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 A B S T R A C T

This paper presents a two-stage methodology for efficient and accurate full-field displacement 
reconstruction using sparse online measurements derived from high-resolution Digital Image 
Correlation (DIC) data. The proposed approach integrates Modal Order Reduction and Kriging-
based Uncertainty Quantification to address challenges associated with high-dimensional data 
analysis in structural dynamics.

In the offline stage, Adaptive Geometric Moment Descriptor (AGMD)-based shape features 
are used to compress the high-dimensional dataset, identify modal properties, and estimate 
residual covariance structures. In the online stage, a sparse set of optimally placed sensors, de-
termined via QR decomposition with pivoting, is employed to infer full-field responses through
Kriging interpolation, which also provides predictive variances for uncertainty quantification.

The methodology was demonstrated on a curved plate under random excitation. The results 
show strong correlations between measured and reconstructed fields using AGMDs and suc-
cessfully identify multiple full-field vibration modes. In the online stage, the Kriging-predicted 
full-field responses, informed by an empirically estimated covariance structure from the offline 
dataset, exhibited better accuracy compared to predictions made using the Generalised Least 
Squares method (GLS). Validation on temporal sampling data achieved a coverage probability 
of 94.34% at 95% confidence intervals, highlighting the method’s reliability and robustness.

1. Introduction

In structural health monitoring (SHM) [1–8] and structural dynamic model updating [9–11], obtaining reliable, high-resolution, 
full-field displacement and strain data is desirable for accurately analysing structural behaviour under diverse loading conditions. 
Techniques such as Digital Image Correlation (DIC) and advanced optical measurement systems [12,13] have revolutionised the 
validation and assessment of structural models, though they also introduce challenges including high data dimensionality, noise 
interference, and the need for efficient model updating strategies to ensure precise structural identification and performance 
predictions [6,14–17].

Mottershead and colleagues highlighted the potential of frequency response functions derived from shape features [18,19] to 
handle high-dimensional raw data from high-speed DIC. These shape features enable a reduced yet representative set of coordinates 
for the high-resolution dynamic responses, which is particularly advantageous in digital twinning applications where a fast, efficient, 
and data-driven model is desired for real-time monitoring [20–22].

Several recent approaches have been proposed in the literature to address the challenge of reconstructing high-fidelity dynamic 
responses from sparse structural health monitoring data. For instance, Zhang XH and colleagues [23] employs a KLT-QR-based 
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measurement matrix optimisation to enhance the accuracy of dynamic response reconstruction from limited measurements, 
whereas Zhang Y and colleagues [24] introduce a compressive sensing framework under dictionary learning that first obtains 
dense, controlled data and then solves a sparse binary multi-objective optimisation problem for sensor placement and damage 
detection. Jana Debasish and Nagarajaiah [17] propose a framework for full-field online sensing in the spatial domain, learning 
dictionary-based mode shapes for linear time-invariant systems and estimating the minimal number of sensors via singular value 
decomposition.

Compared with these compressive sensing and dictionary-based methods, the current study offers a distinct, data-driven approach 
for full-field displacement reconstruction. Specifically, an Adaptive Geometric Moment Descriptor (AGMD) is employed to compress 
the high-dimensional DIC data in an offline stage, extracting modal properties and estimating empirical covariance structures without 
relying on finite element models or pre-trained dictionaries. A systematic sensor placement follows, using QR decomposition with 
pivoting, which ensures maximal linear independence for accurate sampling. Finally, a Kriging-based uncertainty quantification 
method predicts the full-field response and provides predictive variances, resulting in a scalable and efficient solution for structural 
health monitoring applications.

The present approach comprises two primary stages:
Offline Stage: Data Compression and Modal Property Identification
In the first stage, dynamic measurements obtained from DIC are processed. Given the high spatial dimensionality of DIC data, 

direct modal property identification can be computationally demanding. Shape feature compression techniques are applied to reduce 
dimensionality while preserving essential structural characteristics, facilitating efficient modal property identification.

Online Stage: Sparse Sensor Deployment and Full-Field Response Inference
The second stage introduces an online monitoring framework that utilises the modal properties and shape basis functions 

identified during the offline stage. A strategically deployed sparse sensor network measures responses, which are then integrated 
with the pre-determined shape basis functions to infer full-field responses. This strategy reduces the cost and complexity of sensor 
deployment while achieving reliable and accurate response reconstruction.

The remainder of the paper is structured as follows. Section 2 discusses the challenges associated with handling full-field DIC 
data and outlines the theoretical foundation of modal identification via shape feature compression. Section 3 presents the proposed 
methodology, integrating modal order reduction and Kriging-based uncertainty quantification for spatial prediction using sparse 
measurements. Section 4 demonstrates the effectiveness of the approach through a case study involving a curved plate. Finally, 
Section 5 summarises the findings and proposes directions for future research.

2. Context and background

This section delineates the methods employed in processing full-field dynamic measurements, encompassing the acquisition 
of displacement data through 3D stereo Digital Image Correlation, the challenges associated with traditional vibration modal 
identification approaches, and the application of the Adaptive Geometric Moment Descriptor for data compression and modal 
analysis.

2.1. 3D stereo digital image correlation measurements

3D stereo Digital Image Correlation is a non-contact optical method utilised for measuring full-field displacements and strains on 
the surface of objects undergoing deformation [12,13]. By capturing sequential images from multiple camera angles, 3D stereo DIC 
reconstructs the three-dimensional displacement vectors of a mesh comprising numerous vertices connected by triangular elements.

The displacement data acquired through 3D stereo DIC can be represented as a matrix 𝐗 ∈ R𝑁𝑑×𝑁𝑇 , where 𝑁𝑑 denotes the total 
degrees of freedom (DOF), corresponding to the number of vertices in the triangular mesh; 𝑁𝑇  signifies the number of temporal 
samples captured during dynamic measurements.

Each column of 𝐗 represents the displacement vectors of all 𝑁𝑑 vertices at a specific time instance, enabling the analysis of 
dynamic structural behaviour over time.

2.2. Adaptive geometric moment descriptor for data compression

The AGMD provides a systematic approach for compressing high-dimensional DIC data by projecting the displacement field onto 
a set of orthonormal shape basis functions. This process begins with the parameterisation [25] of the measured surface (a 2-manifold 
obtained from DIC measurements) into a suitable 2D coordinate system (𝑢, 𝑣). Once this parameterisation is established, a family of 
bivariate monomial basis functions is constructed and orthonormalised to form a reduced representation of the displacement data.

Continuous Parameterisation and Orthogonality:
On the parameter domain  ⊂ R2, a set of bivariate monomials {𝜙𝑚𝑛(𝑢, 𝑣) = 𝑢𝑚𝑣𝑛} is selected up to certain polynomial orders 

(𝑚max, 𝑛max). The continuous orthonormality condition requires that [26]: 

∫
𝜑𝑖(𝑢, 𝑣)𝜑𝑗 (𝑢, 𝑣) d𝑢 d𝑣 = 𝛿𝑖𝑗 , (1)

where {𝜑𝑘(𝑢, 𝑣)}𝑅𝑘=1 are the orthonormalised shape basis functions of {𝜙𝑚𝑛(𝑢, 𝑣)}, and 𝑅 = (𝑚max + 1)(𝑛max + 1). Here, 𝛿𝑖𝑗 denotes the 
Kronecker delta.
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Discrete Approximation Using a Triangular Mesh:
In practice, the measured surface  is represented as a triangular mesh composed of 𝑁𝑑 vertices {𝐩𝑖 ∈ R3 ∶ 𝑖 = 1, 2,… , 𝑁𝑑}

obtained from 3D stereo DIC. Each vertex 𝑖 is associated with parameters (𝑢𝑖, 𝑣𝑖) mapping it onto . The continuous integral is then 
approximated by a discrete summation over the mesh nodes. To achieve a meaningful discrete approximation, a weight 𝑤𝑖 > 0
is assigned to each vertex, often chosen to represent the local area associated with that vertex (e.g., by splitting each triangular 
element among its vertices proportionally) [27]. Thus, the orthonormality condition becomes: 

𝑁𝑑
∑

𝑖=1
𝜑(𝓁)
𝑖 (𝑢𝑖, 𝑣𝑖)𝜑

(𝑚)
𝑖 (𝑢𝑖, 𝑣𝑖)𝑤𝑖 = 𝛿𝓁𝑚. (2)

Discrete Gram–Schmidt Orthonormalisation:
Starting with the raw monomials {𝜙𝑚𝑛(𝑢𝑖, 𝑣𝑖)}, a discrete Gram–Schmidt orthonormalisation [28] is performed:
1. Select the first monomial and normalise it: 

𝜑1(𝑢𝑖, 𝑣𝑖) =
𝜙0,0(𝑢𝑖, 𝑣𝑖)

√

∑𝑁𝑑
𝑟=1[𝜙0,0(𝑢𝑟, 𝑣𝑟)]2𝑤𝑟

. (3)

2. For subsequent monomials 𝜙𝑚𝑛, subtract projections onto all previously obtained orthonormal functions: 

�̃�𝑚𝑛(𝑢𝑖, 𝑣𝑖) = 𝜙𝑚𝑛(𝑢𝑖, 𝑣𝑖) −
𝑘−1
∑

𝑗=1

(𝑁𝑑
∑

𝑟=1
𝜙𝑚𝑛(𝑢𝑟, 𝑣𝑟)𝜑𝑗 (𝑢𝑟, 𝑣𝑟)𝑤𝑟

)

𝜑𝑗 (𝑢𝑖, 𝑣𝑖). (4)

3. Normalise �̃�𝑚𝑛 to obtain 𝜑𝑘(𝑢𝑖, 𝑣𝑖).
Repeating this for all 𝑅 monomials yields the orthonormal basis matrix Φ ∈ R𝑁𝑑×𝑅, whose columns correspond to the 

orthonormal shape basis functions, 𝜑𝑘(𝑢𝑖, 𝑣𝑖), evaluated at the 𝑁𝑑 vertices of the triangular mesh.
Projection and AGMD Coefficients:
Once Φ is constructed, the displacement data 𝐗 ∈ R𝑁𝑑×𝑁𝑇 , with 𝑁𝑇  time samples, can be projected onto this reduced basis. 

Since Φ is orthonormal, the shape feature coefficients 𝐁 ∈ R𝑅×𝑁𝑇 , also termed AGMD coefficients, are obtained by: 
𝐁 = Φ⊤𝐗. (5)

For each temporal snapshot 𝑡: 
𝐗𝑡 ≈ Φ𝒃𝑡, (6)

where 𝒃𝑡 = 𝐁(∶, 𝑡).
Feature Selection and Residual Uncertainty:
To further reduce dimensionality, an ‘energy’-based criterion can be used to rank the shape features (the columns of Φ). The 

energy of the 𝑘th feature of 𝒃𝑡 is: 

𝐸𝑘 =
𝑁𝑇
∑

𝑡=1
𝑏2𝑘,𝑡. (7)

Retaining only the top 𝑟 < 𝑅 features with the highest energy ensures that a consistent set of significant features is used across all 
time steps. While each time step may differ in how well it compresses to this reduced feature space, using a fixed subset of features 
ensures consistency.

However, reducing the dataset to 𝑟 features inevitably discards some information. Quantifying the residual uncertainty that arises 
from this compression—especially if strain calculations or detailed dynamic analyses are required—becomes essential [29]. As the 
following sections will discuss, integrating a Kriging-based approach allows for the modelling of this uncertainty, ensuring that the 
final reconstructed fields are accompanied by reliable confidence estimates.

Data Compression and Validation
By retaining only the most significant 𝑟 ≤ 𝑅 shape features (e.g., those corresponding to the largest magnitudes or principal 

contributions), the AGMD effectively compresses the dataset. The compressed approximation becomes: 
𝐗 ≈ Φ𝑟𝐁𝑟, (8)

where Φ𝑟 ∈ R𝑁𝑑×𝑟 and 𝐁𝑟 ∈ R𝑟×𝑁𝑇 . The reconstruction error is assessed by comparing 𝐗 and its approximation Φ𝑟𝐁𝑟, using measures 
such as the Frobenius norm of the error or the correlation coefficient : 

𝜌𝑡 =
𝐗⊤𝑡 𝐗rec,𝑡

‖𝐗𝑡‖2‖𝐗rec,𝑡‖2
. (9)

A high correlation coefficient (close to 1) and minimal error norms indicate that AGMD has effectively captured the essential 
spatial structure of the displacement field with a significantly reduced number of shape features [18].

It is worth noting that AGMD constructs basis functions based on the geometry of the measured domain, thereby preserving 
local spatial relationships essential for accurate strain evaluation. In contrast, alternative approaches, such as principal component 
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analysis [30,31], derive orthonormal subspaces directly from measured displacement snapshots rather than from the spatial domain, 
and thus do not inherently maintain spatial continuity. This limitation may introduce artificial discontinuities in strain evaluation, 
particularly when the dataset’s coordinate ordering lacks a predefined structure. Accordingly, AGMD was selected to ensure local 
spatial consistency in data projection and to mitigate potential uncertainties in strain estimation when needed.

This AGMD-based compression stage lays the groundwork for efficient modal identification and subsequent online monitoring. By 
working with a low-dimensional representation, vibration modal characteristics (natural frequencies, mode shapes) can be extracted 
more efficiently, and the computational burden associated with handling massive DIC datasets is greatly alleviated.

2.3. Modal identification using shape features

Vibration modal identification methods [32,33] are crucial for characterising the dynamic behaviour of structures [34,35], 
including their natural frequencies, mode shapes, and damping ratios. Traditional approaches typically rely on datasets with 
available degrees of freedom obtained from strategically placed sensors to capture structural responses. These methods are broadly 
categorised into time-domain and frequency-domain techniques [36–42].

While effective for datasets with a moderate number of DOFs, the advent of full-field, high-spatial-resolution data, such as 
those generated by high-speed Digital Image Correlation systems, introduces significant computational challenges. High-resolution 
DIC data often encompass thousands of measurement points over numerous temporal steps, resulting in datasets with millions of 
elements. The substantial memory and processing demands make direct application of conventional modal identification methods 
computationally intensive or even infeasible. To overcome this, efficient data compression or reduced-order modelling techniques 
are essential, allowing for practical analysis of high-resolution datasets while retaining key structural characteristics and reducing 
computational overhead.

With the full-field DIC displacement data compressed into a lower-dimensional feature space via the AGMD, the subsequent 
objective is to efficiently identify the vibration modes of the structure. Building upon the compressed shape feature matrix 𝐁𝑟, 
vibration modal identification is conducted to extract the dynamic characteristics of the structure. As established in the previous 
work with Mottershead and colleagues [18], a Shape Feature Frequency Response Function can be fitted to the compressed data.

Alternatively, the state-space formulation can be adapted to operate directly on the shape features, facilitating streamlined modal 
analysis [43]. This process involves applying well-established subspace identification techniques, such as the Numerical Subspace 
State Space System Identification (N4SID) method [32,44,45], to the feature matrix 𝐁𝑟. This approach enables the extraction of 
modal parameters with significantly reduced computational effort compared to traditional methods that operate on the full-scale 
displacement data.

Suppose 𝐔 represents the identified ‘shape feature’ mode shapes. The full-field displacement mode shapes 𝐕 can then be 
reconstructed via: 

𝐕 ≈ Φ𝑟𝐔 (10)

where Φ𝑟 ∈ R𝑁𝑑×𝑟 are a subset of the orthonormal shape basis functions derived from the AGMD; 𝐔 ∈ R𝑟×𝑟𝑠  contains the mode 
shapes identified from the reduced-order shape feature space; 𝑟 is the number of shape features retained in the AGMD (with 𝑟 ≪ 𝑁𝑑); 
𝑟𝑠 is the number of retained modes (with 𝑟𝑠 ≤ 𝑟).

The identified modal properties may subsequently be applied to inform the sparse sensor placement process and facilitate 
uncertainty quantification in the reconstruction of full-field displacements.

2.4. Sensor placement strategies and two-stage approach

In structural health monitoring and dynamic testing [2,4,46], the optimal placement of sensors is crucial for capturing the most 
informative data with a limited number of measurement points. While full-field measurement techniques such as 3D stereo Digital 
Image Correlation offer comprehensive displacement data [47–49], they are often impractical for continuous monitoring due to 
cost and complexity. Therefore, strategically placing a sparse array of point-wise sensors becomes essential for effective long-term 
monitoring.

2.4.1. Brief overview optimal sensor placement strategies
Several methodologies have been developed to address the optimal sensor placement problem, primarily focusing on maximising 

the information captured about the structural dynamics.
Introduced by Kammer [50], the Effective Independence (EfI) method optimises sensor locations by maximising the determinant 

of the Fisher Information Matrix (FIM). The FIM, which quantifies the information content of measurements regarding the modal 
parameters, may be defined as: 

FIM = 𝐕⊤𝐖𝐕 (11)

where 𝐕 is the matrix of mode shapes; 𝐖 is a weighting matrix, often chosen as the inverse of the measurement noise covariance.
The EfI method iteratively selects sensor locations that contribute most significantly to the FIM, thereby ensuring independent 

and informative measurements. However, EfI may suffer from poor signal-to-noise ratio (SNR) if the selected locations correspond 
to nodes or areas with low dynamic responses [51].
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Modal Assurance Criterion (MAC) assesses the linear independence between mode shapes [43,52]. The MAC value between two 
mode shapes 𝐯𝑖 and 𝐯𝑗 is given by: 

MAC𝑖𝑗 =
|𝐯⊤𝑖 𝐯𝑗 |

2

(𝐯⊤𝑖 𝐯𝑖)(𝐯
⊤
𝑗 𝐯𝑗 )

(12)

Optimal sensor placement aims to minimise off-diagonal MAC values, ensuring that the measured modes are distinguishable. 
This method typically relies on mode shape information obtained from finite element models, though it can also be applied using 
identified full-field mode shapes.

Beyond the EfI method, other approaches directly optimise norms of the Fisher Information Matrix, such as its trace or 
eigenvalues [53]. By maximising these norms, the sensor configuration enhances the observability of the system’s dynamic 
characteristics.

Information Entropy Methods consider the uncertainty associated with modal parameter estimation [54,55]. The objective is to 
minimise the entropy, defined as: 

 = −
∑

𝑖
𝑖 ln𝑖 (13)

where 𝑖 represents the probability distribution of the modal parameters. Sensor placement is optimised to reduce this uncertainty, 
often requiring a nominal model for estimation.

Techniques like driving point residue (DPR) and kinetic energy methods prioritise sensor locations with high dynamic re-
sponses [43]. By focusing on areas with significant kinetic energy, these methods aim to improve the SNR of measurements.

While effective, these methods often depend on accurate nominal models (e.g., FE models). Tchemodanova, Sanayei and Chatzi 
et al. [7] presented a method that integrates modal expansion with augmented Kalman filters for strain prediction at unmeasured 
locations using sparse response-only vibration measurements. The approach relies on finite element model updating for sensor 
placement and strain prediction, incorporating model-based assumptions and requiring batch data processing.

Yang and Ouyang [56] proposed a load-dependent sensor placement method for model updating, aimed at enhancing the 
accuracy of finite element analysis by optimally capturing structural responses under specific loading conditions. Their method 
combines generalised modal coordinates with dynamic responses, incorporates non-probabilistic uncertainty propagation, and 
employs multi-objective optimisation to balance deterministic and uncertain objectives effectively.

2.4.2. Data-driven sensor placement using shape features
In contrast to model-driven approaches, and inspired by the work of Manohar and Brunton et al. on data-driven methods [57,58], 

we adopted a data-driven approach that leverages the Adaptive Geometric Moment Descriptor and the compressed shape features 
𝒃𝑡 obtained from actual measurements. The objective is to determine optimal sensor locations that enable accurate reconstruction 
of full-field displacements while facilitating uncertainty quantification through Kriging prediction.
Formulation:

With the tailored basis functions Φ𝑟 ∈ R𝑁𝑑×𝑟 from the AGMD, the displacement field at time 𝑡 can be approximated as: 

𝐗𝑡 ≈ Φ𝑟𝒃𝑡 (14)

The objective is to select 𝑝 sensor locations such that the measurements 𝐱𝑡 ∈ R𝑝 provide sufficient information to estimate 𝒃𝑡. 
The relationship between sensor measurements and shape features is: 

𝐱𝑡 = 𝐋0𝐗𝑡 ≈ 𝐋0Φ𝑟𝒃𝑡 = Θ𝒃𝑡 (15)

where 𝐋0 ∈ R𝑝×𝑁𝑑  is the sensor placement matrix; Θ = 𝐋0Φ𝑟 ∈ R𝑝×𝑟 is the reduced measurement matrix.
Another data-driven approach for creating the shape basis functions 𝜱 is to apply Principal Component Analysis (PCA) to 

the entire dataset and retain the dominant principal components as the shape basis functions [17]. However, performing PCA 
e.g. through Singular Value Decomposition (SVD) can potentially overlook the spatial relationships inherent in the full-field data 
when projecting the measurements onto the space spanned by the principal components. This limitation may render the approach 
less desirable for applications involving strain field evaluation, where preserving spatial consistency is critical.
Optimal Sensor Placement via QR Decomposition with Pivoting:

To ensure that Θ is well-conditioned for inversion, it aims to select rows of Φ𝑟 (i.e., sensor locations) that maximise the linear 
independence among the rows. This can be formulated as: 

𝜉∗ = arg max
𝜉,|𝜉|=𝑝

det(Θ⊤Θ) = arg max
𝜉,|𝜉|=𝑝

𝑟
∏

𝑖=1
𝜎2𝑖 (Θ) (16)

where 𝜎𝑖(Θ) are the singular values of Θ.
QR decomposition with column pivoting is an efficient algorithm to approximate this optimisation [57,59]. The pivoting process 

selects rows of Φ𝑟 that contribute most to the independence of the system, enhancing the estimation of 𝒃𝑡. 
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Sensor Placement Matrix Construction:
The sensor placement matrix 𝐋0 is constructed using canonical basis vectors 𝐞𝑗 ∈ R𝑁𝑑 : 

𝐋0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐞⊤𝜉1
𝐞⊤𝜉2
⋮

𝐞⊤𝜉𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

where 𝝃 = {𝜉1, 𝜉2,… , 𝜉𝑝} are the indices of the selected sensor locations.
Building upon the aforementioned sensor placement strategies, we introduce a two-stage approach that integrates modal 

reduction with Kriging-based uncertainty quantification to enhance full-field displacement reconstruction from sparse sensor data, 
as detailed in the next Section.

3. Proposed two-stage kriging prediction method

This section introduces the main contribution of this paper: a two-stage methodology integrating Modal Order Reduction and Kriging
for spatial prediction using sparse online measurements. This approach leverages basis functions derived from a comprehensive 
offline dataset to efficiently model and predict spatial responses at unmeasured locations while accounting for measurement 
uncertainties.

3.1. Overview of the two-stage approach

The proposed method comprises two primary stages:

1. Offline Stage:

(a) Modal Order Reduction: Utilise high-fidelity displacement data obtained from full-field measurements (e.g., from 3D 
stereo DIC) to construct a reduced-order model of the structural response using modal basis functions.

(b) Residual Covariance Estimation: Estimate the covariance of the residuals not captured by the modal approximation to 
inform the Kriging model.

2. Online Stage:

(a) Measurement Acquisition and Modal Coefficient Estimation: Collect real-time measurements from a limited number of 
optimally placed sensors and estimate the modal coefficients.

(b) Residual Prediction via Kriging: Use Kriging interpolation to predict residuals at unmeasured locations, leveraging the 
spatial covariance structure estimated offline.

(c) Final Response Prediction: Combine the modal approximation and predicted residuals to reconstruct the full-field 
displacement and quantify uncertainties.

A flowchart of the two-stage methodology is presented in Fig.  1. The offline stage, highlighted in teal boxes, focuses on 
data compression and modal property identification, while the online stage, shown in orange boxes, utilises the identified modal 
properties and shape basis functions to predict full-field responses from sparse measurements.

For a given specimen, DIC measurements can capture its topology, which serves as the foundation for extracting orthonormal 
basis functions. The optimal sensor placement is determined using QR decomposition with column pivoting, ensuring maximal 
independence among sensor locations. The displacement field is projected onto these shape features, facilitating modal property 
identification via N4SID. These identified modal properties enable mode shape expansion, while residual displacements are treated 
as a random field with an empirically estimated covariance structure. Kriging interpolation is then employed to predict full-field 
responses, integrating real-time sparse measurements obtained during live monitoring. The proposed approach aims to reduce the 
cost and complexity of sensor deployment while ensuring reliable and accurate response reconstruction. Further details are provided 
in the following subsections.

3.2. Stage 1: Offline stage

3.2.1. Data representation and modal order reduction
Let 𝐗 ∈ R𝑁𝑑×𝑁𝑇  denote the observed displacement data across 𝑁𝑑 DOFs over 𝑁𝑇  time samples. Each column 𝐗𝑡 = 𝐗(∶, 𝑡)

represents the spatial response at time 𝑡.
We approximate 𝐗 using a set of modal basis functions (mode shapes) 𝐕 ∈ R𝑁𝑑×𝑟 (𝑟 ≪ 𝑁𝑑) as follows: 

𝐗 = �̂� + 𝜼 + 𝝐 (18)
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Fig. 1. A flowchart illustrating the two-stage methodology for full-field displacement reconstruction using sparse measurements.

where �̂� = 𝐕𝜷 is the modal approximation; 𝜷 ∈ R𝑟×𝑁𝑇  contains the modal coefficients; 𝜼 ∈ R𝑁𝑑×𝑁𝑇  captures the residuals not 
explained by the modal approximation; 𝝐 ∈ R𝑁𝑑×𝑁𝑇  represents measurement noise.

Justification of the Formulation:
The modal shape functions 𝐕 are reconstructed by Eq.  (10) from shape feature mode shapes 𝐔 obtained through standard 

modal identification techniques applied to the time history of shape features. They reflect the physics of the underlying structural 
mechanics. Specifically, 𝐕 ∈ R𝑁𝑑×𝑟 is obtained with (𝑟𝑠 ≤ 𝑟 ≪ 𝑁𝑑), where 𝑟 is the number of shape features retained in the AGMD; 
𝑟𝑠 is the number of retained modes.

The sources of approximation errors can be categorised into two types: (1) Shape Feature Approximation Residue, which arises due 
to the dimensionality reduction in the shape feature space (from 𝑁𝑑 to 𝑟𝑠), introducing inherent approximation errors; and (2)
Modal Order Truncation Residue, which results from truncating higher-order modes in 𝐕, leading to additional errors. Consequently, 
the residual term 𝜼 captures the bias stemming from both the shape feature approximation residue and the modal order truncation 
residue. This term accounts for the variability in 𝐗 that is not captured by the modal approximation �̂�.

 Assumption on Measurement Noise (𝝐) 
It may be assumed that the measurement noise 𝝐 is independent and identically distributed (i.i.d.) Gaussian across both spatial 

locations and time: 

𝝐𝑖,𝑡 ∼  (0, 𝜎2) (19)

for 𝑖 = 1, 2,… , 𝑁𝑑 and 𝑡 = 1, 2,… , 𝑁𝑇 .
Covariance Structure of Measurement Noise
Since 𝝐 is i.i.d. across both spatial and temporal dimensions, the covariance matrix of 𝝐 at a fixed time 𝑡 is: 

Cov(𝝐𝑡) = 𝜎2𝐈𝑁𝑑 (20)

where 𝐈𝑁𝑑  is the identity matrix of size 𝑁𝑑 ×𝑁𝑑 .

3.2.2. Computation of modal coefficients
The modal coefficients 𝜷 may determined by solving the least squares problem: 

min
𝜷

‖𝐗 − 𝐕𝜷‖2𝐹 (21)
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3.3. Residual covariance estimation

To model the residuals 𝜼 = 𝐗 − 𝐕𝜷, the empirical covariance matrix may be established by [60], 

𝐂𝜂 =
1

𝑁𝑇 − 1
𝜼𝜼⊤ ∈ R𝑁𝑑×𝑁𝑑 (22)

Since the measurement noise 𝝐 contributes to 𝐂𝜂 , the covariance matrix needs to be adjusted to isolate the spatially correlated 
residuals: 

𝐂adjusted𝜂 = 𝐂𝜂 − �̂�2𝐈𝑁𝑑 (23)

where �̂�2 is the estimated measurement noise variance.
Estimation of Measurement Noise Variance
Assuming noise 𝜎2 is unknown, it may be estimated from the diagonal elements of 𝐂𝜂 [61]: 

�̂�2 = 1
𝑁𝑑

𝑁𝑑
∑

𝑖=1

(

𝐂𝜂(𝑖, 𝑖) −
𝑠
∑

𝑘=1
𝜆𝑘𝜓

2
𝑘 (𝑖)

)

(24)

where 𝜆𝑘 and 𝜓𝑘(𝑖) are the eigenvalues and eigenvectors from the PCA of 𝐂adjusted𝜂 ; and 𝑠 is the number of principal components 
retained.

Extraction of Residual Basis Functions
PCA is performed on 𝐂adjusted𝜂  to obtain the residual basis functions Ψ ∈ R𝑁𝑑×𝑠 and associated variances Λ ∈ R𝑠×𝑠: 

𝐂adjusted𝜂 ≈ ΨΛΨ⊤ (25)

The residuals can then be approximated as [60,62]: 

𝜼 ≈ Ψ𝜸 (26)

where 𝜸 ∈ R𝑠×𝑁𝑇  contains the coefficients for the residual basis functions.
The number of residual basis functions 𝑠 is determined by specifying a threshold for the variance explained by the principal 

components, for example, 99%.
The offline stage produces the necessary parameters for the online monitoring phase, including displacement modal shapes (𝐕), 

residual basis functions (Ψ), the residual covariance matrix (Λ), and the estimated measurement noise variance (�̂�2). These outputs 
are stored and subsequently utilised for accurate and efficient full-field displacement reconstruction during the online stage.

3.4. Stage 2: ‘Online’ stage

3.4.1. Measurement acquisition and modal coefficient estimation
During the online phase, sparse measurements 𝐱𝑡 ∈ R𝑝 are obtained at time 𝑡 from 𝑝 spatial locations 𝐒𝑝 ⊆ {1, 2,… , 𝑁𝑑}. 

Corresponding rows of the modal basis 𝐕𝑝 ∈ R𝑝×𝑟𝑠  and the residual basis Ψ𝑝 ∈ R𝑝×𝑠 are extracted. The sparse sensor locations 
are determined using the QR decomposition method, as discussed in Section 2.4.1.

The measurement model at time 𝑡 is expressed as: 

𝐱𝑡 = 𝐕𝑝𝜷𝑡 +Ψ𝑝𝜸𝑡 + 𝝐𝑡 (27)

where 𝜷𝑡 ∈ R𝑟𝑠  are the modal coefficients at time 𝑡, 𝜸𝑡 ∈ R𝑠 are the residual coefficients, and 𝝐𝑡 ∼  (𝟎, �̂�2𝐈𝑝) represents the 
measurement noise. Notably, the noise characteristics during the online stage are generally different from those in the offline stage 
(as shown in Eq.  (18)), since point-wise sensors differ from DIC measurements. However, for the purpose of validating the proposed 
methodology in this study, the sparse sensor locations are extracted directly from the same DIC dataset and treated as equivalent 
to sparse point-wise sensors.

The modal coefficients 𝜷𝑡 may be estimated by solving the weighted least squares problem: 

min
𝜷𝑡

(

𝐱𝑡 − 𝐕𝑝𝜷𝑡
)⊤ 𝐂−1

obs
(

𝐱𝑡 − 𝐕𝑝𝜷𝑡
)

(28)

where the observed covariance matrix may be expressed as [61]: 

𝐂obs = Ψ𝑝ΛΨ⊤
𝑝 + �̂�2𝐈𝑝 (29)

Solving the equation yields 

𝜷𝑡 =
(

𝐕⊤𝑝𝐂
−1
obs𝐕𝑝

)−1
𝐕⊤𝑝𝐂

−1
obs𝐱𝑡 (30)

This estimation ensures that the modal coefficients account for both the modal approximation and the residual uncertainties.
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3.4.2. Residual prediction via Kriging
Residuals at the sparsely measured locations may be computed by 

𝐫𝑡 = 𝐱𝑡 − 𝐕𝑝𝜷𝑡 (31)

The residuals 𝜼�̄�,𝑡 at unmeasured locations 𝐒�̄� = {1, 2,… , 𝑁𝑑} ⧵ 𝐒𝑝 may be approximated by Kriging prediction using the residual 
covariance structure estimated offline.

The joint distribution at time 𝑡 may be expressed as [60,61], 
[

𝐫𝑡
𝜼�̄�,𝑡

]

∼ 
(

𝟎,
[

𝐂𝑝𝑝 𝐂𝑝�̄�
𝐂�̄�𝑝 𝐂�̄��̄�

])

(32)

where 𝐂𝑝𝑝 = Ψ𝑝ΛΨ⊤
𝑝 + �̂�2𝐈𝑝; 𝐂�̄�𝑝 = 𝐂⊤𝑝�̄� = Ψ�̄�ΛΨ⊤

𝑝 ; 𝐂�̄��̄� = Ψ�̄�ΛΨ⊤
�̄� .

The conditional distribution may be expressed as, 

𝜼�̄�,𝑡 ∣ 𝐫𝑡 ∼ 
(

𝝁𝜂�̄�,𝑡 ,𝜂�̄�

)

(33)

where the conditional mean [60] may be expressed as,

𝝁𝜂�̄�,𝑡 = 𝐂�̄�𝑝𝐂−1
𝑝𝑝 𝐫𝑡

and the conditional covariance [60] may be expressed as,

𝜂�̄� = 𝐂�̄��̄� − 𝐂�̄�𝑝𝐂−1
𝑝𝑝 𝐂𝑝�̄�

3.4.3. Final response prediction
The predicted responses at unmeasured locations may be expressed as [60,61], 

�̂��̄�,𝑡 = 𝐕�̄�𝜷𝑡 + 𝝁𝜂�̄�,𝑡 (34)

where 𝐕�̄� ∈ R(𝑁𝑑−𝑝)×𝑟 are the modal basis functions at the unmeasured locations.
The predictive variance may be expressed as, 

Var(�̂��̄�,𝑡) = diag
(

𝜂�̄�

)

(35)

This variance quantifies the uncertainty in the predicted displacements at the unmeasured locations, which is essential for 
reliability assessment in structural health monitoring [8].

4. Case study: Vibration analysis of a curved plate

This case study applies the proposed two-stage methodology to the vibration analysis of a curved plate, demonstrating 
the effectiveness of integrating Modal Order Reduction and Kriging for full-field displacement reconstruction using sparse online 
measurements.

4.1. Specimen and experimental setup using DIC

As illustrated in Fig.  2, a slightly curved polypropylene (PP) plate with dimensions 260mm × 180mm × 3mm was suspended 
using four elastic cords to simulate free boundary conditions. A stinger connected to an electrodynamic shaker induced random 
excitations within the frequency range of 0–512 Hz, and the corresponding force input was recorded using a force transducer.

Two high-speed CMOS cameras were employed to capture transient images of the plate at a rate of 1000 frames per second over 
a duration of 4 s, resulting in 4000 temporal steps. Digital Image Correlation was utilised with Dantec Dynamics Istra 4D software 
to estimate the transient out-of-plane displacement at 2320 spatial points (subset centres) across the plate surface. The primary 
displacement of interest was the out-of-plane vibration, generating a dataset comprising 2320 spatial points × 4000 temporal steps, 
equalling over 9 million displacement measurements.

A 3D surface mesh was created from the measured point cloud using Delaunay triangulation [63], accurately capturing the plate’s 
curvature and enabling detailed geometric and displacement analysis. The specimen and its meshed representation are shown in 
Fig.  3.
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Fig. 2. Left: Front view of the curved plate specimen with a speckle pattern. Right: Back view of the specimen along with the shaker setup.

Fig. 3. Specimen of the curved plate presented as a set of DIC meshed triangles.

4.2. Shape basis function construction

To facilitate efficient analysis of the high-dimensional displacement data, a set of orthonormal, data-independent basis functions 
was constructed directly on the DIC-measured domain using bivariate monomials. These bivariate monomials, spanning from zero 
to eighth order along the shorter direction of the rectangular specimen and zero to tenth order along the longer direction, were 
defined over the plate’s measured spatial domain. The monomials were orthonormalised using the Gram–Schmidt process to ensure 
mutual independence, resulting in a total of 𝑅 = 99 orthonormal basis functions.

The full-field dataset, 𝐗, was projected onto the space spanned by the constructed basis functions, forming the AGMD 𝐁, as 
defined in Eq.  (5). The constructed orthonormal basis functions have the dimensions of Φ ∈ R2320×99.

Across all temporal samples (𝑇 = 4000 in this case study), the individual shape’s ‘energy’ as defined in Eq.  (7) was estimated by 
summing the squares of its coefficients over all 4000 temporal sample.

These energy values, {𝐸𝑘, 𝑘=1,2,…,99}, were then used to rank the shape features, retaining the top 𝑟 basis functions with the 
highest energy. This selection ensures that the same set of significant features is utilised for all temporal responses. Although 
the displacement field at different time steps may exhibit varying compression ratios relative to the retained shape feature sets, 
maintaining consistency in feature selection is crucial for accurate modal identification. Furthermore, quantifying the residual 
uncertainty arising from the compressed features becomes essential, which is the focus of this paper.

A reduced set of 𝑟 = 25 basis functions was retained to compress the dataset while maintaining high accuracy. The retained 
number 𝑟 was determined by ensuring a correlation above a threshold (e.g., 99%) between the original and reconstructed datasets.

The histogram of correlation coefficients between the full-field measured displacements and those reconstructed using 25 AGMD 
terms is shown in Fig.  4. It can be observed that most correlation coefficients, (𝜌, as defined in Eq.  (9)), are clustered around 0.999, 
indicating an excellent approximation for all sampled displacement fields using only 25 AGMD terms to represent 2320 data points.

The most significant 25 basis functions, determined by the magnitude of the AGMD coefficients, are illustrated in Fig.  5. These 
basis functions exhibit a structured pattern, making them less susceptible to spatial noise. Specifically, the first three functions 
correspond to vertical tilting, out-of-plane translation, and horizontal tilting, reflecting the plate’s fundamental rigid body modes 
and boundary conditions.

The AGMD method constructs basis functions directly on the measured domain obtained from the DIC system. In principle, 
orthonormal basis functions can be generated on arbitrary 3D surface meshes, making the method adaptable to structures with 
complex geometries. While this study focuses on a curved plate, the approach is extendable to other structures, provided that a 
suitable surface parameterisation is established.
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Fig. 4. Histogram of correlation coefficients between full-field measured displacements and those reconstructed using 25 AGMD terms.

Fig. 5. The most significant 25 orthonormalised monomial basis functions derived from AGMD.

4.3. Modal identification using shape features

With the displacement data compressed into a lower-dimensional feature space using the AGMD, the equation of motion can be 
transformed into the shape feature space, reducing the system to 25 equations [18]: 

�̃��̈�(𝑡) + �̃��̇�(𝑡) + �̃�𝐛(𝑡) = 𝜱⊤𝐅(𝑡), (36)
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Fig. 6. Reconstructed full-field displacement mode shapes using identified shape feature mode shapes.

where the ‘tilde’ symbol represents the transformed mass, damping, and stiffness matrices in the shape feature space spanned by 𝜱, 
while the overhead dot represents the time derivative.

Modal identification was then performed using the time history of shape features (AGMD coefficients) 𝐛 ∈ R𝑟. The MATLAB®
state-space estimation function ssest [64] was applied to estimate the modal properties from the AGMD data.

Five modes were identified from the AGMD time history, including natural frequencies 𝜔𝑛, modal damping ratios 𝜍𝑛, and AGMD 
mode shapes 𝐮𝑛. Notably, the natural frequencies and damping ratios identified in the shape feature space retain their physical 
meaning as in the original displacement space. For instance, the Frequency Response Function (FRF) expressions in the displacement 
space and the shape feature space are represented as follows:

In the displacement space [43]: 

𝐇𝐗(𝜔) =
𝑟𝑠
∑

𝑛=1

𝐯𝑛𝐯⊤𝑛
𝜔2
𝑛 − 𝜔2 + 𝑗2𝜍𝑛𝜔𝑛𝜔

, (37)

where 𝐯𝑛 are the column vectors of the mode shape matrix 𝐕, and 𝑗 =
√

−1 denotes the imaginary unit.
In the shape feature space [18]: 

𝐇𝐛(𝜔) =
𝑟𝑠
∑

𝑛=1

𝐮𝑛𝐮⊤𝑛
𝜔2
𝑛 − 𝜔2 + 𝑗2𝜍𝑛𝜔𝑛𝜔

, (38)

where 𝐮𝑛 are the column vectors of the shape feature mode shape matrix 𝐔.
These expressions illustrate that the eigenvalues in the denominators, which define the system’s natural frequencies and damping 

ratios, remain identical in both the displacement and shape feature spaces. The transformation affects only the numerators, which 
involve the mode shape coordinates, highlighting the preservation of physical meaning in the modal properties across the two spaces.

It can be observed that the shape feature transformation only affects the numerators in the FRF expression, while the eigenvalues 
in the denominators remain unchanged between the two formulations. This confirms that the natural frequencies and damping ratios 
identified in the shape feature space would be consistent with those in the displacement space. The full-field displacement mode 
shapes 𝐕 were reconstructed using: 

𝐕 ≈ Φ�̂�, (39)

where �̂� represents the five identified mode shapes in the shape feature space.
The reconstructed mode shapes are shown in Fig.  6, with the corresponding natural frequencies and modal damping ratios 

indicated in the titles of each subplot. The Auto Modal Assurance Criterion (Auto-MAC) [52] matrix in Fig.  7 confirms the accuracy 
of the identified modes, with nearly perfect unit diagonal entries.

4.4. Offline empirical covariance estimation

In the offline stage, the empirical covariance matrix was estimated to capture the residual variability not accounted for by 
the shape feature approximation and modal truncation. The residuals, 𝜼, were computed as the difference between the measured 
displacement field and the modal approximation. This calculation follows the theoretical framework presented earlier, leveraging 
the modal expansion and least-squares estimation of modal coordinates (𝜷).
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Fig. 7. Auto Modal Assurance Criterion (Auto-MAC) matrix of the identified modes.

The residual covariance matrix, 𝐂𝜂 , was estimated based on the sampled displacement field using Eq. (22) in Section 3.2.1. To 
account for measurement noise, the covariance matrix was adjusted as shown in Eq.  (23), isolating the spatially correlated residuals.

Principal Component Analysis was applied to the adjusted covariance matrix, 𝐂adjusted𝜂 , yielding a reduced set of residual basis 
functions (Ψ) and the corresponding variances diag(Λ) along the principal directions. These residual basis functions provide a 
compact representation of the residuals and were determined to collectively explain 99.95% of the total variance, resulting in six 
basis functions (𝑠 = 6) for this case study. These six extracted residual basis functions are visualised in Fig.  8 with their corresponding 
explained variance 𝜆𝑖 annotated on top of the each subplot.

The empirical covariance structures, illustrated in Fig.  9 for two example locations marked by an asterisk, highlight the spatial 
correlation of residuals. This eliminates the need to assume a parametric form for the covariance model, such as Exponential or 
Matérn. The corresponding variance distribution is shown in Fig.  10. These structures play a crucial role in the Kriging-based 
prediction during the online stage, leveraging spatial correlations in the residuals to enhance full-field reconstruction from sparse 
sensor measurements.

4.5. Online stage

For the online strategy, a sparse array of point-wise sensors was strategically deployed across the entire field to facilitate the 
effective reconstruction of the response field from expansion via basis functions. The optimal sensor locations were identified by 
selecting 𝑝 rows of the matrix formed by basis functions. This selection ensures that the reduced basis matrix retains the essential 
spatial characteristics necessary for accurately reconstructing the combination coefficients. Thereby preserving the fidelity of the 
full-field displacement representation.

4.5.1. QR decomposition with column pivoting
Sensor placement for optimal reconstruction was performed using QR decomposition with column pivoting, as detailed in 

Section 2.4.1. This approach formalises the selection of sensor locations by identifying rows of the shape basis matrix Φ that 
maximise their linear independence. The permutation matrix 𝐏 generated during the QR decomposition process determines the 
order of selected locations, prioritising rows that contribute the most to the system’s independence and enhancing the stability of 
inverting.

In this case study, where 𝑁𝑑 = 2320 DOFs and 𝑟 = 25 retained shape basis functions, MATLAB® ’s built-in QR decomposition 
function was applied to determine 𝑝 = 𝑟 = 25 optimal sensor locations. The results are shown in Fig.  11, where the blue dot markers 
indicate the selected locations, and annotated numbers reflect their order as determined by the pivoting algorithm. Notably, the 
selected locations initially cluster along the outer edges and gradually cover inner regions, achieving a well-distributed coverage 
across the entire specimen.

Five modes were identified using a conventional subspace identification method on the compressed shape features, accounting for 
approximately 99.9% of the total shape information. Consequently, 25 AGMD terms were retained to represent the high-resolution 
displacement field, as shown by the correlation coefficient histogram in Fig.  4. While the number of sensors does not need to match 
the number of modes, deploying 𝑝 = 25 sensors provides sufficient spatial coverage (spanning over 2000 spatial points) for transient 
measurements.
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Fig. 8. Residual basis functions: The first six principal components capturing 99.95% of the total residual variance.

Fig. 9. Covariance field example at selected locations.

In practice, the sensor selection process (using QR decomposition with pivoting) may stop when the next pivot in the 𝑅 matrix 
falls below a predefined fraction of the largest pivot. This balances the diminishing returns on measurement information with 
computational efficiency, allowing a more flexible determination of the sensor count.

Using measurements from these selected sensor locations (𝐱𝑡 ∈ R25), the modal coefficients 𝜷𝑡 were estimated as per Eq. (30) 
from Section 3.4.1. This computation involves the reduced matrix 𝐕𝑝 ∈ R25×5 corresponding to the sensor locations and the observed 
covariance matrix 𝐂obs, which incorporates the residual basis functions (Ψ𝑝), their explained variances (Λ), and the measurement 
noise variance (�̂�2).

The ‘point-wise’ sensor responses were derived from the DIC dataset, providing an opportunity to directly compare the 
reconstructed full-field responses, obtained through the proposed method, with the true displacement fields measured by DIC. 
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Fig. 10. Variance of residuals (𝜼).

Fig. 11. Optimal sensor locations identified using QR decomposition with 25 sparse sensors, overlaid on the nodal lines of the mode shapes.

This comparison serves to validate the accuracy and robustness of the sensor placement strategy and subsequent reconstruction 
methodology.

4.5.2. Kriging prediction
After estimating the modal coefficients (𝜷𝑡), the residuals at the measured sensor locations were calculated as: 

𝐫𝑡 = 𝐱𝑡 −Φ𝑝𝐔𝜷𝑡 (40)

Kriging interpolation was used to predict the residuals (𝜼�̄�,𝑡) at unmeasured locations (𝐒�̄�) based on the residual covariance structure 
estimated during the offline stage. The joint distribution of the residuals at the measured and unmeasured locations at time 𝑡 is 
characterised by the covariance matrices as detailed in Section 3.4.2.

The predicted mean residuals at unmeasured locations (𝝁𝜂�̄�,𝑡 ) and their conditional covariance (𝜂�̄� ) were computed using the 
conditional distribution formulas by Eqs. (34) and (35), respectively. These computations leverage the spatial correlation captured 
in the covariance structure to provide accurate predictions and associated uncertainties.

The performance of the Kriging prediction was evaluated by comparing the true full-field measurements with the predicted 
displacements. Fig.  12 presents this comparison at a representative time sample, including the predicted 95% confidence intervals.

The plot provides a comparative analysis of true versus predicted displacements, incorporating uncertainty quantification for a 
selected time sample (Time Sample #500). The predictions are obtained from an online stage model, which leverages basis functions 
and statistical inference to estimate displacements at unobserved points within the structure.
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Fig. 12. Comparison between true full-field measurements and Kriging-predicted displacements at one time sample, including 95% confidence error bars.

In this scatter plot, each blue marker represents a selected unobserved point where displacement has been predicted. The vertical 
blue error bars denote the standard deviation (square root of variance) of the prediction uncertainty, corresponding to a 95% 
confidence level. The black dashed line represents the ideal prediction scenario, where predicted displacements perfectly match the 
true displacements.

The predicted values exhibit strong agreement with the true displacements along the ideal 45-degree reference line, demon-
strating the model‘s effectiveness in capturing the structural response. The uncertainty bars provide insight into the confidence of 
the predictions, with smaller intervals indicating higher certainty. To enhance clarity in visualisation, only 100 out of a total of 
2320 spatial points are displayed in the figure. The majority of the confidence intervals overlap with the 45-degree line, indicating 
accurate predictions. However, a small number of intervals, particularly around the −0.9mm region, slightly deviate from the ideal 
line. Nevertheless, the overall distribution of uncertainty intervals remains acceptable.

These results highlight the robustness of the proposed methodology in estimating structural displacements while providing 
quantified uncertainty. A more detailed comparison of the full field will be presented in the following paragraphs.

Figs.  13 and 14 further illustrate the 95% confidence upper and lower uncertainty bounds derived from the Kriging formulation. 
While the upper bound consistently covers the entire field, the lower bound marginally undercovers certain regions. Despite this, 
the narrow gap between the bounds highlights the predictive accuracy and reliability of the Kriging approach, underpinned by the 
informed empirical covariance estimation conducted during the offline stage.

For this representative time sample, the relative error between the Kriging-predicted full-field response and the true displacement 
field is visualised in Fig.  15. The majority of the region exhibits minimal relative error below 0.5%, as indicated by the colour bar. 
The region with higher relative error is concentrated around a small central area, showing approximately 4.5% relative error.

In comparison, Fig.  16 illustrates the relative error between the true displacement and the Generalised Least Squares (GLS) 
fitted response. While the same central region displays discrepancies, the GLS approach exhibits higher relative differences of 7% or 
more. The overall relative error across the mesh is also higher, ranging around 1%–2%. These results demonstrate that the Kriging 
prediction is more informative and accurate, benefiting from the inclusion of the covariance structure from the offline stage.

4.5.3. Validation of the Kriging model
To evaluate the performance of the proposed method comprehensively, the coverage probability was assessed as a quantitative 

metric. Coverage probability measures the proportion of true displacement values that fall within the predicted confidence intervals, 
providing insight into the calibration and reliability of the model’s uncertainty estimates.

The objective was to evaluate whether the true displacements (𝐗true,𝑡) at unmeasured locations are captured within the predicted
95% confidence intervals. For each time sample, a set of 𝑝 = 25 vertices (𝐒𝑝) was selected as measured locations, and the remaining 
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Fig. 13. Comparison between true full-field measurements and Kriging-predicted uncertainty upper bound at one time sample.

Fig. 14. Comparison between true full-field measurements and Kriging-predicted uncertainty lower bound at one time sample.

vertices (𝐒�̄�) were treated as unmeasured points where predictions were made. At each unmeasured location 𝑖, the 95% confidence 
interval was constructed using the predicted mean displacement (�̂�(𝑖)

�̄�,𝑡) and the associated variance (Var(𝑖)𝜂 ): 

Lower Bound = �̂�(𝑖)
�̄�,𝑡 − 𝑧 ⋅

√

Var(𝑖)𝜂 (41)

Upper Bound = �̂�(𝑖)
�̄�,𝑡 + 𝑧 ⋅

√

Var(𝑖)𝜂 (42)
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Fig. 15. Relative error between true displacement and Kriging-predicted displacement.

Fig. 16. Relative error between true displacement and GLS-fitted displacement.

where 𝑧 ≈ 1.96 corresponds to the 95% confidence level.
For each unmeasured location, the true displacement (𝑋(𝑖)

true,𝑡) was compared against the confidence interval: 

Coverage Indicator(𝑖) =
{

1, if Lower Bound ≤ 𝑋(𝑖)
true,𝑡 ≤ Upper Bound

0, otherwise.
(43)
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Fig. 17. Coverage probability map using 25 sensors, achieving an overall coverage probability of 92.26%.

The overall coverage probability was then computed as: 

Coverage Probability =
∑

𝑖 Coverage Indicator(𝑖)
Total Number of Predictions (44)

This process was repeated across multiple validation time samples, covering all unmeasured locations in the dataset. The results 
were aggregated to obtain the final coverage probability.

Coverage Probability Results
The effectiveness of the Kriging predictions was evaluated through the coverage probability using 25 sparse sensors across 

the entire dataset. As illustrated in Fig.  17, the coverage probability was generally high in the outer regions of the plate but 
exhibited slight undercoverage towards the centre. The overall coverage probability of 92.26% for a nominal 95% confidence interval 
demonstrates that the Kriging model provides reliable displacement predictions and reasonable uncertainty estimates. The lower 
coverage observed at central locations can be attributed to the inherently smaller displacement amplitudes (as shown in Fig.  18), 
resulting in reduced signal-to-noise ratios. To address this, additional sensor locations were introduced, specifically targeting the 
central region, which subsequently improved coverage from a minimum of 0.30 to 0.55 and raised the overall coverage probability 
to 94.34% as shown in Fig.  19. This confirms that the sensor placement strategy effectively enhances spatial representation and 
reliability of the Kriging-based structural response prediction.

4.6. Case study summary

The case study applied the proposed two-stage methodology to the vibration analysis of a curved plate, demonstrating its 
effectiveness in reconstructing full-field displacements from sparse sensor measurements. In the offline stage, the AGMD reduced 
dataset dimensionality, while empirical covariance structures were estimated from residuals to inform Kriging-based predictions. 
Optimal sensor locations were identified using QR decomposition with column pivoting to ensure comprehensive spatial coverage. 
During the online stage, Kriging accurately predicted residuals at unmeasured locations, enabling precise full-field displacement 
reconstruction. The method achieved strong agreement with true displacements, at a representative time sample, with relative errors 
below 0.5% across most regions and a maximum of 4.5% in localised areas. Coverage probability assessment further validated the 
approach, achieving a reliability of 94.34% for the 95% confidence interval.

5. Conclusion & future work

This paper presents a two-stage methodology that integrates Modal Order Reduction and Kriging for efficient and accurate full-
field displacement reconstruction using sparse online measurements derived from high-resolution Digital Image Correlation data. 
The proposed approach leverages orthonormal shape basis functions, constructed via the Adaptive Geometric Moment Descriptor, 
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Fig. 18. Cumulative displacement amplitude at each point in the displacement field over the entire measurement history of 4000 temporal time steps.

Fig. 19. Coverage probability map incorporating three additional sensors in the central region, compared to Fig.  17. The overall coverage probability increased 
from 92.26% to 94.34%.

to compress large-scale displacement datasets while preserving essential structural dynamics. Optimal sensor placement is achieved 
through QR decomposition with pivoting, ensuring high linear independence and enhancing the stability of modal coefficient 
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estimation. The integration of Kriging interpolation for residual prediction further improves reconstruction accuracy and provides 
reliable uncertainty quantification, as demonstrated by a coverage probability in the case study of a curved plate. Overall, this 
data-driven framework proves effective and shows strong potential for robust, scalable applications in structural health monitoring.

While the current two-stage approach provides a robust framework for reconstructing full-field displacements with uncertainty 
quantification, several avenues remain open for further refinement and extension. Firstly, during the online stage, the methodology 
could be adapted to estimate the full-field response spectrum. By incorporating spectral analysis techniques into the Kriging-based 
inference, the method could provide real-time insights into frequency-dependent behaviours, assisting engineers in identifying 
critical resonance conditions or evolving dynamic features. Secondly, translating the displacement field predictions into strain fields 
and subsequently deriving strain spectra is not explored. Future studies can focus on building strain estimation models directly from 
the shape basis functions and the Kriging residual framework. By incorporating uncertainty quantification into the strain spectrum 
calculations, practitioners can obtain confidence intervals around strain-related parameters, enhancing the reliability of structural 
health assessments and informing maintenance or retrofit decisions.
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