
Please cite the Published Version

Pauu, Kulaea Taueveeve , Wu, Jun and Bashir, Ali Kashif (2025) TeraPRI: Homomorphic
Terahertz-Empowered Joint Wireless Power and Information Transfer with Privacy-Preserving for
6G-Autonomous Vehicles. IEEE Transactions on Consumer Electronics. pp. 1-14. ISSN 1558-
4127

DOI: https://doi.org/10.1109/tce.2025.3552624

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/639329/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an accepted manuscript of an article which first appeared in IEEE
Transactions on Consumer Electronics

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0009-0003-1643-4153
https://orcid.org/0000-0003-2483-6980
https://orcid.org/0000-0003-2601-9327
https://doi.org/10.1109/tce.2025.3552624
https://e-space.mmu.ac.uk/639329/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


1

TeraPRI: Homomorphic Terahertz-Empowered Joint
Wireless Power and Information Transfer with

Privacy-Preserving for 6G-Autonomous Vehicles
Kulaea Taueveeve Pauu, Graduate Student Member, IEEE, Jun Wu, Senior Member, IEEE, Ali Kashif

Bashir Senior Member, IEEE

Abstract—In sixth-generation networks, Terahertz technol-
ogy enables high-speed, low-latency communication capabilities,
while Mobile Edge Computing (MEC) enhances remote com-
putation, leveraging Autonomous Vehicles capable of providing
computational resources and energy support, particularly in
challenging environments where conventional terrestrial infras-
tructure is absent. However, challenges remain, particularly with
the limited energy of end-user nodes and the constrained data
capabilities of MEC nodes in THz networks, which require
substantial energy to transmit large volumes of data. Efficient
coordination of energy supply and information transfer is es-
sential. Additionally, such networks can face signal interference
and leakage of privacy-sensitive information, complicating data
security and reliable communication. To address these challenges,
we propose TeraPRI, a novel framework for homomorphic
THz-empowered joint wireless power and information transfer
with privacy preservation for 6G Autonomous Vehicles. First,
we introduce a dual-mode adaptive resource allocation method
that alternates between "harvest-and-then-transmit-mode" (HaT-
mode) and "transmit-and-then-harvest-mode" (TaH-mode) based
on end-user node demands. Second, we design a selective CKKS
homomorphic encryption technique with lightweight thresholding
for frequency allocation, enabling the MEC to securely assign
unique THz sub-channels to end-user nodes in the low-THz
band (0.1–1.0 THz) while enhancing communication security
through randomized frequency hopping. Extensive simulations
show that TeraPRI significantly improves power transfer, infor-
mation transfer rates, and privacy over existing methods.

Index Terms—6G networks, terahertz technology, mobile edge
computing, wireless power and information transfer, autonomous
vehicles, privacy-preserving

I. INTRODUCTION

IN recent years, the rise in new age Internet-of-Things (IoT)
consumer electronics, such as wearable gadgets, monitoring

sensors, wireless terminals, smart devices, etc. [1]–[4], referred
to as end-user nodes, has marked the beginning of a new
era of transformation for the IoT. By 2030, it is estimated
that nearly 500 billion IoT devices will be in operation,
playing a vital role in wireless data collection for various data-
intensive applications, including weather monitoring, road
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monitoring for public safety, and emergency detection in
different scenarios [5]. These end-user nodes will be connected
intelligently in a massive network to collect and share data
on locations, tracking, delivery routes, etc. [5], [6]. They
will amass significant amounts of data from multiple sources,
which are then transmitted for processing. Since these end-
user nodes gather large volumes of data and rely on limited
battery power, they often deplete their energy quickly [7],
limiting their ability to upload data efficiently. Additionally, in
such a network, the data upload process can increase network
traffic and lead to prolonged propagation delays [8]. Therefore,
addressing the energy needs of these battery-constrained end-
user nodes and efficiently managing data uploads is crucial to
maintaining the high-speed data transmission and low latency
required in massive IoT networks.

In 6G networks, the THz spectrum which operates within
the frequency range of 0.1 to 10 THz [9], offers a vast
array of resources that can address the requirements of high-
speed data transmission and low-latency communication ca-
pabilities. The abundance of available bandwidth within the
THz spectrum enables the efficient handling of large vol-
umes of data, ensuring that end-user nodes receive timely
and responsive services [10]–[12]. However, THz signals are
highly sensitive to environmental factors such as atmospheric
absorption and signal attenuation, making traditional edge
computing unsuitable as it restricts wireless communication
ranges and increases vulnerability to damage, thereby making
it challenging to deliver services to end-user nodes, especially
in remote areas or regions affected by natural disasters [13]–
[15]. Meanwhile, MEC leveraging 6G-autonomous vehicles
(AVs) encompasses a range of platforms capable of inde-
pendent operation, including ground-based systems such as
self-driving cars and aerial platforms like unmanned aerial
vehicles (UAVs) [16]–[18]. This paper takes UAVs as an
example of AVs, highlighting their role in enabling efficient
short-range wireless connections by bringing computation and
transmission services closer to end-user nodes at the network’s
edge [19]–[21]. UAVs provide unique advantages such as rapid
deployment, wide-area coverage, and accessibility in remote
or disaster-affected regions, making them a suitable MEC
platform for this work. This approach also enhances THz
capabilities by establishing short-distance line-of-sight (LoS)
links [22]–[24]. The proximity of the MEC nodes to end-user
nodes facilitates efficient task distribution, reduces latency, and
improves the speed of data transmission and response times
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[25], [26]. The integration of MEC with THz spectrum in
6G networks offers significant potential for achieving high-
speed, low-latency communication. By positioning computa-
tion closer to end-user nodes, MEC nodes can improve the
efficiency of THz transmissions. Despite its potential, this
integration faces challenges:

First, end-user nodes encounter limited energy resources,
as transmitting large volumes of data in the THz spectrum
requires considerably higher power. MEC nodes have lim-
ited data handling capabilities, which further reduces their
efficiency in managing and transmitting large volumes of
data. Therefore, to efficiently manage these demands, effective
coordination of wireless power transfer and information trans-
fer is essential to address the energy limitations of end-user
nodes and the constrained capabilities of MEC nodes. While
significant progress has been made, existing studies—ranging
from RF-based solutions to advanced THz spectrum meth-
ods—exhibit key limitations in the the coordination of wireless
power and information transfer [27]–[31]. For instance, Ju et
al. [27] proposed a wireless-powered communication network
(WPCN) operating in the RF spectrum. Their work introduced
a harvest-then-transmit protocol, where users first harvest
energy during the downlink (DL) phase and then transmit
information in the uplink (UL) using time-division multiple
access (TDMA). While foundational, this approach is static
and does not adapt to real-time energy demands, limiting its
efficiency. To leverage the potential of the THz spectrum, re-
cent works have explored joint power and information transfer
methods. Rong et al. [28] proposed a SWIPT scheme for
nanonetworks operating in the THz band. Their work used
an amplify-and-forward (AF) relaying mechanism, where the
relay node harvested energy from the received signal and for-
warded information to the destination. However, this approach
lacks dynamic adaptability to real-time user energy states.
Hanif et al. [29] introduced Simultaneous Terahertz Imaging
with Information and Power Transfer (STIIPT), integrating
energy transfer, data communication, and radar imaging. While
leveraging advancements in THz semiconductor technologies
and antenna design, their system does not address dynamic
resource allocation at the individual node level. Pan et al.
[30] developed a reconfigurable intelligent surface (RIS)-aided
STIPT system to optimize power transfer and data rates for
energy users (EUs) and information users (IUs). Although ef-
fective in improving system-wide performance, their approach
lacks adaptability to individual user conditions, focusing in-
stead on global optimization. Jeong et al. [31] investigated
a UAV-enabled SWIPT system, where UAVs optimize power
allocation, power-splitting ratios, and flight trajectories to
deliver energy and information to multiple nodes. However,
the reliance on fixed power-splitting ratios limits the system’s
ability to adapt to varying energy demands of individual users.

Second, coordinating wireless power and information trans-
fer often leads to signal interference and privacy-sensitive
information leakage [32], complicating efforts to ensure data
security and reliable communication channels. Several existing
studies have addressed this challenge [33]–[38]. For instance,
Lai et al. [33] proposed a method to enhance security in
an MEC network against eavesdroppers. The method mini-

mizes the secrecy outage probability (SOP) while balancing
latency and energy constraints. Azari et al. [34] proposed
privacy-preserving aggregation for secure THz communication
in emergency scenarios. Alali et al. [35] optimized UAV-
ground communication security in sub-Terahertz bands using
cooperative UAV jamming and multiple-input-multiple-output
(MIMO) techniques. Zhou et al. [36] proposed a secure MEC
system using UAVs to offload computing tasks from ground
users. It addresses security challenges posed by multiple
eavesdropping UAVs by implementing jamming signals and
optimizing system parameters for secrecy capacity, latency,
and power constraints. Jin et al. [37] proposed a novel
physical-layer assisted secure offloading scheme for MEC to
address privacy risks. It involves edge servers broadcasting
jamming signals and utilizing full-duplex communication to
suppress eavesdropping and self-interference. Singh et al.
[38] emphasized robust encryption for THz communications,
highlighting privacy vulnerabilities.

The aforementioned studies on both challenges have primar-
ily focused on either coordinating wireless power and infor-
mation transfer or addressing privacy preservation separately.
To the best of the authors’ knowledge, at the time of writing,
this paper is the first to provide a unified solution addressing
both challenges. We emphasize the need for a framework that:

• Integrates wireless power transfer to extend the opera-
tional lifetime of end-user nodes and information transfer
to offload collected monitoring data from end-user nodes
to MEC nodes for efficient processing; and

• Ensures the privacy preservation of transmitted informa-
tion while mitigating signal interference.

In this context, we propose TeraPRI, a novel framework
for homomorphic THz-empowered joint wireless power and
information transfer with privacy preservation, specifically
designed for 6G networks where AVs serve as MEC
nodes.TeraPRI enables MEC nodes to efficiently coordinate
energy and data transfer, managing the high energy and data
transmission demands of end-user nodes. It also addresses
signal interference and privacy leakage, ensuring secure and
reliable communication. The main contributions of this study
can be summarized as follows:

1) We propose TeraPRI, a novel framework for homo-
morphic THz-empowered joint wireless power and in-
formation transfer with privacy preservation tailored
for 6G-Autonomous Vehicles serving as MEC nodes.
TeraPRI efficiently integrates energy harvesting and se-
cure information transmission while addressing the dual
challenges of energy constraints and privacy-sensitive
communication.

2) Within the TeraPRI framework, we develop a dual-
mode adaptive resource allocation method to dynami-
cally allocate the received power in the signal for joint
wireless power and information transfer. This method
adapts between two modes based on real-time energy
demands of the end-user nodes:

• harvest-and-then-transmit-mode (HaT-mode): Prior-
itizes energy harvesting when the node’s battery
level is below a predefined threshold.
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• transmit-and-then-harvest-mode (TaH-mode): Allo-
cates power for information transmission when suf-
ficient energy is available.

3) We design a selective CKKS homomorphic encryption
technique with lightweight thresholding for frequency
allocation, enabling the MEC to securely assign unique
THz sub-channels to end-user nodes in the low-THz
band (0.1–1.0 THz) [39]–[41], while enhancing com-
munication security through randomized frequency hop-
ping.

The remaining sections of this paper are organized as
follows: Section II introduces the TeraPRI Network Model,
followed by Section III presenting the proposed framework
solution of TeraPRI, Section IV focuses on the performance
analysis of the simulation experiments, while Section V con-
cludes the work and outlines potential future research.

II. TERAPRI NETWORK MODEL

In this section, we introduce the network model of TeraPRI
illustrated in Fig. 1.

Fig. 1: Illustration of the TeraPRI network model, highlighting
wireless power transfer in the downlink, wireless information
transfer in the uplink, and potential jamming signals from
eavesdroppers.

This paper focuses specifically on the time window during
which the MEC is within communication range of the end-
user nodes. We consider a set of N end-user nodes, denoted
as VEU = {EUi | i ∈ [1 : N ]}, which can be movable,
such as those found on wearable nodes, body sensors etc. The
altitude of the end-user nodes is maintained at a minimum
altitude HVEU ≥ 0. These nodes could potentially be situated
beyond the network coverage area, and the conventional edge
server may experience disruptions due to various factors,
such as unforeseen disasters. Because of these possibilities,
we consider MEC servers, denoted as MECbs, such as AVs,
including UAVs, that are equipped with power transmitters and
computation capabilities. The MECbs is capable of providing
charging services to the VEU, and each EUi is equipped with
a limited rechargeable battery capable of harvesting energy,
as well as a THz modulator for backscatter communication.

We assume that MECbs relies on a stable solar power system
for uninterrupted operation and maintains a minimum altitude
HMECbs

> 0. Each EUi in VEU relies solely on received
THz signals transmitted by MECbs for energy supply. The
EUi stores this energy and utilizes it to power its operational
circuits. Both MECbs and VEU are assumed to be equipped
with GPS sensors to determine the location and a single
antenna to facilitate communication.

The TeraPRI network model operates in two phases: down-
link and uplink. During the downlink phase, the MECbs trans-
mits energy to the end user nodes VEU for energy harvesting.
Each node EUi ∈ VEU uses this energy to recharge its battery
if its battery level is below a predefined threshold. Once
the battery level of EUi exceeds the predefined threshold, it
transitions to the uplink phase, using the received signal to
backscatter the modulated information back to MECbs. This
decision-based mechanism ensures efficient energy use and
seamless transitions between energy harvesting and informa-
tion transmission. Synchronization between backscatter mod-
ulation and MECbs is achieved dynamically without explicit
time-slot allocation. Each end-user node EUi autonomously
decides whether to reflect information or harvest energy based
on its battery level. During the uplink phase, the MECbs

detects the reflected modulated signals from active nodes
EUi ∈ VEU and processes the data accordingly. The short-
range and narrow-beam characteristics of THz signals allow
the MECbs to focus on individual nodes, reducing interference
and ensuring reliable data reception.This configuration sup-
ports low-power, energy-efficient communication, leveraging
the unique capabilities of THz frequencies and backscatter
modulation to enable robust and sustainable applications.

A. THz Signal Generation and Transmission by MECbs

We assume the MECbs is equipped with a THz source
capable of modulating a THz signal waveform. The signal
transmitted from MECbs to a EUi in VEU at time t is a mod-
ulated carrier wave with amplitude and frequency modulation
that does not carry any information. The signal is represented
as a sum over k from 0 to L − 1, covering all chips in the
signal:

SMECbs
(t) =

L−1∑
k=0

[
Ak × sin (2π(fc,k + Fh,k)t)×

√
pk × Sk(t− (k × Tk))

]
,

(1)

where L is the total number of bits, k is an integer that
represents the index of the chip in the sequence, Ak is the
amplitude, fc,k is the carrier frequency, Fh,k is the frequency
offset in the hopping sequence,

√
pk is the amplitude scaling

factor for the k-th chip, based on the power pk in the
transmitted signal, and Sk(t − (k × Tk)) is the frequency
modulation function. The term t− (k×Tk) shifts the function
by k × Tk, where Tk is the chip duration. This means that
k × Tk delays the k-th chip by k times the duration of one
chip.
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The power of the k-th bit of the transmitted signal is given
by:

pk =

∫ tk+1

tk

|SMECbs
(t)|2 dt, (2)

The average power for each k-th bit over its duration Tk is:

pavg,k =
1

Tk

∫ tk+1

tk

|SMECbs
(t)|2 dt, (3)

The average power for the entire signal over its total
duration Ttot is:

pavg =
1

Ttot

∫ tend

tstart

|SMECbs
(t)|2 dt, (4)

The peak power is the maximum power among all bits:

ppk = max (pk) , k ∈ [0, L− 1]. (5)

B. Propagation of the THz Signal

Following the THz signal generation and transmission from
MECbs, it propagates through the environment to the intended
EUi. Assuming a direct LoS path with minimal NLoS devia-
tions, the time-varying channel response between MECbs and
EUi is expressed as:

hSMECbs
(t) =

√
GtxGrxλ2

4π(dt)2
× exp

(
−j

2π

λ
dt

)
+∆h(t), (6)

Here, −j denotes the imaginary unit (
√
−1), indicating phase

shift. The term
√

GtxGrxλ2

4π(dt)2
represents free-space path loss,

accounting for antenna gains Gtx and Grx, wavelength λ, and
distance dt. The phase shift exp

(
−j 2πλ dt

)
includes amplitude

and phase information. ∆h(t) represents time-varying channel
fluctuations. The distance dt is the Euclidean distance as
defined in [7].

Molecular absorption loss occurs when the THz signal is at-
tenuated due to interactions with molecules in the atmosphere.
This phenomenon is quantified by Beer-Lambert Law and is
expressed as:

Lmab = exp

(
−1

2

∑
m

(
psys

pref

)
·
(
Ptemp

Ts

)
·Qm · δm(fc) · dt

)
,

(7)
where

∑
m

(
psys

pref

)
·
(

Ptemp

Ts

)
· Qm · δm(fc) represents the

medium’s absorption coefficient. Here, psys is the system pres-
sure, pref = 1 atm is the reference pressure, Ptemp = 273.15 K
is the standard temperature, Ts denotes the system temperature
measured in Kelvin (K), Qm is the molecule density of gas m,
and δm is the absorption cross-section of gas m [29]. Details
of the derivation are in [42], and parameters are from HITRAN
[43]. Besides molecular absorption loss, the transmitted THz
signal in equation (1) encounters thermal noise and water va-
por absorption noise in the channel [44], modeled as Gaussian
distributions via the Central Limit Theorem [45], [46].

The instantaneous additive channel noise at time t is ex-
pressed as:

nEUi
(t) ∼ N

(
0, kBTsBFn +

2kBTsLmab(fc)

B

)
, (8)

where ∼ N indicates that nEUi
(t) follows a Gaussian distri-

bution with a mean of 0. The term kBTsBFn represents the
power spectral density of thermal noise, while 2kBTsLmab(fc)

B
accounts for the molecular absorption noise component. Here,
kB is the Boltzmann constant (1.38 × 10−23 J/K), Ts is the
system temperature, B is the bandwidth of the communication
channel, and Fn is the receiver noise figure. The thermal
noise originates from Johnson-Nyquist noise, while molecular
absorption noise results from THz signal attenuation due to
atmospheric interactions.

The noise power for a given frequency fc at a distance can
be expressed as [42]:

σ2
n,EUi

=

∫ fc+
B
2

fc−B
2

(kB · Ts) · η(fc, t)2 df, (9)

The system’s noise temperature is primarily influenced by the
molecular absorption noise temperature, as derived from (8),
and this influence is particularly significant in environments
where other electronic noise sources are minimal. Therefore,
in scenarios where the receiver lacks specific elements such as
amplifiers and frequency converters, the molecular absorption
noise temperature is the key factor shaping the noise temper-
ature of the system, and it is expressed as:

Tabs(fc, d) =
2kBTsLmab(fc)

B
, (10)

Here, Lmab(fc) is the molecular absorption coefficient at car-
rier frequency fc. The molecular absorption noise temperature
represents the additional noise from THz signal absorption by
water vapor and other atmospheric molecules. The channel
power gain follows a free-space path loss model given by:

|hSMECbs
(t)|2 =

GtxGrxλ
2

(4πdt)ϱ
, (11)

where dt represents the Euclidean distance (in meters) between
MECbs and EUi at time t, 1

16π2GtxGrx represents a reference
channel gain at a 1m distance, and ϱ is the path loss exponent.
Thus, the total path loss is:

Ltot =
(4πdt)

ϱ

GtxGrxλ2
× Lmab. (12)

C. Reception of the THz Signal at EUi

After being transmitted from MECbs, the THz signal reaches
EUi. The received signal at this node is influenced by the
MECbs transmitter antenna gain Gtx, the time-varying channel
response hSMECbs

(t), the total path loss Ltot, and the EUi

antenna gain Grx:

REUi
(t) =

√
GtxGrx ·

hSMECbs
(t)

√
Ltot

· SMECbs
(t) + nEUi

(t), (13)

where SMECbs
(t) is the transmitted signal from equation (1),

and nEUi(t) represents the instantaneous additive noise re-
ceived by EUi, modeled as a zero-mean Gaussian distribution
incorporating both thermal and molecular absorption noise.

The received signal’s reliability is evaluated based on the
signal-to-noise ratio (SNR), which is defined as the ratio of
the received signal power to the noise power at time t:

SNRdown(t) =
prx · |hSMECbs

(t)|2

Ltot · σ2
n,EUi

, (14)
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where prx = pk · Gtx · Grx represents the received usable
power at EUi, with pk being the power of the k-th bit of the
transmitted signal from equation (1), while σ2

n,EUi
represents

the noise power at EUi.

D. Reflection of THz Signal to the MECbs

In this step, the EUi does not generate a new signal; instead,
it modulates the received THz signal from MECbs in equation
(1) with its own information and reflects it to the MECbs. The
reflected signal received at the MECbs is given by:

RMECbs
(t) =

√
Grx · hSMECbs

(t) · Γmod(t) ·REUi
(t) + nMECbs

(t),
(15)

where Γmod(t) is the modulation coefficient applied by EUi to
encode the information, and nMECbs

(t) is the additive noise at
MECbs.

The SNR for backscatter communication, which is influ-
enced by two-way path loss and the efficiency of the modula-
tion process, is given by:

SNRup(t) =
(Γmod(t))

2 · prx · |hSMECbs
(t)|2

L2
tot · σ2

n,MECbs

, (16)

where prx = pk · Gtx · Grx denotes the received power at
EUi, and σ2

n,MECbs
represents the noise power at MECbs. Since

backscatter involves two-way propagation, the total path loss
is squared L2

tot to account for both the downlink and uplink
attenuation.

III. THE PROPOSED TERAPRI FRAMEWORK

This section provides the detail solution of our proposed
TeraPRI framework, designed to efficiently coordinate power
and information transfer while ensuring privacy and commu-
nication reliability. The workflow is illustrated in Fig. 2.

A. Adaptive Resource Allocation for THz-Empowered Joint
Wireless Power and Information Transfer

We design an adaptive resource allocation method for joint
wireless power and information transfer within a proposed
low-THz frequency range (0.1 − 1.0THz). This method dy-
namically switches between HaT-mode and TaH-mode based
on the demands from EU i, allocating the power resources
received by EU i from the signal REUi

(t) in equation (13)
for either energy harvesting or information transmission. The
resource allocation is managed through a condition-based
approach:

Ralloc =

{
Brec, if ρin

t ≤ ρthresh,

Itran, else if ρin
t ≥ ρthresh,

(17)

Here, the logic behind Ralloc is as follows: if the initial battery
level ρin

t of EUi upon receiving the signal REUi
at time t

is less than or equal to a predefined threshold ρin
t , all the

received power will be allocated towards recharging of EUi.
However, if the initial battery level ρin

t is above the predefined
threshold ρthresh, the received power is then allocated towards
transmitting information from EUi to MECbs.

In the scenario where ρin
t ≤ ρthresh, the HaT-mode is

activated, allocating all of Ralloc for the battery recharging

Fig. 2: Our proposed TeraPRI framework workflow.

Brec. All energy-related quantities in this work are measured
in joules (J). The amount of energy harvested at each node
EUi during the h-th hop at time t is given by:

Ehar,EUi,h,t
= ηEUi · ph · |hSMECbs

(t)|2 · ψh, (18)

where, ηEUi
∈ (0, 1) is the conversion efficiency of the energy

harvested at EUi, and ψh is the duration of the frequency hop.
The energy consumed by EUi at time t, denoted as EEUi

(t),
should not exceed the total energy harvested during that time,
which is given by:

EEUi
(t) ≤

H∑
h=1

Ehar,EUi,h,t, (19)

where H denotes the total number of frequency hops.
The update battery level of EUi at time t+ 1 is:

ρEUi
(t+ 1) = ρEUi

(t) +

H∑
h=1

Ehar,EUi,h,t − EEUi
(t), (20)

The computational complexity of Algorithm 1 is derived
based on its iterative structure and the key operations per-
formed during the HaT-mode and TaH-mode. The algorithm
processes N end-user nodes iterating through each node EUi

to dynamically determine the appropriate resource allocation
method. Feedback information in TaH mode is processed
through concatenation, hashing (SHA-256), and encoding op-
erations. These operations are proportional to the length of
the feedback information processed, denoted L. Thus, the
computational complexity of Algorithm 1 can be formally
derived as:

T (N,L) =

N∑
i=1

(
Tcons + Tmode(L)

)
, (21)
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Algorithm 1 Adaptive Resource Allocation for THz-
Empowered Joint Wireless Power and Information Transfer
Input: REUi

, ρin
t , ρthresh, ηEUi

, ψh, t.
Output: ItranEUi

(t) from EUi to MECbs at t via backscatter.
1: Initialization: Set initial battery level ρin

t

2: for each EUi in VEUc
do

3: Determine resource allocation method Ralloc
4: if ρin

t ≤ ρthresh then
5: HaT-mode Activated:
6: Harvest energy

∑H
h=1Ehar,EUi,h,t

7: Update battery level ρEUi
(t+ 1)

8: Stop recharging if ρEUi
(t+ 1) ≥ ρthresh

9: else
10: TaH-mode Activated:
11: Encode IDEUi

, md, Tstp, Rloc with UTF-8 and BInf
12: Convert md to binary Bq and map to mdj via Gq

13: Concatenate feedback information Bcomb
14: Pad Bcomb to a multiple of 512 bits before hashing
15: Apply SHA-256 hash to obtain HBcomb

16: Modulate HBcomb into the signal using Mpro(t)
17: Transmit ItranEUi

(t) while ρin
t > ρthresh

18: Stop transmission when ρin
t ≤ ρthresh

19: end if
20: end for

where N is the number of end-user nodes (VEU), L is the
length of the processed feedback information, Tcons represents
the constant time required to evaluate the condition ρin

t ≤
ρthresh, and Tmode(L) represents the time complexity of mode-
specific operations (HaT-mode or TaH-mode).

For each EUi in HaT-mode (ρin
t ≤ ρthresh), the algorithm

performs energy harvesting operations. These involve state
updates that are independent of L, contributing a constant
complexity:

THaT
mode(L) = O(1). (22)

In TaH-mode (ρin
t > ρthresh), the algorithm processes feed-

back information via concatenation, hashing (SHA-256), and
encoding. These operations are proportional to L, resulting in:

T TaH
mode(L) = O(L). (23)

The total computational complexity becomes:

T (N,L) =

N∑
i=1

(
O(1) +O(L)

)
= O(N · L), (24)

where (N) is the number of end-user nodes, and (L) is
the size of the processed feedback information. The total
computational complexity ensures that Algorithm 1 scales
linearly with both the number of end-user nodes and the
size of the processed data, making it efficient for large-scale
deployments.

In the scenario where ρin
t ≥ ρthresh, the TaH-mode is

activated, allocating all Ralloc to the information transmission
Itran. The transmitted information is referred to as "feedback
information", and it includes the EUi identifier IDEUi

, col-
lected data md, timestamp Tstp, and current location Rloc.

The encoding process for IDEUi , Tstp, and Rloc involves
converting these elements into UTF-8 binary representations.
Let Cn denote the UTF-8 binary representation of each
component, where:

Cn = UTF-8(Un). (25)

The combined binary representation BInf is calculated by
summing the UTF-8 values multiplied by their positional
weights:

BInf =
∑

(Cn · 2(kj−1)). (26)

For binary values Bj with fewer than 7 bits (len(Bj) < 7),
they are left-shifted to 8 bits:

Eshort,j = Bj × 2(8−len(Bj)). (27)

For binary values Bj with 7 bits or more (len(Bj) ≥ 7), 1s
are prefixed, followed by 0s to complete each byte:

Elong,j = 2(7×bj) +Bj × 2(8×(bj−1)). (28)

The number of bytes required is given by:

bj = ⌈(len(Bj)− 1)/7⌉, (29)

where Bj is the UTF-8 binary value, and len(Bj) is its length.
The encoding process for md depends on the number of

bits Sbits, which is determined by the total number of items
M using Sbits = ⌈log2(M)⌉. The binary representation of
each item is generated using Gray code [47], ensuring that
consecutive values differ by only one bit. For each integer Bq

in the range 0 to 2Sbits − 1, Gray code Gq is computed as:

Bq ∈ {0, 1}Sbits ,

Gq = [Bq[0]⊕Bq[1]⊕ . . .⊕Bq[Sbits − 1]] .
(30)

This method XORs adjacent bits in the binary representation
to produce Gq . Each monitoring data item mdj is assigned a
unique Gray code denoted as Gqj using the mapping function
Gmap, expressed as:

Gmap(mdj ) = Gqj , for j ∈ {1, 2, . . . ,M}, (31)

where Gqj is the Gray code corresponding to mdj .
After encoding IDEUi , Rloc, md, and Tstp, the combined

binary representation of the feedback information is denoted
as Bcomb. This representation is obtained by concatenating
the individual encoded components in a specific order, as
described in equation (38), where ∥ indicates the concatenation
operation. To ensure the integrity of Bcomb, we apply a SHA-
256 hash function, as previously implemented in our work
[13]. Since Bcomb can vary in length, we pad it to a multiple
of 512 bits by appending a ′1′ bit followed by ′0′ bits until
the length is 448 mod 512. Finally, we append the length of
Bcomb as a 64-bit binary representation. The padded binary
string is given by:

Bpad = Bcomb∥1∥ 0k︸︷︷︸
appended ’0’ bits

∥LBcomb , (32)

where LBcomb represents the 64-bit length of Bcomb.
For further processing, the binary string Bpad is divided into

64 segments, each consisting of 32 bits. These segments are
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denoted as Di, where i ranges from 1 to 64. Each Di repre-
sents a 32-bit word extracted from Bpad. This decomposition
is expressed as:

DBpad = D1︸︷︷︸
32-bit word

∥ D2︸︷︷︸
32-bit word

∥ . . . ∥ D64︸︷︷︸
32-bit word

, (33)

where ∥ indicates the concatenation of the 32-bit words Di.
To compute each Di word, we use functions F1 and F0,

which perform bitwise operations and iterate over 64 rounds.
The computation is expressed as:

Di = F1(Di−2)︸ ︷︷ ︸
bitwise operations

+Di−7 + F0(Di−15) +Di−16,

e.g., (RotR(Di−2, 2)⊕RotR(Di−2, 13)⊕RotR(Di−2, 22)).
(34)

After processing all blocks of Bcomb, we concatenate the
updated hash values to obtain a final hash value denoted as
HBcomb . This HBcomb serves as a unique checksum to ensure the
integrity and authenticity of Bcomb. Next, HBcomb is modulated
into the received signal using backscatter modulation, as de-
scribed in equation (13). In this process, the carrier frequency
at the time of reception carries the feedback information back
to the MECbs. The modulation process is given by:

Mpro(t) =
S−1∑
q=0

(
A · sin

(
2π
(
fc,rect + Fht

)
t
)
·HBcomb,q

)
,

(35)
where S represents the total number of bits in the feedback
information HBcomb , A is the amplitude of the modulated
signal, fc,receivedt is the received carrier frequency at time t,
Fh(t) adjusts the carrier frequency at time (t) based on a
random frequency hopping pattern, and HBcomb,q is the q-th bit
of the binary sequence HBcomb being modulated.

The transmitted feedback information is given by:

ItranEUi
(t) =

(
Γi · sMECbs(t) ·Mpro(t)

)
+ nEUi

(t), (36)

where Γi is the reflection coefficient representing the reflected
signal power, sMECbs(t) is the strength of the signal at MECbs.

The achievable information rate during the h-th hop is:

AIRi,h = τ ·B · log2

(
1 +

|Γi · hSMECbs
(t)|2 · prx

σ2
n,MECbs

)
, (37)

where τ is the transmission time constant, Γi is the reflection
coefficient for EUi.

B. Selective Privacy-Preserving Frequency Allocation with
Enhanced Security

For clarity, this work focuses on the time window during
which an EUi is within the communication range Rcomm of
the MECbs and actively connected for direct communication.
During this time window, a selective CKKS homomorphic
encryption technique with lightweight thresholding enables the
MEC to securely allocate unique THz sub-channels to end-
user nodes while enhancing communication security through
randomized frequency hopping.

Algorithm 2 Selective Privacy-Preserving Frequency Alloca-
tion with Enhanced Security
Input: VEU, Rcomm, Bl, Is, kpub, kpri, ρthresh, Ithresh, N , q, ∆,
ϵ1, ϵ2, t
Output: Sub-channel frequency range assignment fsubi for
each EUi in VEUc

1: Initialization:
2: Identify VEUc

(t) = {EUi | i ∈ [1 : N ], di(t) ≤ Rcomm};
3: Generate (kpub, kpri) = Kgen(N, q,∆)
4: for each EUi in VEUc at t do
5: Extract battery level Bli and collected data size Isi
6: Encrypt Enc(Bli) and Enc(Isi)
7: Transmit Enc(IDEUi

, kpub, Bli , Isi) to MECbs

8: for each received Enc(IDEUi , kpub, Bli , Isi) do
9: Compute Y1 = 1

2

(
1 + tanh

(
∆(Enc[Bli

]−ρthresh)

ϵ1

))
10: Compute Y2 = 1

2

(
1 + tanh

(
∆(Enc[Isi ]−Ithresh)

ϵ2

))
11: Compute Y = (Y1)thresh ∧ (Y2)thresh
12: if Y ≤ 0.5 then ▷ Values close to 0 Y ≈ 0
13: Assign low-frequency band falloc = falloclow

14: else ▷ Values close to 1 Y ≈ 1
15: Assign high-frequency band falloc = fallochigh

16: end if
17: Compute sub-channel frequency fsubi for each EUi

18: Compute dynamically adjusted frequency:

fci = fsubi + (h− 1) ·∆fh +Rh · Thop

19: Use fci during signal transmission.
20: end for
21: end for

Let the set of end-user nodes within Rcomm be defined as:

VEUc
(t) = {EUi | i ∈ [1 : N ], di(t) ≤ Rcomm}. (39)

To ensure secure communication and data privacy, we
employ CKKS homomorphic encryption [48] to protect the
sensitive data during communication with the MECbs. The
process starts with key generation, where each EUi in VEUc

generates a pair of public kpub and private kpri keys:

(kpub, kpri) = Kgen(N, q,∆), (40)

where N is the polynomial degree, q is the ciphertext modulus
size, and ∆ is the scaling factor.

Once generated, the public key kpub is used by EUi to
encrypt its battery level Bl and collected data size Is:

Enc(Bli) = Enckpub(Bli), Enc(Isi) = Enckpub(Isi), (41)

where Enc(Bli) and Enc(Isi) denote the encrypted battery
level and the size of the collected monitoring data, respectively.
The encrypted data is sent to the MECbs:

Enc(IDEUi
, kpub, Bli , Isi) → MECbs, (42)

where IDEUi ensures accurate data association by the MECbs.
For simplicity, we assume that this process occurs over a
separate frequency band, the details of which are beyond the
scope of this work.
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Bcomb =

 n∑
j=1

UTF-8(UIDEUi,j
) · 2(qIDEUi,j

−1)

 ∥

 n∑
j=1

UTF-8(URlocj
) · 2(qlocj−1)

 ∥Gmap(mdj ) ∥

 n∑
j=1

UTF-8(Utstpj ) · 2
(qtstpj−1)

 ,

(38)

Upon receiving Enc(IDEUi
, kpub, Bli , Isi), the MECbs uses

the public key kpub to perform secure threshold computations
on the encrypted data, comparing Enc(Bli) and Enc(Isi)
against the thresholds ρthresh and γthresh, respectively, without
decryption. The computations are defined as follows:

Y1 =
1

2

(
1 + tanh

(
∆(Enc(Bli)− ρthresh)

ϵ1

))
,

Y2 =
1

2

(
1 + tanh

(
∆(Enc(Isi)− γthresh)

ϵ2

))
,

(43)

where

tanh(x) =
ex − e−x

ex + e−x
, (44)

is the function normalizes its input to a range between −1 and
1. The parameter ∆ controls the sensitivity of the comparison,
and ϵ1 and ϵ2 indicate the acceptable range around 1, allowing
for a margin of error. The value Y1 assesses the encrypted
battery level against ρthresh, and Y2 evaluates the encrypted
data size against γthresh.

To determine the result of the secure threshold computation,
we first apply a threshold function to the computed values Y1
and Y2:

(Yi)thresh =

{
1, if Yi ≥ 0.5,

0, otherwise.
(45)

In this process, (Yi)thresh converts Yi into a binary value. The
final decision Y is then determined as:

Y = (Y1)thresh ∧ (Y2)thresh. (46)

Consequently, Y is 1 only if both Y1 and Y2 are greater than
or equal to 0.5. If either value is close to or below 0.5, Y is 0.
This ensures that both conditions must be satisfied for making
the frequency allocation decision.

The frequency sub-channels falloc are allocated as follows:

falloc =

{
fallochigh , if Y ≈ 1,

falloclow , if Y ≈ 0,
(47)

where

fallochigh = fmid +
fmax − fmid

2
, (48)

falloclow = fmid −
fmid − fmin

2
, (49)

The values fallochigh and falloclow represent the allocated high
and low frequency sub-bands, respectively. The THz frequency
band used in this work ranges from 0.1 THz to 1.0 THz.
Based on the result of Y , if Y ≈ 1, the allocated frequency
falls within the upper range of 1.0 to 1.0 THz. Conversely, if
Y ≈ 0, the allocated frequency lies within the lower range of
0.1 to 1.0 THz.

Following the strategic assignment of falloc based on (47),
subchannels are divided to enable efficient, interference-free
communication:

fsubi =

fallochigh + i ·
(fallochigh−falloclow )

VEUc (t)
, if Y ≈ 1,

falloclow + i ·
(fallochigh−falloclow )

VEUc (t)
, if Y ≈ 0.

(50)

After determining the subchannel frequency range, the
MECbs transmits the signal to EUi at time t, as described in
equation (1). Within the transmitted signal, the frequency of
each assigned subchannel varies across consecutive hops, in-
troducing randomness and enhancing privacy. This frequency
hopping mechanism enhances privacy by dynamically adjust-
ing the carrier frequency fc in each hop cycle, as defined by:

fci = fsubi + (h− 1) ·∆fh +Rh · Thop, (51)

where fsubi is the allocated frequency for the i-th node, (h−
1) ·∆fh represents the hop index, Rh introduces randomness,
and Thop is the hopping duration.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
TeraPRI framework across various metrics and parameters. For
comparison, we consider two benchmark schemes, where we
only extract their power allocation method and implement it
within our TeraPRI framework to compare performance under
the same system setup:

• Scheme in [31]: Originally developed for the RF spec-
trum, this scheme employs a power-splitting method,
where the received signal power is divided into two
portions: ȳi(t) =

√
ρiyi(t) for energy harvesting and

ỹi(t) =
√

1− ρiyi(t) for information decoding, with
a constant power ratio ρi : 1 − ρi (ρi ∈ (0, 1)).
In this work,we adapt the power-splitting methodology
within the THz-based TeraPRI framework. Specifically,
ỹi(t) =

√
1− ρiyi(t) is repurposed to transmit feedback

information during the uplink phase.
• Scheme in [27]: This scheme implements a harvest-and-

then-transmit approach based on TDMA, where end-users
first harvest energy during a portion of the time frame τ0T
in the downlink and then transmit information during the
uplink in the remaining time.

A. Simulation Setup
The simulations were conducted on a Windows 11 system

with an Intel Core i7-11800H CPU (2.30 GHz), 64 GB RAM,
and a 64-bit OS. The simulation framework was implemented
in Python 3.9.12, utilizing libraries for THz channel model-
ing, signal processing, and CKKS encryption operations. All
distance-related units are in meters, and angles are in degrees.
In all simulations, we assume a direct line-of-sight path with
minimal non-line-of-sight deviations between the MECbs and
EUi. Additionally, all plotted values are averages.
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1) CKKS Encryption: We use a polynomial modulus degree
Npoly = 16384, which supports complex computations and
large datasets. The coefficient moduli q0, q1, q2, q3 are each set
to 260 to maintain precision and control noise growth during
homomorphic operations. The global scale ∆CKKS = 240 de-
termines the resolution of the encrypted data. The cumulative
coefficient modulus q ranges from 2240 to 2300, allowing
flexibility in the number of operations before decryption is
required. The security level exceeds 128 bits, providing strong
cryptographic protection.

TABLE I: Simulation Scenario and Parameters

Parameter Description Initial Values
Minimum altitude of HMECbs

10m

Communication range Rcomm 10m

Battery capacity of EUi LiPo 15.2V/3.0Ah

ρin
t initial battery level 20% to 60%

ρthresh battery level threshold 40%

Energy harvesting efficiency (η) 0.2, ∀i ∈ [1 : N ]

THz frequency band used 0.1 to 1.0 THz

Frequency hops 10 h

Selective allocated bandwidth (B) 9.0× 1011Hz

Gt antennas and Gr antennas 40dB and 32dB

Transmit power (pk) of MECbs 20dBm = 100mW

Reference channel gain at 1m ≈ −115.81 dB

Path loss exponent (ϱ) 2.5

Molecular absorption coefficients Generated according to [43]

Time (t) 1012ps = 1s

B. Power Transfer Performance:

The power transfer performance during the downlink phase
is evaluated in terms of energy harvesting (Wh) and battery
levels (%). For clarity, our simulation results use watt-hours
(Wh), where 1 Wh = 3600 J.

First, we evaluate the impact of varying the number of
frequency hops h ranging from 10 to 50 with EUi = 5,
MECbs = 1, while other parameters remain unchanged. We
can observe in Fig. 3(a) and 3(b), as the number of hops
increases, all results across all schemes improves. However,
our proposed scheme outperforms those in [31] and [27] as it
allocates all received signal power REUi to energy harvesting
when the battery level is below ρthresh. This dynamic approach
allows our scheme to harvest energy ranging from 15.42Wh
to 38.43Wh while maintaining battery levels between 49.59%
and 72.77%, ensuring prolonged operation and improved
power sustainability.

Second, we evaluate the impact of varying the distance
between the MECbs and EUi from 10m to 90m, with
EUi = 5, MECbs = 1, and the number of frequency hops
fixed at 50, while other parameters remain unchanged. We can
observe in Fig. 4(a) and Fig. 4(b) that as the distance increases,
both the harvested energy and battery levels decrease for
all schemes. This reduction is attributed to the sensitivity of
THz signals to molecular absorption loss and free-space path
loss. As modeled in equation (11), the channel power gain

(a) (b)

Fig. 3: The impact of varying the number of frequency hops
on (a) energy harvested, and (b) battery level.

(a) (b)

Fig. 4: The impact of varying distances on (a) energy har-
vested, and (b) battery level.

follows an inverse relationship with distance. This formulation
demonstrates that as dt increases, the received signal power
decreases significantly due to increasing THz path loss, leading
to lower harvested energy at the end-user nodes. Despite this,
our proposed scheme outperforms [27] and [31] at 90 m,
achieving 8.56 Wh of harvested energy with a battery level of
43.10%. In comparison, [27] achieves 5.85 Wh with 41.83%,
while [31] achieves 3.33 Wh with a slightly higher battery
level of 42.54%. The variations stem from differences in initial
battery levels ρin

t , and energy allocation strategies.
Third, we evaluate the impact of varying the number of SNR

for the downlink phase, again with EUi = 5, MECbs = 1,
the number of frequency hops fixed at 50, while keeping
other parameters unchanged. As shown in Fig. 5(a) and Fig.
5(b), our proposed scheme outperforms existing schemes as
the SNR increases from 6 dB to 18 dB, with harvested
energy ranging from 13.65 Wh to 31.09 Wh and battery levels
maintained between 50.85% and 65.57%. This performance
improvement is attributed to the relationship between the
received power (13) and SNR (14). As SNRdown increases,
the received power prx improves, leading to higher energy
harvesting efficiency. In comparison, [27] achieves 10.48 Wh
to 27.47 Wh with battery levels from 48.37% to 55.22%, and
[31] achieves 7.87 Wh to 22.57 Wh, with a slightly higher
battery level ranging from 44.07% to 57.24%.
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(a) (b)

Fig. 5: The impact of varying SNRdown levels on (a) energy
harvested, and (b) battery level.

(a) (b)

Fig. 6: The impact of varying the number of end-user nodes
on (a) energy harvested, and (b) battery level.

Fourth, we evaluate the impact of varying the number
of end-user nodes from 10 to 50, with MECbs = 1 and
h = 50, while keeping other parameters unchanged. As shown
in Fig. 6, increasing the number of nodes reduces harvested
energy and battery levels due to the limited power budget
being focused on fewer nodes at a time, based on the THz
beamwidth. For instance, in the proposed scheme, harvested
energy decreases from 33.96 Wh (10 nodes) down to 15.99 Wh
(50 nodes), while battery levels drop from 45.57% down
to 21.47%. Similarly, the schemes in [31] and [27] show
a greater drop, achieving only 2.29 Wh and 8.68 Wh, and
4.39% and 15.8%, respectively, at 50 nodes. Our proposed
scheme outperforms existing methods by adaptively allocating
frequency and power, improving energy harvesting and battery
performance in high-density networks.

C. Information Transfer Performance

The performance of information transfer during the uplink
phase is assessed in terms of achievable information rate (AIR)
in bps, where values in the terabits per second (Tbps) range,
and information transmission success rate (ITSR) (%).

First, we evaluate the impact of varying the number of
frequency hops from 10 to 50 with EUi = 5, MECbs = 1,
feedback information size ranging from 100 KB to 1000 KB,
while keeping other parameters unchanged. We can observe in
Fig. 7(a) that as the number of frequency hops reaches 50, our

(a) (b)

Fig. 7: The impact of varying the number of frequency hops
on (a) the achievable information rate, and (b) the information
transmission success rate.

proposed scheme achieves an information rate of 6.5 × 1012

bps, compared to 5.9× 1012 bps for [31], and a constant rate
of 1.03× 1012 bps for [27]. In Fig. 7(b), our scheme achieves
the highest success rate reaching 98.5% at 50 hops, due to
its adaptive mechanism. While [31] has a slightly higher AIR
than [27], its success rate fluctuates between 67.2% and 85.0%,
whereas [27] improves from 40.0% to 78.0%.

Second, in Fig.8(a) and Fig. 8(b), we evaluate the impact
of varying the distance between EUi and MECbs from 10m
to 90m, with EUi = 5, MECbs = 1, information sizes
ranging from 100KB to 1000KB, number of frequency hops
set to 50, and other parameters remain unchanged. In Fig.
8(a), channel capacity decreases with distance due to THz
signal attenuation from path loss and molecular absorption,
as modeled in equation (11). As dt increases, the denominator
grows, sharply reducing received signal power and negatively
impacting AIR and ITSR. Despite severe THz attenuation, our
proposed scheme still achieves an AIR of 1.8× 1012 bps and
a success rate of 64.86% at 90m, surpassing [31] with an AIR
of 9.5 × 1011 bps and a success rate of 42.54%, and [27]
with an AIR of 4.7× 1011 bps and a success rate of 41.83%.
This superior performance is due to its adaptive frequency and
power allocation, which dynamically mitigates path loss and
enhances reliability over long distances.

Third, we evaluate the impact of varying the number of
SNR levels for the uplink phase, with EUi = 5, MECbs = 1,
and the number of frequency hops fixed at 50, while keeping
other parameters unchanged. We can observe in Fig. 9(a)
that as SNRup increases, [31] achieves the highest AIR of
1.08 × 1012 bps at 18 dB due to static power allocation,
while our proposed scheme reaches 1.05× 1012 bps, and [27]
achieves 0.55×1012 bps. However, in Fig. 9(b), our proposed
scheme maintains the highest success rate 96.64% to 98.33%
by dynamically adjusting power and frequency. In contrast,
[31] suffers from lower adaptability 41.61% to 81.99%, and
[27] improves 42.43% to 85.21% but remains limited by its
harvest-then-transmit strategy.

Fourth, we evaluate the impact of increasing the number of
end-user nodes from 10 to 50, with MECbs = 1, h = 50, and
feedback sizes ranging from 100 KB to 1000 KB, while keep-
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(a) (b)

Fig. 8: The impact of varying distances on (a) the achievable
information rate, and (b) the information transmission success
rate.

(a) (b)

Fig. 9: The impact of varying SNRup levels on (a) the achiev-
able information rate, and (b) the information transmission
success rate.

ing other parameters unchanged. As shown in Fig. 10, increas-
ing the number of end-user nodes reduces both the achievable
information rate and information transmission success rate due
to limited power distribution and THz beamwidth constraints.
Despite this, our proposed scheme maintains higher AIR,
decreasing slightly from 1.423×1012 bps to 1.405×1012 bps,
while ITSR drops marginally from 95.35% to 92.48%, thanks
to its adaptive frequency and power allocation. In contrast, [31]
sees minimal AIR reduction from 1.016 × 1012 bps down to
1.003× 1012 bps, but experiences a steep ITSR decline from
34.76% down to 11.47%, due to its static power allocation,
limiting efficiency in dense networks. Similarly, [27] maintains
a nearly constant AIR, decreasing slightly from 1.017× 1012

bps down to 1.003 × 1012 bps, while its ITSR drops from
40.93% to 32.12%, this is due to limited transmission time
per end-user node EUi.

D. TeraPRI Privacy and Security Analysis

In our TeraPRI framework, we employ CKKS homomor-
phic encryption [48] in Algorithm 2 to securely process and
compute data. This technique enables the MECbs to perform
computations directly on encrypted data without requiring

(a) (b)

Fig. 10: The impact of varying the number of end-user nodes
on (a) the achievable information rate, and (b) the information
transmission success rate.

(a) (b)

Fig. 11: Homomorphic encryption performance in terms of (a)
time consumption, and (b) memory usage.

decryption, thereby preserving the confidentiality of sensitive
information from the end-user nodes in VEUc

(t).
In Fig. 11, we compare the performance of the CKKS and

Paillier homomorphic encryption schemes within the TeraPRI
framework. The results demonstrate that CKKS outperforms
Paillier in both time consumption and memory usage. As
the vector length increases, the time cost of Paillier rises
significantly, reaching up to 800 s for a vector length of
1000, while CKKS remains much more efficient, peaking
at less than 20 s. Similarly, in Fig. 11(b), CKKS exhibits
superior memory efficiency, requiring only 480 KB for a vector
length of 1000, compared to 2.8 MB for Paillier. These results
highlight CKKS’s superior computational efficiency, making it
a better fit for the complex operations required in the TeraPRI
framework while ensuring scalability and security without
incurring excessive computational overhead.

Theorem: The CKKS homomorphic encryption in our
TeraPRI framework robustly safeguards the privacy of the
encrypted battery level (Bl) and collected data size (Is) during
encryption, transmission, and computation.

Proof 1: Let Bl be the battery level and Is the data size.
Keys kpub and kpri are generated with parameters N , q, and
∆. The kpub is for encryption and operations, while kpri is
for decryption. TeraPRI shares kpub with MECbs and keeps
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kpri secure on each EUi. This ensures MECbs cannot access
original data without the private key. The encryption function
Enc encrypts Bl and Is using kpub, producing ciphertexts
Enckpub(Bl) and Enckpub(Is).

Enckpub(Bl) = Enc(Bl, kpub, N, q,∆),

Enckpub(Is) = Enc(Is, kpub, N, q,∆),
(52)

The encryption process introduces variability to the encrypted
data, making pattern detection difficult even with the same
private key kpri. This variability preserves the original data’s
privacy. The encryption process is secure due to the following
properties:

• Given E(Bl, kpub, N, q,∆) and Enc(Is, kpub, N, q,∆), it
is computationally infeasible to determine Bl without kpri;

• Only kpub is shared, with kpri securely stored on each EUi

node;
• The encryption process obscures patterns in the encrypted

data, even with kpri.
During transmission, EUi send Enckpub(Bl) and Enckpub(Is)

to MECbs. This ensures Bl and Is remain confidential and
indistinguishable from random data without kpri. The MECbs

then performs secure threshold computations on the encrypted
data.

Proof 2: Let δ′ > 0 be a small positive number such that
tanh(x) is approximately linear within the interval (−δ′, δ′).
This means that for x in this interval, tanh(x) can be approx-
imated by x. Thus, we have:

tanh(x) ≈ x for |x| < δ′. (53)

The hyperbolic tangent function tanh(x) ensures the actual
values of Bl and Is are not revealed during computation. When
|∆(Enc[Bli ]−ρthresh)| < δ′ and |∆(Enc[Isi ]−γthresh)| < δ′, we
use the linear approximation of tanh(x) within this interval:

Y1 ≈ 1

2

(
1 +

∆(Enc[Bli ]− ρthresh)

ϵ1

)
,

Y2 ≈ 1

2

(
1 +

∆(Enc[Isi ]− γthresh)

ϵ2

)
,

(54)

The computations Y1 and Y2 involve two checks combined
using a logical AND operation to produce the final binary
output Y :

Y = (Y1 ≥ 0.5) ∧ (Y2 ≥ 0.5), (55)

which can be written as:

Y =

{
1 if Y1 ≥ 0.5 and Y2 ≥ 0.5,

0 otherwise.
(56)

Since δ′ is small, the linear approximations are valid when
∆(Enc[Bli ]− ρthresh) and ∆(Enc[Isi ]− γthresh) are close to 0.
Consequently, Y1 and Y2 are close to 1 when the encrypted
values are within their respective thresholds. Thus, the logical
AND operation ensures that Y is 1 only if both Y1 ≥ 0.5 and
Y2 ≥ 0.5. This implies that the final output Y will be 1 if
the conditions are met, thus preserving the privacy of Bli and
Isi by ensuring that only whether the values fall within the
thresholds is revealed, not the actual values.

The privacy of TeraPRI is enhanced beyond CKKS homo-
morphic encryption by incorporating randomized frequency
hopping into Algorithm 2. This technique rapidly shifts fre-
quencies, making the communication channel harder to in-
tercept and strengthening protection against threats such as
jamming attacks. In Fig. 12, we observe that interference

Fig. 12: Impact of varying jamming power on the interference
detection rate.

detection rates increase with higher jamming power in both
secure and non-secure scenarios. Despite the increase in the
interference detection rate from 0.51 at −20 dB to 0.81 at 0
dB in secure scenarios, it still outperforms the non-secure sce-
nario, where the interference detection rate ranges from 0.76
at −20 dB to 0.98 at 0 dB. As shown in Fig. 13, the latency

Fig. 13: Latency of various operations in the TeraPRI frame-
work.

introduced by different operations in the TeraPRI framework is
analyzed. The results indicate that while switching modes and
performing encryption during resource allocation, as described
in Algorithm 1, introduce some latency, their impact on overall
system performance is minimal. Specifically, the latency for
resource allocation, including mode switching, is 0.904 s. In
comparison, frequency allocation incurs a latency of 0.678
s, while homomorphic encryption contributes a much lower
latency of 0.015 s. These results demonstrate that although
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encryption and mode switching slightly increase latency dur-
ing resource allocation, the overall impact on task completion
is negligible, and the security benefits of encryption outweigh
the minor performance trade-off.

V. CONCLUSION

In conclusion, this paper introduced TeraPRI, a novel
framework for homomorphic THz-empowered joint wireless
power and information transfer with privacy preservation for
6G-autonomous vehicles. TeraPRI implemented a dual-mode
adaptive resource allocation approach to coordinate the joint
wireless power and information transfer, dynamically switch-
ing between HaT-mode and TaH-mode to meet end-user de-
mands. Additionally, a selective CKKS homomorphic encryp-
tion technique with lightweight thresholding was designed to
enable the MEC to securely allocate THz sub-channels while
enhancing security through randomized frequency hopping.
Performance evaluation shows that TeraPRI enhances wireless
power transfer and information transmission, outperforming
benchmarks in energy efficiency, success rates, and interfer-
ence robustness. Its adaptive mechanisms ensure reliable oper-
ation across extended distances and multiple frequency hops,
validating its effectiveness in the THz spectrum. This study
primarily focused on line-of-sight communication to evaluate
TeraPRI’s performance. Future work will address non-line-of-
sight (NLoS) challenges using Intelligent Reflecting Surfaces
(IRS) to create virtual LoS paths, enhancing efficiency and
reliability. Furthermore, AI-driven techniques will be explored
for dynamic channel prediction, frequency optimization, and
resource allocation to improve real-time adaptability, ensure
fair resource distribution, and optimize THz spectrum utiliza-
tion for end-user nodes at varying distances.
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