommodates the demanded contents next to the 
subscriber nodes, fulfilling subsequent Interests within a short time. The 
reason is that DCCC provides an efficient content selection mechanism 
to select the optimal popular content and caches the selected popular 
content using a resourceful caching mechanism, placing it near the 
subscribers. This increases the cache hit and hop reduction performance 
while reducing the delay significantly.

6. Conclusion and future work

This research presents Dynamic Clustering-based Cooperative 
Caching (DCCC), a newly designed strategy that improves performance 
for IoT systems that use NDN. The DCCC model addresses key challenges 
in caching by incorporating three core mechanisms: Our caching system 
has three parts, such as DCM, CPM, and BCM, that work together effi
ciently. In DCM, we use a threshold value to find popular content, 
helping the system store and access it more effectively. CPM forms 
clusters by choosing nodes based on their connection to other nearby 
nodes and which content users want to access frequently, making it 
easier for servers to store and serve content that consumers need most 
often. With BCM, neighbors nearby in the network bundle cache servers 
to store moderately sought-after content, making this information easier 
to access and faster to load. The proposed model puts cache servers 
closer to where users live, which means data can reach them faster and 
they can find what they need more quickly, leading to better data 
retrieval performance. To validate the effectiveness of DCCC, we con
ducted extensive simulations using the NS3-based ndnSIM platform, 
comparing it against four existing caching strategies: We look at four 
different strategies in our study: CEE, HCC, CFCC, and PCPA. Our 
analysis showed that DCCC beat all other caching methods by showing 
better results in ACHR, AHRR, and CRD metrics while varying simula
tion parameters.

DCCC strategy brings remarkable improvements in caching in NDN- 
based IoT networks, but several valuable directions for the future are 
noted. Optimizing the strategy by recently implementing more sophis
ticated algorithms might expand the dynamic approach that would 
allow, in turn, identifying the most popular contents and applying, for 
instance, machine learning approaches to select the best caching de
cisions in real-time. Cooperating with other mobility models as well as 
using more complicated dynamic parameters, like changing network 
traffic intensity and nodes’ failures, can improve the anti-robustness of 
the strategy in the actual world. Another field of interest is calculating 
the energy efficiency of cluster head selection and its consequences for 
sustainable IoT networks. Also, the improvement of the algorithms of 
content freshness concerning various applications or guaranteeing 
secure storing of data in cooperative caching can solve problems con
nected with privacy and reliability. These extensions may result in an 
adaptive, efficient, and secure caching framework for applications of the 
emerging IoT.
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