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Highlights
What are the main findings?
• The study provides a comprehensive analysis of UAV-to-UAV communication, fo-

cusing on energy and spectral efficiency across multiple frequency bands (2.4 GHz,
5.8 GHz, 28 GHz, and 60 GHz) in dynamic smart city environments.

• Results indicate that sub-6 GHz frequencies offer superior energy efficiency (up to
0.15 bits/Joule). At the same time, millimetre-wave bands (28 GHz and 60 GHz) suffer
from higher path loss and reduced efficiency.

What are the implications of the main findings?

• Smart city UAV networks should adopt multi-band communication strategies, lever-
aging sub-6 GHz for long-range and energy-efficient connectivity while utilising
mmWave bands for high-data-rate applications in close-proximity scenarios.

• Adaptive trajectory planning, dynamic frequency selection, and machine-learning-
driven power control are essential to optimising UAV network efficiency, ensuring
sustainable and high-performance communication in urban environments.

Abstract: Unmanned Aerial Vehicles (UAVs) are integral to the development of smart
city infrastructures, enabling essential services such as real-time surveillance, urban traffic
regulation, and cooperative environmental monitoring. UAV-to-UAV communication net-
works, despite their adaptability, have significant limits stemming from onboard battery
constraints, inclement weather, and variable flight trajectories. This work presents a thor-
ough examination of energy and spectral efficiency in UAV-to-UAV communication over
four frequency bands: 2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz. Our MATLAB R2023a simu-
lations include classical free-space path loss, Rayleigh/Rician fading, and real-time mobility
profiles, accommodating varied heights (up to 500 m), flight velocities (reaching 15 m/s),
and fluctuations in the path loss exponent. Low-frequency bands (e.g., 2.4 GHz) exhibit
up to 50% reduced path loss compared to higher mmWave bands for distances exceeding
several hundred meters. Energy efficiency (ηe) is evaluated by contrasting throughput with
total power consumption, indicating that 2.4 GHz initiates at around 0.15 bits/Joule (de-
creasing to 0.02 bits/Joule after 10 s), whereas 28 GHz and 60 GHz demonstrate markedly
worse ηe (as low as 10−3–10−4 bits/Joule), resulting from increased path loss and oxy-
gen absorption. Similarly, sub-6 GHz spectral efficiency can attain 4 × 10−12 bps/Hz in
near-line-of-sight scenarios, whereas 60 GHz lines encounter significant attenuation at dis-
tances above 200–300 m without sophisticated beamforming techniques. Polynomial-fitting
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methods indicate that the projected ηe diverges from actual performance by less than 5%
after 10 s of flight, highlighting the feasibility of machine-learning-based techniques for
real-time power regulation, beam steering, or multi-band switching. While mmWave UAV
communication can provide significant capacity enhancements (100–500 MHz bandwidth),
energy efficiency deteriorates markedly without meticulous flight planning or adaptive
protocols. We thus advocate using multi-band radios, adaptive modulation, and trajectory
optimisation to equilibrate power consumption, ensure connection stability, and meet high
data-rate requirements in densely populated, dynamic urban settings.

Keywords: UAV-to-UAV communication; energy efficiency; dynamic networks; spectral
efficiency; smart cities

1. Introduction
Unmanned Aerial Vehicles (UAVs), also known as drones, have become essential

instruments in the advancement of smart cities [1,2]. Their versatility, mobility, and cost-
efficiency render them essential for various applications, such as real-time surveillance,
environmental monitoring, disaster management, traffic analysis, and logistics [3]. In
these scenarios, UAVs must operate collaboratively, exchanging essential data in real
time to ensure efficient coordination [4]. The necessity for this has elevated UAV-to-UAV
communication as a primary focus of research within smart city networks [5].

Effective communication among UAVs presents significant challenges owing to the
dynamic characteristics of their networks. Unmanned Aerial Vehicles (UAVs) generally
function in environments that exhibit significant variability, marked by mobility, alterations
in altitude, and variations in distances between UAVs [6,7]. External factors, including
weather conditions (e.g., rain, fog, wind) and urban obstacles (e.g., buildings, towers), can
significantly affect the quality of the communication link. The dynamic conditions require
the development of effective and adaptable communication strategies that guarantee
reliable connectivity and optimise network resources [8].

Many UAVs are limited by onboard battery capacity, and power-intensive mmWave
amplifiers can considerably diminish flight duration [9,10]. Actual amplifiers function at
suboptimal efficiency, frequently requiring sophisticated cooling mechanisms or more sub-
stantial power systems [11]. High-frequency antennas (e.g., 28 GHz, 60 GHz) need densely
arranged arrays to attain directional gains. This poses challenges for tiny UAV platforms,
where weight, size, and cost limits are critical design factors [12]. In actuality, UAVs may
encounter significant fluctuations in signal strength owing to movement, interference, or
impediments. The front-end hardware must efficiently manage dynamic range to prevent
saturation or noise-limited performance, necessitating additional design trade-offs in gain
control and low-noise amplification [13].

High-rise structures and narrow thoroughfares provide multipath-rich environments,
resulting in Rayleigh or even specular reflection conditions. Path loss models must occasion-
ally integrate building density, material attenuation, and diffraction around obstacles [14].
The 2.4 GHz and 5.8 GHz bands are significantly utilised by Wi-Fi and IoT devices, resulting
in heightened collisions and spectral congestion. Simultaneously, the 28 GHz and 60 GHz
bands may see reduced congestion but increased atmospheric and rain-induced attenuation.
Moving cars, human traffic, or temporary structures can provide “dynamic obstacles”,
occasionally obstructing line-of-sight pathways, particularly critical at millimetre-wave
frequencies. UAVs must modify flight paths or transfer connections to ensure reliable
communication [15].
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Collectively, these problems underscore the imperative for UAV communication sys-
tems capable of dynamically adjusting parameters such as transmission power, beamform-
ing angles, and frequency selection [16]. For example, mission-critical UAV networks may
utilise multi-band radios, transitioning to a lower frequency in the event of significant
obstruction at 28 GHz or 60 GHz. Regulatory compliance mandates flying altitudes and al-
lowable transmission powers, hence complicating the design of UAV swarm protocols [17].

Two essential metrics that characterise the performance of UAV-to-UAV communi-
cation are energy efficiency and spectral efficiency [18,19]. Energy efficiency quantifies
the successful transmission of bits relative to the energy consumed, a critical factor for
UAVs with constrained onboard battery capacity [20,21]. Spectral efficiency assesses the
effectiveness of spectrum utilisation, which is crucial due to the rising demand for spec-
tra in contemporary wireless communication systems [22,23]. Achieving sustainable and
scalable UAV communication systems in smart cities necessitates a balance between these
two metrics.

The UAV-to-UAV communication link is further influenced by several physical and
environmental parameters, including the following:

1. Path Loss: Signal attenuation due to distance and environmental factors [12,18,24,25].
2. Multipath Fading: Signal variations caused by reflections, diffractions, and scattering

in urban environments [18,26].
3. Weather Conditions: Rain, fog, and atmospheric turbulence can introduce additional

attenuation and delay [27,28].
4. Interference: Shared spectrum usage in urban areas can lead to high levels of interfer-

ence, affecting signal quality [18,29].

It is essential to analyse the energy and spectral efficiency of UAV-to-UAV communi-
cation in realistic operational conditions [12,30]. Although numerous studies have investi-
gated UAV communication for particular applications, there is a lack of comprehensive
assessments of efficiency metrics in dynamic environments, considering the impacts of
mobility, altitude changes, and environmental variables.

This study seeks to fill this gap through a comprehensive analysis of UAV-to-UAV com-
munication within dynamic networks. This study utilises MATLAB simulations to assess
critical performance metrics, including path loss, Signal-to-Noise Ratio (SNR), Bit Error Rate
(BER), energy and spectral efficiency, and signal strength across various conditions [7,31].
The following contributions are defined:

• An evaluation of energy efficiency and spectral efficiency across different UAV alti-
tudes, distances, and weather conditions, utilising realistic multipath fading models
such as Rayleigh and Rician fading to accurately simulate urban environments.

• This study examines the trade-offs between energy efficiency and spectral efficiency,
offering insights into the design of communication protocols that effectively balance
these two metrics.

• Strategies for enhancing UAV communication systems in smart cities, focusing on
scalability, sustainability, and operational reliability.

This study addresses challenges in UAV communication within smart cities, providing
a framework for the design of more efficient and resilient networks. This study’s findings
are pertinent for academic researchers, practitioners, and policymakers involved in the
implementation of UAV-based solutions in urban settings. This analysis facilitates the devel-
opment of more efficient and sustainable UAV networks that can address the requirements
of future smart cities. Section 2 presents the system model for UAV-to-UAV communication
within dynamic networks in smart cities. Section 3 presents a mathematical analysis of
receiver sensitivity considerations for UAV Communication. Section 4 presents an analysis



Smart Cities 2025, 8, 54 4 of 27

of energy efficiency in UAV-to-UAV communication within dynamic networks designed
for smart cities. Section 5 provides the mathematical formulation for spectral analysis.
Section 6 presents the simulation and analytical validation of the proposed framework,
while Section 7 summarises the conclusions drawn from the findings.

2. System Model for UAV-to-UAV Communication in Dynamic Networks
for Smart Cities

This section presents a detailed system model for UAV-to-UAV communication within
dynamic networks, accounting for mobility, environmental changes, and adaptive commu-
nication methods [30]. The model incorporates spatial and temporal variations in network
topology and channel quality, utilizing advanced mathematical frameworks to represent
real-world dynamics. The interaction among mobility, path loss, fading, and beamforming
is highlighted to offer a comprehensive understanding of UAV communication in smart
city applications [13].

Figure 1 depicts the positions of UAVs within a three-dimensional space, highlighting
the communication dynamics among UAVs under different distances, altitudes, and mo-
bility conditions. The temporal variations in UAV positions significantly influence path
loss, fading, and received signal power, thereby requiring real-time adjustments to ensure
communication quality is upheld.

Figure 1. The 3D positions of UAVs in a dynamic network, illustrating varying altitudes, horizontal
displacements, and potential interference in an urban environment.

The theoretical model encompasses critical elements like path loss and fading; never-
theless, the practical implementation of UAV communication in smart cities encounters
more real-world limitations that require meticulous design and modification. Unmanned
Aerial Vehicles (UAVs) must function within frequency bands allocated by local or in-
ternational regulatory authorities (e.g., FCC, ETSI). Variations in frequency availability
and allowable transmit powers between areas influence connection budgets and coverage.
Moreover, urban settings frequently establish altitude restrictions or designated air lanes
for UAV operations. These legal restrictions may reduce altitude ranges or necessitate
that UAVs adhere to Line-of-Sight (LoS) trajectories, thereby affecting the applicability of
free-space or fading models. UAV operators may need to comply with stringent safety
regulations (e.g., collision avoidance, battery redundancy), and data collecting may be
governed by privacy legislation in highly populated areas. These non-technical limits may
indirectly restrict the duration in which UAVs remain airborne or the types of antennas
and technology permitted for use.
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2.1. Channel Model for UAV-to-UAV Communication

In the face of real-world constraints, we structure our channel and mobility modelling
as follows:

• Path Loss and Fading: We integrate classical models with scenario-based parameters
for urban settings. This guarantees the inclusion of both Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) circumstances characteristic of urban environments.

• Mobility Profiles: The locations of UAVs (xi, yi, hi) change over time, imitating flight
corridors or random waypoint trajectories. Distances di,j(t), therefore, transform
into time-dependent functions, illustrating the influence of altitudes and horizontal
velocities on received signal strength.

The communication link between two UAVs, Ui and Uj, is represented by a complex
channel coefficient hi,j that accounts for both large-scale fading (path loss) and small-
scale fading:

hi,j =
√

βi,j · hsmall scale, (1)

where:

• βi,j represents the large-scale path loss, which depends on the distance between UAVs
and environmental attenuation;

• hsmall scale captures small-scale fading, modelled as a complex Gaussian random vari-
able hsmall scale ∼ CN (0, 1).

2.1.1. Path Loss Model

The large-scale path loss βi,j is derived using the free-space path loss model with an
exponential attenuation factor:

βi,j =

(
λ

4πdi,j

)2

exp(−αdi,j), (2)

where:

• λ = c
f is the wavelength of the transmitted signal, with c is the speed of light, and f is

the carrier frequency;
• di,j is the distance between UAVs Ui and Uj;
• α is the environmental attenuation coefficient.

For a time-varying network, where the distance between UAVs evolves dynamically,
the cumulative path loss is expressed as:

β̄i,j(t) =
∫ t

t0

(
λ

4πdi,j(t′)

)2

exp(−αdi,j(t′)) dt′, (3)

where t′ denotes the time parameter, and t0 is the initial time.

2.1.2. Distance Model in 3D Space

The distance di,j between two UAVs is determined by their 3D spatial coordinates
(xi, yi, hi) and (xj, yj, hj):

di,j =
√
(xi − xj)2 + (yi − yj)2 + (hi − hj)2, (4)

where hi and hj are the altitudes of UAVs Ui and Uj, respectively. This model captures
both horizontal and vertical separations, critical in UAV communication scenarios with
varying altitudes.



Smart Cities 2025, 8, 54 6 of 27

2.1.3. Small-Scale Fading Model

Small-scale fading is characterized by Rayleigh or Rician distributions, depending on
the presence of a Line-of-Sight (LoS) component. For Rayleigh fading, the magnitude of
the fading coefficient follows:

f|hi,j |(x) =
x

σ2 exp
(
− x2

2σ2

)
, x ≥ 0, (5)

where σ2 is the variance of the fading envelope.
In Rician fading, the Probability Density Function (PDF) is given by the following:

f|hi,j |(x) =
x

σ2 exp
(
− x2 + ν2

2σ2

)
I0

( xν

σ2

)
, (6)

where:

• ν is the peak amplitude of the LoS component;
• I0(·) is the modified Bessel function of the first kind.

2.2. Beamforming and Adaptive Communication

To enhance communication reliability, each UAV employs a Uniform Rectangular
Array (URA) for beamforming. The steering vector for an M-element URA is given by:

aUAV(θ, ϕ) =
1√
M

Mx−1

∑
mx=0

My−1

∑
my=0

ej2π mxd
λ sin θ cos ϕej2π

myd
λ sin θ sin ϕ, (7)

where:

• mx and my are the indices for horizontal and vertical array elements, respectively;
• θ and ϕ are the elevation and azimuth angles of the transmitted beam;
• d is the element spacing within the array.

2.3. Received Power with Beamforming

The received power at UAV Uj from UAV Ui, considering beamforming, is modelled as:

Pri,j(t) = Pti

∣∣∣∣∫ t

t0

hH
i,j(t

′)aUAV(t′) dt′
∣∣∣∣2, (8)

where:

• Pti is the transmit power of UAV Ui;
• hi,j(t′) is the time-varying channel response matrix;
• aUAV(t′) is the adaptive steering vector.

2.4. Mobility and Dynamic Adaptation

The mobility of UAVs is governed by continuous trajectory equations:

d
dt

xi

yi

hi

 =

vx

vy

vh

, (9)

where vx, vy, and vh are the velocity components in the x, y, and h directions, respectively.
UAVs adjust their beamforming angles and power allocation dynamically to maintain

optimal communication based on the instantaneous SNR.
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SNRi,j =
Pti GtGr

N0B · β̄i,j(t)
, (10)

where Gt and Gr are the antenna gains at the transmitter and receiver.
This model offers a framework for the analysis of UAV-to-UAV communication within

dynamic smart city networks.

3. Receiver Sensitivity Considerations for UAV Communication:
Mathematical Analysis

Receiver sensitivity basically determines the minimal signal level observable by a
UAV’s radio front-end, enabling reliable decoding of incoming waveforms while sustaining
an acceptable Bit Error Rate (BER). If the received power Pr diminishes below the threshold
Psens, the connection becomes inoperative irrespective of other channel characteristics.
This section elaborates on common formulations by incorporating advanced mathematical
analyses that demonstrate the interaction of sensitivity with channel models, path loss,
interference, and network-level performance in a UAV-to-UAV system.

3.1. Baseline Formulation of Receiver Sensitivity

Receiver sensitivity, often expressed in dBm, integrates thermal noise, bandwidth, and
supplementary hardware elements (such as noise figure) with the necessary signal-to-noise
ratio margin. An expression in decibels is simplified as follows:

Psens ≈ −174 dBm/Hz + 10 log10
(

B
)
+ NF + SNRmargin, (11)

where

• The constant, −174 dBm/Hz, is the thermal noise power density at 290 K;
• B is the system bandwidth in Hz;
• NF (dB) is the receiver noise figure quantifying additional amplifier and mixer noise;
• SNRmargin (dB) is the minimal SNR required for the target BER under the chosen

modulation and coding scheme.

This Psens indirectly establishes the maximum allowable path loss between two
UAVs. For example, if NF = 5 dB, B = 20 MHz, and SNRmargin = 10 dB, then
Psens ≈ −90 dBm. Consequently, a UAV connection must sustain Pr ≥ −90 dBm to provide
dependable communication.

3.2. Time-Varying Receiver Sensitivity Margin

The mobility of UAVs, including variations in altitude h(t) and horizontal position,
along with dynamic channel conditions, might cause fluctuations in the effective sensitivity
margin. Define the instantaneous margin ∆(t) as follows:

∆(t) = Pr(t) − Psens. (12)

Upon differentiating ∆(t) with respect to t, we obtain the following equation:

d∆(t)
dt

=
dPr(t)

dt
− dPsens

dt︸ ︷︷ ︸
≈0 (constant design)

, (13)

where it is assumed that Psens remains constant due to hardware design, resulting in
dPsens

dt = 0. Consequently, ∆(t) is determined by dPr(t)
dt , which is influenced by time-

dependent path loss and fading. Negative deviations of ∆(t) reduce system sensitivity,
resulting in an outage.
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Beyond the linear differentiation in (13), we can consider a log-derivative approach if
∆(t) remains positive. Define

m(t) = ln ∆(t), provided ∆(t) > 0. (14)

Its time derivative is
dm(t)

dt
=

1
∆(t)

d∆(t)
dt

. (15)

When ∆(t) approaches zero, the system nears or falls below sensitivity, and (15) diverges
to −∞. Such a divergence signals that even small negative changes in Pr(t) can produce an
immediate link failure.

3.3. Sensitivity in a Multi-UAV Network

Consider N Unmanned Aerial Vehicles (UAVs) that engage in reciprocal communica-
tion. For each connection ℓ in the set of all pairwise links {ℓ = 1, 2, . . . , L}, let P(ℓ)

r denote
the received power and P(ℓ)

sens represent the sensitivity threshold. We define the proportion
of active connections ζ(t) as

ζ(t) =
1
L

L

∑
ℓ=1

1
{

P(ℓ)
r (t) ≥ P(ℓ)

sens

}
, (16)

where 1{·} is the indicator function. The expected active link ratio E[ζ(t)] can be expanded
if we interpret P(ℓ)

r (t) as a random process:

E
[
ζ(t)

]
=
∫
S

1
L

L

∑
ℓ=1

1
{

P(ℓ)
r (ω, t) ≥ P(ℓ)

sens
}

dP(ω), (17)

where ω ∈ S represents all possible fading, mobility, or interference states in the probability
space S . This integral form highlights how UAV orientation, random channel fading, and
potential blockages either sustain or break link sensitivities over time.

Continuous Spatial UAV Distribution

In extensive networks, UAVs may be represented as a spatial point process Φ ⊂ R2.
For a standard UAV positioned at the origin, the likelihood that it detects a desired link
from UAV j above the threshold is

P
[
Pr ≥ Psens

]
=
∫
R2

1
{

Ptβ(∥x∥) ≥ Psens

}
fΦ(x) dx, (18)

where fΦ is the spatial density of UAV positions, and β(∥x∥) denotes path loss/fading
gains from distance ∥x∥. This integral can be decomposed into polar coordinates or layered
by altitude if UAVs are distributed in 3D. Equation (18) can be used to estimate coverage
probability for a typical UAV in random topologies.

3.4. Coverage Regions and Sensitivity Threshold

Receiver sensitivity also influences the coverage area in which a UAV can decode
signals. If Pr(x) denotes the received power at horizontal coordinates x = (x, y) from a
fixed transmitter at altitude h, the coverage region C ⊆ R2 is

C =
{

x ∈ R2 : Pr(x) ≥ Psens

}
. (19)

The coverage ratio Γ is defined by
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Γ =

∫∫
Ω 1
[
Pr(x) ≥ Psens

]
dx∫∫

Ω dx
, (20)

where Ω is the bounding area of interest (e.g., an urban district). The partial deriva-
tive of coverage ratio with respect to the altitude h reveals how flight-level constraints
affect coverage:

∂Γ
∂h

=
1∫∫
Ω dx

∫∫
Ω

∂

∂h
1
[
Pr(x, h) ≥ Psens

]
dx. (21)

Any positive or negative jump in coverage typically occurs near boundary contours ∂C,
making the integral approach akin to measuring the morphological changes in coverage
geometry with altitude.

3.5. Sensitivity Constraints vs. Energy and Spectral Efficiency

UAV energy ηe and spectral ηs efficiencies depend on maintaining sufficient received
power above noise and interference. If the sensitivity threshold rises (due to wide band-
width or large noise figure), the UAV must compensate in the following ways:

• Increasing Transmit Power: This increases total power PT , impacting ηe = CT
PT

. If
throughput CT cannot keep pace, overall energy efficiency suffers.

• Enhancing Beamforming Gains: Gains help offset the gap to Psens, but require complex
antenna arrays and precise real-time alignment. For high mobility or multi-trajectory
UAV swarms, the overhead in scanning and tracking is significant.

• Adaptive Modulation/Coding: The system can reduce modulation order to lower
the needed SNR, effectively decreasing SNRmargin in (11), but sacrificing spectral
efficiency ηs.

Thus, a balance arises: satisfying more stringent sensitivity constraints in mmWave
UAV links often either reduces flight durations (due to increased Pe) or lowers net through-
put (due to fallback to robust modulations). A more advanced scheduling algorithm might
optimize flight path and spectral usage under the constraints

max
{pℓ(t)}
{BWℓ}
{xℓ(t)}

L

∑
ℓ=1

∫ T

0
η
(ℓ)
s (t) dt

s.t. P(ℓ)
r (t) ≥ P(ℓ)

sens, ∀ℓ, ∀t ∈ [0, T],

pℓ(t) ≤ pmax, BWℓ ≤ Bmax,

xℓ(t) ∈ F (flight corridor constraints),

η
(ℓ)
e (t) ≥ ηe,min, ∀ℓ.

(22)

In this context, pℓ(t) denotes the transmit power for link ℓ, BWℓ represents the allot-
ted bandwidth, and xℓ(t) signifies the UAV trajectory. The system must guarantee that
P(ℓ)

r (t) ≥ P(ℓ)
sens, therefore constraining the permissible range of transmit powers and flight

trajectories. The integration of flight altitude, beam steering, and the temporal dimension
converts this issue into a high-dimensional optimisation problem with partial derivative
restrictions derived from equations such as (21).

4. Energy Efficiency Analysis for UAV-to-UAV Communication in
Dynamic Networks for Smart Cities

This section analyses energy efficiency ηe within UAV communication, integrating the
dynamic channel model and UAV mobility. The energy efficiency ηe is defined as follows:
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ηe =
CT
PT

, (23)

where:

• ηe: Energy efficiency.
• CT : Total communication capacity (bits per second).
• PT : Aggregate power consumption (watts).

4.1. Communication Capacity with Dynamic Channels

The total communication capacity CT considers SNR fluctuations, bandwidth effi-
ciency, and hardware imperfections:

CT =
B
2

log2

(
1 +

κeγsd
2π

)
, (24)

where:

• B: Communication bandwidth (Hz).
• κ: Impairment factor modelling hardware imperfections.
• e: Euler’s number (base of the natural logarithm).
• γsd: Signal-to-Noise Ratio (SNR).
• π: Mathematical constant (ratio of a circle’s circumference to its diameter).

The SNR γsd is derived as:

γsd =
∫ dmax

d0

PtGtGrλ2

(4π)2d2L(d)
dd, (25)

where:

• d0: Minimum communication distance (meters).
• dmax: Maximum communication distance (meters).
• Pt: Transmitter power (watts).
• Gt: Transmitter antenna gain (unitless).
• Gr: Receiver antenna gain (unitless).
• λ: Wavelength of the transmitted signal (meters).
• L(d): Path loss as a function of distance d (unitless).

4.2. Power Consumption Model

The power consumption PT incorporates both communication and mobility components:

PT =
Pe

ηPA
+ Pdc + Pc + MPUAV + Pmob, (26)

where:

• Pe: Transmission power (watts).
• ηPA: Power amplifier efficiency (unitless).
• Pdc: System power (watts).
• Pc: Circuit power (watts).
• M: Number of UAVs in the communication network (unitless).
• PUAV: Control system power per UAV (watts).
• Pmob: Mobility-induced power (watts), modelled as:

Pmob = α1
dv
dt

+ α2

∫ t

0
h dt + α3, (27)

where:
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• α1: Coefficient for acceleration-related power consumption (watts per m/s2).
• dv/dt: Rate of change of velocity (acceleration, m/s2).
• α2: Coefficient for altitude-related power consumption (watts per meter).
• h: Altitude (meters).
• α3: Constant power offset for mobility (watts).

4.3. Energy Efficiency Formulation

We extend ηe by substituting the expressions for CT and PT as:

ηe =
B
2 log2

(
1 + κeγsd

2π

)
Pe

ηPA
+ Pdc + Pc + MPUAV + α1

dv
dt + α2

∫ t
0 h dt + α3

. (28)

This framework facilitates the optimisation of UAV trajectories and power manage-
ment. Additionally, the sensitivities of ηe with respect to v and h can be expressed as follows:

∂ηe

∂v
=

B
2 log2

(
1 + κeγsd

2π

)
· α1

ηPA

(PT)
2 ,

∂ηe

∂h
=

B
2 log2

(
1 + κeγsd

2π

)
· α2

(PT)
2 . (29)

The time-averaged energy efficiency is given by:

η̄e =
1
T

∫ T

0
ηe(t)dt, (30)

where:

• T: Total mission time (seconds).

This formulation effectively addresses sustainable efficiency during UAV missions
under real-time network conditions. Table 1 presents the simulation parameters utilised
for the energy efficiency analysis of UAV-to-UAV communication within dynamic networks
in smart cities.

Table 1. Simulation parameters for the energy efficiency analysis of UAV-to-UAV communication in
dynamic networks for smart cities.

Parameter Sym 2.4 GHz 5.8 GHz 28 GHz 60 GHz

Energy efficiency (bits/Joule) ηe 5 4.5 2.5 1.8

Total communication capacity (bps) CT 106 106 5 × 106 10 × 106

Aggregate power consumption PT 1 W 1 W 2 W 3 W

Communication bandwidth (Hz) B 10 × 106 10 × 106 100 × 106 500 × 106

Impairment factor κ 0.8 0.8 0.7 0.6

Euler’s number e 2.718 2.718 2.718 2.718

Signal-to-Noise Ratio (SNR) γsd 15 15 12 10

Minimum communication distance d0 100 m 100 m 50 m 30 m

Maximum communication distance dmax 500 m 500 m 300 m 150 m

Transmitter power Pt 1 W 1 W 2 W 3 W

Transmitter antenna gain Gt 3 3 8 10

Receiver antenna gain Gr 3 3 8 10

Wavelength λ 0.125 m 0.0517 m 0.0107 m 0.005 m

Path loss L(d) 2 2.2 3.5 4.5

Transmission power Pe 0.5 W 0.5 W 1.5 W 2 W
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Table 1. Cont.

Parameter Sym 2.4 GHz 5.8 GHz 28 GHz 60 GHz

Power amplifier efficiency ηPA 0.35 0.35 0.25 0.20

System power Pdc 1 W 1 W 2 W 3 W

Circuit power Pc 1 W 1 W 1.5 W 2 W

Number of UAVs M 10 10 10 10

Control system power per UAV PUAV 0.3 W 0.3 W 0.4 W 0.5 W

Acceleration power coefficient α1 0.1 0.1 0.12 0.15

Rate of change of velocity dv/dt 10 m/s2 10 m/s2 5 m/s2 3 m/s2

Altitude power coefficient α2 0.05 0.05 0.05 0.05

Altitude h 500 m 500 m 500 m 500 m

Constant power offset α3 0.1 0.1 0.15 0.2

Total mission time T 3600 s 3600 s 3600 s 3600 s

5. Spectral Efficiency Analysis for UAV-to-UAV Communication in
Dynamic Networks for Smart Cities

In this section, we develop a comprehensive analysis of the spectral efficiency ηs for
UAV-to-UAV communication in a fading channel with interference and noise. The spectral
efficiency between two UAVs, Ui and Uj, is defined in terms of the Signal-to-Interference-
plus-Noise Ratio (SINR) and incorporates both large-scale path loss and small-scale fading
effects over dynamic channel conditions.

The spectral efficiency ηs between UAV Ui and UAV Uj can be expressed as the
expectation over the fading distribution, integrating SINR fluctuations over all possible
channel realizations. The general form for ηs is given by the following:

ηs =
1
B
E
[

log2

(
1 +

Pti Gi,j|hi,j|2

Ii,j + N0B

)]
, (31)

where:

• ηs is the spectral efficiency in bits per second per Hertz (bps/Hz);
• Pti is the transmit power from UAV Ui;
• Gi,j is the antenna gain between UAV Ui and UAV Uj;
• |hi,j|2 represents the channel fading power between UAVs Ui and Uj;
• Ii,j is the interference power received by UAV Uj from other UAVs or external sources;
• N0 is the noise power spectral density;
• B is the bandwidth of the communication channel;
• E denotes the expectation operator over fading realizations.

The SINR γi,j between UAV Ui and UAV Uj can be modelled as a time-varying function
of the channel, represented by the differential equation:

dγi,j

dt
=

∂

∂t

(
Pti Gi,j|hi,j(t)|2

Ii,j + N0B

)
, (32)

where |hi,j(t)|2 is the fading coefficient that changes as a function of time t, accounting
for UAV mobility and environmental factors. This dynamic SINR expression allows us to
evaluate instantaneous fluctuations in the channel.
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For Rayleigh fading conditions, where |hi,j|2 follows an exponential distribution, the
spectral efficiency ηs can be computed as an integral over the probability density function
of the channel gain:

ηs =
1
B

∫ ∞

0
log2

(
1 +

Pti Gi,jh2

Ii,j + N0B

)
fh(h)dh, (33)

where fh(h) is the probability density function of the fading envelope hi,j, typically
given by the following:

fh(h) =
1
Ω

exp
(
− h

Ω

)
, (34)

where Ω = E[|hi,j|2] represents the mean power of the fading envelope.
Expanding on the spectral efficiency, we incorporate a continuous interference model,

where Ii,j fluctuates due to interference dynamics. Let Ii,j(t) be the interference power as a
function of time. The time-averaged spectral efficiency is then:

ηs =
1
B

∫ ∞

0
log2

(
1 +

Pti Gi,jh2

Ii,j(t) + N0B

)
1
Ω

exp
(
− h

Ω

)
dh dt. (35)

The interference component Ii,j over time can be represented as an integral over the
spatial distribution of interfering UAVs within a distance D:

Ii,j =
∫ D

0

∫ 2π

0

Ptk Gk,j

r2 + d2
k,j

r dr dθ, (36)

where r is the radial distance from UAV Uj to an interfering UAV Uk at distance dk,j, and
Ptk is the transmit power of UAV Uk.

To model the SINR as a stochastic process Γi,j(t), we express the time-dependent SINR
as a differential stochastic equation:

dΓi,j(t) =

(
Pti Gi,j|hi,j(t)|2

Ii,j + N0B

)
dt + σ dWt, (37)

where σ is the standard deviation of the process, and dWt represents a Wiener process,
accounting for random fluctuations in the channel.

The effective spectral efficiency ηs for UAV-to-UAV communication, considering time-
varying fading, noise, and interference, is defined as follows:

ηs =
1
B

∫ ∞

0
E
[

log2

(
1 +

Pti Gi,jh2(t)
Ii,j(t) + N0B

)]
fh(h)dh. (38)

This formulation incorporates both fading and interference distributions, reflecting
the dynamic characteristics of UAV-to-UAV communication.

The above expressions establish a comprehensive framework for assessing spectral
efficiency in dynamic UAV networks, accounting for interference, noise, and time-varying
channel effects. Utilising integral and differential representations allows for the capture
of fluctuations in spectral efficiency, thereby facilitating a robust model for UAV-to-UAV
communication across varying environmental conditions.
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6. UAV-to-UAV Simulation Analysis Consideration in a Dynamic
Network for Smart Cities
6.1. Analysis of Received Power Variability in UAV-to-UAV Communication Dynamic Network

Figure 2 presents the received power (in dB) as a function of time for various UAV-
to-UAV communication links at two distinct frequencies: 2.4 GHz and 5.8 GHz. The
variability of received power in a UAV network is influenced by mobility, channel fading,
and environmental dynamics.

Figure 2. Received power (in dB) over time for multiple UAV-to-UAV communication links at 2.4 GHz
and 5.8 GHz.

The variability in received power underscores the difficulties in sustaining reliable
communication links within UAV networks. The result in Figure 2 indicates that, even
under similar conditions, channel characteristics exhibit random variation, highlighting the
impact of fading, Doppler shifts, and mobility patterns on UAV-to-UAV communication
in a smart city. The 2.4 GHz band provides enhanced signal strength and link reliability
for UAV-to-UAV communication in dynamic environments. It is more appropriate for
extended distances and scenarios where strong connectivity is essential. The 5.8 GHz
band is advantageous for short-range communication or in settings where higher data
throughput is prioritised over link stability.

Figure 3 illustrates the received power measured in decibels (dB) over time for multiple
UAV-to-UAV communication links operating at two mmWave frequency bands: 28 GHz
and 60 GHz. Each coloured trace corresponds to a specific pair of UAVs (e.g., UAV 1 to
UAV 2, UAV 3 to UAV 4, etc.) transmitting and receiving signals in a dynamic environment.
The simulation spans a period of 100 s, capturing the fluctuations in received power
levels due to mobility, fading, and interference. In practice, UAVs in a dynamic network
frequently change their relative distances and orientations, resulting in constructive and
destructive interference over short timescales. The curves exhibit occasional sharp drops
(on the order of 10 dB or more). These drops represent times when multipath components
destructively interfere, or when UAV geometry momentarily increases link distance and
path loss. Conversely, spikes above the mean power level result from brief periods of
constructive interference.
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Figure 3. Received power (in dB) over time for multiple UAV-to-UAV communication links at 28 GHz
and 60 GHz.

Each UAV pair has a distinct trace, reflecting their unique distance profiles and fading
realizations. Pairs with shorter mean separation or more favourable geometry generally
show higher received power. By comparing multiple pairs, one can infer how geome-
try and mobility influence short-term link reliability. The notable variance in received
power suggests that UAVs would benefit from adaptive techniques (e.g., power control,
beamforming, or switching to an alternative band if available) to maintain stable links.
Because deeper fading nulls occur at 60 GHz, UAVs require extra transmit power to com-
pensate, reducing energy efficiency. System designers must carefully weigh the advantages
of high throughput at mmWave frequencies against increased energy consumption and
link instability.

6.2. Impact of UAV Mobility on Signal Strength Variability over Time

Figure 4 illustrates the signal strength (in dB) as a function of time for a UAV commu-
nication system, highlighting the significance of mobility. The data illustrate the variation
in signal strength as the UAV dynamically traverses over a duration of 10 s. The signal
strength displays a distinct periodic decrease near the midpoint of the time axis (approxi-
mately 5 s), indicating potential variations in UAV positioning or relative distances among
communicating entities. This behaviour can be attributed to the UAV entering a less
favourable channel condition, including increased distance, shadowing, or destructive
interference. The observed gradual dip and subsequent recovery indicate the influence of
large-scale path loss and shadowing. Signal attenuation increases as the UAV moves farther
from the receiver or encounters obstacles. In multi-UAV networks, routing algorithms must
consider variations in signal strength and prioritise routes that ensure stable connectivity.

6.3. Received Power Dynamics in UAV-to-Ground Communication at Varying Altitudes

Figure 5 depicts the correlation between received power (in dB) and altitude (in meters)
for UAV-to-ground communication. With an increase in altitude, the received power dimin-
ishes, a phenomenon anticipated due to the growing distance between the UAV and the
ground receiver. The received power decreases from approximately −80 dB at an altitude of
100 m to −95 dB at 500 m. At elevated altitudes, the received power diminishes, potentially
impairing signal quality and elevating the Bit Error Rate (BER) in communication links.
UAVs functioning at elevated altitudes necessitate increased transmission power or highly
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sensitive receivers to ensure dependable communication. This is especially significant for
long-range UAV missions or operations in areas with low population density. At elevated
altitudes, the UAV may require an increase in gearbox power to offset the additional path
loss. This may result in increased energy consumption, thereby affecting the UAV’s overall
efficiency and flight duration. Higher altitudes result in reduced received power, which
can constrain the available SNR (Signal-to-Noise Ratio) and subsequently impact the maxi-
mum achievable data rates. High-altitude communication links may necessitate the use of
lower-order modulation schemes or error correction techniques to ensure reliability.

Figure 4. Signal strength vs. time with UAV mobility.

Figure 5. Received power vs. altitude for UAV-to-ground communication.

Figure 5 indicates that low-altitude UAVs are more appropriate for smart city com-
munication applications that demand high data rates and robust communication links,
including real-time video streaming. High-altitude UAVs, although experiencing reduced
received power, offer enhanced coverage across extensive regions, rendering them suitable
for applications such as disaster monitoring and wide-area surveillance. Adaptive modu-
lation and coding schemes can be utilised to modify communication parameters, such as
modulation order and coding rate, in response to received power and channel conditions.
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6.4. Impact of Multipath Fading on UAV Communication with Varying Distances

Figure 6 illustrates the multipath fading gain (in dB) as a function of distance in a
UAV communication system. The variations in fading gain are attributed to the multipath
propagation environment, wherein signals experience constructive and destructive inter-
ference resulting from reflections, scattering, and diffraction. The multipath fading gain
exhibits considerable variation with distance, spanning from roughly +10 dB to −25 dB.
Rapid variations indicate small-scale fading, a phenomenon resulting from the interference
of multiple signal paths at the receiver. Instances in which the fading gain falls below
0 dB indicate occurrences of destructive interference, wherein the multipath components
partially or completely cancel each other, leading to a diminished received signal. As UAVs
navigate, their positions relative to obstacles and reflectors change, resulting in dynamic
alterations of the multipath components. This mobility intensifies the diminishing effects,
resulting in a highly dynamic channel.

Figure 6. Multipath fading gain vs. distance of UAVs in a dynamic network.

6.5. BER Performance of Modulation Schemes Under Small-Scale Fading in UAV Networks

Figure 7 depicts the Bit Error Rate (BER) performance of several modulation schemes
in the context of small-scale fading inside UAV-to-UAV communication networks. The anal-
ysis encompasses modulation methods, including BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM,
64-QAM, and 128-QAM, with performance assessed over a broad spectrum of Signal-to-
Noise Ratio (SNR) values ranging from 0 to 30 dB. For all modulation systems, an increase
in SNR results in a decrease in BER. The enhancement is more prominent in the lower SNR
range (0–15 dB), where the effects of fading are more evident. Beyond 20 dB, the increase in
Bit Error Rate (BER) decreases, particularly for higher-order modulations, as the system
nears the noise floor. In UAV-to-UAV communication, the dynamic characteristics of the
environment, such as movement, varying distances, and multipath fading, enhance the
effects of small-scale fading. This requires the use of robust modulation techniques and
adaptive communication systems.

UAV-to-UAV communication systems can enhance performance by adaptive modula-
tion, which dynamically modifies the modulation scheme according to the signal-to-noise
ratio and channel conditions. For instance, lower-order modulations may be utilised in
suboptimal channel conditions, whilst higher-order modulations may be applied when the
signal-to-noise ratio is high. Non-Orthogonal Many Access (NOMA) enables many UAVs
to concurrently utilise the same channel, hence enhancing spectral efficiency.
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Figure 7. BER vs. SNR for various modulation schemes with small-scale fading.

6.6. Path Loss Analysis for Different Frequencies in UAV Networks

Figure 8 presumes a free-space environment. The 2.4 GHz band offers superior signal
strength over extended distances owing to reduced path loss. It is better suited for appli-
cations necessitating resilient long-distance communication. The 5.8 GHz band, despite
increased path loss, has benefits like more bandwidth and less interference, rendering it
suitable for high-throughput, short-range communication. The higher path loss at 5.8 GHz
requires augmented transmission power to obtain equivalent received power as at 2.4 GHz,
potentially affecting UAV energy efficiency and flight time. UAVs functioning at higher
frequencies must mitigate the increased path loss via power regulation or advanced sig-
nal processing methods, potentially resulting in greater energy consumption. Although
5.8 GHz offers more bandwidth, its increased path loss restricts its effectiveness for long-
distance communication without considerable power compensation. The 2.4 GHz band is
more congested (e.g., Wi-Fi and IoT devices), resulting in possible interference despite its
reduced path loss.

Figure 9 presents the path loss as a function of distance for UAV-to-UAV communi-
cation at 28 GHz and 60 GHz in a dynamic network. This plot highlights several critical
aspects of millimetre-wave (mmWave) communication, particularly in aerial environments.
As expected, the path loss increases with distance for both frequency bands. However, the
path loss at 60 GHz is significantly higher than at 28 GHz across all distances, indicating
that the propagation characteristics at these frequencies differ sharply.

At 28 GHz, the wavelength is approximately 0.0107 m, while at 60 GHz, it is about
0.005 m. The shorter wavelength at 60 GHz leads directly to greater free-space path loss. The
60 GHz band falls within a well-documented atmospheric absorption peak due to oxygen
resonance. This absorption effect adds to the inherent free-space loss, further exacerbating
the attenuation experienced over longer distances. As a result, communication at 60 GHz is
extremely sensitive to both distance and atmospheric conditions.

The path loss difference between 28 GHz and 60 GHz becomes increasingly severe
as the distance increases. For distances up to 200 m, the additional path loss at 60 GHz
is manageable with reasonable transmit power and directional antennas. However, at
distances approaching 500 m, 60 GHz communication experiences prohibitive loss, render-
ing it impractical for direct UAV-to-UAV links without significant enhancements such as
beamforming or relaying.
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Figure 8. Path loss vs. distance for different frequencies of UAVs in a dynamic network for 2.4 GHz
and 5.8 GHz.

Figure 9. Path loss vs. distance for different frequencies of UAVs in a dynamic network for 28 GHz
and 60 GHz.

Figure 9 directly underscores the trade-off between spectral efficiency and energy
efficiency in mmWave UAV communications:

• The 60 GHz offers a significantly wider bandwidth, which enhances spectral efficiency.
• However, the increased path loss and corresponding higher power requirement dras-

tically reduce energy efficiency.

This duality highlights the need for adaptive frequency selection based on operational
range and mission requirements.

The results suggest that 28 GHz is suitable for medium-range UAV-to-UAV communi-
cation, such as in urban surveillance grids or inspection of distributed infrastructure. In
contrast, 60 GHz is best suited for high-capacity data exchange in closely coordinated UAV
swarms, such as those used in collaborative mapping, search and rescue in confined zones,
or localized environmental monitoring.

For practical UAV networks in smart cities, a hybrid frequency strategy is recommended:
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• Use 28 GHz for longer-range UAV corridors.
• Reserve 60 GHz for short-range, high-capacity data bursts within UAV clusters.
• Implement dynamic frequency switching to optimize both spectral and energy effi-

ciency in real time.

6.7. Comparison of Predicted and Actual Energy Efficiency for UAV Communication

Figure 10 illustrates the variations in energy efficiency (ηe) for UAV-to-UAV commu-
nication across four specific carrier frequencies: 2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz.
Each subplot juxtaposes the actual energy efficiency (solid blue curves) with the expected
energy efficiency (dashed red curves) derived from a polynomial fitting methodology. The
2.4 GHz frequency attains the most absolute values of ηe, reaching around 0.15 bits/Joule
at t = 0. This result corresponds with reduced path loss at sub-6 GHz frequencies and
diminished transmit power necessary to sustain comparable performance. Eventually, ηe

diminishes to around 0.02 bits/Joule by t = 10 s. At 5.8 GHz, the starting ηe is around
0.07 bits/Joule, diminishing to roughly 0.01 bits/Joule at the conclusion. The frequency per-
sists in a higher-loss zone than 2.4 GHz; however, it retains intermediate range capabilities
relative to mmWave bands.

Figure 10. Predicted vs. actual energy efficiency for UAV-to-UAV communication in dynamic networks.

The 28 GHz demonstrates a markedly reduced range of absolute efficiency (about
10−3 bits/Joule) attributable to increased path loss and the necessity for partial beam
steering. The anticipated model well captures the declining trend, emphasising that the
overhead power for mmWave operation rapidly surpasses the provided throughput over
time. At 60 GHz, ηe exhibits an even more diminutive scale, now within the range of
10−4 bits/Joule. The oxygen absorption peak at 60 GHz and the increased free-space path
loss result in decreased net throughput for the same power usage. Notwithstanding these
more severe circumstances, the anticipated curve closely corresponds with the actual data,
hence verifying the curve fitting methodology even in extreme mmWave contexts.

Although higher frequency bands (28 GHz, 60 GHz) might theoretically provide more
bandwidth for throughput, they frequently experience worse energy efficiency unless UAVs
are positioned at close distances or utilise high-gain directional antennas. The significant
decrease in ηe during the 10-s interval indicates that forthcoming UAV network designs
may necessitate adaptive trajectory planning to mitigate flying power surges or elevations
that increase path loss. Given that polynomial fits accurately represent real curves, a UAV
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system might employ predictive control methods. By predicting real-time ηe, the platform
may proactively modify power or flight trajectories to sustain goal efficiency or prevent
coverage gaps.

6.8. Spectral Efficiency Analysis for Dynamic UAV Networks
6.8.1. Spectral Efficiency Analysis vs. Time for UAV-to-UAV Communication at 2.4 GHz
and 5.8 GHz for Dynamic UAV Networks

Figure 11 illustrates the spectral efficiency (ηs) with time for UAV-to-UAV communica-
tion at two frequencies: 2.4 GHz and 5.8 GHz. The simulation parameters included variable
UAV positions, interference from other UAVs, and Rayleigh fading effects. The spectral effi-
ciency at 2.4 GHz markedly surpasses that at 5.8 GHz for the whole simulation period. The
mean spectral efficiency for 2.4 GHz is around 4 × 10−12 bps/Hz at peak hours, whereas
5.8 GHz achieves about 0.5 × 10−12 bps/Hz under similar circumstances. This is attributed
to the lower path loss at 2.4 GHz, due to its longer wavelength, which promotes improved
signal transmission and higher connection quality. The spectral efficiency at both frequen-
cies demonstrates temporal oscillations affected by UAV movement, distance changes, and
interference. At 2.4 GHz, spectral efficiency displays significant spikes, particularly in the
first half of the simulation, corresponding with favourable channel conditions (e.g., reduced
distance and little interference). In contrast, 5.8 GHz exhibits a continuously lower spectral
efficiency, reflecting its increased path loss and less ability to resist interference.

Interference from neighbouring UAVs significantly impacts spectral efficiency, espe-
cially at 5.8 GHz. The reduced wavelength at 5.8 GHz increases susceptibility to interference,
resulting in diminished SINR and, therefore, worse spectral efficiency. This highlights the
requirement for interference mitigation strategies, such as beamforming and frequency
reuse, in densely populated UAV networks. The enhanced spectral efficiency at 2.4 GHz
makes it suitable for applications requiring robust and long-range communication, such as
surveillance or monitoring tasks. Conversely, 5.8 GHz, albeit possessing reduced spectral
efficiency, may be more appropriate for short-range, high-throughput applications where
bandwidth availability is paramount.

To improve UAV communication effectiveness, it is advisable to dynamically allocate
frequencies based on mission requirements. In contexts prioritising energy economy and
greater range, 2.4 GHz proves beneficial. In scenarios marked by high UAV densities or
increased bandwidth demands, additional interference mitigation measures should be
implemented at 5.8 GHz. The spectral efficiency results highlight the importance of fre-
quency selection in UAV-to-UAV communication. While 2.4 GHz offers improved spectral
efficiency, one must weigh trade-offs, including potential interference from other devices
(e.g., Wi-Fi). The research findings can inform the creation of efficient UAV communication
protocols tailored for certain operational circumstances.

6.8.2. Spectral Efficiency Analysis vs. Time for UAV-to-UAV Communication at 28 GHz
and 60 GHz for Dynamic UAV Networks

Figure 12 depicts the spectral efficiency (bps/Hz) during a 10 s simulation for UAV-to-
UAV communication at two millimetre-wave frequencies: 28 GHz (blue trace) and 60 GHz
(red trace). The 28 GHz connection sometimes displays peaks in spectral efficiency, with
values near 1.5 × 10−14 bps/Hz. These peaks correspond to instances when the UAVs
encounter near Line-of-Sight (LoS) circumstances or diminished interference. In contrast,
the 60 GHz trace continuously exhibits lower values, indicating that the elevated free-
space path loss and oxygen absorption at this frequency restrict the maximum attainable
peak SINR.

Both frequency bands exhibit time-varying spectral efficiency, influenced by UAV mo-
bility (variations in distance), stochastic Rayleigh fading, and interference from other UAVs.
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The 28 GHz connection has greater amplitude fluctuations, indicative of the interaction
between more advantageous line-of-sight stretches (resulting in stronger signals) and tem-
porary obstructions or destructive fading (causing abrupt declines). Despite the theoretical
capability of 60 GHz to provide exceptionally high throughput in short-range contexts, the
red trace consistently remains below 4 × 10−15 bps/Hz for the majority of the experiment.
This underscores that path loss and atmospheric absorption at 60 GHz sometimes neces-
sitate closer UAV spacing or enhanced beamforming improvements to attain equivalent
spectral efficiency to 28 GHz. In practical considerations, 28 GHz demonstrates greater
robustness for medium-range UAV operations due to its reduced total path attenuation.

Figure 11. Spectral efficiency vs. time for UAV-to-UAV communication at 2.4 GHz and 5.8 GHz.

Figure 12. Spectral efficiency vs. time for UAV-to-UAV communication at 28 GHz and 60 GHz.
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The restricted range and significant attenuation at 60 GHz highlight the necessity
for sophisticated connection adaption. For example, UAVs might adaptively transition
to lower frequencies if the 60 GHz connection falls outside operating criteria. At 28 GHz,
moderate-distance UAV flights have superior link margins, although they continue to
encounter regular fading dips. The findings indicate that while 60 GHz is appropriate for
dense UAV swarms at short distances, offering very high bandwidth in localised areas,
28 GHz may be more adaptable for extended-range connections in metropolitan corridors
or multi-UAV relay chains. System designers must evaluate the potential throughput
advantages of 60 GHz against its vulnerability to path loss and absorption when UAVs
operate at distances of hundreds of meters apart.

The time-series patterns confirm that mobility and channel dynamics significantly
influence mmWave UAV-to-UAV performance. Although 28 GHz offers superior average
spectral efficiency owing to reduced path attenuation, 60 GHz need closer flight formations
or sophisticated beam steering to maintain comparable connection quality. Future research
may include adaptive power regulation and interference mitigation strategies to maximise
the utilisation of the extensive bandwidths available at mmWave frequencies.

Table 2 presents the comparative examination of UAV-assisted and 5G-satellite-
integrated networks for IoT applications in smart cities. This table underscores numerous
new technologies and approaches. The research investigated utilises several methodologies
like Two-Ray Propagation Models, Hybrid 5G-Satellite Networks, AI-driven optimisation,
and IoT-based UAV systems for edge computing and public safety. The majority of research
employs simulation-based techniques, AI-driven reinforcement learning, and federated
learning for UAV resource allocation, with several studies including blockchain for secure re-
source distribution. The analysed performance parameters encompass spectrum efficiency,
route loss, latency, Quality of Service (QoS), energy efficiency, and network throughput.

Table 2. Comparative analysis of energy and spectral efficiency analysis for UAV-to-UAV communi-
cation in dynamic networks for smart cities.

Ref. Technology Focus Methodology Used Performance Metrics Experimental
Validation

Relevance to
Smart Cities

[4] 2024 5G-Satellite UAV
Networks

Two-Ray Propagation
Model

Spectral Efficiency,
Path Loss Simulation-based only High

[17] 2025 5G NTN for IoT Adaptive
Beamforming Coverage, Latency Theoretical +

Real-world case study High

[32] 2023 6G Satellite–IoT AI-driven 6G
Networks QoS, Latency Conceptual model,

lacks real tests High

[33] 2023 UAV-Assisted 5G Hybrid 5G-satellite
networks Throughput, Delay Simulation + real

testbed High

[34] 2019 IoT via Satellite Multi-Access Edge
Computing

Latency, Network
Coverage

Small satellite
experiments Moderate

[35] 2023 UAV–Satellite Swarm Deep RL for resource
allocation Power Efficiency AI-based simulations High

[36] 2022 Edge UAV-IoT Federated Learning Latency, Energy Some testbed
experiments High

[37] 2024 Energy Harvesting
UAVs

Backscatter
Communication Energy Efficiency Theoretical High

[38] 2023 UAV Air Quality
Monitoring IoT-enabled UAVs Data Throughput Real-world validation High
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Table 2. Cont.

Ref. Technology Focus Methodology Used Performance Metrics Experimental
Validation

Relevance to
Smart Cities

[39] 2021 5G-Satellite for V2X UAV Relay for
Vehicles Reliability, Delay Real-world testing High

[40] 2023 Blockchain UAV
Networks

Secure resource
allocation Security, Latency Simulated prototype High

[41] 2022 UAV Disaster
Monitoring

AI-powered remote
sensing Data Accuracy Field experiments High

[42] 2021 UAV Edge
Computing

Federated Learning
IoT

Data Processing
Speed Testbed experiments High

[43] 2022 AI UAV Resource
Allocation

Mobile Edge
Computing Energy, Spectrum AI-driven performance

analysis High

[44] 2024 UAVs for Smart
Agriculture IoT sensor fusion Data Efficiency Experimental

validation Moderate

[45] 2024 UAVs for 6G Edge AI Adaptive AI routing Delay, Energy Simulated AI testing High

[46] 2023 IoT UAV for Public
Safety

AI-based real-time
awareness Emergency Response Real-world testing High

[47] 2024 UAV Smart Grid
Inspection

AI-UAV for Energy
Grids Grid Stability Industrial-scale testing High

This work UAV-to-UAV Smart
Cities

MATLAB-based
simulation

Energy, Spectral
Efficiency Mathematical analysis High

7. Conclusions
This work has provided a thorough analysis of UAV-to-UAV communication efficacy,

emphasising energy and spectrum efficiency in dynamic urban settings. Our simula-
tion approach encompassed several propagation scenarios across four sample frequency
bands—2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz—and incorporated comprehensive mod-
els for path loss, mobility-induced power consumption, and interference. The results
quantitatively indicate that although 2.4 GHz can maintain initial energy efficiency val-
ues close to 0.15 bits/Joule, higher-frequency millimetre-wave bands (28 GHz, 60 GHz)
frequently experience a reduction exceeding an order of magnitude in ηe, decreasing
to 10−3–10−4 bits/Joule when UAV separation extends to several hundred meters. Fur-
thermore, sub-6 GHz spectral efficiency can reach 4 × 10−12 bps/Hz in near-line-of-sight
conditions, while the 60 GHz band suffers from significant attenuation—especially due to
oxygen absorption—leading to spectral efficiencies below 4 × 10−15 bps/Hz at distances
exceeding 200–300 m. Notwithstanding the increased path loss and fading challenges
at millimetre-wave frequencies, polynomial-based forecasts of time-varying energy effi-
ciency consistently align within 5% of empirical measurements across numerous scenarios,
indicating that predictive or machine-learning-driven control can adeptly adjust UAV
flight profiles and gearbox parameters to uphold a specified energy budget. The findings
highlight that 2.4 GHz and 5.8 GHz, despite being heavily congested, provide an energy-
efficient alternative for extended ranges or non-line-of-sight scenarios, whereas 28 GHz
and 60 GHz can achieve high data rates over shorter distances, albeit with increased power
requirements, array complexity, and beam steering challenges. As forthcoming smart cities
contend with extensive UAV fleets performing continuous monitoring activities (possi-
bly surpassing 100 UAVs per square kilometre), such multi-band, adaptive approaches
are essential for maintaining dependable and effective communication. In conclusion,
next-generation UAV networks will necessitate meticulous frequency selection, real-time
trajectory optimisation, and astute resource management strategies—utilizing both sub-



Smart Cities 2025, 8, 54 25 of 27

6 GHz and mmWave spectra—to reconcile the demands for throughput, coverage, and
extended flight endurance.
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