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Replicating community dynamics reveals
how initial composition shapes the
functional outcomes of bacterial
communities

A. Pascual-García 1,2,6, D. W. Rivett 3,6, Matt Lloyd Jones 4 & T. Bell 5

Bacterial communities play key roles in global biogeochemical cycles, indus-
try, agriculture, human health, and animal husbandry. There is therefore great
interest in understanding bacterial community dynamics so that they can be
controlled and engineered to optimise ecosystem services. We assess the
reproducibility and predictability of bacterial community dynamics by creat-
ing a frozen archive of hundreds of naturally-occurring bacterial communities
that we repeatedly revive and track in a standardised, complex resource
environment. Replicate communities follow reproducible trajectories and the
community dynamics closely map to ecosystem functioning. However, even
under standardised conditions, the communities exhibit tipping-points, where
small differences in initial community composition create divergent compo-
sitional and functional outcomes. The predictability of community trajectories
therefore requires detailed knowledge of rugged compositional landscapes
where ecosystem properties are not the inevitable result of prevailing envir-
onmental conditions but can be tilted toward different outcomes depending
on the initial community composition. Our results shed light on the relation-
ship between composition and function, opening new avenues to understand
the feasibility and limitations of function prediction in complex microbial
communities.

Bacterial communities are complex systems whose dynamics are dif-
ficult to predict. Even if individual populations are well-studied, pre-
dicting the trajectories of diverse, natural bacterial communities is
challenging because of in-built contingencies; a slight, stochastic
increase in the abundance of one population could have cascading
impacts that steer the community along a divergent trajectory. Bac-
terial community dynamics may be broadly predictable in simple
environments1–3 but usually only at a coarse level of taxonomic

resolution4,5, likely because taxa that are closely related also occupy
similar ecological niches6. Synthetic consortia comprising well-
characterised or genetically modified strains exhibit predictable
dynamics7 that in some cases can be used to control proscribed eco-
systemproperties8 or confer phenotypes to ahost9,10. However, natural
communities are much more diverse, typically containing thousands
of interdependent taxa that compete for resources, exchange meta-
bolites, and exhibit sophisticated coordinated behaviours like quorum
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sensing. Furthermore, high levels of niche overlap among taxa (func-
tional redundancy) can lead to a lottery for community membership
and therefore to community dynamics that are governed by chance
colonisation order11.

These observations and ideas make two, apparently contra-
dictory, predictions. The first idea predicts convergent community
trajectories under standardised environmental conditions. If bacterial
communities contain high levels of diversity, natural selection would
be expected to rapidly and reproducibly sort the best-adapted taxa,
resulting in a single taxonomic and functional outcome. This idea is
supported by studies showing a predictable simplification and con-
vergence of communities in standardised conditions4. Under this
scenario, community composition seems to go hand-in-hand with
community-level functioning, and therefore it may be possible to
accurately predict functioning without a detailed knowledge of the
mechanistic details underlying microbial dynamics, as illustrated by
the functional landscape approach12. The second idea predicts diver-
gent community trajectories, generating a rugged compositional
landscape that may or may not reproducibly achieve specified func-
tions. This idea is further supported by observations and theory
showing that alternative community states arise across many study
systems, perhaps facilitated by flexible decision-making in bacterial
resource acquisition13. Alternative compositional states could have a
range of consequences for ecosystem functioning if the taxa making
up the alternative compositional states have different metabolic
repertoires; a result thatmay have been overlooked due to the species-
poor communities explored in previous studies (typically lower than
20, see e.g.14,15). However, alternative compositional states could have
the same functionality if many bacteria have overlapping functional
capacities (redundancy), resulting in the same ecological niches being
filled. This has been implied by studies that have shown taxonomic

divergence but functional convergence16. Finally, more complex rela-
tionships are also plausible; for example, high-order interactions may
dominate the relationship between composition and functioning17.

To address these conflicting ideas, we considered a large set of
complex communities to re-frame a famous question from evolu-
tionary biology18: Does replaying the tape of ecologyproduce the same
compositional and functional outcome?19.

Here, we run the tape of ecology 4 times for 275 complex com-
munities containing hundreds of different taxa to identify principles of
bacterial community dynamics. We consider the fate of communities
with different initial taxonomic compositions inoculated into a stan-
dardised, complex resource, sterile environment. Each starting com-
munity is a naturally occurring community of heterotrophic bacteria
involved in the degradation of beech (Fagus sylvatica) leaf litter in
miniature ponds. Leaf litter degradation is an important ecosystem
process because increased degradation results in more rapid biogeo-
chemical cycling thereby increasing the productivity of the ecosystem,
while lower degradation results in greater carbon storage. Previous
experiments have shown that these communities exhibit a strong
relationship between degradation rates and the diversity20 and taxo-
nomic composition21 of the communities. This system therefore offers
a tractable avenue for studying the ecology of natural bacterial com-
munities associated with the provision of a particular ecosystem ser-
vice. Sourcemicrobiomes are taken from 275 rainwater pools from the
buttressing of beech trees, the bacterial community is separated from
co-occurring biota and from the surrounding environmental matrix,
and the whole bacterial communities are cryopreserved. The frozen
communities are revived independently four times, re-grown repeat-
edly in a standardisedmicrocosm containing a sterile beech leaf-based
growth medium (see Fig. 1a). We quantify the taxonomic composition
of the communities before they were revived from cryopreservation

Fig. 1 | Initial states predict final states. a 275 samples obtained from rain pools
were cryopreserved, revived, and inoculated into a standardised growth medium.
Community composition was assessed using amplicon sequencing at the start
(before cryopreservation) and end of the experiment (revived communities).
b Principal coordinates analysis (PCoA) of all communities with colours repre-
senting their position in ordination space at the start of the experiment. The left
panel shows the starting communities and the right panel shows the final com-
munities. The third PCoA component is shown in Supplementary Fig. 1. c Compo-
sition of final communities in the high-dimensional space was predicted as a rigid-

body transformation of starting communities. The transformation was obtained by
applying a singular value decomposition of the cross-covariance matrix of the
starting communities and one replicate of the final communities (see “Methods”).
The figure shows a linear relationship between the first SVD component of trans-
formed starting communities (prediction) and the final communities not used to
find the transformation (experiments) (second SVD component in Supplementary
Fig. 2). ThePearsonR2 and two-sided t-statisticp values are independently indicated
for each final replicate, with shadowed regions indicating 95% CI. Source data are
provided as a Source Data file.
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(starting communities) and their composition and functioning at the
end of the experiment (final communities), allowing us to understand
their community trajectory, the reproducibility of those trajectories,
and how composition and functioning are related.

Results and discussion
Replicate communities have predictable trajectories
We first identified whether the 4 revived replicates of each of the 275
cryopreserved communities were clustered at the end of the experi-
ment. We performed a signal-to-noise analysis by quantifying the
ANOSIM R statistic22, which ranges between zero (random groupings)
and one (distinct groups). The four replicates produced remarkably
non-randomgroupings (R = 0.716, 275 groups, p value < 10−3) and there
was no significant difference among the replicates (R = 0.004, 4
groups, see Supplementary Table 1), hence ruling out a stochastic
assembly. The reproducibility of the community trajectories was
visualised by tracking changes in the relative abundance of the hun-
dreds of taxa underpinning taxonomic changes using ordination. The
ordination revealed that the directionof the shift from starting- to final
communities was remarkably consistent among communities and
replicates (Fig. 1b and Supplementary Fig. 1). To test this idea by for-
mally considering the whole multidimensional space, we asked whe-
ther the final composition of one of the replicates could be obtained
using a rigid-body transformation (i.e. translation and rotation) of the
starting communities. We first showed that there was a small and sig-
nificantRootMeanSquareDeviationbetween the transformed starting
communities and one replicate of the final community (0.48, rando-
mised 95%C.I. [0.54, 0.56], see “Methods”).We then askedwhether the
transformed starting communities predicted the composition of the
three remaining replicates by comparing the main components of a
singular value decomposition (SVD) of the transformed communities
against the SVD of each of the three remaining replicates. We found a
strong and significant linear relation (Fig. 1c and Supplementary Fig. 2),
confirming that a linear transformation leads to an accurate prediction
of the composition of resurrected communities and therefore that
groups of taxa collectively move in similar directions in the composi-
tional space. The finding appears to reject the ‘divergence’ hypothesis
since even communities that were independently revived from cryo-
preservation had predictable trajectories- once the trajectory of one
replicate was known, the community could be repeatedly revived to
produce the same outcome. However, as we will show immediately,
compositionally similar communities do not always show similar tra-
jectories between them.

Predictability of community trajectories depends on initial
composition
At the start of the experiment, the communities were not uniformly
distributed across compositional space23. To refine our analyses, we,
therefore, performed unsupervised clustering of the communities to
identify compositionally similar sets of communities termed classes,
similar to the concept of gut microbiome enterotypes24. Clustering was
performed considering an all-against-all Jensen–Shannon distance
matrix25 of thecommunities' relative abundances in themultidimensional
space (see “Methods” andSupplementaryNote 1). Intuitively, community
classes can be regarded as attractors in the compositional landscape
towardswhich the composition tends togravitate. Community attractors
under a specific set of environmental conditions canbest be identifiedby
tracking the trajectory of communities originating from multiple com-
positional starting points, which is what we have done here.We used the
ANOSIM R statistic to measure how sharply classes are delimited,
allowing us to identify an absolute maximum of 17 starting community
classes (ANOSIM R=0.68, p value < 10−3) and a second maximum with 5
local classes (R=0.64, p value < 10−3). For simplicity and consistencywith
previous work23, we analysed the five classes (Fig. 2; the PCoA was used

for visualisation only whereas clusters were determined as indi-
cated above).

In previous work, the classification identified six classes (with
representatives ofone of themmissing in the selection of communities
made in this work). Approximately 50% of the pairs of communities
found in the same cluster in the previous work also clustered together
here. Discrepancies were because the previous work identified
Operational Taxonomic Units whereas the current analysis used
Amplicon Sequence Variants.

Importantly, analysis of classes in previous work23 showed that they
had well-differentiated metagenomic and functional signatures, provid-
ing strong evidence of selection. We speculated that the starting bac-
terial communities would have experienced a range of environmental
conditions due to site-specific differences in leaf inputs, precipitation,
oxygen availability, and many other factors, resulting in a relatively
diverse array of community classes23, later confirmed by a relationship
between composition and the size of the tree-holes, which may have, in
turn, an influence on the variables listed26. In this work, the communities
retained signatures of their provenance despite being re-grown twice on
the beech leaf media (they were first grown to stationary phase before
cryopreservation and then second revived and grown across four repli-
cates), with communities clustering in compositional space according to
their collection location anddate (Supplementary Fig. 3). Aswewill show
below, theyalso showedwell-differentiatedmetagenomicand functional
signatures, suggesting that, by working with this growth medium, we
captured the signal both of history and selection (from their native
environment and from the medium itself). These observations suggest
that these classes represent robust outcomes.

We detected two community classes at the conclusion of the
experiment (ANOSIM R = 0.78, 2 groups, p value < 10−3) (Fig. 2b,
vertical bars, and Supplementary Fig. 4), consistent with the idea that
the standardised environmental conditions across the microcosms
selected a more limited set of communities that had specific adap-
tations to the microcosm environment, and demonstrating that
separating communities into classes was an economical description
of the outcome of the experiment. This conclusion is further illu-
strated by the observation that 80% of communities had all four
replicates ending in the same final class, and only 2.5% of the com-
munities had replicates evenly split into the two final community
classes. The outcome of each community was therefore highly
dependent on the starting community: once the initial composition
was known, its fate was ordained with only minor deviations. How-
ever, the specific class to which revived communities converged
depended on the starting class: Starting Classes 1, 2 and 4 tended to
end up in the same final class, while Starting Classes 3 and 5 were
more unpredictable.

Therefore, although individual communities had remarkably
reproducible trajectories, the trajectory of each community was con-
tingent on the initial community class. We illustrate this contingency
by showing the fate of each of the five starting community classes.
Starting Class 1 and Class 4 communities consistently converged
toward Final Class 1 communities, with ~90% of the starting commu-
nities originating from those classes (Fig. 2). A hypothetical study that
used one or a few communities that were within either of those classes
would have observed a single outcome, consistent with the idea that
communities converge and simplify under standard conditions4. Other
communities were less predictable in their trajectories at the class
level, with outcomes for communities in Starting Classes 2, 3, and 5
more evenly split between Final Class 1 (~20–50%) and Final Class 2
(~50–80%) final communities (Fig. 2). A study that used one or a few of
the communities from starting community Classes 2, 3, or 5 would
therefore likely have observed the formation of alternative composi-
tionally and functionally divergent outcomes, thus diminishing the
predictability of trajectories.
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From tape to landscape
To understand previous results we propose a conceptual picture in
which the experimental communities can be visualised as traversing a
compositional and functional landscape (Fig. 3a), with communities
starting from compositions set by their native environmental condi-
tions, and where community stability across the landscape is deter-
mined by the new environmental conditions. Stable communities
would be those that are resistant to change and would return to their
original composition if they are perturbed, while unstable commu-
nities would rapidly traverse compositional space until they reach
neighbourhoodswhere the communities aremore stable. If therewas a
single stable composition, any starting community compositionwould
generally converge on this single attractor23. If there are several
attractors, communities located near saddle points or on ridges of the
landscape would have a more unpredictable outcome since initial
small changes to the composition would tilt the communities toward
alternative attractors. The topography of the landscape determines
the predictability and repeatability of the community dynamics and
therefore provides information about the reproducibility of commu-
nity trajectories (see Supplementary Note 2 and Supplementary Fig. 5).

The experimental results are consistent with a rugged landscape
containing at least two attractors toward which the composition ten-
ded to gravitate (i.e. Fig. 3b). Starting community Classes 1 and 4 lie
along the flank of the attractor close to Final Class 1, resulting in con-
vergence to a single outcome (Fig. 3b and Supplementary Fig. 6). By
contrast, starting Classes 2, 3 and 5 straddle a ridge that allows them to
diverge to Final Class 1 or 2 (Fig. 3b and Supplementary Fig. 6).

To quantify this idea we computed the distance of each starting
community to the centroids and to the borders of the final attractors
(Fig. 3c). For a given starting community, the borderwas considered to
be the closest community associated with each final attractor. Com-
munities that were further away from both centroids tended to con-
verge to Final Class 2 particularly those starting communities thatwere
closer to both its centroid and border. The Final Class 2 attractor is
therefore less steep or less accessible from the starting community
compositions. Starting communities needed to be far from the final
community Class 1 attractor to avoid its pull, and would only converge
to Final Class 2 if they were sufficiently distant.

This was further confirmedwhenwe computed themeandistance
between starting and final classes, with Starting Classes 1 and 4 (the
largest set of communities) having a high similarity with Final Class 1,
suggesting that these two starting classes were already orbiting an
attractor that, after the second round of growth, consolidated into a
single large and robust attractor (Supplementary Fig. 7). By contrast,
Starting Classes 2, 3 and 5 were more similar to Final Class 2, but their
mean similarity was much lower, suggesting a substantial composi-
tional transformation of the communities falling into this attractor
(Supplementary Fig. 7).

As illustrated here, rugged landscapes may exhibit convergent
or divergent outcomes depending on the starting location in
compositional space. A detailed knowledge of these rugged com-
positional landscapes would be needed to avoid the risk of diver-
ging to potentially undesirable compositional and functional
outcomes.

Fig. 2 | Compositional convergence. a Principal coordinates analysis (PCoA) of all
communities (as in Fig. 1b)with colours representing the starting andfinal community
classes (compositionally similar clusters of communities determinedbyunsupervised
clustering). The replicates of the final communities were separated into different
panels for clarity to show the reproducible outcome. b Bar plots showing the relative
abundance of Amplicon Sequence Variants (ASVs) for starting communities (hor-
izontal bars) andfinal communities (vertical bars). Thecommunitiesweredivided into

the five starting community classes and the two final community classes. The final
communities were further divided into the four replicates. The 20 most abundant
ASVs were identified into genus and the remainder were combined into ‘Other’. The
taxa in the bars follow the order indicated in the legend. Genera that were not
resolved are indicated with NA. The matrix indicates the proportion of each starting
community class (rows) that resulted in eachfinal community class (columns). Source
data are provided as a Source Data file.
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Core sets of ASVs determined convergence towards the
attractors
In previous sections, we observed that the positions of the starting
communities in the compositional landscape determined the trajec-
tory of the communities. Since positions are given by the presence-
absence of taxa and their relative abundances, we asked if it is possible
to identify ASVs, or groups of ASVs, that characterise the different
trajectories (see “Methods”). To this end, we classified the community
trajectories as ‘convergent’ if all four revived replicates from the same
starting community converged to the same final class, or as ‘divergent’
otherwise. Therefore, for each trajectory, one starting community and
four final communities were labelled as convergent (to Class 1 or 2) or
divergent. Next, we studied whether each ASV tended to have a pro-
pensity to be observedmore often in a particular type of trajectory. To
assess this questionweestimated the statistical propensity of eachASV
to be observed in communities belonging to convergent or divergent
trajectories (see Fig. 4a and “Methods”). The statistical propensity is
the log-fold change in the probability of observing an ASV in a given
trajectory compared to the probability of observing that ASV in any
trajectory. A positive association between an ASV and a trajectory was
found when the ASV propensity for that trajectory was significantly

positive (i.e. 95% bootstrapped propensities were positive, see
“Methods”). Propensities were independently computed for starting
and final communities, which allowed us to identify whether ASVs
maintained (or not) their affinity to specific trajectories. Anoverviewof
the association between ASVs and trajectories for the most repre-
sented families is shown in Fig. 4b.

ASVs that had a positive and significant propensity to be in com-
munities that followed convergent trajectories mostly ended in Class 1
(45% of those with propensities for convergent trajectories), while only
1.4% ended in Class 2. Notably, we identified a group of ASVs with a
propensity towards communities in trajectories converging toClass 1 (in
both starting and final experiments, hereafter group ‘S&F1’). This group
represented a large fraction of the relative abundances in communities
belonging to this type of trajectory (see Fig. 4c): median relative abun-
dances of S&F1memberswere above0.4 for communities in trajectories
converging toClass 1, while theywerebelow0.020 for those converging
toClass 2.Conversely,we foundanother groupofASVswith a significant
propensity for being observed in communities of the three types of
trajectories in both starting and final experiments (‘cosmopolitan’
group) whose abundances, however, tended to be high only in Class 2
communities. Their median relative abundances were above 0.18 for

Fig. 3 | Community trajectories are influenced by the topography of the com-
positional landscape. a Illustration of the compositional landscape from the
perspective of a set of starting communities entering a new environment. Two
attractors are shown, with circles representing the starting communities, triangles
representing the final communities, shape colours indicating community classes,
and arrows indicating community trajectories. b Illustration of the location (in
ordination space) and trajectory of each starting class used in the experiment.
Ovals indicate approximate locations of the numbered starting classes, arrows

indicate trajectories with thicker arrows indicating more consistent outcomes, and
pale circles indicate putative attractors. An equivalent representationwith real data
is provided in Supplementary Fig. 6. c For each starting community, we computed
theminimumdistance to the centroid of the final community classes and themean
distance to the borders. The border was defined as the closest community in the
final class. We observed that starting communities that were distant from both
centroids converged to Final Class 2 particularly when they were closer to the
borders of both attractors. Source data are provided as a Source Data file.
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communities in trajectories converging to Class 2, while median values
werebelow0.02 for those converging toClass 1. Therefore, high relative
abundances of S&F1 and cosmopolitan groups were indicative of tra-
jectories converging to Classes 1 and 2, respectively.

To explore these results further, we examined changes in the
summed relative abundances of S&F1 members between starting and
final experiments (the latter averaged across replicates) for all com-
munities (Fig. 4d). Each community was coloured according to its
trajectory type. We found that if the summed relative abundance
exceeded ~0.125 the community almost always converged to Class 1
(Fig. 4d, vertical dotted line), and those converging to Class 2 had their
final values fell below this threshold with just two exceptions (Fig. 4d,
horizontal dotted line). Therefore, these observations, with rare
exceptions, allowed us to identify a tipping point determined by a core

group of co-selected ASVs that led to convergence to the most
populated attractor (Class 1).

The inverse resultwasobserved for the cosmopolitanASVsgroup,
with communities in Class 1 trajectories falling below a threshold of
~0.2 (see Supplementary Note 3 and Supplementary Fig. 8) and com-
munities in Class 2 trajectories above it. Combining both results, we
observed that by representing the sum of the relative abundances of
S&F1 vs. cosmopolitan group members it was possible to clearly
separate communities belonging to both types of convergent trajec-
tories (Fig. 4e). Importantly, communities in divergent trajectories
often had their relative abundances more evenly distributed among
both groups, indicating that unbalanced starting conditions between
these two groups are necessary to ensure predictability in the
trajectories.

Fig. 4 | Associations between taxa and convergence. a Communities (circles) at
the start and end are first categorised according to whether they are (A) con-
vergent, where all four replicates (arrows) result in the same final class or (B)
divergent, where at least one replicate ends in a different final class. The shapes
within the communities represent different taxa. (C) We quantified the propensity
for taxa to be associated with convergent or divergent trajectories. Taxa are listed
according to whether they have a propensity to be associated with communities
that converge to Class 1 (Converge) or diverge to Class 1 and 2 (Diverge). Taxawere
further categorised according to whether these associations arose due to their
presence in the Starting, Final, or both starting and final (S& F) communities. Taxa

in the same categories belonged to the same propensity group. b Number of ASVs
per family found in some relevant propensity groups. Only the top 25 families per
group were shown. c Median [interquartile values] of the sum of the relative
abundances of S& F1 and cosmopolitan groups in the starting and final ASV tables
(columns) for communities classified in each type of trajectory (rows).d Sumof the
relative abundances of ASVs belonging to the S& F1 propensity group for the
starting vs. final experiments (averaged accross replicates). e Sum of the relative
abundances of ASVs belonging to the S& F1 (x-axis) and cosmopolitan (y-axis)
groups in the final experiment (averaged across replicates). Source data are pro-
vided as a Source Data file.
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Community classes reflect functional differences
Our results suggest that an in-depth explorationof the compositional
landscapemay allowus to select communities that will follow specific
trajectories and, more specifically, that may end up in specific
attractors. We then asked whether these attractors were functionally
equivalent or whether they showed distinctive functionality. We
explored ways of mapping functional data onto the community tra-
jectories by inferring the functional profiles of the communities from
their composition and by direct functional measurements. We first
predicted the metagenomes of the communities from the 16S rRNA
sequencing data using PiCRUST to categorise genes by function
using the KEGG database27. This analysis suggested that the 2 final
community classes were associated with distinct modes of nutrient
uptake. In Final Class 1, which containedmore than two-thirds of final
communities (Supplementary Table 1), there was a higher proportion
of genes related to rapid nutrient uptake (e.g. transporters, phospho-
transferase system), transcription factors, and fructose andmannose
metabolism (see Fig. 5a, and Supplementary Figs. 9 and 10 in

Supplementary Note 4). There was also a higher proportion of genes
associated with lipo-polysaccharide metabolism and membrane and
intracellular structural proteins. By contrast, Final Class 2 commu-
nities had a higher proportion of genes related to oxidative phos-
phorylation and pathways related to the acquisition of acetyl-coA
(e.g. degradation of amino acids, fatty acids metabolism, and pro-
panoate metabolism), implying adaptions to resource-poor envir-
onments and a higher investment in resource acquisition and usage.
Final Class 2 also retained pathways that were more abundant in
starting Classes 2 and 5, including genes related to chemotaxis and
motility and genes associated with hostile environments such as
sporulation (Supplementary Fig. 11). Final Class 2 comprised less than
one-third of all revived communities (Supplementary Table 1),
implying that the majority of communities gravitated toward
improved leaf medium uptake, while a minority may be relics of
communities that were poorly adapted to the beech leaf culture
media or became self-limiting (e.g. due to build-up of waste
products)23.

Fig. 5 | Functional convergence. a Z-score of the mean proportion of genes
clustered in KEGG metabolic pathways found in final community classes for each
replicate (Rep). The scaling of the Z-score was computed for each pathway (i.e.
scaled by columns). Only pathways showing a significant difference between at
least two classes are shown. b The functional measurements were significantly
different between the two final community classes. Boxes and horizontal lines

represent the quartile boundaries, and upper and lower whiskers extend 1.5 × IQR
from the correspondent hinge. Outliers are also shown. Biological replicates
belonging to equivalent classes were merged, thus representing 794 communities
in Class 1 and 306 inClass 2. Two-sidedWilcoxon test, significance p value: ***0.001,
**0.01, NS not significant. Source data are provided as a Source Data file.
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We validated the metagenomic predictions by measuring the
degradation rate of four substrates along with the whole-community
metabolic activity, respiration rate, and cell numbers in the final
communities. Final Class 1 communities had higher degradation rates
and enzymatic activity, while Final Class 2 communities had a higher
per-cell investment but lower cell numbers, implying that they were
growing inefficiently (Fig. 5b).We speculate that this was due to higher
metabolic costs in this environment for tasks not associated with cell
growth and division such as exo-enzymatic investment and that these
communities may be adapted to environments with fewer or more
recalcitrant resources. Both the metagenomic profiles and the func-
tional experiments demonstrate that the the final community classes
are not just alternative taxonomic variants providing the same func-
tional outcome, but that the divergent community classes translated
into significant functional differences. The two final classes are there-
fore unlikely to result from neutral community drift.

The experimental results demonstrate the reproducibility of
community dynamics, a central requirement for understanding how
microbial communities assemble and for establishing their utility as
agents for altering ecosystems. Past efforts at engineering ecosystem
services by manipulating or domesticating microbial communities
have produced mixed results28,29. The experimental results provide a
general explanation and route forward centred on characterising the
topographyof compositional and functional landscapes. By preserving
and reviving hundreds of communities we were able to expand on this
simple discovery. First, there was a strong historical contingency in the
community trajectories, with naturally occurring compositional clas-
ses from the field predicting the compositional classes that commu-
nities gravitated towards in the laboratory. Second, these broad
compositional classes also reflected the main axes of functional per-
formance, both in terms of their functional capacity (metagenomes)
and their delivery of ecosystem processes (degradation rates and
activity). Statistical approaches aimed at estimating the functional
landscape fromcomposition12may fail for complex communities, such
as those considered here. The reason is that the estimated functional
landscape will exhibit less local ruggedness than the true landscape30

unless alternative states in the compositional landscape are identified
first. Third, while the community dynamics were highly predictable
under standardised initial conditions, the trajectory depended on the
initial community composition. Communities did not simplify to a
single outcome, but individual communities may have different (pre-
dictable) trajectories. Together, the results show the feasibility of
pushing ecosystems toward alternative compositional and functional
outcomes by minor alterations to the community composition.

In this ecosystem,we identified two tippingpoints that determined
theprimaryoutcome (convergence to theattractors) using the summed
relative abundances of two core sets of ASVs. These two simple
thresholds predicted the outcome for many communities, although we
note that the conditions imposed by these thresholds were not neces-
sary (some communities converged that did not exceed the threshold)
but they were almost sufficient (very few communities exceeding the
threshold did not converge to the correspondent attractor). Moreover,
having relative abundances above both thresholds seemed to be
necessary to observe divergent trajectories. Therefore, we found
necessary starting conditions affecting the predictability of the experi-
ment. In addition, we suggest that some exceptions likely stem from
ASVs beyond the core set. For example, some ASVs appeared to be
repressed in communities associated with trajectories converging to
Class 1 because their abundances were dramatically reduced by the end
of the experiment, likely due to selection in the early stages of the
experiment or in their native environment. This apparent repression
was paralleled by a set of ASVs that increased from low relative abun-
dances and that appeared to be co-selected with the Class 1 core set.
These observations suggest a richer mechanistic process that appears
to be orchestrated through the coordinated dynamics of sets of taxa,

rather than by individual keystone activities. Therefore, our results
emphasise the importance of looking for levels of organisation between
the community- and the ‘species’-level to fully understand the dynamics
of complex microbial communities31.

Methods
Laboratory methods
We sampled 753 rainwater pools from the buttressing of beech trees
(Fagus sylvatica) fromAugust 2013 toApril 201421. Thepoolswere stirred
thoroughly to obtain an unbiased sample of the whole community and
we collected 1ml of water and sediment. The sampleswere diluted 1:4 in
sterile phosphate-buffered saline (PBS, pH 7.0, Sigma-Aldrich) and fil-
tered (pore size 20–22μm, Whatman 4 filter paper) to remove debris.
The filtrate containing the communities was inoculated into 5ml sterile
beech leaf medium (50g dried beech leaves autoclaved in 500ml PBS,
filtered, diluted 32-fold in PBS, amended with 200μgml−1 cyclohex-
amide (Sigma-Aldrich) to inhibit fungi). Each community was incubated
at 22 °Cunder static conditions for 1week to allowcommunities to reach
the stationary phase. A sample was collected to characterise the (start-
ing) community composition (16S rRNA sequencing, see “Sequencing
methods”) and communities were stored at −80 °C after the addition of
glycerol, which acts as a cryoprotectant (final concentration 30% v/v
glycerol, 0.85% w/v NaCl). Further details of the experimental methods
on starting communities are provided elsewhere21, which also includes
documentation of how cryopreservation impacted the communities.

The experiment to revive and grow final communities was con-
ducted in microcosms (1.2-ml-deep 96-well plates) containing 840μl
sterile beech leaf medium inoculated with 40μl of each revived com-
munity (~20,000 cells) To ensure that there was no systematic bias in
our experimental procedure, we thawed all of the communities at the
same time for the experiments. The communities were thawed in this
way on two separate occasions (each with two replicates) to conduct
four independent trials of the experiment. Two hundred seventy-five
communities were assayed, yielding a total of 1100 microcosms. The
time between cryopreservation and resurrection was between 6 and
14 months depending on when the revived community was originally
collected from the natural environment. The microcosms were incu-
bated under static conditions at 22 °C for 7 days, after which time the
communities were characterised for their taxonomic composition (see
“Sequencing methods”) and measured ecosystem functioning.

We measured bacterial activity, growth, and substrate degrada-
tion rates in microcosms. Measurements were generally taken at the
end of the experiment except for respiration, which was measured
cumulatively throughout the experiment. Final bacterial counts were
obtained by staining the cells with thiazole orange (42 nM, Sigma-
Aldrich) followed by obtaining absolute counts using a C6 Accuri flow
cytometer (size threshold of 8000 forward scatter height (FSC-H)),
with cells gated on the side scatter area (SSC-A) and fluorescence
channel 1 (FL1-A) (533/30) channels. We used a threshold of 800
fluorescence units to distinguish cells from detritus. Bacterial
respiration was measured using the MicroResp CO2 detection system
(www.microresp.com) according to the manufacturer's instructions,
with absorbance readings converted to CO2 using a standard curve21.
Respirationmeasurements were taken as the cumulative respiration of
the whole community over the 7-day incubation period. The potential
formetabolic activity wasmeasured as the concentration of adenosine
triphosphate (ATP) within the community, measured using a Biotek
Synergy 2 multimode plate reader and the BacTitr-Glo Cell Viability
assay (Promega). There was a linear relationship between concentra-
tion and luminescence (R2 = 0.998), which we used to convert lumi-
nescence to nM ATP. We measured the breakdown of substrates
labelled with 4-methylumbelliferone (MUB). Samples were amended
with40μMof the substrates (100μl total volume) and incubated in the
dark under the same conditions as the microcosms (static, 22 °C) for
60min. After the incubation, 10μl of 1M NaOH was added and the
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fluorescence was measured over 4min with the maximum value
recorded. Fluorescent values were converted to nM MUB after estab-
lishing a linear relationship between MUB concentration and fluores-
cence (R2 = 0.996) and using negative controls to account for any auto-
fluorescence in the medium. We selected substrates that were ecolo-
gically relevant to this ecosystem including xylosidase (cleaves the
labile substrate xylose, a monomer prevalent in hemicellulose), β-
chitinase (breaks down chitin, the main component of arthropod
exoskeletons and fungal cell walls), β-glucosidase (breaks down cel-
lulose, the structural component of plants) and phosphatase (breaks
down organic monoesters for the mineralisation and acquisition of
phosphorus).

Sequencing methods
Wecharacterised the composition of each initial community andof the
four replicate final communities on the Illumina MiSeq platform by
Molecular Research DNA. The V4 region of the 16S ribosomal RNA
gene was amplified, using primers 515f (GTGCCAGCMGCCGCGGTAA)/
806r (GGACTACHVGGGTWTCTAAT) with a barcoded forward primer.
The sequencing effort (15000 reads per sample) was similar to the
number of cells used to initiate the microcosms (~20,000 cells), so we
assumed the communities were almost fully characterised. 16S rRNA
amplicon sequence data were processed using the bash scripts and R
(v4.2.1) programming language32. Briefly, demultiplexed sequence files
obtained from the sequencing facility were processed using the
DADA2 pipeline in R33,34 version 1.14 to produce a bacterial amplicon
sequence variant (ASVs: ref. 35) abundance table. The quality profiles
of the reads were filtered and trimmed (using the function dada2::-
filterAndTrim); truncating sequences to 240bp (option trunLen = 240),
removing reads with a quality score less than 11 (option truncQ = 11),
discarding reads with ambiguous bases (Ns; option maxN=0) or with
more than one expected error (Ns; maxEE option = 1), and removing
reads that matched the phiX genome (option rm.phix = TRUE). Error
rates were then learned using dada2::learnErrors, before sample
inference (ASV inference) using the main dada2::dada function to
create an ASV abundance table. Chimeras were removed via the
dada2::removeBimeraDenovo function using the consensus method
(option method = ‘consensus’) before taxonomic assignment of the
ASVs to the species level using dada2::assignTaxonomy, aligning to the
SILVA v138 SSU Ref NR 99 database36–38. This process identified 21083
ASVs across all samples. After inference of ASVs from the sequence
data in this way, we applied additional, custom quality-filtering pro-
cedures—namely, removing ASVs with fewer than 100 reads across
samples (reducing the number of ASVs to 5834) and removing samples
with fewer than 10,000 sequences (reducing the number of ASVs to
1209). This resulted in the final ASV table of 1209 ASV abundances
across all of the samples from days 0 and 7.

Statistics and reproducibility
Statistical methods and software used are described in the following
sections and in figure legends.

Determination of community classes
Following previous work, we determined community classes by com-
puting all-against-all Jensen–Shannon divergence (DJSD)

25 and perform-
ing a Partition Around Medoids clustering, which requires as input the
number of output communities k. To find the optimal clustering, we ran
the method for a broad range of k values and computed the
Calinski–Harabasz index (CH) that quantifies the quality of the classifi-
cation. The optimal classification results from choosing
kopt = argmaxkðCHÞ, shown inSupplementary Fig. 4. This procedurewas
followed for each subset of data independently (after quality-filtering
sequencing procedures, 658 samples for starting communities and
275 samples for each replicate of final communities).

Optimal community superposition
Given two sets of paired points in themultidimensional spacewhich, in
this work, are determined by the relative abundances of starting
communities and of one replicate of final communities, respectively,
we asked if there was a rigid-body operation transforming the relative
abundances of starting communities into the final ones. Such trans-
formation, termed superposition, is a translation of the centroids of
both sets to a common origin followed by a rotation minimising the
Root Mean Square Deviation between both datasets. We searched for
the optimal transformation using the Kabsch algorithm (adapting the
implementation available in theURL: https://github.com/Fraternalilab/
PDBencode), which applies the SVD of the cross-covariance matrix of
the relative abundances of both datasets and then seeks an optimal
transformation. To obtain an estimation of the quality of the super-
position, we repeated the computation after considering as an input
the starting matrix with the values of its cells randomly shuffled and
the observed final matrix without modifications. We considered 50
randomisations to obtain a confidence interval (CI) of the RMSD.
Finally, we further evaluated the prediction by representing the first
and second components of the SVD of the transformed starting
communities against those of the three remaining replicates of the
final communities.

Visual representation of the communities
ASVtableswere rarefied to 10Kreads for visualisationpurposesonly. Bar-
plot representations were created with the R package PHYLOSEQ

39. When
classes were represented, communities within the same class were
merged using the function MERGE_SAMPLES provided by phyloseq. Dimen-
sionality reduction was performed by computing all-against-all commu-
nities dissimilarities with Jensen–Shannon divergence (DJSD)

25, followed
by a Principal Coordinates Analysis (R function DUDI.PCO, package ADE440).

Community classes and the compositional landscape
To evaluate the significance of the community classes that we identi-
fied, and to confront our categorisation with other potential group-
ings, we calculated the ANOSIM metric (R package VEGAN

41) assessing
the significance with permutation tests (103 permutations). To illus-
trate the fate of starting communities with respect to the final classes
we first computed the centroid of each final class. For each set of
communities belonging to a given class, we generated a new set by
sampling 10,000 reads with the probabilities given by the relative
abundances of each sample. The centroid was defined as the median
value of each ASV in the resampled set, whose relative abundance was
considered for downstream computations. Second, we computed, for
each starting community, DJSD against all final communities of one of
the replicates and its centroids. To generate Fig. 3D we identified the
minimum distance to each class. Similar results were obtained
regardless of the replicate that was selected.

Estimation of ASVs propensities for subsets of communities
We defined a trajectory as a set of five communities that includes a
parent community (a starting community) and the four replicates
obtained from each parent (final community), see Fig. 6. Then, if the
four final replicates converged to an equivalent final class we said that
the trajectory was convergent, being divergent otherwise. These defi-
nitions split the ASV tables from the starting and final experiments into
three types T of communities: convergent to Class 1 (C1), convergent
to Class 2 (C2) and divergent (D).

Next, let us consider that an ASV i is observed in a community a,
that is, Xia(t) > 0 with Xia(t) being an ASV table at time t = {St, End}
(starting or final, the latter containing the four replicates). We com-
puted the propensity that an ASV i is observed in a generic community
a at time t, conditional on the community being classified into one of
the three types of trajectories specified above (i.e.∀a, ∃!T∈ {C1, C2, D}
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such that a ∈ T) as:

PropðXiaðtÞ>0,a 2 TÞ= log
PðXiaðtÞ>0 ja 2 TÞ

PðXiaðtÞ>0Þ

� �
: ð1Þ

Therefore, for each ASV we calculated six propensities (whether
communities were associated with the three types of trajectories
across the two time points). We estimated CIs by bootstrapping the
ASVs table from which the correspondent propensity was calculated
(i.e. repeatedly resampling communities with replacement). One
thousand bootstrapped ASV tables were created for each time point
and propensities were computed for each, then requiring that the 95%
CI obtained for each propensity was positive. In Fig. 4 we studied
changes throughout the two time points in the sum of the relative
abundances of groups of ASVs having significant propensities for the
same type of trajectories in the same time points.

Metagenomic predictions
Metagenomic predictions were performed using PiCRUST v2.4.242,
which was also used to compute quality controls. Eleven ASVs had
poor alignments and were removed from downstream analysis. The
nsti score assessing the quality of the prediction was 0.042, indi-
cating that the predictions were of high quality. Predictions were
aggregated considering both the KEGG pathway hierarchy and BRITE
annotations27. For each community class, the proportion of each
pathway was averaged across all samples in that class. The difference
in the mean proportions was then computed between each pair of
classes, and those pathways showing a significant difference in at
least one comparison were retained (Welch test corrected for mul-
tiple testing, the difference inmean proportions larger than 0.05 and
corrected p value < 0.001, see Supplementary Figs. 9 and 10 for
examples). The mean proportion of the pathways selected was
represented in a heatmap (Fig. 5a) and rescaled by computing a Z-
score to highlight those over- (or under-) represented in each class.
Rows and columns were clustered with an average linkage agglom-
erative clustering using an Euclidean distance (default method in
HEATMAP.2, R package GPLOTS

43).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequences associated with this study are deposited at NCBI under
BioProject accession number PRJNA989519. This project contains the
16S rRNA amplicon sequencing data associated with each of the
communities at day 0, as well as at day 7 for the four replicate growth
experiments. Source data and additional processed data are also
available in the Code repository with details to reproduce data and
figures (see “Code availability”). Source data are provided with
this paper.

Code availability
Code used for all the analysis presented in the manuscript was
deposited in GitHub with the URL: https://github.com/apascualgarcia/
ReplayEcology, and the first release was permanently stored in DOI:
10.5281/zenodo.13785758.
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