
Please cite the Published Version

Deng, Jiangtao , Wang, Wei , Wang, Lina , Bashir, Ali Kashif , Gadekallu, Thippa Reddy
, Feng, Hailin , Lv, Meilei and Fang, Kai (2025) FIDSUS: Federated Intrusion Detection for

Securing UAV Swarms in Smart Aerial Computing. IEEE Internet of Things Journal. ISSN 2327-
4662

DOI: https://doi.org/10.1109/jiot.2025.3549508

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/639240/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an accepted manuscript of an article which appeared in IEEE
Internet of Things Journal.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0009-0000-9688-2631
https://orcid.org/0000-0002-1717-5785
https://orcid.org/0009-0009-7601-2917
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0003-0097-801X
https://orcid.org/0000-0003-2734-480X
https://orcid.org/0000-0003-0419-1468
https://doi.org/10.1109/jiot.2025.3549508
https://e-space.mmu.ac.uk/639240/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

1

FIDSUS: Federated Intrusion Detection for
Securing UAV Swarms in Smart Aerial Computing
Jiangtao Deng, Wei Wang, Member, IEEE, Lina Wang, Ali Kashif Bashir, Senior Member, IEEE, Thippa Reddy
Gadekallu, Senior Member, IEEE, Hailin Feng, Member, IEEE, Meilei Lv, and Kai Fang, Member, IEEE

Abstract—The dynamic environment of UAV swarms in for-
est management is characterized by communication instability,
heterogeneous nodes, and frequent topology changes due to
challenging terrain. These systems are vulnerable to network
attacks, requiring advanced intrusion detection technologies. Tra-
ditional methods struggle with rapid changes due to data privacy
concerns and centralized computational limits, while existing
Federated Learning (FL) algorithms lack robustness against
client heterogeneity and dynamic data distribution, especially
in complex forest environments. To address these challenges,
we propose Federated Intrusion Detection for Securing UAV
Swarms (FIDSUS). FIDSUS improves intrusion detection systems
by leveraging collaborative sensing among UAVs, enabling better
monitoring and response to security threats in forestry. By
quantifying the similarity between UAVs’ local feature extractors
through an affinity matrix, FIDSUS guides the aggregation of
feature extractors, improving detection capabilities. It also uses
AI-driven aerial and distributed computing to enhance data
processing efficiency and decision-making speed. The framework
addresses data heterogeneity by cross-round feature fusion,
improving detection in dynamic environments. Experimental
results on the NSL-KDD and UNSW-NB15 datasets show that
FIDSUS outperforms existing FL methods with a 4% to 34%
accuracy improvement. FIDSUS shows robustness and accuracy
in dynamic environments, providing an effective solution for
securing UAV swarms in forestry.

This work was partly supported by the National Natural Science Foundation
of China under grant no.62403433; The Zhejiang Provincial Natural Science
Foundation of China under grant no. LQ23F020001; The Zhejiang Major
Water Conservancy Science and Technology Project under grant no. RA2201.

Code for this paper is available at https://github.com/ryota7777/FIDSUS.
Jiangtao Deng is with the College of Mathematics and Computer Science,

Zhejiang A&F University, Hangzhou, 311300, China, and with the College of
Electrical and Information Engineering, Quzhou University, Quzhou, 324000,
China. (Email: dengjiangtao07@gmail.com)

Wei Wang is with the Guangdong-Hong Kong-Macao Joint Laboratory
for Emotion Intelligence and Pervasive Computing, Artificial Intelligence
Research Institute, Shenzhen MSU-BIT University, Shenzhen 518172, China,
and are also with the School of Medical Technology, Beijing Institute of
Technology, Beijing 100081, China (Email: ehomewang@ieee.org)

Lina Wang, Hailin Feng, and Kai Fang are with the College of
Mathematics and Computer Science, Zhejiang A&F University, Hangzhou,
311300, China. (Email: Linawangzafu@gmail.com, hlfeng@zafu.edu.cn, and
Kaifang@ieee.org)

Thippa Reddy Gadekallu is with The College of Mathematics and Com-
puter Science, Zhejiang A&F University, Hangzhou 311300, China as well
as with the Division of Research and Development, Lovely Professional
University, Phagwara, India and with the Center of Research Impact and
Outcome, Chitkara University, Rajpura, 140401, Punjab, India (Email: Thip-
pareddy@ieee.org)

Ali Kashif Bashir is with the Department of Computing and Mathematics,
Manchester Metropolitan University, M15 6BX Manchester, U.K., and also
with the Centre for Research Impact and Outcome, Chitkara University
Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab
140401, India (Email: dr.alikashif.b@ieee.org).

Meilei Lv is with the College of Electrical and Information Engineering,
Quzhou University, Quzhou, 324000, China (Email: 37014@qzc.edu.cn)

Corresponding authors: Meilei Lv, and Kai Fang

Index Terms—Federated learning, UAV swarms, intrusion
detection, cybersecurity, edge computing.

I. INTRODUCTION

FORESTS play a vital role in maintaining biodiversity,
regulating climate, and providing resources for human

communities. However, the challenges of monitoring large,
often inaccessible areas, combined with the need for timely
responses to issues such as forest fires, illegal logging, and
wildlife protection, make traditional management methods
increasingly inadequate. Effective monitoring requires real-
time data collection, analysis, and decision-making to address
environmental threats swiftly and accurately. By leveraging
flexibility, mobility, and the ability to cover large areas
quickly, UAV swarms can provide crucial support in fields
such as forestry management, emergency rescue, and smart
city development [1]–[3]. Equipped with diverse sensors for
environmental monitoring, UAVs can capture high-resolution
data on vegetation health, forest density, and the presence
of wildlife, even in difficult-to-reach areas. Their ability to
operate in remote forests, where communication infrastructure
is often sparse, further enhances their value. Moreover, AI-
driven aerial computing empowers UAV swarms with intelli-
gent decision-making and autonomous learning capabilities,
allowing them to adaptively adjust network topology and
resource allocation in response to environmental changes [4].
This combination of UAV collaborative sensing and AI-driven
aerial computing enhances their ability to perform complex
tasks in forest management, such as wildlife monitoring, fire
detection, and ecosystem analysis [5].

Studies have shown that UAV swarms are capable of au-
tonomous navigation and coordination in complex environ-
ments while maintaining efficient communication and avoiding
collisions, which promoted the application of UAV swarms
in complex forest environments [6]. By using multiple UAVs
working collaboratively, the time required for detecting and
extinguishing fires can be significantly reduced, effectively
limiting the damage to forest ecosystems and biodiversity [7].
In forest resource management, [8] used multiple UAVs to
measure tree parameters, such as trunk diameter and height,
at a lower cost and in a shorter amount of time. Sangaiah
et al. utilized UAVs to enhance the detection and localization
of paddy leaf diseases, achieving improved accuracy through
their proposed UAV T-YOLO-Rice network [9] and R-UAV-
Net [10], which integrates advanced feature extraction blocks
and attention mechanisms for more precise disease detection.

This is the author's version.

2

Furthermore, [11] implemented collaborative synchronization
and mapping technologies using multiple UAVs under the
forest canopy, which have also been applied in search and
rescue operations.

However, the use of UAV swarms in forestry applications
also introduces significant challenges. While the collaborative
nature of UAV swarms enhances their capability to monitor
vast forested regions, it also exposes the system to new
security risks. The openness and connectivity of these sys-
tems make them vulnerable to malicious attacks, such as
data theft or system manipulation, which can compromise
both the collected data and the overall mission [12]–[14].
Given the dynamic nature of the forest environment and the
complexities of maintaining secure communication in such
settings, developing robust Intrusion Detection Systems (IDS)
to protect UAV swarms is crucial [15].

Deep learning models can process large volumes of data
and extract complex patterns, making them generally more
effective than traditional rule based IDSs [16]. However, tra-
ditional IDS often rely on centralized architectures, which ag-
gregate all data to a central server for analysis and processing.
This centralized approach encounters significant challenges
in UAV swarm applications. It must manage large volumes
of distributed sensor data, which are frequently real-time,
sensitive, and heterogeneous. To process this data, centralized
architectures require the constant transmission of massive
amounts of information from various nodes to a central
server. This not only results in high communication overhead
but also heightens the risk of privacy breaches during data
transfer. Furthermore, centralized data processing can lead to
delays, compromising real-time performance and overall sys-
tem efficiency [17]. Therefore, traditional centralized intrusion
detection solutions have significant limitations in UAV swarm
applications [18]. They fall short of meeting the high security
and efficiency demands required by modern UAV swarms.
In this context, exploring new and more suitable IDS for
distributed environments is crucial. This approach will help
effectively address the complex security challenges faced by
UAV swarms and ensure their reliable operation across various
forestry application scenarios.

FL, as an emerging machine learning paradigm, offers a
promising solution, especially in scenarios with high data
privacy and security requirements. It enables multiple dis-
tributed devices to collaboratively train a shared model without
exchanging raw data. This approach protects data privacy
while leveraging data from each node to optimize the model
[19]. Using FL, UAV swarm nodes can independently train
models on their local data. They then send the resulting
model updates to a central server for aggregation [20]. This
process updates the global model, enabling the entire system
to continuously learn and adapt to new data and threats. In
forestry management, where UAVs collect data from remote
and isolated regions, this decentralized approach significantly
enhances the ability to analyze environmental patterns and de-
tect potential threats such as unauthorized access. This method
not only effectively protects data privacy but also improves the
flexibility and efficiency of intrusion detection. By deploying
intrusion detection models within the FL framework, real-time

responses to security threats in distributed environments can
be achieved. This approach ensures the stability and security
of UAV swarms. However, existing FL algorithms still face
numerous challenges when applied to highly dynamic UAV
swarm environments. The frequent joining and leaving of UAV
swarm nodes lead to dynamic client changes, which in turn
cause instability in the feature space [21]. This instability not
only reduces the consistency of model training but also impacts
the accuracy, response speed, and reliability. Forests, with their
unpredictable terrain and environmental conditions, further
exacerbate these challenges, as the swarm must continuously
adapt to new threats and network disruptions. Additionally,
the complex topology and unreliable nodes present additional
challenges for FL [22]. Frequent communication disruptions
and non-independent and identically distributed (non-IID) data
distribution complicate model training and updating [23].
In real-world scenarios, network traffic data often exhibit
highly imbalanced class distributions, where certain types of
traffic, such as attacks, are much less frequent than normal
traffic. When such imbalanced datasets are partitioned using
a Dirichlet distribution, the resulting partitions can worsen
the imbalance, leading to even more extreme distributions
[24], [25]. This increased imbalance can significantly impact
model performance, making it harder for the model to detect
the less frequent class effectively. Most existing Federated
Learning (FL) algorithms are typically validated on balanced
datasets, so it is unclear whether they can effectively handle
such imbalanced class distributions. These challenges severely
hinder the practical application of FL in UAV swarm intrusion
detection. Therefore, there is an urgent need to design a feder-
ated intrusion detection framework that effectively addresses
dynamic client changes. This framework should ensure the
stability and accuracy of intrusion detection while optimizing
communication and computational overhead during training.

To address intrusion detection in highly dynamic envi-
ronments, we propose a federated learning-based intrusion
detection framework, FIDSUS. This framework enables each
UAV device to collaboratively build a global intrusion de-
tection model without transmitting sensitive local data to a
central server. FIDSUS decouples the client’s local model
into a feature extractor and a classifier. During the feature
extraction phase, FIDSUS constructs an affinity matrix to
quantify the similarity between feature extractors of different
clients. This allows FIDSUS to prioritize the aggregation of
feature extractors from clients with high similarity, thereby
improving the model’s adaptability to local data features.
Even in rapidly changing UAV swarm environments with
shifting terminals and network topologies, FIDSUS main-
tains effective intrusion detection capabilities. During training,
clients employ Maximum Mean Discrepancy (MMD) [26] to
quantify the divergence between feature representations from
different training rounds. These discrepancies are then used to
weight the aggregation of local feature representations, which
are subsequently uploaded to the server. The server trains a
global classifier using these aggregated feature representations.
This approach allows FIDSUS to learn more generalizable
feature representations, thereby enhancing its generalization
and adaptability. Through these strategies, FIDSUS improves

3

the precision and reliability of intrusion detection models
in practical applications, offering robust security guarantees
for highly dynamic UAV swarm environments. The main
contributions of this paper are as follows:

1) We propose a dynamic knowledge-sharing mechanism
for federated learning in UAV swarms, where clients
iteratively update an affinity matrix. This allows clients
with similar data distributions to share knowledge more
effectively, improving feature extractor personalization
and enhancing model adaptability and robustness in
dynamic UAV environments.

2) We use Maximum Mean Discrepancy (MMD) to mea-
sure distributional differences between feature repre-
sentations across rounds, addressing the catastrophic
forgetting problem in federated learning. This enables
better weighting and aggregation of new feature rep-
resentations, improving the model’s generalization and
robustness across heterogeneous data.

3) Experimental results on the UNSW-NB15 and NSL-
KDD datasets show that FIDSUS outperforms existing
methods in handling complex, non-IID network traffic
data. Additionally, it demonstrates superior robustness
in dynamic UAV scenarios while maintaining reasonable
time costs.

The remainder of this paper is organized as follows: Section
II reviews related work, Section III discusses the methodology,
Section IV presents the experiments and analysis, and Section
V concludes the paper.

II. RELATED WORK

A. UAV Swarm Security

UAV swarm technology has advanced rapidly in recent
years, finding widespread use in emergency rescue, environ-
mental monitoring, and communication infrastructure con-
struction. Despite their flexibility and efficiency, UAV swarms
are also susceptible to numerous security challenges. Oper-
ating in open and dynamic environments makes UAVs vul-
nerable to threats such as data theft, system tampering, and
physical hijacking. These risks not only affect the functioning
of individual UAVs but also jeopardize the entire swarm
due to their interconnected nature. To address these security
concerns, researchers have proposed various solutions. Li
et al. [27] designed an efficient and secure communication
protocol. This protocol combines SM4 encryption, BLS sig-
nature, and Merkle hash tree technology. It enhances network
security and reduces key management costs. Xie et al. [28]
proposed a blockchain-based multi-UAV task management
scheme (B-UAVM). This scheme accelerates the consensus
process through a three-layer blockchain structure and an
improved Byzantine fault tolerance mechanism (IPBFT). It
ensures the security of task data and entity information. Ye
et al. [29] introduced a robust secure communication scheme
based on intelligent reflecting surfaces (IRS). This scheme
optimizes UAV transmission power, trajectory, and IRS phase
shifters. It enhances secure communication between UAVs
under imperfect channel conditions. While these solutions
have enhanced UAV swarm security, significant limitations

remain. Many struggle to adapt to the highly dynamic network
environment typical of UAV swarms, where frequent changes
in topology and the constant joining or departure of nodes
complicate the maintenance of system security. Furthermore,
the lack of support for heterogeneous networks hampers the
protection of communications across different types of devices.
Although encryption and blockchain technologies improve
security, they also consume considerable resources, limiting
their application in resource-constrained environments. As the
size of UAV swarms increases, these approaches often fail
to scale effectively, making it difficult to meet the security
demands of large-scale cooperative operations.

B. Intrusion Detection Systems

IDS are widely employed to counter various security threats
in distributed systems. Traditional centralized IDS work well
with centralized data by collecting and analyzing data from
a single location. However, these systems face significant
limitations in distributed environments, where data is spread
across multiple nodes. Key challenges include high commu-
nication overhead, insufficient real-time response, and risks
to data privacy [30]. Centralized IDS often require large
volumes of data to be transmitted from distributed nodes
to a central server, which increases network load and can
lead to delays or data loss. Furthermore, concentrating all
data in one location makes the central server a prime target
for attacks, thereby exposing sensitive information and un-
dermining privacy. Additionally, centralized systems struggle
with maintaining accuracy and efficiency when processing
heterogeneous data in real-time due to the vast and dynamic
nature of distributed networks. To overcome these limitations,
researchers have turned to Distributed Intrusion Detection
Systems (DIDS), which use decentralized architectures to
improve security and performance. DIDS systems process
data locally on each node, reducing the need for excessive
communication and enhancing system scalability. For instance,
Parra et al. [31] proposed a distributed deep learning frame-
work for detecting and mitigating phishing, Distributed Denial
of Service (DDoS), and Botnet attacks in IoT devices. This
framework includes Distributed Convolutional Neural Net-
works (DCNN) embedded in devices. It also features a cloud-
based Long Short-Term Memory (LSTM) network model.
These components work collaboratively to detect attacks at
both the device and backend levels, thus enhancing overall
system security. Zhao et al. [32] introduced a low-load DIDS
task scheduling method based on Q-Learning. This method
dynamically adjusts scheduling strategies to balance system
load and packet loss rate. Intelligent task scheduling allows
the system to better respond to load changes. It maintains
low latency and efficient data processing capabilities. Mousa’B
et al. [33] proposed an explainable ensemble deep learning-
based intrusion detection system for Industrial Internet of
Things (IIoT) networks, utilizing SHAP and LIME methods
to enhance transparency and robustness while reducing false
positives. Tlili et al. [34] proposed an enhanced Distributed
Intrusion Detection System (E-DIDS) specifically designed
for UAVs. By deploying multiple interconnected IDS units,

4

the system improves security, optimizes attack detection per-
formance, and reduces resource consumption. While DIDS
mitigates some limitations of centralized IDS, it still faces
scalability and robustness issues when dealing with large,
dynamic UAV swarms. The heterogeneity of data and complex
communication environments in these swarms pose signifi-
cant challenges for DIDS deployment, requiring systems to
handle diverse device data and adapt to frequently shifting
network topologies. This situation demands greater flexibility
and adaptability from the system.

C. Federated Learning for Intrusion Detection

FL, as an emerging distributed machine learning technology,
offers innovative solutions to the intrusion detection challenges
in UAV swarms [35]. By enabling multiple devices to col-
laboratively train models while preserving data privacy, FL
significantly enhances the efficiency and accuracy of detection
systems [36]. This approach is particularly crucial in UAV
swarms. It leverages data distributed across various devices for
model training without requiring data centralization. Recent
years have seen notable advancements in FL-based UAV
intrusion detection techniques. He et al. [37] introduced a col-
laborative intrusion detection algorithm based on Generative
Adversarial Networks (CGAN) and blockchain. This method
enhances data generation with LSTM and combines distributed
FL techniques to ensure data security, significantly improving
intrusion detection accuracy in UAV networks. Hadi et al. [38]
developed an autonomous collaborative intrusion detection
system (UAV-CIDS) based on a Feedforward Convolutional
Neural Network (FFCNN). This system achieves up to 98.23%
accuracy in zero-day attack detection. It also includes a real-
time event response system to enhance UAV network security.
Wang et al. [39] proposed an asynchronous federated learning
(AFL) framework based on Vertical Heterogeneous Networks
(VHetNet). They combined the CA2C algorithm to optimize
UAV selection. High Altitude Platform Stations (HAPS) are
used as the central server for efficient intrusion detection
model training. This method achieved high detection accuracy
with low energy consumption and rapid response times. Zhang
et al. [40] developed an evolving DIDS based on federated
continual representation learning. The system employs super-
vised contrastive loss, global information-aware regulariza-
tion loss, and variance-driven memory update strategies. This
setup allows the system to continuously capture features of
emerging attacks. The approach enhances the system’s ability
to detect novel attacks and enables DIDS to better adapt to
evolving attack patterns and network environments. While
FL has made significant strides in UAV network intrusion
detection, its broader application still faces challenges such
as dynamic network environments, heterogeneous data, and
complex traffic patterns. The robustness of FL models in UAV
swarms has not been fully validated, as frequent client joins
and departures have been shown to cause instability in the
system. Additionally, improving the model’s adaptability to
high-complexity network traffic data is essential for handling
diverse traffic patterns effectively. In scenarios with Non-
IID (non-independent and identically distributed) data, models

must be highly adaptable to manage uneven data distribution
across clients. Addressing these critical issues will enhance
the effectiveness of FL in UAV swarms, improving its ability
to counter increasingly complex security threats.

Algorithm 1 Federated Averaging for UAV Swarm

Input: Total number of UAVs N , number of selected UAVs
K, fraction of UAVs participating in each round C,
number of communication rounds T , learning rate η, local
batch size b, number of local epochs E.
Server executes: initialize ω.
for each round t = 0 to T − 1 do
K = max(C ·N, 1)
St ← random set of K UAVs

UAV Side (each UAV k ∈ St):
Split the local dataset Dk into batches of size b:
batches← split(Dk, b)
for each local epoch i = 1 to E do

for batch b ∈ batches do
ωt
k ← ωt

k − η∇ℓ (ωt
k; b)

end for
end for
return ωt

k to server

Server Side:
for each UAV k ∈ St in parallel do
ωt+1
k ← ωt

k

end for
ωt+1 ←

∑K−1
k=0

nk

n ωt+1
k

end for

III. METHODOLOGY

A. FedAvg in UAV Swarm Scenarios

Traditional FL algorithms aggregate models from multiple
FL clients through a central FL server to generate a global
model. For instance, FedAvg [41], as detailed in Algorithm 1,
employs weighted averaging to aggregate client models.

TABLE I: List of Key Notations

Notation Description
N Total number of UAVs
C Fraction of UAVs participating in each round
K Number of selected UAVs
St Set of selected clients in round t
Dk Local dataset of client k
T Number of communication rounds
E Number of local epochs
b Local batch size
η Global learning rate
ηω Learning rate of local models
ηθ Learning rate of the global classifier
ωt
k Local model of client k in round t

φt
k Local feature extractor of client k in round t

θt Global classifier at round t
MN Affinity matrix
N t

k Set of top n most similar clients to client k in round t
ω̃t
k Temporary local model of client k in round t

δtk,i Weight in the affinity matrix between client k and client i in round t

R̃t,s
k Average feature representation for client k with label s at round t

Rt,s
k agg Aggregated feature representations of client k in round t

5

Global Classifier Training

Client k Client n

…

EnsembleServer

t t t
k k  =t t t  t t t  t t t

t

Upload

1t −

1 -1 ,- (;),t t t t s
k agg s    −  -1 ,(;),-1 ,(;),-1 ,t(;),t(;),   (;),   (;),(;),t(;),   (;),t(;),(;),k agg(;),k agg(;),(;), s(;),-1 ,(;),-1 ,(;),-1 ,t s-1 ,t s-1 ,(;),t s(;),-1 ,(;),-1 ,t s-1 ,(;),-1 ,
k agg(;),k agg(;),

…⋮

Client 1

⋮

Affinity matrix

Similarity

1
,

, 1

() ()
|| ||

t t t t
k k k i kt

k i t t
k k

 


 

−

−

−
=

−

1
,() ()t t t t1t t t t1() ()t t t t() ()1() ()1t t t t1() ()1

k k k i k,k k k i k,() ()k k k i k() (),() (),k k k i k,() (),() () () ()() ()t t t t() () () ()t t t t() ()1() ()1t t t t1() ()1 1() ()1t t t t1() ()1() ()k k k i k() () () ()k k k i k() ()() ()t t t t() ()−() ()t t t t() ()() () () ()−() () () ()

k

k

k

a b c d e

a c
selection ,

t
k a

,
t
k c

,
t
k k

aggregation

weight

Feature
representations

in round t

Feature
representations
with historical

and current
information

Feature
extractor

Local data
of client k

1t
k
−

t
k

Feature
representations

in round t-1 ,t s
k agg

,t s,t s,
k agg

MMD

aggregation

1

2

3

Fig. 1: FIDSUS System Framework

The server randomly selects a subset of clients in each
round, referred to as UAVs in UAV-based applications. These
selected UAVs, denoted by St, train the global intrusion de-
tection model ω on their local datasets Dk. The key notations
used in this paper are summarized in Table I. The updated local
models are then transmitted to the central server. At the server,
these models are aggregated into a new global model using
weighted averaging, as shown in the following expression:

ω =

K−1∑
k=0

nk

n
ωk (1)

FedAvg aims to solve the following optimization problem:

minL(ω) =
K−1∑
k=0

nk

n
Lk(ω) (2)

where nk represents the number of samples in the local dataset
of the k-th UAV, and n is the total number of samples across
all UAVs. Lk(ω) = l(ω;Dk) denotes the loss of the global
intrusion detection model on the k-th UAV’s local dataset Dk.

The performance of FedAvg relies on the assumption of
homogeneous client data. However, in UAV swarm envi-
ronments, data distributions are often dynamic and highly
heterogeneous. Additionally, network traffic data for intrusion
detection features complex characteristics. In such scenarios,
the performance of FedAvg frequently falls short. To address
this challenge, we propose FIDSUS, a federated intrusion
detection framework designed for UAV swarms.

B. FIDSUS Framework Overview

The key steps of FIDSUS are summarized as follows:
Feature Extraction: The first step involves decomposing

the model into a feature extractor and a classifier. The purpose
of this step is to capture important features from each client’s
local dataset. To improve the quality of feature extraction,
we construct an affinity matrix, which measures the similarity
between local clients based on their data. This matrix serves
as a tool to guide the aggregation of local feature extractors,
enhancing detection accuracy by improving knowledge sharing
across heterogeneous clients.

Feature Aggregation: During each iteration, the feature ex-
tractor processes the client’s local dataset and collects feature
representations from both the previous and current rounds.
To measure and quantify any shifts in feature distributions
across iterations, we employ MMD [26]. This allows us
to detect discrepancies between feature representations from
different rounds and apply these discrepancies as weights in
the aggregation process. The rationale behind this approach
is to ensure that the feature aggregation prioritizes the most
relevant and stable features over time.

Global Classification: After the feature representations are
updated, they are transmitted to the server, which integrates
them to train the global classifier. The objective here is
to leverage the feature representations from all participating
clients to build a robust global classifier. By doing so, we
enhance the generalization capability of the model, enabling it
to perform well across a variety of dynamic conditions. Since
MMD aggregates historical feature representations, the global

6

classifier also incorporates this historical data to mitigate the
problem of forgetting previously learned knowledge. By re-
taining information from past rounds, we ensure that the model
maintains performance on patterns learned earlier, contributing
to the classifier’s stability and improving its generalization
ability over time.

To effectively detect highly heterogeneous data, FIDSUS
utilizes a personalized federated learning (PFL) strategy. PFL
allows each participant to adjust the local model according to
their own needs and characteristics. By deploying personalized
local models, FIDSUS enables clients to better adapt to their
unique data distributions, surpassing the limitations of a single
global model. The proposed FIDSUS framework is depicted
in Fig. 1. FIDSUS aims to minimize the total loss across all
client models on their local datasets, formulated as:

min
N−1∑
k=0

Lk (ωk) (3)

where Lk (ωk) represents the loss of the k-th client on its local
dataset, and ωk denotes the local model parameters of the k-th
client. To achieve precise feature extraction and classification,
we decouple the model ω into a feature extractor φ and a
classifier θ, expressed as:

ω = φ ◦ θ (4)

where φ is the feature extractor, θ is the classifier, and ◦
denotes model concatenation. The system aggregates φ to
enhance feature extraction capabilities and trains the global
classifier θ to improve the system’s generalization perfor-
mance. The detailed steps are shown in Algorithm 2.

Before the iterations begin, we randomly initialize the
heterogeneous local models

[
ω0
0 , . . . , ω

0
N−1

]
and the global

classifier θ0, while also initializing MN as a diagonal matrix.
In the t-th round of iteration, K clients are randomly selected
to participate in training, denoted as St. Each selected client
k ∈ St selects the top n most similar clients, denoted by N t

k,
based on the weights from the affinity matrix MN . Subse-
quently, client k collects feature extractors < φt

k,1, . . . , φ
t
k,n >

from clients in N t
k. The server receives these feature extractor

parameters and distributes them to the selected client k. The
client combines its local classifier with the sampled feature
extractors to form a complete model with different feature
extractors:

ωt
k,1 = φt

k,1 ◦ θt−1

...

ωt
k,n = φt

k,n ◦ θt−1

(5)

At this stage, each sampled client has n + 1 models,
including its local model ωt−1

k = φt−1
k ◦ θt−1. The client

evaluates these models to update the weights in the affinity
matrix MN . The updated local feature extractor φt

k is then
computed as follows:

φt
k = φt−1

k +
∑
i∈N t

k

δ̂k,i
(
φt
k,i − φt−1

k

)
(6)

Algorithm 2 FIDSUS

Input: Total number of UAVs N , number of selected UAVs
K, number of communication rounds T , learning rate of
local models ηω , learning rate of global classifier ηθ.
Server executes: randomly initialize the heterogeneous
local models

[
ω0
0 , . . . , ω

0
N−1

]
and global classifier θ0.

Initialize affinity matrix MN = diag(1, 1, . . . , 1)

for each round t = 0 to T − 1 do
St ← Randomly select K ≤ N UAVs to join FL.

UAV Side (each UAV k ∈ St):
Choose top n similar UAVs based on MN .
Receive feature extractors < φt

k,1, . . . , φ
t
k,n > and

global classifier θt−1 from the server.
Concatenate each received feature extractors with the
global classifier by Eq. (5).
Update weight vector of MN using Algorithm 3.
Update local feature extractor φt

k by Eq. (6).
Generate a temporary local model ω̃t

k = φt
k ◦ θt−1

Update local model ωt
k using gradient descent by Eq.

(7).
Upload the local class representation to the server
according to Algorithm 4.

Server Side:
Update MN using Algorithm 3.
Train global classifier θt by Algorithm 4.
Broadcast θt to UAVs for the next round.

end for
Return Personalized models:

[
ωT−1
0 , ωT−1

1 . . . , ωT−1
N−1

]
.

where δ̂k,i represents the normalized weight, which is used to
compute the weighted sum of the differences between φt

k,i

and φt−1
k . The updated local feature extractor φt

k is then
combined with the previous round’s global classifier θt−1

k to
form a temporary local model ω̃t

k. The local model ωt
k is

subsequently updated through gradient descent on the loss
function as follows:

ωt
k ← ω̃t

k − ηω∇ℓ
(
ω̃t
k;Dk

)
(7)

where Dk denotes the local dataset held by client k, and
ηω is the local learning rate. After updating the local feature
extractor, R̃t−1,s and R̃t,s are used to form a new aggregated
feature representation R̃t,s

agg. The server collects all new
feature representations R̃t,s

agg to train the global classifier
θt and distribute it to clients.

C. Update of Local Feature Extractors

The algorithm for local feature extractor updates, including
the affinity matrix update, is shown in Algorithm 3. Clients
with similar data distributions can optimize local model perfor-
mance through knowledge sharing. To quantify the similarity
between clients, we establish an N -dimensional client affinity
matrix MN . For the models ωt

k,1 = φt
k,1 ◦ θt−1, . . . , ωt

k,n =

φt
k,n ◦ θt−1 and ωt−1

k = φt−1
k ◦ θt−1 obtained in Eq. (5), we

7

evaluate these n+ 1 models on the local model to update the
weights in the affinity matrix MN . First, we calculate the loss
function value of the local model ωt−1

k , denoted as Lt
k

(
ωt−1
k

)
.

Next, we compute the loss function values Lt
k,i

(
ωt
k,i

)
for each

ωt
k,i. The weight update formula is then applied as follows:

δtk,i =
Lt
k

(
ωt−1
k

)
− Lt

k,i

(
ωt
k,i

)
∥∥∥φt−1

k − φt
k,i

∥∥∥ , (i ∈ N t
k) (8)

The new weight is defined based on the difference be-
tween the loss function values Lt

k

(
ωt−1
k

)
and Lt

k,n

(
ωt
k,i

)
,

normalized by the L2 norm of the difference between the
feature extractor parameters φt−1

k and φt
k,i. A larger difference

indicates that the local model ωt−1
k performs worse on the

local validation set compared to the received model ωt
k,i. This

results in a higher weight for φt−1
k .

To ensure numerical stability and avoid situations where
the denominator approaches zero due to the cancellation of
positive and negative terms, the result of Eq. (8) is processed
with δtk,i ← max(0, δtk,i), followed by normalization of the
positive values. This ensures that the computation remains
well-defined and robust, particularly in cases where the dif-
ferences in parameters are small.

When the difference between φt−1
k and φt

k,i is small, the
shared knowledge can provide a greater benefit, leading to
a higher weight for φt

k,i. Conversely, when the difference is
large, the weight is relatively smaller, reflecting the limited
potential improvement for the local model. Subsequently,
normalization is applied to prevent instability caused by ex-
cessively large or small weights:

δ̂tk,i =
δtk,i∑

i∈N t
k
δtk,i

(9)

The updated feature extractor φt
k is obtained using the nor-

malized weights as follows:

φt
k = φt−1

k +
∑
i∈N t

k

δ̂k,i
(
φt
k,i − φt−1

k

)
(10)

After updating the weights
[
δ̂tk,1, . . . , δ̂

t
k,n

]
for the n clients

similar to client k, the weight vector δtk is updated as:

δtk ←
[
δ̂tk,1, . . . , δ̂

t
k,n

]
(11)

The server then collects the updated weight vectors <
δt1, . . . , δ

t
k > from all participating clients and updates the

affinity matrix MN . This updated matrix facilitates the se-
lection of similar clients for the subsequent iteration. By
incorporating model updates from other clients, the local fea-
ture extractors can learn relevant information more efficiently.
Weighting the extractors based on their relative contributions
accelerates model convergence and enhances performance.

D. Update of Global Classifier

To enhance the system’s generalization and adaptability, we
train the global classifier using feature representations. For

Algorithm 3 Update of Local Feature Extractors

Input: Number of UAVs selected based on the affinity matrix
n, local model from the previous round ωt−1

k , feature
extractors of other selected models < φt

k,1, . . . , φ
t
k,n >,

global classifier received from server θt−1.

UAV Side (each UAV k ∈ St):
Calculate affinity weights δ̂tk,i by Eq. (8)
Normalize weights δ̂tk,i by Eq. (9)
Update local feature extractor δ̂tk,i by Eq. (10)
Update weight vector δtk :
δtk ←

[
δ̂tk,1, . . . , δ̂

t
k,n

]
Upload δ̂tk,i to server.
Update the local model

Server Side:
Receive < δt1, . . . , δ

t
k >

Update the affinity matrix MN :

MN ←

 δt1
...
δtk



client k, the updated feature extractors φt
k and the previous

feature extractor φt−1
k are used to extract new and old feature

representations, respectively. Feature representations R are
numerical vectors that capture the essential characteristics of
data segments.

To align new and old features, we employ MMD to measure
distributional differences. MMD is a statistical method that
quantifies the discrepancy between two probability distribu-
tions, reflecting the differences between new and old feature
representations. In FL, where data distributions can be highly
heterogeneous and complex, MMD effectively captures these
distributional differences [26]. The MMD formula is:

MMD(P,Q) =
1

n2
x

nx∑
p=1

nx∑
q=1

k (Xp, Xq)+

1

n2
y

ny∑
p=1

ny∑
q=1

k (Yp, Yq) +
2

nxny

nx∑
p=1

ny∑
q=1

k (Xp, Yq) (12)

where P and Q represent the distributions of X and Y ,
nx and ny denote the number of samples in X and Y ,
respectively, and k(·, ·) is the kernel function that measures
the similarity between samples. This formula captures the
differences between the internal self-similarity of X and Y
as well as their cross-similarity.

Since feature representations are typically multi-
dimensional, directly computing MMD significantly increases
computational complexity and time cost. The time complexity
for direct computation of MMD is O

(
n2
x + n2

y + nxny

)
.

To reduce this complexity, we use an average feature
representation approach. For the category s in the local
dataset Dk of client k, the average feature representations are

8

computed as follows:

R̃t−1,s
k =

1

|Ds
k|

∑
i∈Ds

k

F t−1
k

(
φt−1
k ;xi

)
(13)

R̃t,s
k =

1

|Ds
k|

∑
i∈Ds

k

F t
k

(
φt
k;xi

)
(14)

where F t
k (φ

t
k;xi) represents the feature extraction using φt

k

on a subset of samples xi from the local dataset Ds
k. This

process yields average feature representations R̃t−1,s
k and R̃t,s

k

for categories s in rounds t−1 and t, respectively. With average
feature representations, Eq. (12) simplifies to:

MMD
(
R̃t,s

k , R̃t−1,s
k

)
= 2− k

(
R̃t,s

k , R̃t−1,s
k

)
(15)

This reduction in complexity simplifies the computation
to O (nx + ny), significantly lowering the cost compared to
direct MMD computation.

Algorithm 4 Update of Global Classifier

Input: Total number of UAVs N , learning rate of global
classifier ηθ, feature extractor from the previous round
φt−1
k , feature extractor aggregated in Algorithm 3 φt

k

UAV Side (each UAV k ∈ St):
Calculate representations Rt−1

k,i and Rt
k,i for each sample

i ∈ Dk.
Calculate average representations for each class using Eq.
(13) and Eq. (14).
Calculate MMD between R̃t−1,s

k and R̃t,s
k using Eq. (15).

Update aggregation weights W .
Calculate aggregated representation by Eq. (16).
Upload Rt,s

k agg and class labels s to the server.
Receive aggregated representations Rt,s

k agg and label s
from clients. Train the global classifier:

Server Side:
Receive aggregated representations Rt,s

k agg and label s
from clients.
Train the global classifier:
θt ← θt−1 − ηθ∇ℓ

(
θt−1;Rt,s

k agg, s
)

Broadcast the updated global classifier θt

The normalized difference values are denoted as weights
W . These weights reflect the relative importance of each
local representation. They help in capturing the underlying
data distribution. These weights balance the contributions of
historical feature representations R̃t−1,s

k and current feature
representations R̃t,s

k . We use a weighted combination to ag-
gregate R̃t−1,s

k and R̃t,s
k :

Rt,s
k agg = W · R̃t,s

k + (1−W)R̃t−1,s
k (16)

where Rt,s
k agg represents the aggregated average representa-

tion for each local class in round t, used for training the
global classifier. This process ensures that both current feature
representations R̃t,s

k and historical representations R̃t−1,s
k are

integrated to enhance the model’s generalization ability and
adaptability. By uploading feature representations Rt,s

k agg ,

FIDSUS avoids the inefficiency of directly transmitting entire
models which is beneficial in resource-constrained environ-
ments. During aggregation, UAV clients with feature distribu-
tions significantly deviating from historical distributions are
assigned lower weights. This approach prevents the unified
feature representation from being overly influenced by outliers
or domain biases. Aggregating both old and new feature repre-
sentations preserves historical information, mitigating the loss
of useful features and patterns. This method helps maintain
a memory of previously learned information, allowing better
utilization of past experiences and knowledge.

On the server side, the aggregated feature representations
Rt,s

k agg from all participating clients in the current round t
are used to train the global classifier. Parameter updates are
performed by calculating the gradient of the loss function ℓ
with respect to the global classifier θt−1. The update formula
is:

θt ← θt−1 − ηθ∇ℓ
(
θt−1;Rt,s

k agg, s
)

(17)

where ηθ is the learning rate for the global classifier, and
∇ℓ

(
θt−1;Rt,s

k agg, s
)

represents the gradient of the loss func-
tion ℓ with respect to the global classifier θt−1, based on the
aggregated feature representationsRt,s

k agg and category s. The
updated global classifier θt is then distributed to the selected
clients in the next round.

The global classifier integrates information from multiple
models, enhancing prediction accuracy. By leveraging diverse
perspectives, this approach mitigates individual model biases,
improves robustness, and reduces overfitting, ultimately lead-
ing to better generalization.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Configuration

To evaluate the effectiveness of the proposed FIDSUS
framework, we conducted comparative experiments using two
network intrusion detection datasets (NSL-KDD [42] and
UNSW-NB15 [43]) and seven advanced methods (FedAvg
[41], FedProx [44], MOON [45], FedAvgDBE [46], FedProto
[47], GPFL [48], and FedGH [49]) across various scenarios.
For all FL strategies, we employ the same 1D CNN model for
intrusion detection. The model architecture comprises two con-
volutional layers, one global max pooling layer, one dropout
layer, and one fully connected layer. All methods employed
consistent hyperparameter settings. The specific parameters are
as follows: both the local learning rate and the learning rate
of the global classifier on the server are set to 0.01, with a
batch size of 64. The join ratio is set to 1. The number of
communication rounds is set to 100, and the local epoch is set
to 1. In the FedProx and MOON methods, the value of µ is set
to 0.01, while in MOON, τ is set to 1. In GPFL and FedProto,
λ is set to 0.99. In FedAvgDBE, the momentum is set to 0.1,
and the kl weight is set to 0 by default. These parameter
settings were determined based on preliminary experiments.
All experiments were conducted on an RTX 4090 GPU using
the PyTorch 1.8 framework with Torch version 2.0.1.

Comparison Strategies:
1) FedAvg aims to update the global model by averaging

local model parameters from different clients. After

9

each communication round, the server collects the local
model parameters from all clients, computes the average,
and then uses this average as the update for the global
model.

2) FedProx builds upon FedAvg by introducing a regu-
larization term to balance the accuracy of the global
model and the deviation of the client models, thereby
enhancing the model’s generalization ability. It addresses
performance issues of FedAvg in heterogeneous data
situations.

3) MOON integrates global model and client model fea-
tures to address performance issues on non-IID data. It
uses a mixed optimization algorithm to simultaneously
update parameters of the global model and client models
and employs feature selection methods to weight and
fuse features from different models.

4) FedAvgDBE enhances bidirectional knowledge transfer
between server and clients. This approach eliminates
domain bias in feature extractors and addresses catas-
trophic forgetting during local training.

5) FedProto transmits abstract class prototypes between
clients and the server. Local prototypes from different
clients are collected and aggregated to form a global
prototype. This global prototype then guides the training
of local models, ensuring continuous alignment between
local and global prototypes.

6) GPFL extracts global features using global model pa-
rameters at the clients and local features from private
data. These features are then fused to obtain a combined
feature, which is used for model training to produce the

global model.
7) FedGH utilizes heterogeneous feature extractors to ob-

tain feature representations and trains a shared gener-
alized global prediction head. This head learns from
different clients and then transfers the acquired global
knowledge back to the clients to replace each client’s
local prediction head.

B. Experimental Datasets for Intrusion Detection

To evaluate the performance of the proposed FIDSUS
framework, we used two popular network intrusion detection
datasets: UNSW-NB15 and NSL-KDD. The UNSW-NB15
dataset comprises records with 49 features, covering 10 differ-
ent types of attacks. In contrast, each record in the NSL-KDD
dataset contains 43 features. The NSL-KDD dataset’s training
set includes 22 attack types, while its test set expands to 39
attack types. For the 39 attack types in the NSL-KDD dataset,
we reclassified them based on their nature using the mapping
scheme outlined in Table II. Since the UNSW-NB15 dataset
is derived from real network traffic and specifically designed
to address the complex attack behaviors in modern network
environments, it is better suited to represent the complexities
of contemporary cyberattacks.

Fig. 2 shows the distribution of data quantities for different
attack types in these two datasets. After classifying the attack
types, as shown in Fig. 2(a), the NSL-KDD dataset is divided
into five categories: Normal, Dos, Probe, U2R, and R2L.
As illustrated in Fig. 2(b), the UNSW-NB15 dataset consists
of ten categories: Normal, Generic, Exploits, Fuzzers, Dos,
Reconnaissance, Analysis, Backdoor, Shellcode, and Worms.

TABLE II: Mapping of Attack Classes in NSL-KDD

Class Description Attack Category
Normal Normal network traffic normal

Dos Dos attacks make the target inaccessible by sending
a large amount of traffic or information to the target
server.

apache2, back, mailbomb, processtable, snmpgetattack, teardrop,
smurf, land, neptune, pod, udpstorm

Probe Collect network information nmap, ipsweep, portsweep, satan, mscan, saint, worm
U2R Obtaining root privileges through illegal means ps, buffer overflow, perl, rootkit, loadmodule, xterm, sqlattack, http-

tunnel
R2L Remote user attacks exploit security vulnerabilities

and perform illegal operations by remotely logging
into the computer.

ftp write, guess passwd, snmpguess, imap, spy, warezclient, warez-
master, multihop, phf, named, sendmail, xlock, xsnoop

6 7 3 4 3

4 5 9 2 7

1 1 6 5 6

5 2 9 9 5
9 7 1 1 7 4 5 8

2 4 2 1 2 0 0 2 7 5 4

5 6 0 0 0

4 0 0 0 0

3 3 3 9 3

1 8 1 8 4
1 2 2 6 4 1 0 4 9 1

2 0 0 0 1 7 4 6 1 1 3 3 1 3 0

3 7 0 0 0

1 8 8 7 1

1 1 1 3 2
6 0 6 2 4 0 8 9 3 4 9 6

6 7 7 5 8 3 3 7 8 4 4

N o r m
a l D o s P r o b

e
U 2 R R 2 L

0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0

Nu
mb

ero
fIn

sta
nce

s

K D D T r a i n +
K D D T e s t +

(a) N S L

N o r m
a l

G e n e r
i c

E x p l o
i t s

F u z
z e r s D o s

R e c o n
n a i s

s a n c
e

A n a l y
s i s

B a c k d
o o r

S h e
l l c o

d e
W o r m

s
0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

N B 1 5

Nu
mb

ero
fIn

sta
nce

s

U N S W _ N B 1 5 _ t r a i n i n g - s e t
U N S W _ N B 1 5 _ t e s t i n g - s e t

Fig. 2: The Distribution of Attack Types (a)NSL-KDD (b)UNSW-NB15

10

C. Data Preprocessing

The data preprocessing process, illustrated in Fig. 3, in-
volves merging the training and test sets. The combined dataset
is then partitioned into N subsets according to the number
of clients. Each subset includes a local training set, a local
validation set, and a local test set.

Dirichlet distribution

Local data of each client

Local

data[1]

Local

data[2]

Local

data[n]

UNSW-NB15

NSL-KDD

IDS dataset
train val test

Feature

Encoding

Data Split

Normalization

Preprocessed

data

Fig. 3: Data Preprocessing

First, we encode categorical features (such as protocol,
flag, etc.) by mapping them into a numerical space. For
encoding, one-hot encoding is applied for categorical features
with no intrinsic order, where each category is represented
as a separate binary feature. Label encoding is applied to
categorical features with an ordinal relationship where each
category is mapped to a unique integer value. This ensures that
categorical features are transformed into a format suitable for
FL models, allowing them to process the data effectively. Next,
features with significant scale differences are normalized. Min-
Max scaling is applied, rescaling each feature to a range
between 0 and 1, ensuring all features are on a comparable
scale. This step mitigates the impact of large disparities in
feature scales, which can affect model performance.

Then, we use the Dirichlet distribution to partition the
local datasets and simulate heterogeneous Non-IID scenarios.
This distribution helps create imbalanced data splits, which
more closely mimic real-world federated learning environ-
ments where clients may have data of varying quantities and
distributions. The Dirichlet distribution is defined over a set
of multinomial random variables, with its probability density
function given by:

Dir(p | α) = 1

B(α)

K∏
i=1

pαi−1
i (18)

where p = (p1, p2, . . . , pK) is a K-dimensional random
variable vector, with 0 ≤ pi ≤ 1 and

∑K
i=1 pi = 1. The

parameter vector α = (α1, α2, . . . , αK) controls the shape
of the probability density function across the dimensions,
reflecting preferences or weights in each dimension. B(α)
denotes the multivariate Beta function, which ensures that
the probability density function integrates to 1, reflecting
the normalization property of the Dirichlet distribution. The
parameter α is set to 0.3, and this value is applied in all
subsequent experiments.

After applying the Dirichlet distribution to partition the
dataset, each client receives a local dataset. This dataset is
further divided into three subsets with a ratio of 4:1:1. The
4:1:1 ratio is chosen to strike a balance between having enough
data for model training and maintaining an unbiased evaluation
setup.

D. Experimental Results Analysis with Static UAV Clients
1) Comparison of Datasets: Fig. 4 compares the data dis-

tribution across the MNIST [50], FashionMNIST [51], NSL-
KDD, and UNSW-NB15 datasets when the number of clients

(a)MNIST (b)Fashion-MNIST

(d)UNSW-NB15(c)NSL-KDD

Fig. 4: Client Subsets under Dirichlet Distribution

11

(NC) is set to 50 and the Dirichlet distribution parameter held
constant. While MNIST and FashionMNIST exhibit relatively
balanced class distributions, the NSL-KDD and UNSW-NB15
datasets show significant imbalances, resulting in greater data
heterogeneity. This heterogeneity presents challenges for FL
systems, particularly in managing variations in the number of
classes and samples per client. Comparing Figs. 4(a) and 4(b)
with Figs. 4(c) and 4(d) reveals that the inherent imbalance in
the original datasets exacerbates the heterogeneity, especially
in network traffic data. This imbalance introduces additional
difficulties in processing and training within FL frameworks.

Fig. 5 illustrates the performance differences of various
FL strategies across the MNIST, FashionMNIST, NSL-KDD,
and UNSW-NB15 datasets. The results show relatively stable
performance curves for the MNIST and FashionMNIST image
datasets, where the simpler and lower-dimensional nature of
the data leads to smoother convergence. In contrast, the intru-
sion detection datasets exhibit greater fluctuations during train-
ing, primarily due to the high dimensionality and complexity
of network traffic data. These characteristics, combined with
the inherent class imbalance in the intrusion detection datasets,
contribute to the instability in convergence. As observed in
Figs. 4(a) through 4(d), more imbalanced datasets lead to
increasingly skewed client subsets, even when a consistent
Dirichlet distribution is applied. Among the various FL strate-
gies, FedGH is the most affected by this imbalance, demon-
strating strong performance on image tasks but struggling

with stability in intrusion detection tasks. This highlights the
challenges posed by the inherent complexity and imbalance of
network traffic data, which require the development of more
robust strategies to ensure effective learning and consistent
system performance across different domains.

2) Performance Evaluation on the NSL-KDD Dataset: Fig.
6 illustrates the performance of various federated strategies
on the NSL-KDD dataset. This dataset, characterized by its
relatively low complexity, is well-suited for simulating low-
complexity traffic scenarios involving UAVs. The proposed
FIDSUS strategy consistently outperforms others across all
scenarios, achieving the highest average test accuracy with a
stable upward trend. FIDSUS evaluates the affinity matrix to
assess the similarity between UAV clients, enabling knowledge
sharing and enhanced aggregation among similar UAVs. This
allows the model to quickly adapt to the local data of each
UAV client, effectively addressing the challenges posed by
high heterogeneity in recognition tasks. FIDSUS also lever-
ages feature representations from both before and after client
updates. By aggregating these features, it incorporates both
historical and current information, thereby mitigating the issue
of forgetting in highly heterogeneous environments. The final
step involves training a global classifier with these enriched
feature representations. This process enhances the model’s
overall generalization and ensures stable average test accuracy
across different scales. In contrast, other strategies such as
FedAvg, FedProx, MOON, FedProto, FedAvgDBE, and GPFL

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

A
vg

 T
es

t A
cc

Communication Rounds
(a)FedAvg

A
vg

 T
es

t A
cc

Communication Rounds
(b)FedProx

A
vg

 T
es

t A
cc

Communication Rounds
(c)MOON

 MNIST FashinMNIST NSL-KDD UNSW-NB15

A
vg

 T
es

t A
cc

Communication Rounds
(d)FedAvgDBE

A
vg

 T
es

t A
cc

Communication Rounds
(e)FedProto

A
vg

 T
es

t A
cc

Communication Rounds
(f)GPFL

A
vg

 T
es

t A
cc

Communication Rounds
(g)FedGH

A
vg

 T
es

t A
cc

Communication Rounds
(h)FIDSUS

Fig. 5: Performance Comparison Across Different Datasets

0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

8 0 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Av
gT

est
Ac

c

C o m m u n i c a
(a) N C = 1 0

Av
gT

est
Ac

c

F e d A v g F e d P r o x M O O N F e d A v g D B E F e d P r o t o G P F L F e d G H F I D S U S

Av
gT

est
Ac

c

R o u n d s
N C = 1 0 0

Fig. 6: Performance Comparison on the NSL-KDD Dataset

12

exhibit varying levels of performance. FedAvg updates the
global model through parameter averaging, showing stable
performance and excelling on low-complexity datasets.

FedProx introduces a regularization term to FedAvg, which
initially causes slight fluctuations in accuracy due to adjust-
ments in weight balance between client models and the global
model. This approach eventually stabilizes and achieves high
accuracy as well. MOON, which integrates features from both
global and client models, experiences significant initial oscil-
lations but ultimately converges to high accuracy. FedAvgDBE
improves the bidirectional knowledge transfer between the
server and UAVs, reducing domain bias and maintaining high
accuracy. FedProto reduces client differences by sharing ab-
stract class prototypes. It shows limited improvement on low-
complexity datasets but demonstrates stability as the number
of clients increases. GPFL shows high initial average test
accuracy, but the curve flattens later. This indicates that while
GPFL excels at quickly achieving high detection rates on
low-complexity data, its performance reaches a ceiling with
continued communication rounds. FedGH experiences oscilla-
tory growth throughout, struggling with integration challenges
under highly heterogeneous data, resulting in suboptimal per-
formance.

3) Performance Evaluation on the UNSW-NB15 Dataset:
Fig. 7 illustrates the performance of various strategies on
the UNSW-NB15 dataset. Our proposed FIDSUS strategy
consistently achieves the highest detection accuracy across
all UAV scales with minimal fluctuations. FIDSUS effectively
addresses challenges posed by higher data complexity through
dynamic evaluation of similarity between UAVs and knowl-
edge sharing based on an affinity matrix. By aggregating
feature representations that incorporate both historical and
current data, FIDSUS mitigates the issue of forgetting. This
approach helps maintain stable accuracy across different scales
even in complex scenarios. GPFL initially excels due to feature
integration, but its performance plateaus in later rounds due to
challenges in feature fusion. This limits its ability to handle
complex data effectively. FedGH’s aggregation strategy faces
challenges on the UNSW-NB15 dataset. Although it reaches
80% accuracy with 10 UAVs, it experiences significant fluctua-
tions overall. In high-complexity data scenarios, FedGH’s gen-
eralized global prediction head struggles with feature integra-
tion, resulting in considerable performance volatility. FedProx

demonstrates stable performance with 10 UAVs, achieving
accuracy similar to MOON at 73%. However, as the number of
UAVs increases to 50, FedProx’s performance declines, though
it still outperforms most other strategies. FedProx’s regular-
ization term balances biases between global and local models,
but it struggles with the challenges posed by heterogeneity.
MOON attempts to address Non-IID data by integrating global
and local model features. However, on the UNSW-NB15
dataset, its feature fusion strategy may lead to fluctuations and
performance instability in complex data scenarios. FedProto
experiences a significant drop in performance, falling below
50% accuracy when the number of UAVs reaches 100. While it
reduces inter-client differences by transmitting abstract class
prototypes, the difficulty of aggregating these prototypes in
large-scale UAV scenarios leads to a sharp decline in accuracy.
Similarly, both FedAvg and FedAvgDBE show declines in
performance when the number of UAVs reaches 100, with
average test accuracy stabilizing around 60% after 100 iter-
ations. FedAvg’s parameter averaging design maintains some
stability but struggles to achieve optimal results in complex
scenarios. FedAvgDBE aims to address domain bias through
bidirectional knowledge transfer. However, it fails to fully in-
tegrate client data features with the global model’s knowledge
in complex settings, leading to suboptimal performance in
certain domains. In contrast, FIDSUS excels across different
UAV scales, particularly with high-complexity datasets like
UNSW-NB15. Its efficient aggregation strategy and superior
adaptability highlight its effectiveness in handling challenging
scenarios. While other strategies have their strengths and
weaknesses, FIDSUS’s stability and accuracy become more
pronounced in complex data scenarios.

4) Performance Comparison in Low Complexity Small-
Scale Scenario: In small-scale UAV client scenarios, we
assessed the performance of different FL strategies with CAR
values of 1.0 and 0.5. For medium-scale UAV client scenarios,
we evaluated performance with CAR values of 1.0, 0.9, 0.7,
and 0.5. The experimental results demonstrate the performance
of various FL strategies in dynamic scenarios.

Table III presents the highest accuracy achieved by each
method across six different scenarios within 100 communi-
cation rounds. Our proposed FIDSUS achieved the highest
accuracy in five of these scenarios, demonstrating its robust
performance in handling varying data scales and complexities.

0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 8 0 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Av
gT

est
Ac

c

C o m m u n i c a
(a) N C = 1 0

Av
gT

est
Ac

c

F e d A v g F e d P r o x M O O N F e d A v g D B E F e d P r o t o G P F L F e d G H F I D S U S

Av
gT

est
Ac

c

n R o u n d s
) N C = 1 0 0

Fig. 7: Performance Comparison on the UNSW-NB15 Dataset

13

FIDSUS excels in processing highly heterogeneous data by
dynamically calculating similarity between UAVs and lever-
aging an affinity matrix for knowledge sharing and aggre-
gation. Additionally, FIDSUS improves model generalization
and stability by integrating historical and current data features,
enabling it to perform well in both low- and high-complexity
scenarios.

TABLE III: Best Accuracy in 100 Communication Rounds

Method NSL-KDD UNSW-NB15
NC=10 NC=50 NC=100 NC=10 NC=50 NC=100

FedAvg 0.9255 0.9100 0.8922 0.7333 0.6781 0.6391
FedProx 0.9274 0.9070 0.8985 0.7359 0.6722 0.6230
MOON 0.9241 0.9012 0.8929 0.7387 0.6727 0.6072
FedAvgDBE 0.9419 0.9219 0.9490 0.8175 0.7161 0.6797
FedProto 0.9215 0.9001 0.9140 0.7764 0.6963 0.5085
GPFL 0.8737 0.9115 0.9074 0.8216 0.7696 0.7483
FedGH 0.9247 0.9562 0.9339 0.8447 0.8238 0.8037
FIDSUS 0.9712 0.9634 0.9398 0.8910 0.8645 0.8467

E. Experimental Results Analysis with Dynamic UAV Clients

To evaluate the impact of mobile scenarios on different
FL strategies, we introduced the Client Activity Rate (CAR).
During each aggregation round, only active clients update the
parameters. This simulates the loss and rejoining of clients in
mobile environments. By evaluating the performance of var-
ious methods under different CAR parameters, we compared
their accuracy and robustness in these mobile scenarios.

Fig. 8 illustrates the performance comparison of various
methods in a low-complexity scenario with 10 clients, where
the CAR is set to 1.0 and 0.5. Each subplot represents a differ-
ent FL strategy. As shown in Fig. 8, FedAvg, FedProx, MOON,
and FedAvgDBE all experience notable performance drops
during specific rounds when clients are lost. Their performance
eventually recovers to normal levels. Such fluctuations can
pose significant issues in real-world scenarios. These strategies
are heavily reliant on client updates, leading to performance
volatility when client activity suddenly changes. For instance,
FedAvg updates the global model by averaging client model
parameters. This can result in instability when client activity

changes, particularly in highly heterogeneous data distribu-
tions. FedProx introduces a regularization term to balance
the weights between client and global models. This reduces
fluctuation compared to FedAvg, but still shows significant
volatility, indicating that adding a regularization term alone is
insufficient to fully resolve the issue. MOON integrates global
and client model features, handling non-IID data but still expe-
rience performance oscillations with changing client activity.
FedAvgDBE improves knowledge transfer to reduce domain
bias but remains affected by client loss or rejoining, impacting
model stability. In contrast, FedProto, GPFL, and FIDSUS
demonstrate better robustness. FedProto reduces client discrep-
ancies by passing abstract class prototypes. This effectively
utilizes information among clients and lowers dependency
on updates. GPFL enhances model stability by integrating
global and local features, making the fusion process less
sensitive to the loss of a few clients. FIDSUS evaluates client
similarity through an affinity matrix and performs knowledge
sharing and aggregation based on this, adapting well to client
dynamics. It assigns personalized local feature extractors to
each client, enabling effective feature extraction even when
some clients are absent. By combining feature representations
from different rounds during aggregation, FIDSUS addresses
the forgetting problem in highly heterogeneous settings. This
approach ensures stable accuracy during client loss or rejoin-
ing, avoiding significant fluctuations. FIDSUS trains a global
classifier using these enriched feature representations, enhanc-
ing generalization and stability. As a result, it achieves the
highest average testing accuracy of 97%. This performance is
attributed to its improved federated optimization strategy and
dynamic adjustment mechanisms, which effectively handling
client dynamics and data heterogeneity.

1) Performance Comparison in High Complexity Small-
Scale Scenario: Fig. 9 illustrates the impact of different
CARs on the accuracy of FL strategies in a high-complexity
scenario with 10 clients. In this challenging environment, only
FedProto, GPFL, and FIDSUS maintain robustness. The other
strategies experience significant performance drops when CAR
is 0.5. Furthermore, even when CAR is 1, these strategies

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(a) F e d A v g

C A R = 1 . 0 C A R = 0 . 5

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(b) F e d P r o x

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(c) M O O N

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(d) F e d A v g D B E

Av
gT

est
Ac

c

C o m m
(e) F e d P r o t o

Av
gT

est
Ac

c

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(g) F e d G H

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(h) F I D S U S

Fig. 8: Performance Comparison on the NSL-KDD Dataset in Dynamic Scenarios with 10 Clients

14

show a notable decrease in average accuracy compared to the
low-complexity scenario. They also exhibit more frequent and
larger fluctuations, underscoring their limitations in managing
such environments. Among the three robust methods, FedProto
fails to achieve an average testing accuracy above 80%. GPFL,
after initially achieving high accuracy, starts to exhibit minor
oscillations. However, these fluctuations have a minimal im-
pact on overall performance. FIDSUS maintains considerable
robustness and high accuracy, even in high-complexity sce-
narios. When CAR is 0.5, FIDSUS achieves a stable average
testing accuracy of 88%, with only a 1% decrease compared
to when CAR is 1. The FIDSUS global classifier enhances
generalization, ensuring effective intrusion detection even in
more complex scenarios. Its dynamic adjustment mechanism
improves adaptability, allowing it to handle varying client
conditions. By assessing client similarity through an affinity
matrix, FIDSUS facilitates efficient knowledge sharing and
aggregation. Each client uses a personalized feature extractor,
ensuring accurate local data processing even when inactive.
This design stabilizes accuracy during client fluctuations,
allowing FIDSUS to maintain high performance in complex

environments.

2) Performance Comparison in Low Complexity Medium-
Scale Scenario: Fig. 10 illustrates the impact of different
CARs on the performance of various FL strategies in a low-
complexity scenario with 50 clients. As seen in previous
analyses, FedProto, GPFL, and FIDSUS maintain high robust-
ness, while FedGH continues to exhibit significant fluctuations
under varying CAR settings. Although FedAvg, FedProx,
MOON, and FedAvgDBE show some improvement compared
to their performance in smaller-scale scenarios, they still expe-
rience fluctuations. This suggests that increasing the number of
clients can help mitigate fluctuations caused by dynamic client
changes. When comparing accuracy curves under different
CAR parameters, it becomes clear that as the number of
active clients decreases, fluctuations become more frequent
and pronounced. Additionally, the number of active clients
participating in FL can vary significantly depending on the
scenario’s scale. For instance, with a CAR of 0.5, a small-scale
scenario may have only 5 active clients, while a moderate-scale
scenario could have 25. A limited number of active clients can
hinder the effective aggregation of model updates, whereas a

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(a) F e d A v g

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(b) F e d P r o x

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(c) M O O N

C A R = 1 . 0 C A R = 0 . 5

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(d) F e d A v g D B E

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(g) F e d G H

Av
gT

est
Ac

c

(e) F e d P r o t o

Av
gT

est
Ac

c

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(h) F I D S U S

Fig. 9: Performance Comparison on the UNSW-NB15 Dataset in Dynamic Scenarios with 10 Clients

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(a) F e d A v g

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(b) F e d P r o x

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(c) M O O N

C A R = 1 . 0 C A R = 0 . 9 C A R = 0 . 7 C A R = 0 . 5

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(d) F e d A v g D B E

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(e) F e d P r o t o

Av
gT

est
Ac

c

(f) G P F L

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(g) F e d G H

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(h) F I D S U S

Fig. 10: Performance Comparison on the NSL-KDD Dataset in Dynamic Scenarios with 50 Clients

15

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

0 2 0 4 0 6 0 8 0 1 0 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(a) F e d A v g

C o m m u n i c a t i o n R o u n d s
(c) M O O N

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(b) F e d P r o x

 C A R = 1 . 0 C A R = 0 . 9 C A R = 0 . 7 C A R = 0 . 5

Av
gT

est
Ac

c

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(d) F e d A v g D B E

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(g) F e d G H

Av
gT

est
Ac

c

C o m
(e) F e d P r o t o

Av
gT

est
Ac

c

Av
gT

est
Ac

c

C o m m u n i c a t i o n R o u n d s
(h) F I D S U S

Fig. 11: Performance Comparison on the UNSW-NB15 Dataset in Dynamic Scenarios with 50 Clients

larger number of clients generally provides better conditions
for robust FL. This pattern is also reflected in the perfor-
mance of other strategies. Among the three robust methods,
the accuracy curves under different CAR parameters overlap
more in the moderate-scale scenario than in the small-scale
one. This suggests that increasing the number of clients can
help mitigate fluctuations caused by dynamic client changes.
Notably, in this scenario, FIDSUS achieves the highest average
testing accuracy of 96%. Its accuracy curves show the greatest
overlap, indicating superior precision and robustness.

3) Performance Comparison in High Complexity Medium-
Scale Scenario: Fig. 11 shows the impact of different CARs
on the performance of various FL strategies in a high-
complexity scenario with 50 clients. All federated strategies
experience varying degrees of performance degradation, and
their convergence speeds are also slowed. This highlights the
challenges posed by high complexity and client variability in
federated learning systems. Compared to the low-complexity
scenario, the accuracy curves of FedAvg, FedProx, MOON,
and FedAvgDBE exhibit greater fluctuations under varying
CAR settings. Even when CAR is set to 1, there are noticeable
fluctuations in the accuracy curves. None of these four meth-
ods achieve test accuracies above 70% in this scenario. While
FedGH achieves relatively high accuracy, it still fails to ad-
dress the significant fluctuations in performance under highly
heterogeneous data. This issue stems from the global predic-
tion head’s heavy reliance on the quality of extracted features.
Since its feature extractor does not effectively capture high-
quality feature representations, it results in poor performance.
FedProto, despite its higher robustness, achieves an average
test accuracy of less than 70%. The GPFL strategy reaches
a commendable test accuracy in early rounds but encounters
a performance bottleneck later. In the final 10 rounds, the
activity level of clients impacts its performance, with higher
client activity yielding slightly better accuracy compared to
lower activity. The proposed FIDSUS still achieves the highest
average test accuracy of 86%. Furthermore, the accuracy
curves for different CAR settings nearly overlap in the latter
half of the rounds, demonstrating its superior robustness.

With its unique optimization strategy and dynamic adjustment
mechanism, FIDSUS excels in high-complexity scenarios with
a moderate client scale. It showcases the highest average test
accuracy and maintains stable robustness.

Based on the results and analysis, the proposed FIDSUS
demonstrates superior accuracy and robustness across various
complexities and scales of dynamic scenarios. Specifically,
FIDSUS effectively mitigates the challenges posed by client
dynamics and highly heterogeneous data through multi-level
optimization strategies, including similarity-based knowledge
sharing, and historical feature integration. To address client
heterogeneity, FIDSUS evaluates client similarity using an
affinity matrix constructed from feature distribution patterns.
This enables dynamic selection of highly relevant clients
for collaborative training, ensuring that knowledge sharing
and model aggregation remain effective even under non-IID
conditions. As a result, FIDSUS maintains stable performance
and prevents the degradation of model accuracy when clients
are lost or rejoin the system. Furthermore, FIDSUS adopts
a dual-phase feature aggregation strategy, integrating feature
representations both before and after updates. This method
preserves historical feature distributions while incorporating
newly learned patterns, effectively mitigating catastrophic
forgetting. This is particularly beneficial in high-complexity
environments, where abrupt shifts in data distribution can
negatively impact conventional FL models. By leveraging
these high-quality feature representations, FIDSUS enhances
the training of the global classifier, leading to a more robust
and generalizable model. Our experiments show that FIDSUS
improves accuracy by 3% to 34% across various dynamic
scenarios. Notably, even under varying client participation
rates, FIDSUS maintains stable accuracy, demonstrating its
ability to adapt to real-world deployment conditions.

F. Time Overheads Analysis

In FL, training time overhead impacts the practical ap-
plication and deployment of models. Table IV presents the
training time overhead for various FL strategies over 100
communication rounds. FedAvg and FedProx exhibit relatively

16

TABLE IV: Comparison of Time Overheads Across Different
Strategies (Communication Rounds = 100)

Method NSL-KDD UNSW-NB15
NC=10 NC=50 NC=100 NC=10 NC=50 NC=100

FedAvg 108.43s 461.61s 873.73s 186.16s 812.41s 1880.48s
FedProx 115.43s 497.24s 926.77s 215.97s 774.79s 1991.86s
MOON 187.14s 995.05s 1861.47s 384.77s 1569.32s 3327.17s
FedAvgDBE 125.73s 582.50s 1093.16s 242.82s 984.09s 2069.76s
FedProto 213.44s 1043.92s 2549.03s 473.23s 2025.88s 5674.57s
GPFL 301.17s 1754.88s 3215.56s 584.53s 2419.57s 5602.82s
FedGH 164.38s 739.73s 1420.23s 315.83s 1315.73s 2899.38s
FIDSUS 167.99s 843.76s 1684.40s 327.61s 1247.55s 3516.43s

short runtime, as their update mechanisms primarily involve
weighted averaging of client model parameters or the addition
of regularization terms. These methods have lower computa-
tional complexity, resulting in shorter runtimes. However, their
update mechanisms may show lower robustness and perfor-
mance when facing highly heterogeneous data and dynamic
client conditions. MOON and FedAvgDBE have longer run-
times compared to FedAvg and FedProx due to the inclusion of
additional feature representation and knowledge transfer mech-
anisms. For instance, MOON handles non-IID data by merging
global and client model features, while FedAvgDBE enhances
knowledge transfer to reduce domain discrepancies. These
additional steps increase computational complexity, leading to
longer runtimes. FedProto incurs a longer runtime. This is
primarily due to the extensive feature extraction and matching
operations involved. These operations are necessary to reduce
differences between client models using class prototypes.
Despite its effectiveness in minimizing information disparity
among clients, the increased computational load results in
higher time consumption. GPFL also shows extended runtimes
as it integrates global and local features to enhance model
stability. This process involves multiple feature extraction and
fusion operations, increasing the computational burden. Al-
though GPFL has advantages in maintaining performance amid
client activity variations, it requires additional computation
time to sustain stability. FedGH falls between these strategies
in terms of time consumption. Its global prediction head relies
heavily on feature representations. This dependency makes the
feature extraction process complex, resulting in a moderate
time overhead. While it performs well in some scenarios, the
complexity of its feature extractor limits its time efficiency.
The proposed FIDSUS performs well in terms of runtime.
Although its time consumption is slightly higher than FedAvg
and FedProx, it maintains a good balance among all strategies.
FIDSUS uses an affinity matrix to evaluate client similarity.
This approach facilitates knowledge sharing and aggregation,
effectively reducing unnecessary computations. Additionally,
by combining historical and current features during aggre-
gation, FIDSUS optimizes computational efficiency despite
adding some computation steps. Overall, FIDSUS effectively
controls computation time through its dynamic adjustment
mechanism while ensuring high accuracy and robustness.

V. CONCLUSION

This study proposes FIDSUS, a federated intrusion detec-
tion framework designed for dynamic UAV swarm networks.

By using an affinity matrix for dynamic client similarity
assessment and efficient knowledge sharing, FIDSUS main-
tains high accuracy despite changing network conditions. It
also mitigates forgetting by integrating historical and current
feature representations, enhancing the model’s generalization.
Experimental results on the NSL-KDD and UNSW-NB15
datasets show FIDSUS achieves 4% to 34% higher accuracy
than existing FL methods, demonstrating superior performance
in accuracy, robustness, and stability, while maintaining rea-
sonable time costs. In dynamic scenarios, FIDSUS ensures
high detection accuracy and precision, making it a practical
and effective solution for UAV network intrusion detection.

Despite the promising results, FIDSUS has some limita-
tions. First, it assumes that UAV terminals can perform local
computations efficiently, which may not hold in resource-
constrained environments, limiting scalability in large UAV
networks. Second, the use of an affinity matrix for client
similarity adds extra communication overhead compared to
other federated learning methods, potentially causing delays
in large or dynamic networks. Additionally, while integrating
historical and current features helps address the forgetting
issue, it also increases computational costs. These finer-grained
operations improve accuracy and robustness but come at the
expense of higher computational complexity.

Future work will focus on addressing these limitations. We
aim to improve scalability by exploring lightweight models
and edge computing techniques. We will also optimize the
affinity matrix to reduce communication overhead and investi-
gate ways to balance performance and resource consumption.
Finally, we plan to enhance FIDSUS’s adaptability to extreme
network conditions and long-term drift by incorporating re-
inforcement or incremental learning for better stability and
responsiveness.

REFERENCES

[1] H. Feng, Q. Li, W. Wang, A. K. Bashir, A. K. Singh, J. Xu, and K. Fang,
“Security of target recognition for uav forestry remote sensing based on
multi-source data fusion transformer framework,” Information Fusion,
vol. 112, p. 102555, 2024.

[2] G. Sun, L. He, Z. Sun, Q. Wu, S. Liang, J. Li, D. Niyato, and V. C.
Leung, “Joint task offloading and resource allocation in aerial-terrestrial
uav networks with edge and fog computing for post-disaster rescue,”
IEEE Transactions on Mobile Computing, 2024.

[3] T. Wang, J. Tian, K. Fang, T. R. Gadekallu, and W. Wang, “Ai and
digital twin for consumer electronics in smart cities,” IEEE Consumer
Electronics Magazine, 2024.

[4] A. Sharma, P. Vanjani, N. Paliwal, C. M. W. Basnayaka, D. N. K.
Jayakody, H.-C. Wang, and P. Muthuchidambaranathan, “Communi-
cation and networking technologies for uavs: A survey,” Journal of
Network and Computer Applications, vol. 168, p. 102739, 2020.

[5] J. Cai, T. Liu, T. Wang, H. Feng, K. Fang, A. K. Bashir, and W. Wang,
“Multi-source fusion enhanced power-efficient sustainable computing for
air quality monitoring,” IEEE Internet of Things Journal, 2024.

[6] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu et al., “Swarm of micro flying robots in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm5954, 2022.

[7] J. John, K. Harikumar, J. Senthilnath, and S. Sundaram, “An efficient
approach with dynamic multiswarm of uavs for forest firefighting,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2024.

[8] R. Greco, E. Barca, P. Raumonen, M. Persia, and P. Tartarino, “Method-
ology for measuring dendrometric parameters in a mediterranean forest
with uavs flying inside forest,” International Journal of Applied Earth
Observation and Geoinformation, vol. 122, p. 103426, 2023.

17

[9] A. K. Sangaiah, F.-N. Yu, Y.-B. Lin, W.-C. Shen, and A. Sharma, “Uav
t-yolo-rice: An enhanced tiny yolo networks for rice leaves diseases
detection in paddy agronomy,” IEEE Transactions on Network Science
and Engineering, 2024.

[10] A. K. Sangaiah, J. Anandakrishnan, A. R. Devarapelly, M. L. A. B.
Mohamad, G.-B. Bian, M. J. Alenazi, and S. A. AlQahtani, “R-uav-net:
Enhanced yolov4 with graph-semantic compression for transformative
uav sensing in paddy agronomy,” IEEE Transactions on Cognitive
Communications and Networking, 2024.

[11] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How,
“Search and rescue under the forest canopy using multiple uavs,” The
International Journal of Robotics Research, vol. 39, no. 10-11, pp. 1201–
1221, 2020.

[12] X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, “Physical layer
security in uav systems: Challenges and opportunities,” IEEE Wireless
Communications, vol. 26, no. 5, pp. 40–47, 2019.

[13] H. J. Hadi, Y. Cao, K. U. Nisa, A. M. Jamil, and Q. Ni, “A com-
prehensive survey on security, privacy issues and emerging defence
technologies for uavs,” Journal of Network and Computer Applications,
vol. 213, p. 103607, 2023.

[14] D. He, S. Chan, and M. Guizani, “Communication security of unmanned
aerial vehicles,” IEEE Wireless Communications, vol. 24, no. 4, pp. 134–
139, 2016.

[15] A. Altaweel, S. Aslam, and I. Kamel, “Security attacks in opportunistic
mobile networks: A systematic literature review,” Journal of Network
and Computer Applications, p. 103782, 2023.

[16] H. Liao, M. Z. Murah, M. K. Hasan, A. H. M. Aman, J. Fang, X. Hu,
and A. U. R. Khan, “A survey of deep learning technologies for intrusion
detection in internet of things,” IEEE Access, 2024.

[17] S. Dramé-Maigné, M. Laurent, L. Castillo, and H. Ganem, “Centralized,
distributed, and everything in between: Reviewing access control solu-
tions for the iot,” ACM Computing Surveys (CSUR), vol. 54, no. 7, pp.
1–34, 2021.

[18] K. Fang, T. Wang, L. Tong, X. Fang, Y. Pan, W. Wang, and J. Li, “Non-
intrusive security assessment methods for future autonomous transporta-
tion iov,” IEEE Transactions on Automation Science and Engineering,
2023.

[19] Z. Qin, G. Y. Li, and H. Ye, “Federated learning and wireless commu-
nications,” IEEE Wireless Communications, vol. 28, no. 5, pp. 134–140,
2021.

[20] Y. Ding, Z. Yang, Q.-V. Pham, Y. Hu, Z. Zhang, and M. Shikh-Bahaei,
“Distributed machine learning for uav swarms: Computing, sensing, and
semantics,” IEEE Internet of Things Journal, 2023.

[21] R. Ye, Z. Ni, C. Xu, J. Wang, S. Chen, and Y. C. Eldar, “Fedfm: Anchor-
based feature matching for data heterogeneity in federated learning,”
IEEE Transactions on Signal Processing, 2023.

[22] Y. Qu, H. Dai, Y. Zhuang, J. Chen, C. Dong, F. Wu, and S. Guo, “Decen-
tralized federated learning for uav networks: Architecture, challenges,
and opportunities,” IEEE Network, vol. 35, no. 6, pp. 156–162, 2021.

[23] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[24] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
trends® in machine learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[25] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[26] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” The Journal of Machine Learning Research,
vol. 13, no. 1, pp. 723–773, 2012.

[27] T. Li, J. Zhang, M. S. Obaidat, C. Lin, Y. Lin, Y. Shen, and J. Ma,
“Energy-efficient and secure communication toward uav networks,”
IEEE Internet of Things Journal, vol. 9, no. 12, pp. 10 061–10 076,
2021.

[28] H. Xie, J. Zheng, T. He, S. Wei, C. Shan, and C. Hu, “B-uavm: A
blockchain-supported secure multi-uav task management scheme,” IEEE
Internet of Things Journal, vol. 10, no. 24, pp. 21 240–21 253, 2023.

[29] R. Ye, Y. Peng, F. Al-Hazemi, and R. Boutaba, “A robust cooperative
jamming scheme for secure uav communication via intelligent reflecting
surface,” IEEE Transactions on Communications, 2023.

[30] G. Folino and P. Sabatino, “Ensemble based collaborative and distributed
intrusion detection systems: A survey,” Journal of Network and Com-
puter Applications, vol. 66, pp. 1–16, 2016.

[31] G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
internet of things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, p. 102662, 2020.

[32] X. Zhao, G. Huang, L. Gao, M. Li, and Q. Gao, “Low load dids
task scheduling based on q-learning in edge computing environment,”
Journal of Network and Computer Applications, vol. 188, p. 103095,
2021.

[33] M. S. Mousa’B, M. K. Hasan, R. Sulaiman, S. Islam, and A. U. R.
Khan, “An explainable ensemble deep learning approach for intrusion
detection in industrial internet of things,” IEEE Access, vol. 11, pp.
115 047–115 061, 2023.

[34] F. Tlili, S. Ayed, and L. C. Fourati, “Exhaustive distributed intrusion
detection system for uavs attacks detection and security enforcement
(e-dids),” Computers & Security, vol. 142, p. 103878, 2024.

[35] L. You, J. He, W. Wang, and M. Cai, “Autonomous transportation
systems and services enabled by the next-generation network,” IEEE
Network, vol. 36, no. 3, pp. 66–72, 2022.

[36] H. Chen, H. Wang, Q. Long, D. Jin, and Y. Li, “Advancements in
federated learning: Models, methods, and privacy,” ACM Computing
Surveys, 2023.

[37] X. He, Q. Chen, L. Tang, W. Wang, and T. Liu, “Cgan-based collab-
orative intrusion detection for uav networks: A blockchain-empowered
distributed federated learning approach,” IEEE Internet of Things Jour-
nal, vol. 10, no. 1, pp. 120–132, 2022.

[38] H. J. Hadi, Y. Cao, S. Li, Y. Hu, J. Wang, and S. Wang, “Real-time
collaborative intrusion detection system in uav networks using deep
learning,” IEEE Internet of Things Journal, 2024.

[39] W. Wang, O. Abbasi, H. Yanikomeroglu, C. Liang, L. Tang, and
Q. Chen, “A vertical heterogeneous network (vhetnet)–enabled asyn-
chronous federated learning-based anomaly detection framework for
ubiquitous iot,” IEEE Open Journal of the Communications Society,
2023.

[40] Z. Zhang, Y. Zhang, H. Li, S. Liu, W. Chen, Z. Zhang, and L. Tang,
“Federated continual representation learning for evolutionary distributed
intrusion detection in industrial internet of things,” Engineering Appli-
cations of Artificial Intelligence, vol. 135, p. 108826, 2024.

[41] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[42] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications. Ieee,
2009, pp. 1–6.

[43] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

[44] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[45] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 10 713–10 722.

[46] J. Zhang, Y. Hua, J. Cao, H. Wang, T. Song, Z. Xue, R. Ma, and H. Guan,
“Eliminating domain bias for federated learning in representation space,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[47] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning across heterogeneous clients,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 8, 2022, pp. 8432–8440.

[48] J. Zhang, Y. Hua, H. Wang, T. Song, Z. Xue, R. Ma, J. Cao, and
H. Guan, “Gpfl: Simultaneously learning global and personalized feature
information for personalized federated learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp.
5041–5051.

[49] L. Yi, G. Wang, X. Liu, Z. Shi, and H. Yu, “Fedgh: Heterogeneous
federated learning with generalized global header,” in Proceedings of
the 31st ACM International Conference on Multimedia, 2023, pp. 8686–
8696.

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[51] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

