
Please cite the Published Version

Niepsch, Daniel , Randviir, Edward , Murphy-Peers, Rebecca, Coulthard, Emma , Hackett,
David, McKendry, David and Megson, David (2025) Can recovered road sweeping wastes
provide a soil or soil amendment alternative? An investigation of temporal variability of physico-
chemical parameters. Journal of Environmental Management, 380. 124928 ISSN 0301-4797

DOI: https://doi.org/10.1016/j.jenvman.2025.124928

Publisher: Elsevier

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/639084/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article published in Journal of Environmental
Management, by Elsevier.

Data Access Statement: Data are available within the article or its supplementary materials.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-0177-1996
https://orcid.org/0000-0001-7252-8494
https://orcid.org/0000-0001-8935-9092
https://orcid.org/0000-0003-0849-1927
https://orcid.org/0000-0002-8881-3860
https://doi.org/10.1016/j.jenvman.2025.124928
https://e-space.mmu.ac.uk/639084/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Research article

Can recovered road sweeping wastes provide a soil or soil amendment 
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A B S T R A C T

By 2050, 90% of the Earth’s topsoil is considered ‘at risk’ (according to the UN). Within the UK, more than 6 
million hectares are at risk of compaction or erosion and soils remain one of the largest components of landfills 
(e.g. 28 million tonnes in 2016–55% of tonnage received). Hence, sustainable uses and solutions to maintain and 
restore soils are required. Street sweeping – a routine maintenance operation – handling diverse materials (e.g. 
grit, litter, leaves, glass, bitumen etc.), and thus containing potentially harmful elements, requiring landfill 
disposal (or incineration). However, with appropriate physico-chemical treatment, reclamation of gravel, sand, 
and fine residues (clay and silt) can be ensured. The latter making up approximately 30% of total solids collected, 
that could provide a ‘circular economy’ solution as soil or soil amendment, i.e. providing soil functions and 
essential ecosystem services (e.g. source of raw material, hosting biodiversity, carbon pool), thus, reducing the 
need for ‘virgin material’.

Consistent physical (e.g. moisture content, organic matter) parameters suggest ‘good’ soil properties, able to 
support plant growth. Chemical properties revealed ‘urban’ signature of contaminants, i.e. metal(loid) concen-
trations, whereas high levels of total petroleum hydrocarbons (TPHs), which in part, were attributed to treatment 
process chemicals. These were found to biodegrade by >70% during storage (using different remediation 
techniques). Although the material was outside of ranges to be certified as a top- or subsoil (BS 3882 or BS 8601), 
the suitability within ‘public open space’ (and ‘commercial’) surroundings was evident.

This study provides the first long-term (over a 12-months period) physico-chemical characterisation of fine 
residues of recovered road sweeping material (or waste-derived material), following British Standards Institution 
(BSI) guidelines. Based on the determined characteristics, it aims to; (i) consider physico-chemical characteristics 
in an “urban soil” context (including temporal variability), to (ii) contextualise the material within soil British 
Standard specifications, e.g. for topsoil and subsoil, and (iii) evaluate their suitability for use as a soil/soil 
amendment in relation to human health screening values, e.g. ‘soil guideline values’ (SGVs), ‘safety for use limits’ 
(S4UL) and ‘category 4 screening levels’ (C4SL).

1. Introduction

Street sweeping is a routine maintenance operation, removing ma-
terial from the roadway prior to their introduction into waterways 
(Lloyd et al., 2018). Residues collected from street cleansing consist of 
diverse materials, including litter, grit, leaves, glass, paper, bitumen and 

plastics (among others), and thus may contain potentially harmful ele-
ments (PHEs) such as heavy metals and other organic compounds, e.g. 
total petroleum hydrocarbons (TPHs; EA, 2012). Because of rapid ur-
banization and high demand for environmental cleanliness (i.e. 
reducing road dust re-suspension, improving air quality and disease 
prevention; Das and Wiseman, 2024; Fact. MR, 2019; Ragazzi et al., 
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2023), municipal regions across the globe spend significant amounts (i. 
e. US $65 million in San Francisco, United States) on street cleaning and 
waste management (Fact. MR, 2019). Moreover, the street sweeping 
market is projected to be valued at more than US $3 billion by the end of 
2027 (Fact. MR, 2019), as it has been shown to reduce resuspension of 
dust and reducing respiratory health concern metals, e.g. Cu and Zn, 
from the (urban) environment (Das and Wiseman, 2024; Ragazzi et al., 
2023). In Italy, street sweepings contribute 3% of total municipal solid 
waste (MSW), with 88% of this waste stream being recycled and 12% 
being landfilled (Ragazzi et al., 2023). Comparably, road sweeping 
waste in the UK has to be disposed of at a suitable facility, i.e. licensed 
landfill or incineration (EA, 2012; Lloyd et al., 2018). No data about the 
amount of street cleansing residues (SCRs) collected from UK local au-
thorities is available, however, in 2021/2022 “household waste” that 
include street sweepings, totalled to 26.1 million tonnes, of which 2.1 
million tonnes (8.1%) were landfilled (DEFRA, 2023a). The Waste Data 
Flow (WDF) network reported SCR recovery of less than 70,500 tonnes 
(in 2013; WasteDataFlow, 2013). Within the northwest of England, 333 
thousand tonnes (9.1%) of wastes are recycled, whereas 45.4% (1666 
thousand tonnes) are recycled, and 42.5% (1562 thousand tonnes) are 
incinerated (3.1% - 112 thousand tonnes “Other”; DEFRA, 2023a). 
However, these numbers do not incorporate SCR separately and it is not 
well documented how much is recently landfilled, recycled and/or 
re-used. Additionally, landfill sites are a ‘depleting resource’ with a 
remaining total capacity of 345,742,301 m3 (end 2021; EA, 2024) for 
hazardous waste, and the re-use of recovered material would aid the UK 
Government’s waste minimising strategy (DEFRA, 2023b). Moreover, 
according to the United Nations Sustainable Development Goals (UN 
SDGs), 7 goals directly or indirectly impact soils or cannot be achieved 
without soil, e.g. ‘zero hunger’ (Goal 2) or ‘life on land’ (Goal 15; SSA, 
2024). An estimated 90% of the Earth’s topsoil is currently considered 
‘at risk’ by 2050 (UN FAO, 2022). In the UK > 6 million hectares of soil 
are at risk of compaction or erosion and soils remain one of the largest 
components of landfills (e.g. 28 million tonnes in 2016–55% of tonnage 
received; DEFRA, 2019), requiring sustainable uses and solutions to 
maintain and restore the UK’s soils (EA, 2023). Treatment of SCRs can 
ensure reclamation of gravel and sands, whereas finer material (i.e. clay 
and silts) are currently sent to landfill. Fine-sized particles play an 
important role in the fate of contaminants, i.e. ability to adsorb a variety 
of inorganic and organic contaminants (Biswas et al., 2020; Schoon-
heydt and Johnston, 2013) thus, suggesting potential contamination of 
clay and silt fractions. These fractions of road sweeping residues account 
for around 30% of the total solids collected, which could provide an 
alternative material as soils and soil amendments for the use as tree soil, 
structural soil and/or other growing media (PAS115:2021). Due to the 
decline in soil resources, recovered material (i.e. from road sweepings) 
could provide essential qualities in ecosystem services, e.g. carbon pool, 
source of raw material and hosting biodiversity (Adhikari and Harte-
mink, 2016), e.g. supporting plant life, by also reducing the need for 
“virgin material” (i.e. dug-up and transported to site) and being used 
close to its source (PAS115:2021). Further, the process by which road 
sweeping wastes are recovered involves the separation of soil fractions, 
facilitating the blending of closely specified soil mixes.

This study provides the first temporal (over a 12-months period) 
physico-chemical characterisation of fine residues of recovered road 
sweeping wastes or waste-derived material (WDM). Based on the 
determined characteristics, it aims to: (i) consider physico-chemical 
characteristics in an “urban soil” context (including temporal vari-
ability), to (ii) contextualise the material within soil British Standard 
specifications (for topsoil and subsoil), and (iii) evaluate their suitability 
for use as a soil/soil amendment in relation to human health (using 
relevant regulatory screening values).

2. Materials and methods

2.1. Sample collection

All samples were obtained from processed material at UBU Envi-
ronmental Ltd, based in Walkden, Manchester (UK). SCRs were collected 
from various locations (e.g. residential, roadways, commercial and in-
dustrial) within a 50-mile radius of Greater Manchester by a fleet of 
approximately 120 sweepers. Once material was transported to site, the 
road sweepings underwent a treatment process (Fig. S1) that included 
(a) density separation and attrition, to remove plastics and leaves and 
(b) washing and separation of constituents into different sizes, e.g. ag-
gregates (40-5 mm), sand (2–0.06 mm) and silt/clay (0.06–0.002 mm 
and <0.002 mm). Reclaimed aggregates and sand can already be re-used 
in construction and landscaping (UBU, 2023). As such, the focus of this 
investigation was on the fine silt and clay-like material, hereafter 
defined as waste-derived material (WDM).

Sampling of the WDM was undertaken in accordance with British 
Standard Institute (BSI) guidelines, i.e. BS EN 12579:2013 and BS ISO 
18400-102:2017 on a biweekly basis over a 12-months period. In brief, 
to obtain a representative sample of the processed material, 12 incre-
mental samples (approximately 0.5 L each) were taken from the freshly 
produced bulk material from different locations of the pile (Fig. S2). 
Subsequently, incremental samples were combined, thoroughly mixed, 
and reduced in size by coning and quartering to obtain a final sample for 
physico-chemical, inorganic and organic analyses. Samples were stored 
in containers in accordance with BS ISO 18400-105:2017, e.g. amber 
glass vials for organic compounds, in a cool and dark (at 4 ◦C ± 2 ◦C) 
environment (fridge) until analysis.

2.2. Analytical methods – physico-chemical characterisation

All analysis was performed in line with relevant International Or-
ganization for Standardization (ISO) and British Standard Institution 
(BSI) methods. Due to the large number of different tests performed, 
detailed methods are not provided here. Instead, each method has been 
referenced in Table 1, and analytical details and QA/QC procedures are 
detailed in the Supplementary information (Tables S 1 to Tab. S5).

Table 1 
Overview of British Standard Institute guidelines applied for physico-chemical 
characterisation of PAS115 material, including analytical technique.

Parameter BSI document/ 
guideline

Analytical technique

pH BS EN 13037:2011 pH probe/meter
Electrical Conductivity BS EN 13038:2011 Conductivity probe/meter
Dry residue/moisture 

content
BS EN 15934:2012, 
BS EN 13040:2007

Not applicable (oven drying)

Bulk density BS EN ISO 
17892-2:2014

Not applicable (oven drying)

Organic matter content BS EN ISO 
15935:2021

Loss on Ignition (LOI)

Particle size & 
distribution

BS EN ISO 
17892-4:2016

Sieving; Particle Size Analyser 
(Malvern 3000)

C wt% and N wt% ISO 10694:1995
(Carbon), ISO 
13878:1998
(Nitrogen)

Carbon/Nitrogen (CN) 
analyser

Water-soluble 
elements and 
nutrients (as ions)

BS EN 13652:2001 Ion Chromatography (IC)

Inorganic compounds, 
e.g. metals/ 
metalloids

Extraction: BS ISO 
16729:2013

Inductively coupled plasma – 
optical emission spectroscopy 
(ICP-OES) and inductively 
coupled plasma – mass 
spectrometry (ICP-MS)

Analysis: BS EN ISO 
22036:2024, BS EN 
16171:2016

Organic compounds, e. 
g. total petroleum 
hydrocarbons (TPHs)

BS EN ISO 
16703:2011

Gas chromatography – flame- 
ionisation detection (GC-FID)

D. Niepsch et al.                                                                                                                                                                                                                                 Journal of Environmental Management 380 (2025) 124928 

2 



General physico-chemical characterisation of the WDM, including 
pH, electrical conductivity (Ec), bulk density, particle size and distri-
bution, organic matter and carbon and nitrogen contents, are presented 
in section 3.1. Water-soluble elements and nutrients are presented in 
section 3.2, whereas metal(loid) and total petroleum hydrocarbons are 
presented in section 3.3. and 3.4, respectively.

2.3. Statistical analysis and data visualisation

Graphical visualisation was conducted using R (v. 4.4.0; R Core 
Team, 2021) and RStudio (v. 2023.12.0–369; RStudio Team, 2021) with 
the visualisation package “ggplot2” (Wickham, 2016). Statistical anal-
ysis was undertaken using ‘jamovi’ (The jamovi project, 2020). Datasets 
were tested for normal distribution using a Shapiro-Wilk test, due to its 
higher statistical power compared to other statistical tests, irrespective 
of sample size (Razali and Wah, 2011). Outcomes for normality 
informed the use of parametric or non-parametric test for dataset com-
parison. For instance, group comparison was undertaken using ‘t-test’ 
(parametric) or ‘Kruskal-Wallis/Wilcoxon’ (non-parametric; 
non-parametric pairwise comparison) test statistics, whereas ‘Pearson’s 
r (parametric)’ or ‘Spearman’s ρ (non-parametric)’ was used for com-
parison of (linear) relationships.

3. Results and discussion

3.1. Physico-chemical properties of recovered WDM

Physico-chemical characteristics of the WDM are displayed in 
Table 2. According to the UK soil texture classification (Natural England, 
2008), the WDM can be classified as “sandy silty loam” or “silty loam”, 
with consistent moisture contents, ranging between 34 and 46%, and a 
dry bulk density between 0.75 and 1.1 g cm− 3 (wet: 1.34–1.71 g cm− 3).

Soils in urban environments are affected by compaction, i.e. high 
bulk density, and thus, affecting or restricting root growth (Banaitis 
et al., 2007; Edmondson et al., 2011; C.Y. Jim, 1998a,b,c; C.Y. Jim, 
1998a,b,c; Lehmann and Stahr, 2007; Lorenz and Lal, 2009; Pickett and 
Cadenasso, 2009; Pitt et al., 2008; Smetak et al., 2007). For instance, 
bulk densities >1.60 g cm− 3 have been found to affect root growth, 
whereas >1.75 g cm− 3 restrict root growth (USDA, 2019). Soil bulk 
densities in urban areas in China have been found in ranges of 1.14–1.70 
g cm− 3 (Nanjing) and 1.14–2.63 g cm− 3 (Hongkong) (C.Y. Jim, 1998a,b,
c; Yang et al., 2005; Yang and Zhang, 2015). Comparably, Dobson et al. 
(2021) reported allotment soil bulk densities in ranges of 0.22–1.52 g 
cm− 3 in UK cities (e.g. Birmingham, Nottingham, Liverpool etc.), 
whereas for Manchester, minimal data is available for topsoil bulk 

densities; ranging between 0.6 and >1.2 g cm− 3 (BGS, 2024). None-
theless, bulk densities of the recovered material show an ideal (<1.40 g 
cm− 3) value for plant growth (USDA, 2019).

The pH and electrical conductivity (Ec) in the recovered material 
show alkaline conditions with low anion and cation concentrations. Soil 
pH is the primary factor for the availability of trace metals in soils, with 
higher mobility of anions, and conversely lower mobility for cationic 
species in soils with higher pHs (Antoniadis et al., 2017b). Hence, 
alkaline pH of the material may hinder the transport of (plant) nutrients, 
e.g. phosphorus and manganese and potentially harmful elements 
(PHEs), e.g. Zinc (Zn) in the material. However, alkaline conditions have 
been reported in urban soils in Hungary (pH: 7.6–9.1; Puskás and Far-
sang, 2009) and China (pH: 8.5–9.5; Jim, 1998b), attributed to calcar-
eous filling material (e.g. cement and concrete) (Yang and Zhang, 2015). 
No statistically significant (P > 0.05) differences between analysed 
seasons were recorded for pH, OM% and moisture content, whereas 
electrical conductivity (Ec) showed statistically significant differences 
(p = 0.04) between spring (583 ± 106 μS cm− 1) and summer (306 ±
111 μS cm− 1), with the highest Ec recorded in winter (640 ± 227 μS 
cm− 1). Ec is affected by a variety of soil properties, e.g. porosity, soil 
texture (particularly clay content), soil moisture and temperature 
(USDA, 2011). Elevated Ec in winter is likely linked to the application of 
de-icing salts that can have detrimental impacts on the health and 
growth of urban trees though osmotic stress and ion toxicity (Bryson and 
Barker, 2002; Czerniawska-Kusza et al., 2004; Equiza et al., 2017; 
Shannon et al., 2020). Albeit an increase in Ec in the recovered material 
during colder months, values were consistently below ‘problematic’ 
salinity (>4000 μS cm− 1) values, regardless of season, that would affect 
growth and microbial activity, i.e. by mobilizing potentially toxic ele-
ments (e.g. lead, cadmium and mercury; Shannon et al., 2020).

Soil organic carbon (SOC) plays an important role in the natural 
carbon cycle and has an extensive influence on soil properties and 
functions (BSSS, 2022). Carbon contents (C wt%) in the WDM ranged 
from 6.9% (69 g kg− 1) to 9.3% (93 g kg− 1), which is comparable to 
concentrations for clay/silt soil in the UK (BGS, 2024). Comparably, soil 
organic matter (SOM) in the material was recorded at 10 ± 1.91%OM, 
which in soils has the capability to increase the overall retention ca-
pacity, contributes to improved plant growth conditions (i.e. increased 
water-holding capacity and improved soil structure) and creates ligands 
with elements, decreasing element availability (Antoniadis et al., 
2017a). Urban soils are often carbon-depleted compared to natural soils, 
with reported OM% of 3.5 ± 0.4% for different land-use types, that can 
be increased (about doubled to 7.1 ± 0.4%) using soil amendments (e.g. 
compost and biochar; Wu and Yu, 2023). Manchester road dust samples 
showed OM% (by LOI) between 4.02 and 19.84%, which are compara-
ble to this study’s results, suggesting natural (e.g. plant fragments) and 
anthropogenic sources (e.g. vehicle exhaust and tyre wear; Robertson 
et al., 2003; Rogge et al., 1993) as primary contributors. Moreover, 
elevated OM% suggest a fertile soil providing an enhanced rooting 
environment and moisture (Hatten and Liles, 2019; Oldfield et al., 
2018). Further, TIC of approximately 1% suggest a buffering capacity 
towards (anthropogenic) acidification and maintaining a consistent pH 
(Antoniadis et al., 2017b).

Soil Carbon-Nitrogen ratios (C/N ratio) are an indicator of SOM 
quality, playing a crucial role in soil microbial activity and influencing 
mineralisation and nitrification processes (Amorim et al., 2022; He 
et al., 2023; Lehtonen et al., 2016; Tao et al., 2020; Vanguelova et al., 
2024). For instance, a C/N ratio <15 indicates rapid mineralisation and 
release of N that is available for plant growth but also may result in 
leaching of nutrients, e.g. NO3

− (at C/N ratio <25), whereas C/N > 35 
indicates microbial immobilisation, i.e. converting inorganic-N [NH4

+-N 
and NO3

− -N] into organic forms that are not (readily) plant available 
(Brust, 2019; Cao et al., 2021; Emmett, 2007; Gundersen et al., 2006; 
Vanguelova et al., 2024). C/N ratios in the WDM ranged between 27 and 
41 suggesting a ‘equilibrium’ state between mineralisation and immo-
bilisation (Brust, 2019), hence, suggesting plant available nitrogen with 

Table 2 
Physico-chemical characteristic of the WDM throughout a 12-months biweekly 
sampling regime (N = 24).

Parameter Minimum Maximum Mean ± 1×
Std. Dev.

95th 
percentile

pH [unitless] 7.58 8.87 8.32 ± 0.379 8.81
Ec [μS cm− 1] 199 913 495 ± 186 834
TDS [ppm]a 127 584 317 ± 119 534
Moisture [%] 34.2 46.9 43.1 ± 2.68 45.6
OM (LOI) [%] 6.71 15.8 10.3 ± 1.91 14.0
Bulk density [g cm3 

(wet)]
1.34 1.71 1.51 ± 0.09 1.68

Bulk density [g cm3 

(dry)]
0.746 1.11 0.856 ± 0.09 1.03

Carbon [wt%] 6.85 9.34 8.01 ± 0.597 9.18
Nitrogen [wt%] 0.190 0.310 0.243 ± 0.032 0.300
Clay [%] 0.910 5.18 2.80 ± 1.09 4.69
Silt [%] 54.7 83.9 75.2 ± 7.84 82.5
Sand [%] 12.4 44.4 22.0 ± 8.63 39.7

QA/QC for pH, Ec and carbon and nitrogen contents displayed in Table S1.
a TDS calculated from Ec using 640 scale.
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a tendency to immobilize nitrogen. Nonetheless, due to the higher the 
C/N ratio in the WDM, a greater stability of the soil organic carbon 
(SOC) is suggested, that subsequently may be important for terrestrial 
carbon sequestration (He et al., 2023).

Overall, the physico-chemical characteristics of the WDM is com-
parable to ‘urban’ soils, with higher pH, higher bulk density and 
enrichment in carbonates (Gerasimova et al., 2003; Savich et al., 2007; 
Vodyanitskii, 2015). However, results also suggest a fertile, moisture 
retaining, light and alkaline waste-derived “soil” (RHS, 2024) that may 
provide an alternative for urban greening programmes, comparable to 
silty soils.

3.2. Water-soluble elements and nutrients in the WDM

Temporal variability for water-soluble elements and nutrients was 
recorded in the WDM (Table S6). Elevated levels for chloride (Cl− ) were 
recorded in spring and winter, whereas concentrations of sulfate (SO4

2− ) 
were consistent throughout the seasons. Cations, sodium (Na+) and 
calcium (Ca2+) and magnesium (Mg2+) were elevated in winter. 
Elevated levels of Na+ and Cl− (and Ca2+ and Mg2+) during colder 
weather is likely linked to the use of de-icing salt, containing salt (NaCl) 
and salt additives (CaCl2 and MgCl2; Charola et al., 2017). Although an 
important plant micro-nutrient, excessive chloride (Cl− ; anion of chlo-
rine), from natural (e.g. sea spray) or anthropogenic sources (e.g. coal 
burning, combustion or fertilization), can have detrimental impacts on 
soils and plants (Geilfus, 2019). Due to its high mobility in soils, i.e. 
weak adsorption to positively charged soil particles and no assimilation 
by microorganisms (Geilfus, 2019; Miller et al., 2011b; Wang et al., 
1987), Cl− can easily leach through water-filled soil pores (Geilfus, 
2019; Miller et al., 2011a). Limit values for landfilling of wastes range 
from 800 (inert) to 25,000 mg kg− 1 (hazardous; Waste Acceptance 
Criteria, WAC), whereas a threshold of 188 mg L− 1 for general quality of 
groundwater bodies, has been specified (ALS, 2017; UK Government, 
2015). The U.S. Environmental Protection Agency (U.S. EPA) has set a 
threshold of 230 mg L− 1 for Cl− for chronic exposure to aquatic life (860 
mg L− 1 acute exposure; EPA, 1988). Cl− concentrations of the WDM of 
100 mg L− 1 (±90.42 g L− 1) are below WAC thresholds, but could exceed 
the groundwater bodies threshold, thus, suggesting the potential of 
leaching into water bodies. However, WDM-Cl- concentrations are 
consistently below the UK groundwater bodies limit value (188 mg L− 1). 
Further, Cl− can also be taken up by plants via the xylem, accumulating 
in the shoots (Geilfus, 2019). Cl− can replace hydroxides in aluminium 
and iron-hydroxides, which is pH dependent, with lower pH favouring 
the replacement (Geilfus, 2019; Wang and Yu, 1998). Alkaline pHs in 
the WDM suggest little hydroxide replacement. Therefore, water-soluble 
Cl− concentrations are considered to either be retained within WDM, i.e. 
be utilised for plant growth, when used as a growing medium, or is going 
to be removed via water.

Inorganic nitrogen, e.g. nitrite (NO2
− ), nitrate (NO3

− ) and ammonium 
(NH4

+) were generally found at low concentrations (Table S6). Anthro-
pogenic activities (and land-use) alter the nutrient cycle in urban soils, 
due to (in-)direct addition or removal of nutrients and modifications of 
factors affecting the cycle (O’Riordan et al., 2021). However, low con-
centrations in the WDM indicate that threats by inorganic nitrogen 
leaching can be considered negligible, with NO3

− and NH4
+ potentially 

being (readily) utilised by soil organisms (i.e. bacteria) and plants. In 
general, NO3

− concentrations were recorded below detection limits (DL), 
however, it is likely that nitrifying microorganism (e.g. nitrosomonas and 
nitrosospira; Hayatsu et al., 2021) in the WDM utilised NH4

+. Further 
investigation of microbial communities is warranted to identify poten-
tial uses of inorganic nitrogen in the WDM.

Sulfate (SO4
2− ) and Phosphate (PO4

3− ) are not discussed here, because 
concentrations were below DL (Table S6) and therefore, considered 
negligible to evaluate potential environmental impacts (i.e. on water 
system). However, total sulfur and phosphorus (HNO3 extractable) were 
recorded in ranges of 1933–3631 mg kg− 1 and 639–947 mg kg− 1, 

respectively. Organic matter contains around 95% of sulfur in soils, 
which during breakdown and/or decomposition releases plant available 
SO4

2− (Churka Blum et al., 2013; Narayan et al., 2023). Comparably, 
phosphorus plays a fundamental role in the regulation of physiological 
responses and stress tolerance in plants (e.g. heat, salinity, drought, 
waterlogging and metal toxicity; Hawkesford et al., 2023; Khan et al., 
2023; Lambers, 2022). Hence, with decreasing pH of the WDM over 
time, i.e. through biogeochemical processes (Neina, 2019), an increase 
of P-release may be expected. Comparably, water-soluble concentrations 
for potassium (K), magnesium (Mg) and calcium (Ca) were 4.073 ±
3.139 mg L− 1, 9.142 ± 8.334 mg L− 1 and 88.84 ± 79.74 mg L− 1, 
respectively, whereas total concentrations (HNO3 extractable; mg kg− 1) 
in the WDM were recorded at 5349 ± 877 mg kg− 1 (K), 8755 ± 1288 
mg kg− 1 (Mg) and 95,449 ± 7956 mg kg− 1 (Ca). Elevated K, Mg and Ca 
in the WDM suggest (additional) anthropogenic sources such as con-
struction and demolition (K, Mg; NAEI, 2024a; 2024b) and industrial 
processes (Ca; NAEI, 2024c), most likely from sweeping locations within 
industrial areas and/or new-build housing estates.

The data suggests that plant-growth relevant elements are ‘stored’ in 
non-soluble forms, likely due to the presence of the treatment chemical 
(i.e. polymer) used to aid separation of fine materials. However, it is 
possible that during biodegradation of the polymer and thus, likely pH 
changes, elements may become more mobile that can be (readily) taken 
up by plants (Neina, 2019). Additionally, the WDM pH (Table 1) suggest 
the availability of K, Mg and Ca, and the presence of high OM% (and 
sulfur) will aid to decrease the pH and thus, make required elements 
more available over time (i.e. soil ageing; Neina, 2019), which could be 
an important nutrient source when used in a confined environment (e.g. 
urban tree pit). Low concentrations of water-soluble elements, e.g. 
chloride and inorganic nitrogen within the WDM are most likely linked 
to the wash process, i.e. remaining within the treatment water (of which 
90% of is re-used). These are below relevant environmental standards (e. 
g. WAC, groundwater), suggesting no environmental hazards from the 
material when used as a growing medium. Total concentrations of 
plant-relevant elements suggest a ‘store’ that may become available 
through soil ageing processes (including microbial activities). However, 
long-term environmental behaviour studies of the WDM are required to 
evaluate potential releases and subsequent plant availability and/or 
potential contamination of waterways.

3.3. Metal(loid) concentrations in the WDM

Metal(loid) concentrations, e.g. macro- and micronutrients (i.e. Ca, 
K, iron [Fe], boron [B]) (Tables S7 and S8), as well as PHEs that may 
have negative impacts on environmental and human health, such as 
arsenic (As), Cadmium (Cd), Chromium (Cr), Nickel (Ni) and Lead (Pb), 
were recorded at consistent concentrations in the WDM. For instance, 
Cr, Ni and Co and Pb showed comparable (non-significant) concentra-
tions throughout the year (Fig. 1), whereas seasonal variability was 
recorded for certain elements. Highest As concentrations were recorded 
in spring (13.4 ± 2.82 mg kg− 1), whereas lowest was recorded in winter 
(9.27 ± 0.0572 mg kg− 1; Fig. 1A). Similarly, Hg showed statistically 
significant (Wilcoxon test, P < 0.05) differences for spring/summer and 
winter (Fig. 1G), whereas Zn showed seasonal differences for spring and 
summer. In contrast, autumn was the season with highest Cd (1.06 ±
0.103 mg kg− 1) compared to summer (0.814 ± 0.119 mg kg− 1; Fig. 1B). 
Zn concentrations were consistent between seasons (Fig. 1H) with sta-
tistically significant (P < 0.05) differences between spring (359 ± 29.2 
mg kg− 1) and summer (435 ± 58.3 mg kg− 1), suggesting additional Zn 
re-suspended soil and/or atmospheric deposition. Cr (Fig. 1C), Ni 
(Fig. 1D), Co (Fig. 1E) and Pb (Fig. 1F) did not show significant seasonal 
variation.

Arsenic in soils is soil-type dependant and primarily from natural 
sources, i.e. minerals, whereas anthropogenic inputs are linked to fossil 
fuel/biomass combustion, industrial effluents, As-containing pesticides, 
alloys and electronics and pigments and paints (Baker et al., 2018; Patel 
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Fig. 1. Seasonal variability of PHEs [A: Arsenic; B: Cadmium; C: Chromium; D: Nickel; E: Cobalt; F: Lead; G: Mercury; H: Zinc] in WDM; displayed with significant 
differences between seasons (Wilcoxon test, *P < 0.05; **P < 0.01). 
note: different scaling of y-axis.
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et al., 2023; Shankar et al., 2014). As and Cd concentrations for Greater 
Manchester (NSI - GBase Topsoil) have been found at >9.4 mg kg− 1 and 
>0.37 mg kg− 1, respectively (BGS, 2024). WDM-As concentrations are 
within comparable regions to Greater Manchester ‘Topsoil’ concentra-
tions, likely representing natural sources. Elevated As levels during 
spring suggest a potential impact from seasonal conditions (i.e. being 
drier, less wet – compared to autumn/winter) and input variability (i.e. 
sweeping locations – industrial), which, however, are still below ‘gen-
eral’ As concentrations reported for the UK (32 mg kg− 1; Ander et al., 
2013).

Cadmium is a very mobile and toxic element with anthropogenic 
sources in soil from combustion, sewage sludge, traffic, metal industries, 
pigments and alloys (ATSDR, 2007; Bigalke et al., 2017; Kubier et al., 
2019; Merkel and Sperling, 1998; Mirlean and Roisenberg, 2006; 
Sprynskyy et al., 2011). Comparable to As, Cd concentrations in the 
WDM are within ranges of the ‘background’ soil concentrations, thus, 
representing the ‘urban signature’, i.e. from sweeper waste, that slightly 
vary with season (i.e. wet vs. dry). For instance, in Europe, Cd concen-
trations in municipal solid wastes in range of 0.3–12 mg kg− 1 have been 
reported (EU, 2007; Kubier et al., 2019). Interestingly, As and Cd were 
significantly (P < 0.05) negatively correlated (Pearson’s r = − 0.63; 
Fig. S4) with each other, which is likely linked to the alkaline pH of the 
material, i.e. stabilising Cd and increase the As solubility (Tica et al., 
2011; Yao et al., 2019).

Hg, Cu, Zn and Pb are considered ‘typical urban’ contaminants (Yang 
and Zhang, 2015) that are associated with mining operations, chemical 
industries, manufacturing industries (e.g. textiles) and petroleum 
refining (Nagajyoti et al., 2010). Hg-concentrations in UK Topsoils was 
found in ranges <0.097 to >0.163 mg kg− 1 with generally higher con-
centrations 0.980 mg kg− 1 (95% percentile; Tipping et al., 2011) within 
urban areas. Ander et al. (2013) reported ‘normal background concen-
trations (NBCs)’ for mercury in urban areas of 1.9 mg kg− 1 in the UK. 
WDM-Hg was recorded in ranges from 0.048 to 0.534 mg kg− 1 (0.310 
mg kg− 1; 95% percentile), lower than reported for UK urban areas, thus, 
suggesting no additional Hg input into urban soils, when used as such.

Topsoil Pb and Zn concentrations in NW England are recorded >133 
mg kg− 1 and >137 mg kg− 1 (BGS, 2024), respectively, indicating 
“background” contamination from the ‘urban’ sweeping location. 
Moreover, elevated concentrations and temporal variability of PHEs has 
been reported in road-dust samples across Manchester (UK), with Pb and 
Zn concentrations ranging between 71 and 660 mg kg− 1 and 50–589 mg 
kg− 1, respectively (Robertson and Taylor, 2007). These values are 
comparable to concentrations for the recovered material (Pb: 119 ± 22 
mg kg− 1; Zn: 384 ± 64 mg kg− 1), suggesting a contribution from 
anthropogenic sources; Pb – pigment additives and additive for aviation 
fuel, electronic waste, solar cells (containing lead salts) and batteries 
(Collin et al., 2022; Hollingsworth and Rudik, 2021; Obeng-Gyasi, 2019; 
Yuan et al., 2012; Zou et al., 2018), Zn – vehicle emissions (e.g. tyre and 
brake wear) and road furniture (e.g. galvanized steel) and dissolved zinc 
(e.g. urban runoff; Councell et al., 2004; Desaulty et al., 2020; Legret and 
Pagotto, 1999; Zarcinas and Rogers, 2002). Hence, Zn and Pb concen-
trations represent ‘general’ urban (and Manchester-based) concentra-
tions. While Zn concentrations are above the ‘phytotoxic’ threshold 
limits for ‘Topsoil’ (BS3882 - Section 4) with Zn is less mobile/’avail-
able’ at these high pHs, warranting additional investigation of its po-
tential effects on plant growth.

Nickel (Ni; Fig. 1D) was positively correlated with Mn, Fe that are all 
naturally occurring in soils; however, correlation of metals could be 
linked to anthropogenic sources from tyre and brake wear, potentially 
also resulting from sweeping activities. Additionally, Zn and Cu were 
positively correlated with each other (Pearson’s r = 0.83; Fig. S4) 
further suggesting vehicular emissions as primary sources. For instance, 
previous studies have reported emissions of Mn, Fe, Cu, Ni and Zn 
(among others) from exhaust pipes, whereas Zn and Cu have been 
associated with engine lubricant oil and brake wear (Zn and Cu) 
(Grieshop et al., 2006; Harrison et al., 2012; HEI, 2006; Ondráček et al., 

2011; Sternbeck et al., 2002; Wang et al., 2021). Hence, the WDM metal 
concentrations are primarily influenced by anthropogenic emissions 
that represent ‘urban’ soil conditions.

Seasonal variability was detected for certain elements (As, Cd, Hg 
and Zn), however the concentrations within the WDM are temporally 
consistent and within comparable ranges of elemental background (i.e. 
topsoil) concentrations, thus, suggesting “urban” signatures (e.g. 
vehicular sources) of metal(loid)s in the WDM. Significant seasonal 
variability (Fig. 1) is likely resulting from different meteorological 
conditions (e.g. temperature, precipitation etc.) and/or atmospheric 
deposition (Men et al., 2018; Ngai et al., 2022; Wang et al., 2024), as 
well as potential variability in input material (i.e. sweeping locations). 
For instance, Niepsch et al. (2024) showed spatial variability of airborne 
metals (using a lichen biomonitoring approach) across Manchester, 
suggesting a potential addition of metals from atmospheric deposition. 
Additionally, de-icing salt (NaCl) may change the behaviour of accu-
mulated contaminants in collected residues, resulting in elevated 
mobilisation of contaminants (Norrström and Jacks, 1998) during colder 
months, subsequently impacting WDM chemical composition that war-
rants additional investigations.

3.4. Total petroleum hydrocarbon (TPH) concentrations in the WDM

WDM- TPH concentrations ranged between 344 mg kg− 1 (dwt) and 
17,057 mg kg− 1 (dwt; Fig. 2B) with a discernible seasonal variability, 
and statistically significant difference (P < 0.05) between seasons 
(Fig. 2B). Interestingly, autumn showed the highest TPH values in the 
WDM, most likely due to biogenic organic compounds (BOCs) from leaf 
litter (e.g. humic and fulvic acids), collected during routine sweeping. 
Vane et al. (2021) reported TPH concentrations between 72-4673 mg 
kg− 1 for urban soils in London (UK), also highlighting the importance of 
background hydrocarbon compounds in soils, though, indicating 
anthropogenic influences (e.g. fuels spills, road dust bitumen) for TPH 
concentrations >500 mg kg− 1. Applying this threshold to this study 
shows that 92% (N = 24 of 26) of samples are “anthropogenically” 
influenced. Moreover, TPH concentrations of 7281 ± 1201 mg kg− 1 

within soils sampled 1 m from a highway in Moscow (Russia) were re-
ported, and a primary impact from vehicular sources and subsequent 
“uptake” during sweeping operations is suggested (Nikolaeva et al., 
2017). However, during the treatment process, petroleum-based chem-
icals are used and a potential increase of TPH levels from those chem-
icals was considered.

To assess a potential influence from (petroleum-based) treatment 
chemicals, antifoaming agent and polymer was extracted and analysed 
(according to BS EN ISO 16703:2011), resulting in a TPH concentrations 
of 21,845 mg kg− 1 (polymer wet weight), 230,846 mg kg− 1 (anti-foam 
wet weight; Fig. 2A), respectively. Hence, a contribution from the 
treatment chemicals, containing C12-C15 and C20-C50 hydrocarbons to 
the WDM-TPH profile was evidenced (Fig. S5). Differences in chemical 
dosing, depending on the input material (i.e. moisture, fines contents 
etc.), may also artificially increase the WDM-TPH profile throughout the 
year. Here, we calculated a minimum addition of 675 mg kg− 1 to 891 
mg kg− 1 TPHs to the WDM profile, based on the chemical dosing, con-
centration, and production volume (Tables 9 and Tab. S10). Hence, 
adjusted TPH levels of the WDM are likely to be lower, when removing 
the “influence” from treatment chemicals. Petroleum-based chemicals, i. 
e. antifoaming agents and flocculation aids, are commonly used in 
wastewater treatment plants (WWTPs) to aid minimisation of general 
foaming-related issues and liquid-solid separation (Collivignarelli et al., 
2020; Dlangamandla et al., 2021). Comparably, WDM treatment 
chemicals are used to aid separation and flocculation of the fine resi-
dues, which according to the manufacturer reduce by 70% (flocculation 
aid – hydrocarbons, C12-C15 – readily biodegradable: 67.6%/28 days 
[OECD 301F]; 68.8%/28 days [OECD 306]; 61.2%/61 days [OECD 
304A]; isotridecanol, ethoxylated – readily biodegradable: >60%/28 
days [OECD 301B] SNF, 2020) and 30% (antifoam agent – petroleum 
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distillates, solvent dewaxed heavy paraffinic - inherently biodegradable: 
31.13%/28-days [OECD 301F]; SNF, 2021) within 4-weeks. This was 
tested using different storage/remediation techniques (i.e. ‘as is’, 
‘aeration’, ‘washing and aeration’ and ‘biopile’) over a 6-week period 
from freshly recovered material (Fig. 3; detailed information about 
treatment/remediation options in Table S11).

Environmental “ageing” trials (Fig. 3) suggest a breakdown of the 
polymer with increasing storage time. A general decrease in TPH con-
centrations by >70% were recorded independent of remediation tech-
niques, with storage ‘as is’ and ‘washing and aeration’ showed a 
reduction by − 162% and − 99%, respectively (Table S11). However, 
after 6-weeks WDM-TPH concentrations were found <1000 mg kg− 1 in 

remediated material, suggesting minimal risk for non-residential uses. 
Degradation and adsorption (and volatilisation) of TPHs in soils are 
indirectly influenced by environmental factors, i.e. suitable temperature 
ranges and nutrients enhance the microbial degradation (Alavi et al., 
2014; Arnold et al., 1999; Coulon et al., 2022; Karhu et al., 2014; 
Muskus et al., 2020; Wang et al., 2010; Wu et al., 2016, 2022), whereas 
the adsorption of (polar) TPHs (e.g. aromatic hydrocarbons) is promoted 
by higher clay contents and organic matter (Baccot et al., 2020; Kuei--
Jyum Yeh and Young, 2003; Pérez et al., 2011; Sang et al., 2020; Wu 
et al., 2022). Additionally, studies reported that plants (e.g. grasses, 
legumes, ornamental plants and trees) and associated microorganisms 
can aid phytoremediation of TPHs (Aftab et al., 2021; Hussain et al., 

Fig. 2. (A) TPH concentrations in treatment chemicals (anti-foam [N = 1] and polymer [N = 1]) and WDM (‘Output’) [N = 25] [log10-scale; C10-C40 mg kg− 1 wet 
weight], and (B) seasonal variation of TPH concentrations [mg kg− 1; dry weight] in WDM; significant differences at P < 0.05 (*) between seasons displayed as 
brackets above and colour-coded bars.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. TPH concentrations in the WDM over 6-week period (with trendline; above) and displayed as bar plot (below) depending on different treatment/remediation 
techniques (see Tab. SI for further details) during storage; error bar displayed on starting material (fresh WDM) as 32.45%CV derived from repeated (N = 21) 
measurements of 3 g L− 1 QC solution. Statistically significant differences (one-sample t-test; P < 0.05) marked by * - recorded for ‘aerated’ material compared to 
starting TPH value (above), and after 3-week and 6-week of storage (compared to starting TPH concentration).
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2022; Khan et al., 2019, 2021; Liu et al., 2012). Further, moisture is an 
important factor for bacterial activity, with an optimum at 60% 
(Haghollahi et al., 2016; Ossai et al., 2024; Ren et al., 2022), whereas the 
WDM was within 43.1% (±2.63%), lower than the optimum but sug-
gesting appropriate conditions due to its elevated organic matter content 
(~11 OM%; Table 2). Therefore, when blending the WDM with compost 
and/or biochar will aid removal of TPHs (Hussain et al., 2022; Nguyen 
et al., 2023).

Total petroleum hydrocarbons (TPHs) were found as ‘problematic’, 
(i.e. for waste-disposal and potential human health impacts), which 
could be attributed to treatment chemicals and background organics (e. 
g. leaf material) during autumn, with values > 10,000 mg kg− 1 (Fig. 2). 
Nonetheless, an influence from treatment chemicals was evidenced, 
which biodegrade with increasing storage time. Additionally, to further 
remove TPHs from the WDM, the use of water-based flocculation aids 
and/or considerations to use ‘enzymatic’ bioremediation additives, will 
likely reduce the TPH levels. Hence, incorporating minor process 
changes to remove TPH sources from the WDM and aid biological 
remediation, i.e. promoting microbial communities inherent in the 
WDM, will aid transitioning into a more environmentally friendly and 
sustainable business practice and maintain a consistent “quality” of the 
WDM when used as a soil or soil amendment.

4. Potential uses as soil and soil amendment in relation to 
human health and soil screening values

The British Standards Institution (BSI) provides specifications for 
soils used in landscaping projects, e.g. Topsoil (BS 3882) and Subsoil (BS 
8601), that need to be met for a commercially available soil to be 
certified to the relevant standard. Due to the alkaline characteristics of 
the WDM, parameters were compared against values for “multipurpose” 
and “calcareous” specifications only (Table 3).

Results in Table 3 show that the WDM varies in clay contents below 
the BS 3882 minimum value (5%), whereas other characteristics (i.e. pH 
and EC) were within specification limits. However, plant nutrients were 
consistently below the specified values, whereas potentially phytotoxic 
elements (e.g. Ni and Cu), except for zinc (Zn), are within specifications. 
Hence, the WDM could not be certified as a BS 3882 or BS 8601 soil, 
however, could warrant revision or incorporation of recovered material 

into available and/or new soil standards (e.g. BS 8640). Nonetheless, 
total concentrations, e.g. for Mg and K, are much higher compared to the 
water-soluble fraction, suggesting that these may become (plant) 
available over time. It is worth mentioning that input material may 
potentially be amended, i.e. adding a stock of clay, to maintain a 
consistent (and in BS 3882 ranges) clay content.

To identify potential uses for the WDM as soil or soil amendment, 
concentrations of priority contaminants were compared to screening 
values, e.g. UK Environment Agency “soil guideline values” (EA SGVs), 
“category 4 screening levels” (C4SL) and “suitable 4 use levels” (S4UL). 
In this study, the primary focus is on “commercial” and “greening” ap-
plications, however, EA SGVs, C4SL and S4UL values presented in 
Table 4 include ‘residential’ land-uses (with and without homegrown 
produce) to evaluate wider material suitability.

Concentrations of metal(loids) in the recovered material were 
consistently below the screening values (Table 4), therefore suggesting 
no adverse human health impacts, and its suitability to be used as a soil 
in a “public open space – POS” surrounding, i.e. urban tree soil. Solely, 
WDM concentrations for Chromium (IV) and TPHs were above screening 
values for residential uses (with and without homegrown produce), 
suggesting that the material is not suitable for residential areas, how-
ever, it is still suitable for uses in commercial surroundings (Table 4). 
Comparably, albeit temporal variability with a maximum value of 
17,057 mg kg− 1 TPHs (C10 to C40; mg kg− 1 dwt) was recorded within the 
WDM, TPH concentrations were also below POS screening values. 
However, speciation into individual TPHs was not undertaken, but a 
primary influence of diesel-range TPHs (C10-C28) and from the treatment 
chemical (C12-C15; C20-C30) was recorded. The latter, biodegrading (with 
or without additional additives), reducing the overall WDM-TPH profile. 
Additional investigations for persistent organic pollutants (POPs), e.g. 
polychlorinated biphenyls (PCBs), e.g. from road marking paint 
(Megson et al., 2019, 2024), per and polyfluoroalkyl substances (PFAS; 
Ehsan et al., 2024) and 6PPD-Quinone (from tyre rubber; Bohara et al., 
2024; Chen et al., 2023) could be beneficial using targeted or 
non-targeted approaches as these pollutants may be present in road 
sweepings.

The results indicate the material is safe for use as substrate for urban 
planting programmes in commercial and/or public open spaces (i.e. 
parks, roadside vegetation). Moreover, it could provide an alternative 

Table 3 
British Standards Institute (BSI) soil certifications for Topsoil (BS 3882) and Subsoil (BS 8601) in comparison to the WDM; colouring indicates values within (green) 
or outside (yellow) of values specified in the respective standard document for different soil types.
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growing medium for tree nurseries, in green walls and green roofs, due 
to its good moisture retention, potentially requiring less watering; thus 
reducing water-use (and costs). Additional growth trials, using different 
trees (and plants) can aid to identify potential impacts of low or high 
elemental concentrations in the material on plant growth and assess the 
environmental risks. Further, human health risk assessments (HHRA) 
using modelling tools, e.g. contaminated land exposure assessment 
(CLEA) showed no adverse human health impacts (from metal(loids) to 
the most vulnerable receptor (female child, 0–6 years), when used in a 
‘public open space’ surrounding with no buildings, however, bio-
accessibility assessments according to internationally recognised pro-
cedures (BS ISO 17924:2018; BS ISO 22190:2020; Denys et al., 2012) 
could provide additional insights into potential impact on human health 
using different exposure routes (e.g. digestion, inhalation and dermal).

5. Conclusion

This study investigated physico-chemical properties in fine residues 
of waste-derived material (WDM), including inorganic (i.e. metal(loids) 
and nutrients) and organic (i.e. TPHs) contaminants over a 12-months 
period. This, first of its kind, extensive characterisation has shown 
comparable (and for certain properties enhanced) physico-chemical 
properties to ‘urban soils’. Consistent chemical profiles suggest ‘good’ 
soil properties (i.e. moisture, organic content, CN ratio etc.) that may 
support plant growth, e.g. urban trees, although the WDM could not be 
“certified” as a standardised Topsoil/Subsoil. Total petroleum hydro-
carbons (TPHs) showied elevated concentrations (up to 17,000 mg kg− 1) 
and seasonal variability, i.e. linked to treatment chemicals and biogenic 
compounds from leaf material. Nonetheless, TPHs values in the material 
were below guideline values for use in ‘public open space’, and in 
combination with inherent biodegradability (of treatment chemicals) 
and/or moving to non-hydrocarbon-based chemicals, combined with 
enzymatic breakdown will likely further reduce TPHs levels. Further, 

WDM chemical concentrations were below relevant human health risk 
associated soil guideline vales (e.g. EA SGVs, S4UL and C4SL for public 
open space) suggesting that the material could provide a suitable sus-
tainable soil alternative to ‘virgin’ material.

Soils in the UK (and world-wide) are under threat by contamination, 
erosion and compaction, sustainable management practices are 
required, and therefore, the use of recovered material can provide a 
viable solution for finite soil resources. This is of particular relevance 
when providing a “circular economy solution” within a regional context 
where “local resources” (e.g. road sweepings) can be re-used, whilst 
minimising transportation and/or storage requirements. Moreover, the 
WDM can be blended with other (recovered) material (e.g. aggregates 
and sand from same treatment process) and/or soil amendments (i.e. 
biochar) to improve physical characteristics (e.g. porosity) and be pre-
pared to fit site-specific requirements. This illustrates the variety of 
potential uses of the material. Considering the UN SGDs of sustainable 
soil and threats (i.e. compaction and erosion), the use of recovered 
material as growing medium could aid to restore degraded soil, pro-
moting sustainable uses (i.e. instead of virgin materials) support of 
ecosystem services (i.e. biodiversity) and carbon sequestration (i.e. 
climate change mitigation).
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Penttilä, T., Mäkipää, R., Leppälammi-Kujansuu, J., Helmisaari, H.-S., 2016. 
Modelling fine root biomass of boreal tree stands using site and stand variables. For. 
Ecol. Manag. 359, 361–369. https://doi.org/10.1016/j.foreco.2015.06.023.

Liu, R., Jadeja, R.N., Zhou, Q., Liu, Z., 2012. Treatment and remediation of petroleum- 
contaminated soils using selective ornamental plants. Environ. Eng. Sci. 29, 
494–501. https://doi.org/10.1089/ees.2010.0490.

Lloyd, L.N., Fitch, G.M., Singh, T.S., Smith, J.A., 2018. Characterization of Residuals 
Collected from Street Sweeping Operations.

Lorenz, K., Lal, R., 2009. Biogeochemical C and N cycles in urban soils. Environ. Int. 35, 
1–8. https://doi.org/10.1016/j.envint.2008.05.006.

Megson, D., Benoit, N.B., Sandau, C.D., Chaudhuri, S.R., Long, T., Coulthard, E., 
Johnson, G.W., 2019. Evaluation of the effectiveness of different indicator PCBs to 
estimating total PCB concentrations in environmental investigations. Chemosphere 
237, 124429. https://doi.org/10.1016/j.chemosphere.2019.124429.

Megson, D., Idowu, I.G., Sandau, C.D., 2024. Is current generation of polychlorinated 
biphenyls exceeding peak production of the 1970s? Sci. Total Environ. 924, 171436. 
https://doi.org/10.1016/j.scitotenv.2024.171436.

Men, C., Liu, R., Wang, Q., Guo, L., Shen, Z., 2018. The impact of seasonal varied human 
activity on characteristics and sources of heavy metals in metropolitan road dusts. 
Sci. Total Environ. 637–638, 844–854. https://doi.org/10.1016/j. 
scitotenv.2018.05.059.

Merkel, B., Sperling, B., 1998. Hydrogeochemische Stoffsysteme Teil II.

D. Niepsch et al.                                                                                                                                                                                                                                 Journal of Environmental Management 380 (2025) 124928 

11 

http://refhub.elsevier.com/S0301-4797(25)00904-1/sref32
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref32
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref32
https://doi.org/10.1021/es034631f
https://doi.org/10.1021/es034631f
https://doi.org/10.1002/tox.20037
https://doi.org/10.1016/j.envint.2024.108697
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref36
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref36
https://www.gov.uk/government/publications/waste-prevention-programme-for-england-maximising-resources-minimising-waste/the-waste-prevention-programme-for-england-maximising-resources-minimising-waste#introduction
https://www.gov.uk/government/publications/waste-prevention-programme-for-england-maximising-resources-minimising-waste/the-waste-prevention-programme-for-england-maximising-resources-minimising-waste#introduction
https://www.gov.uk/government/publications/waste-prevention-programme-for-england-maximising-resources-minimising-waste/the-waste-prevention-programme-for-england-maximising-resources-minimising-waste#introduction
https://www.gov.uk/government/publications/waste-prevention-programme-for-england-maximising-resources-minimising-waste/the-waste-prevention-programme-for-england-maximising-resources-minimising-waste#introduction
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref38
https://doi.org/10.1021/es3006942
https://doi.org/10.1016/j.apgeochem.2020.104788
https://doi.org/10.2166/wpt.2020.113
https://doi.org/10.1016/j.scitotenv.2021.146199
https://doi.org/10.1016/j.scitotenv.2021.146199
https://www.data.gov.uk/dataset/237825cb-dc10-4c53-8446-1bcd35614c12/remaining-landfill-capacity
https://www.data.gov.uk/dataset/237825cb-dc10-4c53-8446-1bcd35614c12/remaining-landfill-capacity
https://www.gov.uk/government/publications/state-of-the-environment/summary-state-of-the-environment-soil
https://www.gov.uk/government/publications/state-of-the-environment/summary-state-of-the-environment-soil
https://www.wastedataflow.org/documents/guidancenotes/Specific/LATS_street_sweepings_guidance.pdf
https://www.wastedataflow.org/documents/guidancenotes/Specific/LATS_street_sweepings_guidance.pdf
https://doi.org/10.1098/rsbl.2011.0260
https://doi.org/10.1016/j.cscee.2024.100643
https://doi.org/10.1007/978-1-4020-5885-1_12
https://doi.org/10.1007/978-1-4020-5885-1_12
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref49
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref49
https://doi.org/10.1016/j.ufug.2016.11.003
https://doi.org/10.1016/j.ufug.2016.11.003
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref51
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref51
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref52
https://doi.org/10.1016/j.envexpbot.2018.10.035
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref54
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref54
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref54
https://doi.org/10.1016/j.atmosenv.2006.03.064
https://doi.org/10.1016/j.atmosenv.2006.03.064
https://doi.org/10.1139/a05-015
https://doi.org/10.1016/j.jenvman.2016.05.038
https://doi.org/10.1021/es300894r
https://doi.org/10.1016/B978-0-444-63998-1.00015-X
https://doi.org/10.1016/B978-0-444-63998-1.00015-X
https://doi.org/10.1016/B978-0-12-819773-8.00019-8
https://doi.org/10.1016/B978-0-12-819773-8.00019-8
https://doi.org/10.1080/00380768.2021.1981119
https://doi.org/10.1080/00380768.2021.1981119
https://doi.org/10.1016/j.catena.2023.107504
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref63
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref63
https://doi.org/10.1257/pol.20190654
https://doi.org/10.1257/pol.20190654
https://doi.org/10.1007/s11356-021-16149-7
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref973
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref973
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref974
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref974
https://doi.org/10.1016/S0169-2046(97)00117-5
https://doi.org/10.1016/S0169-2046(97)00117-5
https://doi.org/10.1023/A:1009585700191
https://doi.org/10.1023/A:1009585700191
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref68
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref68
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref68
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref68
https://doi.org/10.1038/nature13604
https://doi.org/10.1007/s40995-017-0393-8
https://doi.org/10.1007/s00344-020-10094-4
https://doi.org/10.1007/s00344-020-10094-4
https://doi.org/10.3390/plants12152861
https://doi.org/10.1016/j.apgeochem.2019.104388
https://doi.org/10.1081/ESE-120024457
https://doi.org/10.1081/ESE-120024457
https://doi.org/10.1146/annurev-arplant-102720-125738
https://doi.org/10.1016/S0048-9697(99)00207-7
https://doi.org/10.1016/S0048-9697(99)00207-7
https://doi.org/10.1065/jss2007.06.235
https://doi.org/10.1016/j.foreco.2015.06.023
https://doi.org/10.1089/ees.2010.0490
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref80
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref80
https://doi.org/10.1016/j.envint.2008.05.006
https://doi.org/10.1016/j.chemosphere.2019.124429
https://doi.org/10.1016/j.scitotenv.2024.171436
https://doi.org/10.1016/j.scitotenv.2018.05.059
https://doi.org/10.1016/j.scitotenv.2018.05.059
http://refhub.elsevier.com/S0301-4797(25)00904-1/sref85


Miller, J.J., Beasley, B.W., Drury, C.F., Zebarth, B.J., 2011a. Transport of residual 
nutrients through intact soil cores amended with fresh or composted beef cattle 
manure for nine years. Compost Sci. Util. 19, 267–278. https://doi.org/10.1080/ 
1065657X.2011.10737009.

Miller, J.J., Beasley, B.W., Drury, C.F., Zebarth, B.J., 2011b. Accumulation and 
redistribution of residual chloride, nitrate, and soil test phosphorus in soil profiles 
amended with fresh and composted cattle manure containing straw or wood-chip 
bedding. Can. J. Soil Sci. 91, 969–984. https://doi.org/10.4141/cjss2011-048.

Mirlean, N., Roisenberg, A., 2006. The effect of emissions of fertilizer production on the 
environment contamination by cadmium and arsenic in southern Brazil. Environ. 
Pollut. 143, 335–340. https://doi.org/10.1016/j.envpol.2005.11.022.

Muskus, A.M., Krauss, M., Miltner, A., Hamer, U., Nowak, K.M., 2020. Degradation of 
glyphosate in a Colombian soil is influenced by temperature, total organic carbon 
content and pH. Environ. Pollut. 259, 113767. https://doi.org/10.1016/j. 
envpol.2019.113767.

NAEI, 2024a. Pollutant information: potassium. https://naei.energysecurity.gov. 
uk/node/65, 9.9.24. 

NAEI, 2024b. Pollutant information: magnesium [WWW Document]. URL. https://naei. 
energysecurity.gov.uk/node/61, 9.9.24. 

NAEI, 2024c. Pollutant information: calcium [WWW Document]. URL. https://naei. 
energysecurity.gov.uk/node/57, 9.9.24. 

Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy metals, occurrence and 
toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216. https://doi.org/ 
10.1007/s10311-010-0297-8.

Narayan, O.P., Kumar, P., Yadav, B., Dua, M., Johri, A.K., 2023. Sulfur nutrition and its 
role in plant growth and development. Plant Signal. Behav. 18, 2030082. https:// 
doi.org/10.1080/15592324.2022.2030082.

Natural England, 2008. Technical Information Note TIN037 - Soil Texture.
Neina, D., 2019. The role of soil pH in plant nutrition and soil remediation. Applied and 

Environmental Soil Science 1–9. https://doi.org/10.1155/2019/5794869, 2019. 
Ngai, K.W., Mak, M.W., Ko, H.S., Pun, K.L., 2022. Seasonal variation of heavy metal 

contents in road dust from residential, industrial and rural areas of Hong Kong. 
Trans. Hong Kong Inst. Eng. 29, 191–199. https://doi.org/10.33430/V29N3THIE- 
2020-0049.

Nguyen, T.-B., Sherpa, K., Bui, X.-T., Nguyen, V.-T., Vo, T.-D.-H., Ho, H.-T.-T., Chen, C.- 
W., Dong, C.-D., 2023. Biochar for soil remediation: a comprehensive review of 
current research on pollutant removal. Environ. Pollut. 337, 122571. https://doi. 
org/10.1016/j.envpol.2023.122571.

Niepsch, D., Clarke, L.J., Jones, R.G., Tzoulas, K., Cavan, G., 2024. Lichen biomonitoring 
to assess spatial variability, potential sources and human health risks of polycyclic 
aromatic hydrocarbons (PAHs) and airborne metal concentrations in Manchester 
(UK). Environ. Monit. Assess. 196, 379. https://doi.org/10.1007/s10661-024- 
12522-4.

Nikolaeva, O., Rozanova, M., Karpukhin, M., 2017. Distribution of traffic-related 
contaminants in urban topsoils across a highway in Moscow. J. Soils Sediments 17, 
1045–1053. https://doi.org/10.1007/s11368-016-1587-y.

Norrström, A.C., Jacks, G., 1998. Concentration and fractionation of heavy metals in 
roadside soils receiving de-icing salts. Sci. Total Environ. 218, 161–174. https://doi. 
org/10.1016/S0048-9697(98)00203-4.

Obeng-Gyasi, E., 2019. Sources of lead exposure in various countries. Rev. Environ. 
Health 34, 25–34. https://doi.org/10.1515/reveh-2018-0037.

Oldfield, E.E., Bradford, M.A., Wood, S.A., 2018. Global meta-analysis of the relationship 
between soil organic matter and crop yields. https://doi.org/10.5194/soil-2018-21.
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