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Robust Wireless Distributed Learning Empowered
by Thz Communications Data for Internet of
Unmanned Vehicles Agents: Efficient Cluster

Driving Decision-Making
Zihong Li, Student Member, IEEE, Jun Wu, Senior Member, IEEE, Ali Kashif Bashir, Senior Member, IEEE,

Xingwang Li, Senior Member, IEEE

Abstract—With the rapid development of the Internet of
Unmanned Vehicles Agents (IUVA), efficient and secure com-
munication has become a key requirement. However, unstable
wireless channel conditions pose several challenges to existing
Wireless Distributed Learning (WDL) in the IUVA environment.
First, the parameter transmission of WDL in the IUVA will
be interfered by dynamic changes in vehicle position, which
will affect the training accuracy and the loss of the learning
model. Second, increased communication overhead due to the
large amount of data generated by vehicles sensors, and third is
the complexity of making real-time driving decisions with diverse
vehicle data. This paper presents an innovative WDL framework
based on Terahertz (Thz) communication technology, addressing
communication and data processing challenges in the IUVA envi-
ronment. Our framework designs a Thz communication encoding
method, treating each vehicle as a local model node participating
in the WDL process. First, we established a IUVA cluster based
on Thz communication, addressing the current issues of high
latency and low efficiency in IUVA communications. Second, we
designed a WDL framework where vehicles within the IUVA
act as distributed learning participants, reducing communication
overhead in IUVA wireless communication. Finally, our proposed
wireless distributed driving decision-Making model leverages the
physical parameters of participating vehicles to derive collective
driving decisions for the IUVA cluster, enhancing the accuracy of
IUVA driving decisions. Overall, the framework proposed in this
paper provides a new approach for achieving efficient and secure
IUVA communication and contributes significantly to intelligent
unmanned decision-making in IUVA.

Index Terms—Internet of Unmanned Vehicles Agents, Wire-
less Distributed Learning, Terahertz Communication, Intelligent
Traffic Management System

I. INTRODUCTION

A. Background

IN the era of unmanned systems, the Internet of Un-
manned Vehicles Agents (IUVA) is becoming central to

autonomous transportation and intelligent traffic management
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systems. The interaction between vehicles, road infrastructure,
and decision-making agents is crucial for improving road
safety, optimizing traffic flow, and advancing smart cities.
However, these systems depend heavily on secure and efficient
communication technologies, particularly in environments that
involve unmanned agents. Traditional wireless communication
technologies, such as Wi-Fi, 5G, and Dedicated Short-Range
Communications (DSRC), face significant challenges in In-
ternet of Unmanned Vehicle Agents (IUVA) environments.
These challenges include limited bandwidth, high latency,
and network congestion, which become bottlenecks for real-
time data transmission and decision-making in highly dynamic
vehicular networks. Such limitations hinder the ability to
support applications requiring large-scale data exchanges and
frequent model updates, such as Wireless Federated Learning
(WFL).

Terahertz (THz) communication, with its ultra-high band-
width and low latency, offers a promising solution to these
issues. Although its short propagation range limits its use
to localized scenarios, it is particularly well-suited for high-
speed, short-distance communication between vehicles oper-
ating in dynamic clusters. These characteristics make THz
communication ideal for enabling efficient and timely synchro-
nization of model updates in WFL, thereby ensuring real-time
collaborative decision-making while maintaining data privacy.

The high-speed and low-latency characteristics of THz
Communication align seamlessly with the requirements of
WFL, where timely synchronization of model updates is
critical.

Simultaneously, as a typical representative of distributed
learning, WFL supports distributed learning across vehicles
while preserving data privacy by ensuring raw data remains
local. Only model updates are transmitted, reducing the risks
of centralized storage and data breaches.

Integrating THz Communication with WFL introduces in-
novative opportunities to address the challenges of IUVA oper-
ations, particularly in real-time collaborative decision-making.
Traditional wireless methods, which suffer from latency and
bandwidth limitations, often fail to meet the stringent require-
ments of real-time distributed learning in IUVA. By leveraging
THz communication’s high data rate and low transmission
delay, our framework enables vehicles to exchange model
updates efficiently and collaboratively train driving decision
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models. This integration significantly r educes communication 
delays, enhances the learning process, and optimizes the 
system’s ability to make accurate, real-time driving decisions 
in dynamic vehicular environments.

In our proposed framework, WFL ensures that raw sensor 
data remains strictly local to each vehicle, and only model 
updates are transmitted over the THz communication channel. 
This design leverages the ultra-high data rate and low latency 
of THz communication to facilitate efficient and timely model 
synchronization among vehicles while inherently protecting 
data privacy. By combining the advantages of WFL and THz 
communication, our framework ensures secure, decentralized 
collaborative learning while addressing the challenges of high-
speed vehicular environments and dynamic network condi-
tions.

The exploration of intelligent transportation systems has 
evolved significantly with the concurrent advancements in the 
IUVA [1], [2], [3], Terahertz (Thz) communication [4], [5],
[6], [7], , [8], [9]and Wireless Federated Learning technologies 
[10], [11], [12], [13]. Originating from vehicle information 
systems in the 1990s, IUVA has transformed into a com-
prehensive network, integrating vehicles with road infrastruc-
ture, pedestrians, and internet services. This evolution has 
substantially propelled the development of intelligent traffic 
management [14], [15], [16], [17], [18], [19], [20] and ad-
vanced driver-assistance systems [21], [22], leading to marked 
improvements in road safety and traffic efficiency. The applica-
tion of Wireless Federated Learning in IUVA can significantly 
enhance the efficiency a nd q uality o f d ata p rocessing and 
decision-making. By processing data locally on vehicles, fed-
erated learning models can share knowledge without exposing 
user privacy. However, the high dynamism and heterogeneity 
of vehicular networks pose challenges to federated learning. 
For instance, the joining and departure of vehicles can cause 
uneven data distribution, affecting the accuracy of the model. 
Additionally, federated learning requires frequent exchange 
of model parameters between vehicles, imposing demands on 
the bandwidth and stability of wireless networks. Therefore, 
researching how to optimize federated learning algorithms to 
adapt to the characteristics of vehicular networks is key.

Fig. 1: Knowledge exchange by wireless transmission in
IUVA.

The advent of Terahertz communication technology [23] has
opened new possibilities for data transmission within IUVA.
Occupying the spectrum between microwaves and infrared
waves, Terahertz band possesses unique physical properties
such as ultra-wide bandwidth and high frequency, supporting
extremely high-speed data transfers. Despite its relatively short
propagation range, the efficiency of Terahertz communica-
tion in short distances is particularly suited for rapid data
exchange between vehicles, thus providing a technological
basis for real-time traffic information sharing and high-speed
data processing. However, Terahertz communication also faces
several limitations. Its high path loss and short propagation
range constrain its application to localized scenarios, such
as communication within clusters of vehicles. Additionally,
THz signals are highly susceptible to environmental factors
like atmospheric absorption and physical obstructions, which
can significantly degrade signal quality and reliability. These
challenges necessitate careful base station deployment and
advanced signal processing techniques to mitigate environ-
mental impacts. Addressing these limitations is critical to
ensuring stable and efficient communication in the highly
dynamic environments of IUVA. To enhance the feasibility
of THz communication deployment in real-world scenarios,
several practical strategies can be implemented. Advanced
beamforming techniques can focus signal strength and reduce
path loss, while relay-assisted communication and multi-hop
networking can extend the effective range of THz signals.
Strategic placement of base stations and dynamic cluster
management further mitigate the impact of environmental
factors, ensuring reliable data transmission even in challeng-
ing vehicular environments. By addressing these challenges,
our framework effectively combines the high-speed and low-
latency benefits of THz communication with solutions that
enhance its practical applicability in IUVA systems.

In IUVA applications, this means that large amounts of data
from vehicle sensors, such as video monitoring, radar scan-
ning, and environmental perception information, can be pro-
cessed in real-time. This is vital for advanced driver-assistance
systems (ADAS), autonomous driving, and fleet management.
However, technical challenges of Terahertz Communication,
such as its weak signal penetration capability and susceptibility
to atmospheric absorption, necessitate careful planning of base
station layouts and signal attenuation compensation strategies
in urban and highway environments.

Simultaneously, the emergence of Wireless Federated
Learning has introduced a new paradigm in data processing
and intelligent decision-making in IUVA [24], [25], [26].
This distributed learning approach allows multiple nodes, like
vehicles and traffic signals, to collaboratively train and update
shared models while maintaining data privacy. This not only
reduces reliance on central servers and lessens bandwidth
demands for data transmission but also enhances the system’s
scalability and adaptability. And in the IUVA context, this
implies that various vehicles can share traffic patterns, road
conditions, and driving behavior models while safeguarding
individual privacy. However, implementing effective federated
learning requires addressing issues like uneven data distribu-
tion, unstable participation of nodes, and limitations in com-



putational resources.Consequently, IUVA can more effectively 
process a large volume of dynamically changing data and 
achieve more precise intelligent decision-making.

Combining Terahertz Communication with Wireless Feder-
ated Learning provides a new perspective for data processing 
and decision-making in IUVA. Utilizing the high bandwidth 
and low latency characteristics of Terahertz Communication, a 
large volume of data generated by vehicles can be transmitted 
quickly, supporting the rapid model training and updating of 
Wireless Federated Learning. At the same time, the distributed 
nature of federated learning helps to alleviate the network load 
of Terahertz Communication. By processing data locally and 
learning on-site, it reduces the need for centralized data storage 
and processing. However, this integration also presents new 
challenges, such as how to coordinate resource allocation and 
scheduling between Terahertz Communication and federated 
learning, and how to ensure learning efficiency a nd model 
accuracy in dynamically changing network environments.

In summary, the real-time information exchange capabilities 
of IUVA, the high-speed data transmission properties of Tera-
hertz communication, and the distributed intelligent processing 
ability of Wireless Federated Learning collectively provide a 
solid technological foundation for building a more efficient 
and safer intelligent transportation system. The integration of 
these technologies not only optimizes traffic management and 
network operational efficiency b ut a lso p lays a  c rucial role 
in enhancing road safety and supporting the development of 
smart cities.

Implementing efficient Terahertz Communication and Wire-
less Federated Learning in the IUVA environment faces a 
series of challenges. First, the speed of vehicular networking 
communication is affected by various factors, such as signal 
interference, physical obstacles, vehicle density, mobility, and 
communication distance. Second, Thz communication is the 
foundation of intelligent and assisted driving, and the accuracy 
of driving decisions can be affected by Thz communication. 
Finally, in different scenarios of vehicle networks, such as 
urban road or highway scenarios, the stability of Vehicle-to-
Vehicle communication will affect the performance of driving 
decisions.

This paper introduces a framework that integrates Tera-
hertz Communication and Wireless Federated Learning (WFL) 
in the Internet of Unmanned Vehicle Agents (IUVA). By 
combining these two advanced technologies, the framework 
effectively addresses the unique challenges of IUVA systems, 
including high-bandwidth communication demands, real-time 
decision-making, and the need for privacy-preserving data 
exchanges. While traditional approaches tend to treat Tera-
hertz Communication and Federated Learning independently, 
this work brings them together to enhance communication 
performance while enabling decentralized, privacy-conscious 
decision-making. The integration of Terahertz Communica-
tion helps to mitigate issues of latency and optimize data 
transmission, whereas Wireless Federated Learning facilitates 
distributed learning without the need for sharing raw data. This 
dual approach proves particularly advantageous in overcoming 
the challenges of intermittent connectivity and high latency 
that are common in dynamic vehicular environments. Through

comprehensive theoretical analysis and extensive simulation
studies, we demonstrate that this framework offers substantial
improvements in the intelligence, efficiency, and security of
IUVA systems when compared to existing solutions.

The key innovations of this paper lie in the integration
of Terahertz (THz) communication and Wireless Federated
Learning (WFL) to address the unique challenges of the
Internet of Unmanned Vehicle Agents (IUVA). Unlike existing
approaches, our framework leverages THz communication to
establish efficient IUVA clusters, reducing latency and ensur-
ing stable data transmission in high-mobility environments
through an innovative encoding method. Additionally, the
WFL framework enables vehicles to participate in distributed
learning as local nodes, effectively reducing communication
overhead while maintaining scalability and optimizing the
processing of large volumes of sensor data. By introducing a
wireless distributed driving decision-making model, we utilize
collective learning from vehicle parameters to enhance the
accuracy and safety of driving decisions. This comprehensive
approach not only addresses real-time decision-making com-
plexities but also ensures robust performance and reliability in
dynamic IUVA environments.

The remainder of this article is organized as follows. In
section II we will introduce recent related works about Thz
communication, WFL and IUVA. Section III we will introduce
the system model of our Thz communication empowered WFL
driving decision making framework. Section IV shows the
algorithm we designed to implement the Thz communication
empowered WFL driving decision making framework. In
Section V we designed experiments to simulate two real IUVA
environments (urban environment and highway environment),
compared the latency of different IUVA communication meth-
ods, and trained to obtain the loss of the driving decision
model of every vehicle involved in the learning as well as the
performance parameters of the global model. Finally, Section
VI concludes this paper and points out future work.

II. RELATED WORK
With the development of the Sixth Generation (6G) wire-

less communication technology [27], [28]and the Internet of
Vehicles (IUVA), Terahertz (Thz) communication and Wire-
less Federated Learning (WFL) have emerged as cutting-
edge technologies to support high-speed data transmission and
intelligent decision-making [29]. Despite significant progress
in research in recent years, challenges remain in effectively
integrating these technologies.

The [30] introduces the concept of leveraging the Thz
frequency band to enhance federated learning communication
in the 6G context. It delves into the propagation character-
istics and link design of Thz communication, highlighting
its potential to increase data transmission rates. However, it
provides limited information on implementing efficient data
transmission and intelligent decision-making in dynamic IUVA
environments.

The [31] introduces a Federated Multi-Task Learning
(FMTL) strategy to address the complexity of Thz channel
estimation, showcasing the potential to improve communi-
cation efficiency while protecting privacy. By sharing model



parameters instead of raw data, the study optimizes the data 
transmission process. Although this method makes progress 
in channel estimation and beam-split correction, it lacks a 
comprehensive exploration of how to effectively integrate 
WFL in complex IUVA networks to enhance the overall data 
processing and decision-making capabilities of the system.

In [32], researchers explore the performance of vertical 
networks deploying hybrid FSO/sub-Thz links in IUVA. The 
study provides a comprehensive analytical framework by con-
sidering soft and hard switching schemes to improve the last-
mile access performance. Despite offering valuable insights 
into the physical layer and upper-layer performance assess-
ment, discussions on how to effectively integrate federated 
learning in IUVA to optimize the intelligent decision process 
are still missing.

The [33] discusses how intelligent edge computing can 
reduce data transmission and response latency in IUVA, 
offering a new method for processing deep learning tasks. 
By processing data locally on vehicles, the study proposes 
a strategy to alleviate the network transmission burden and 
response time. However, while providing solutions to reduce 
data transmission, it does not detail how to combine Thz 
communication and WFL to further optimize data transmission 
efficiency a nd i ntelligent d ecision-making c apability i n the 
IUVA system.

In [34], a multi-UAV decision-making framework is intro-
duced for mission planning, focusing on autonomous decision-
making in the face of unexpected disruptions. The approach 
integrates real-time task scheduling and resource management 
to optimize mission completion, but it does not consider the 
challenges posed by the communication and data process-
ing requirements in dynamic, large-scale UAV networks. In 
contrast, our research leverages robust wireless distributed 
learning and Terahertz (THz) communications to improve 
decision-making efficiency f or u nmanned v ehicle a gents, ad-
dressing these communication bottlenecks in real-time mission 
execution.

In [35], the authors propose a dynamic resource allocation 
strategy for AR services in the IoV, focusing on minimizing 
latency and enhancing energy efficiency. W hile t his study 
highlights the importance of resource optimization for AR in 
IoV, it does not address the challenges of safe decision-making 
in real-time interactions, which is a key focus of our work.

In [36], a swarm intelligence model inspired by pigeon flock 
behavior is used for coordinating UAVs in complex environ-
ments. While the model enhances collaboration and commu-
nication among UAVs, it does not incorporate the resilience-
oriented recovery strategies that are critical for maintaining 
operational continuity during unexpected disruptions.

These studies reveal the intricacies of THz communication 
and the potential of ML in enhancing system performance. 
However, they also point out the shortcomings like the need 
for more adaptable network topologies and efficient han-
dover strategies, underlining the complexity of implementing 
THz communication in dynamic environments like IUVA. 
Incorporating these insights into your paper can provide a 
comprehensive understanding of the current state of research 
and identify areas where your work contributes new knowledge

or solutions.
The motivation for this research stems from the limita-

tions of traditional wireless communication technologies, such
as Wi-Fi, 5G, and Dedicated Short-Range Communications
(DSRC), in addressing the unique demands of Internet of
Unmanned Vehicles Agents (IUVA) systems. These tech-
nologies struggle with limited bandwidth, high latency, and
network congestion, particularly in highly dynamic and dense
vehicular environments. Such constraints hinder their ability
to support real-time data transmission and frequent model
updates required for Wireless Federated Learning (WFL).

In contrast, Terahertz (THz) communication offers ultra-
high bandwidth and low latency, making it a promising solu-
tion for the high-speed data exchanges needed in IUVA. THz
communication enables rapid and efficient synchronization of
model updates in WFL, ensuring timely decision-making while
maintaining data privacy. Although its short propagation range
limits its application to localized scenarios, this characteristic
aligns well with IUVA systems, where vehicles often operate
in clusters.

Moreover, THz communication’s ability to handle the mas-
sive data throughput generated by vehicular sensors, such
as video monitoring and environmental perception systems,
makes it ideal for supporting the computational demands of
WFL. By leveraging these advantages, THz communication
can address the challenges of real-time collaborative decision-
making and high mobility in IUVA systems, where traditional
wireless methods fall short.

Despite its advantages, the deployment of THz communica-
tion in IUVA also faces challenges, including signal penetra-
tion issues, atmospheric absorption, and the need for strategic
base station placement. Addressing these challenges is critical
to ensuring reliable and efficient communication in real-
world IUVA applications. Through this research, we aim to
demonstrate how the integration of THz communication with
WFL provides a robust framework for achieving intelligent,
efficient, and secure vehicular networks.

Simultaneously, while Wireless Federated Learning offers
a promising approach to enhance privacy and reduce central
server dependency by processing data locally and sharing
model updates, it introduces complexities in managing dis-
tributed learning across highly dynamic and heterogeneous
vehicular networks. These include ensuring consistent model
training and updates amidst the variable participation of net-
work nodes and addressing the computational limitations of
in-vehicle systems.

Consequently, there is a critical need for a comprehensive
framework that not only addresses the technical intricacies
of Thz communication within the IUVA context but also
harnesses the power of WFL to facilitate secure, efficient,
and intelligent data processing and decision-making. Such a
framework must effectively integrate these technologies to
overcome the limitations of existing systems, offering scalable
solutions that enhance IUVA’s capability to support advanced
applications like autonomous driving, real-time traffic man-
agement, and enhanced vehicular safety.

This paper proposes a novel framework and approach for
the application of Terahertz Communication and Wireless Fed-



erated Learning in IUVA. It aims to fill the gaps identified in
the literature by providing a detailed exploration of how these
technologies can be synergistically integrated to address the
efficiency, privacy, and intelligent decision-making challenges
in IUVA. Through this research, we seek to contribute to the
advancement of IUVA technologies, making a significant step
towards realizing the full potential of intelligent transportation
systems in the 6G era.

In the next section, we present our design of Thz com-
munication empowered wireless federated learning driving
decision-making model for IUVA and our design goal.

III. SYSTEM MODEL AND DESIGN GOAL
In order to reduce the impact of wireless channel stability

on IUVA communication as well as to improve the efficiency
of IUVA decision-making. We designed a wireless federated
learning framework with a small range of IUVA clusters as
participants and Thz communication as the means of wire-
less communication for IUVA, which enables efficient and
stable vehicle-to-vehicle networking communication between
each vehicle participating in wireless federated learning and
the cloud server under different scenarios, and allows faster
decision-making to the IUVA clusters. Next, we describe in
detail the wireless federated learning framework for IUVA
driven by Thz communication that we designed.

Fig. 2: Thz communication empowered IUVA WFL driving
decision-making model.

Our proposed terahertz communication-driven wireless fed-
erated learning framework for IUVA is shown in Fig. 2 and
consists of three parts.

A. Internet of Vehicles Communication
We consider two scenarios, a high-speed scenario and

an urban scenario, where the high-speed scenario represents
vehicles moving at high speeds and inter-vehicle occlusion
has less impact on inter-vehicle communication, while the
urban scenario represents vehicles moving at slow speeds and
inter-vehicle occlusion often has more impact on inter-vehicle
communication.

B. THz Channel Model
Due to THz signals’ nature of extremely high frequency,

transmitting them significantly suffers from two serious envi-
ronmental impairments, i.e., severe attenuation and molecular

absorption. For a THz channel with frequency f , its channel
response for transmitting a signal over distance d, denoted by
complex vector h ∈ CN , can be modeled as [30]

h = G

[
1 +

L∑
l=1

Λl(f)

]
al(f, d)at(θt) (1)

It is worth noting that THz communication is subject
to thermal noise and molecular absorption loss, which can
degrade signal quality, especially in long-range transmissions.
However, in our proposed framework, communication occurs
over short distances within localized IUVA clusters, which
significantly mitigates these effects and ensures stable, low-
latency data transmission.

The term G refers to the combined antenna gain, which
accounts for both the transmitting and receiving gains from
the antenna array. The variable L signifies the number of
non-line-of-sight (NLoS) paths, while Λl(f) is a frequency-
dependent parameter that encompasses factors such as reflec-
tion coefficients and surface roughness, which are influenced
by material properties and reflective surfaces. Furthermore, the
term aL(f, d) can be described as:

aL(f, d) =
c

4πfd
e−

1
2ρ(f)d (2)

In this case, c refers to the speed at which light travels, while
ρ(f) is the absorption coefficient associated with frequency f .
Moreover, when utilizing a uniform linear array at each base
station, the term at(θt) is expressed as:

at(θt) =
1√
N

[
1, ej

2π
λ da sin(θt), . . . , ej

2π
λ da(N−1) sin(θt)

]T

(3)
Here, θt represents the departure angle, constrained within

the range
[
−π

2 ,
π
2

]
, and da is the spacing between adjacent

antennas. The symbol T indicates the transposition of the
vector. It is important to note that the channel h, as given in
equation (1), includes both direct line-of-sight (LoS) and indi-
rect non-line-of-sight (NLoS) paths. The term GaL(f, d)at(θt)
describes the LoS component, while the remaining part cap-
tures the NLoS paths.

Consider wk ∈ CN as the beamforming vector for base
station (BS) k, and xk ∈ C as the unit-powered signal that
BS k sends to user equipment (UE) k. In a scenario with
K BSs within the network, we assume the worst case where
all BSs create mutual interference as they communicate with
their respective UEs. The signal received by UE k can thus
be expressed as:

yk =
√
PhH

k,kwkxk +
K∑
j=1
j �=i

√
PhH

j,kwjxj + nk, (4)

where k ∈ {1, . . . ,K}, P denotes the transmit power per
BS, and H represents the Hermitian operation on a complex
vector. Here, nk ∈ C symbolizes Gaussian noise, while hk,k ∈
CN and hj,k ∈ CN are the channel vectors connecting BS k
to UE k, and interfering BS j to UE k, respectively. Both
hk,k and hj,k follow the channel model outlined earlier. The



signal-to-noise-plus-interference ratio (SINR) at UE k can be 
calculated as follows:

Γk =
P |hH

k,kwk|2∑K
j=1
j ̸=i

P |hH
j,kwj |2 + σ2

n

, (5)

where | · | represents the absolute value, and σ2
n is the power

of the Gaussian noise nk. Given equation (4), the achievable
downlink rate (or spectral efficiency) for BS k can be written
as:

Ck = log2(1 + Γk), (bits/sec/Hz). (6)

This applies for all k ∈ {1, . . . ,K}. In subsequent analysis,
we will utilize Ck to formulate an optimization problem aimed
at maximizing the overall sum rate across all BSs, especially
under conditions where each BS only has access to limited
channel state information (CSI).

The Free Space Path Loss (FSPL) formula, measured in
decibels (dB), expresses how much signal power is lost as it
travels through free space over a certain distance. The signal
loss increases with both the distance d and the signal frequency
f . This loss can be calculated using the following formula:

FSPL(dB) = 20 log10(d) + 20 log10(f) + 20 log10

(
4π

c

)
(7)

In this equation, c represents the speed of light, which
is approximately 3 × 108 meters per second. As either the
distance or the frequency increases, the signal experiences
greater attenuation.

In addition to path loss, high-frequency signals like THz
waves also experience attenuation due to atmospheric con-
ditions. The Atmospheric Absorption Loss accounts for this
environmental factor and is represented as follows:

Latm(dB) = K(f, T,RH)× d (8)

Here, the loss is influenced by distance d, signal frequency
f , and environmental conditions such as temperature T and
relative humidity RH . The function K(f, T,RH) captures the
relationship between the atmospheric factors and the signal
attenuation.

The Link Budget formula sums all relevant gains and losses
in a communication system to estimate the received signal
strength. It is calculated as:

Ltotal(dB) = Ptx(dBm) +Gtx(dBi)
+Grx(dBi)− LFSPL(dB)
− Latm(dB)−M (9)

In this formula, Ptx is the transmitted power, Gtx and Grx
are the gains of the transmitting and receiving antennas, and
M accounts for margin losses, such as hardware inefficiencies.
By combining both free space path loss LFSPL and atmospheric
absorption loss Latm, this equation provides a comprehensive
view of signal transmission performance.

In wireless federated learning, the Cross-Entropy Loss func-
tion is used to measure how well the model’s predicted output
aligns with the true labels. It is expressed as:

Lcross-entropy = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(10)
In this equation, N is the number of data points (e.g.,

vehicles), yi is the true label for data point i, and ŷi is the
predicted probability. The function computes the difference
between the true labels and predicted probabilities, guiding
model training.

The Accuracy function evaluates the proportion of correct
predictions by comparing the predicted values ŷi with the true
values yi:

Accuracy =
1

N

N∑
i=1

1(ŷi = yi) (11)

Here, the indicator function 11(·) returns 1 if the predicted
value matches the true value, and 0 otherwise. This function
gives a clear metric for the overall performance of the model.

In this section, we first summarize the system model ap-
plied in the Thz Communication Empowered Robust WFL
framework, followed by the detailed algorithm description.
The system model consists of a network of IUVA (Internet of
Unmanned Vehicle Agents) vehicles, base stations, and cloud
servers, where vehicles are organized into small, dynamic
clusters. Each vehicle is equipped with sensors that gather
data, which is processed locally using federated learning
techniques. The communication between vehicles and base
stations leverages Terahertz (Thz) communication, enabling
ultra-fast data transmission with low latency. The base stations
act as intermediaries, forwarding model updates from vehicles
to a central cloud server for aggregation, while also facilitating
communication within the clusters. This model ensures that
driving decisions are made in real-time, balancing high data
throughput with the need for secure and efficient communica-
tion.

IV. ALGORITHM APPROACH

The following algorithm describes the application of THz
communication in a wireless federated learning setting, where
data from multiple vehicles are transmitted to a base station
and then to a cloud server for aggregation:

A. Input and Output

Input:
• Sensor data Di: Data collected from various sensors

installed on each vehicle, capturing critical driving pa-
rameters such as speed, position, and environmental con-
ditions.

• Initial local model Mi: The starting point for the local
model parameters that each vehicle will use to begin
training. The model is specifically designed to assist in
driving decisions.



• Base station B: A communication relay point for trans-
mitting local model parameters to the cloud server.

• Cloud server C: The central server responsible for aggre-
gating local models from all vehicles to form a compre-
hensive global model.

Output:
• Global model G: The aggregated model parameters that

reflect the collective learning from all participating ve-
hicles after convergence. This global model is used to
inform driving decisions.

Algorithm 1 Thz Communication Empowered Robust WFL
Algorithm
Input: Sensor data Di, Initial local model Mi, Base station

B, Cloud server C.
Output: Global model G.

1 for convergence == 0 do
2 Di = collect data(i); // Collect data from

vehicle sensors.
3 Mi = local training(Mi, Di));

// Perform local model training using
collected data.

4 send to base station(Mi, B);
// Perform wireless transmission to

base station via THz communication.
5 send to cloud(Mi, C);

// Base station forwards local model
parameters to cloud server.

6 G = aggregate(C);
// Cloud server aggregates local model

parameters
7 if convergence == 1 then
8 output(G); // Output global model

parameters
9 Break; // Convergence

10 else
11 Mi = G; // Next round

12 End

B. Initialization
The algorithm begins with the initialization phase, where

network parameters and communication protocols are set up
to support Thz communication. Thz communication is chosen
for its high data rate and low latency, which are essential for
the real-time requirements of IUVA applications.

C. Local Data Collection from Vehicle Sensors
For each vehicle participating in the IUVA network, the

algorithm collects sensor data Di from the vehicle’s sensors.
This data collection captures real-time driving conditions and
vehicle performance metrics, providing the necessary input for
training the local models. Using the collected data, each vehi-
cle performs local training on its initial local model Mi. This
process involves updating the model parameters to improve its
predictive accuracy and decision-making capabilities based on
the new data.

D. Transmission of Local Model Parameters via Thz Commu-
nication

After local training, the updated local model parameters Mi

are transmitted to the base station B via Thz communication.
The high-speed nature of Thz communication ensures that the
data is relayed quickly and efficiently. The base station then
forwards the local model parameters to the cloud server C.
This step centralizes the data from multiple vehicles, setting
the stage for model aggregation.

E. Aggregation of Local Models at the Cloud Server

At the cloud server, the received local model parameters
from all participating vehicles are aggregated to form the
global model G. The aggregation process combines the in-
sights from individual vehicles, leveraging the diverse driv-
ing data to enhance the overall model. This global model
encapsulates the collective knowledge and experiences from
all vehicles, providing a robust foundation for making driving
decisions.

F. Convergence Check and Model Update

Following the aggregation, the algorithm checks whether
the global model G has reached convergence. Convergence
indicates that the model parameters have stabilized, and further
iterations are unlikely to yield significant improvements. If
convergence is achieved, the global model parameters G are
outputted, marking the end of the training process. This
final global model is then ready to be deployed across the
IUVA network to assist vehicles in making informed driving
decisions. If convergence is not achieved, the local models
Mi are updated with the global model G, and the algorithm
proceeds to the next round of training. This iterative process
continues until convergence is reached, ensuring continuous
enhancement of the model’s performance.

G. Summary

In this section, we present the detailed algorithm for the Thz
Communication Empowered Robust WFL model used in the
IUVA to make efficient driving decisions within small clusters
of vehicles. This work is distinguished by its innovative use
of Thz communication technology and the involvement of
IUVA vehicles as active participants in a federated learning
framework. The driving decision model aims to enhance
vehicular safety and efficiency through collaborative learning.

To provide a detailed analysis of the computational com-
plexity of our proposed algorithm, we focus on three key com-
ponents: local training, model aggregation, and convergence
checks. First, the complexity of local training depends on the
dataset size for each vehicle and the chosen machine learning
model, with the computational cost scaling linearly with the
data size. Second, the model aggregation step, performed at the
cloud server, involves a straightforward weighted summation
of model updates from participating vehicles, which introduces
minimal computational overhead. Lastly, convergence checks
require evaluating the stability of the global model, a com-
putationally lightweight process that adds negligible overhead



to the overall system. These considerations demonstrate that
the proposed algorithm achieves an optimal balance between
computational efficiency and model performance. This makes
it highly practical and scalable for real-time vehicular appli-
cations in dynamic IUVA environments.

V. EXPERIMENT

In this study, we embarked on a simulation experiment to
meticulously compare the performance of Terahertz commu-
nication with Wi-Fi, 5G, and Dedicated Short-Range Commu-
nications (DSRC) within the context of a dynamic vehicular
network. The primary aim was to evaluate the effectiveness
of the proposed THz-empowered wireless federated learning
framework, focusing on its ability to enhance model conver-
gence, reduce training latency, and improve decision-making
accuracy under real-world vehicular scenarios.

Fig. 3: IUVA Platform

To ensure a comprehensive evaluation, a diverse array of
environmental and hardware parameters was carefully se-
lected, encompassing variables such as the fluctuating number
of vehicles, varying communication distances tailored to the
specificities of each technology, and the sizes of the data
packets exchanged during the learning iterations.

A. WFL driving decision making performance experiment

Following the foundational experiment, we proceeded to
design a performance evaluation experiment focusing on wire-
less federated learning (FL) for driving decision models,
employing various communication technologies including ter-
ahertz communication, Wi-Fi, 5G, and DSRC. This experiment
aimed to elucidate the performance disparities across these
communication mediums within a federated learning context,
specifically in the realm of vehicular networks.

The experiment was conducted within a simulated small-
scale vehicular cluster engaging in federated learning for
driving decisions. Performance metrics centered on model
loss and accuracy to gauge the effectiveness of the model
under different communication technologies. It was assumed
that all communication technologies operated under identical

conditions, ensuring a fair comparison across the board. This
included uniform vehicle numbers, data distribution, and com-
putational resources, with the model’s training iterations fixed
to maintain comparability.

Through simulated experimentation, we graphically rep-
resented the variance in model accuracy and loss for the
wireless federated learning driving decision model, facilitated
by terahertz communication and contrasted with Wi-Fi, 5G,
and DSRC. This simulation illuminated several key findings:

Model Accuracy: A consistent enhancement in model accu-
racy was observed across all communication technologies as
the number of iterations increased. This progression signifies
the gradual optimization of performance in the wireless fed-
erated learning driving decision model with deeper learning.

The superior data transmission capabilities provided by tera-
hertz communication, coupled with its minimal latency, signif-
icantly contribute to enhancing the real-time efficacy of model
training. Furthermore, the expansive bandwidth offered by the
terahertz spectrum enables the transmission of voluminous
data, supporting quicker iteration cycles, thereby accelerating
the learning pace and facilitating faster convergence of model
accuracy.

Model Loss: Analogously, a decline in model loss was noted
with the advancement of iterations, indicating continuous
improvements in the model throughout the learning process.
The driving decision model under terahertz communication
within the wireless federated learning framework demonstrated
a more rapid convergence in model loss.

Model Computational Complexity: In addition to accuracy
and loss, the computational complexity of the proposed WFL
model was analyzed to provide a more comprehensive under-
standing of its performance. The computational complexity
can be broken down as follows:

• Local Training: The complexity is determined by the
size of the local dataset and the architecture of the ma-
chine learning model. In our experiments, the local train-
ing process required manageable computational resources
and converged efficiently, demonstrating its feasibility for
real-time vehicular applications.

• Model Aggregation: The aggregation process performed
at the cloud server involves a simple weighted summation
of model updates from participating vehicles. This opera-
tion incurs minimal computational overhead and ensures
scalability for larger networks.

• Communication Overheads: Leveraging Terahertz com-
munication significantly reduces latency during the ex-
change of model updates, thereby optimizing the over-
all computational and communication efficiency of the
framework.

These components collectively ensure that the proposed
WFL model maintains a balance between computational ef-
ficiency and performance, making it suitable for deploy-
ment in dynamic and resource-constrained vehicular networks.
This analysis further underscores the practical advantages
of our framework in addressing real-time decision-making
challenges.

Model Efficiency: From Fig. 4, it can be observed that the
driving decision model for each vehicle converges efficiently
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Fig. 4: Main figure with subfigures

Fig. 5: Model Q Values

Fig. 6: Model Total Reward

within approximately 1000 iterations. The total training time
for the wireless federated learning process is approximately 1
to 2 minutes, which ensures rapid convergence while main-
taining model accuracy and stability.

This experiment underscores the potential advantages of
terahertz communication in supporting the efficacious imple-
mentation of wireless federated learning for driving decisions,
particularly highlighting its capacity to expedite the learning
process and enhance model performance through its high-
speed data transmission, low latency, and broad bandwidth
capabilities.

The observed rapid convergence of the driving decision
model highlights THz communication’s suitability for dy-
namic IUVA scenarios. By minimizing communication delays
and accelerating model synchronization, THz-based federated
learning enables vehicles to make timely and accurate driving

decisions, which is critical for ensuring safety and efficiency
in real-world vehicular networks.

B. Communication stability experiment

Building upon the foundational experiments conducted to
assess performance metrics, we delved into an additional
dimension of communication technologies by examining their
stability within a wireless federated learning (FL) framework,
specifically for driving decision models. This segment of
the study focused on comparing the stability of terahertz
communication against that of Wi-Fi, 5G, and DSRC under
identical experimental conditions previously established.

Stability Assessment Experiment Stability Indicator: The
crux of this experiment revolved around a ”Stability Indicator,”
a synthesized metric encapsulating the variations in packet loss
rate, latency jitter, throughput stability, and connection dropout
frequency. This indicator, expressed through the changing stan-
dard deviation of these parameters, aimed to provide a nuanced
understanding of stability, with a lower standard deviation
indicative of superior stability. Such a holistic approach to
measuring stability is essential for ensuring the reliability
and efficacy of communication technologies in supporting
federated learning tasks within vehicular networks.

The experiment yielded insightful findings, highlighting the
variance in stability across the communication technologies
under scrutiny. Terahertz communication distinguished itself
with the most commendable stability, evidenced by the mini-
mal standard deviation in the stability indicator. This outcome
suggests that terahertz communication’s adeptness at ensuring
consistent data transmission quality, coupled with its resilience
against packet loss, minimal latency fluctuations, and steadfast
throughput, renders it highly suitable for federated learning
applications that demand robust and reliable communication
channels.

In contrast, DSRC was found to exhibit the least stability,
as denoted by the highest standard deviation in the stability
indicator. This was largely attributable to its propensity for
higher packet loss, significant latency variations, inconsistent
throughput, and a heightened rate of connection disruptions.
The stability performance of Wi-Fi and 5G was intermediate,
with 5G showing a comparative edge closer to that of terahertz
communication in terms of stability.



The introduction of the stability indicator as an aggregate 
measure derived from key performance metrics like packet 
loss rate, latency jitter, throughput stability, and connection 
dropout frequency, furnished profound insights into the stabil-
ity characteristics of the evaluated communication technolo-
gies within a federated learning context. Terahertz commu-
nication emerged as the technology with superior stability, 
underscoring its potential to significantly bolster the reliability 
and efficiency o f w ireless f ederated l earning, p articularly for 
applications requiring high levels of data fidelity a nd con-
sistency in vehicular networks. This analysis reinforces the 
critical importance of selecting a communication technology 
that not only meets the performance requirements but also 
aligns with the stability prerequisites of federated learning 
implementations.

C. Transmission rates and latency experiment

To simulate the complexities of real-world vehicular envi-
ronments, the experiment was designed to reflect urban and
highway conditions with vehicle speeds ranging from 30 to
120 km/h. Moreover, the selection of data packet sizes was in-
fluenced by the practical dimensions of the model parameters,
setting a standard size of 1MB for each iteration. Transmission
rates were assigned based on the technological capabilities,
positioning terahertz communication as potentially the most
superior due to its theoretical capacity to achieve transmission
rates from several tens of Gbps to over a hundred Gbps.
Ensuring fairness and consistency across the experiment, all
vehicles were assumed to have comparable processing capa-
bilities. The core of the experimental procedure involved

Fig. 7: Communication Delay Comparison in City Environ-
ment

the use of a wireless federated learning model specifically
developed for driving decision-making tasks. Over the course
of 100 iterations, the experiment dynamically adjusted the
number of participating vehicles to mimic the natural ebb and
flow of vehicular networks. This approach not only provided
insights into the iterative learning process but also reflected the

Fig. 8: Communication Delay Comparison in Highway Envi-
ronment

practical challenges of real-world deployment. Each iteration
was meticulously measured for latency and transmission rate,
capturing the essence of communication performance across
the different technologies.

Latency Comparison: The graphical analysis revealed tera-
hertz communication to exhibit the lowest latency, positioning
it as the most advantageous for scenarios demanding rapid
responses.

Transmission Rate Comparison: Furthermore, terahertz
communication significantly surpassed the other technologies
in transmission rate, underscoring its exceptional capability to
support high-speed data transmission in vehicular networks.

Through this experiment, we uncovered valuable insights
into the capabilities of terahertz communication, affirming its
prospective role in enhancing the efficiency and responsiveness
of wireless federated learning models in dynamic vehicular
settings.

VI. CONCLUSION

In this article, we proposed a Thz communication empow-
ered WFL driving decision-making framework for the IUVA,
which integrates FL and Thz communication to enhance the
performance of data transmission rates and driving decision-
making, while guaranteeing information privacy between the
vehicles participating in the FL process. Our proposed frame-
work addresses several challenges in IUVA environments,
particularly the dynamic nature of wireless communication
between vehicles and the complexity of real-time decision-
making. First, we established a Thz communication-based
IUVA cluster, effectively reducing latency and improving the
efficiency of wireless communication in the IUVA network.
By implementing an innovative encoding method for Thz com-
munication, the system mitigates the challenges caused by the
high-speed mobility of vehicles, ensuring stable and efficient
communication. Additionally, we designed a WFL framework
where vehicles act as local learning nodes, participating in a



distributed learning process without sharing raw data, thereby 
reducing communication overhead while maintaining data 
privacy. This framework not only improves the scalability of 
the learning process but also optimizes the system’s ability to 
handle large amounts of sensor data generated by vehicles. 
Finally, we proposed a wireless distributed driving decision-
making model that utilizes the collective learning of vehicles 
to generate accurate and safe driving decisions for the entire 
IUVA cluster. The use of physical parameters from participat-
ing vehicles, combined with the power of federated learning, 
enhances both the accuracy of driving decisions and the safety 
of the overall IUVA network.

The results of our study demonstrate the effectiveness of 
combining WFL with Thz communication in solving critical 
communication and data processing challenges in the IUVA 
environment. This work leverages the strengths of wireless 
federated learning and advanced Thz communication technol-
ogy to create a robust and efficient d riving d ecision model 
for IUVA networks. By enabling vehicles to collaborate in the 
learning process, the WFL model improves decision-making 
accuracy and responsiveness, ultimately enhancing the safety 
and efficiency of vehicular networks. The use of Thz commu-
nication ensures rapid data transmission and model updates, 
which are critical for the dynamic and real-time nature of 
driving environments. Overall, our framework provides a novel 
approach to achieving efficient a nd s ecure I UVA communi-
cation and contributes significantly t o i ntelligent unmanned 
decision-making within IUVA systems.

Moreover, the modularity and adaptability of the proposed 
framework allow it to be applied to a variety of dynamic 
and distributed environments beyond the IUVA context. For 
example, the framework could be adapted to unmanned aerial 
vehicle (UAV) swarms, where similar requirements for high-
speed communication, decentralized learning, and real-time 
decision-making exist. Additionally, with minor modifications, 
it could be extended to intelligent factory automation or 
logistics networks, showcasing its potential for broader appli-
cability. This generalizability highlights the versatility of the 
framework and its ability to address challenges in a range of 
high-mobility, data-intensive systems.

Looking ahead, there are several exciting avenues for future 
research. The deployment of the proposed framework in real-
world vehicular networks presents a significant challenge due 
to the dynamic and unpredictable nature of the environment. 
We could focus on developing adaptive communication and 
learning models that can respond to the diverse and rapidly 
changing conditions in real-world IUVA networks. Another 
important research area involves the scalability of the system 
to handle larger fleets o f v ehicles w hile m aintaining per-
formance and ensuring low-latency communication. Finally, 
extending the framework to handle multimodal data, such as 
visual or LiDAR sensor data, could improve the robustness of 
the decision-making process and provide even more accurate 
and reliable driving decisions.

ACKNOWLEDGMENTS

This work was supported in part by the JSPS KAKENHI 
under Grants 23K11072.

REFERENCES

[1] Sulaiman M. Karim, Adib Habbal, Shehzad Ashraf Chaudhry, and
Azeem Irshad. Bsdce-iov: Blockchain-based secure data collection and
exchange scheme for iov in 5g environment. IEEE Access, 11:36158–
36175, 2023.

[2] Sadaf R. Suryawanshi and Praveen Gupta. Pragmatic evaluation of
iov based cluster formation models for efficient routing scenarios. In
2023 7th International Conference on Computing Methodologies and
Communication (ICCMC), pages 1297–1305, 2023.

[3] Hui Qi, Hang Li, Wangdong Yu, and Chunbo Wang. Iov edge data
integrity audit method based on blockchain. In 2023 International Con-
ference on Blockchain Technology and Information Security (ICBCTIS),
pages 180–186, 2023.

[4] Zhi Chen, Xinying Ma, Bo Zhang, Yaxin Zhang, Zhongqian Niu,
Ningyuan Kuang, Wenjie Chen, Lingxiang Li, and Shaoqian Li. A
survey on terahertz communications. China Communications, 16(2):1–
35, 2019.

[5] Muhammad Ali Jamshed, Ali Nauman, Muhammad Ali Babar Abbasi,
and Sung Won Kim. Antenna selection and designing for thz applica-
tions: Suitability and performance evaluation: A survey. IEEE Access,
8:113246–113261, 2020.

[6] Christina Chaccour, Mehdi Naderi Soorki, Walid Saad, Mehdi Bennis,
Petar Popovski, and Mérouane Debbah. Seven defining features of
terahertz (thz) wireless systems: A fellowship of communication and
sensing. IEEE Communications Surveys Tutorials, 24(2):967–993,
2022.

[7] Shanyun Liu, Xianbin Yu, Rongbin Guo, Yajie Tang, and Zhifeng Zhao.
Thz channel modeling: Consolidating the road to thz communications.
China Communications, 18(5):33–49, 2021.

[8] Safa Alghadi, Shuo Li, Withawat Withayachumnankul, and Ke Wang.
Performance analysis of single carrier modulation schemes in terahertz
communications. In 2024 49th International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz), pages 1–2, 2024.

[9] Xuan-Wei Miao, Sheng-Yuan Zheng, Pouya Torkaman, Kai-Ming Feng,
and Shang-Hua Yang. Single-input single-output terahertz communi-
cation system with multi-channel access. In 2024 49th International
Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz),
pages 1–2, 2024.

[10] Mahdi Beitollahi and Ning Lu. Federated learning over wireless
networks: Challenges and solutions. IEEE Internet of Things Journal,
10(16):14749–14763, 2023.

[11] Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon
Hong. Federated learning for internet of things: Recent advances, tax-
onomy, and open challenges. IEEE Communications Surveys Tutorials,
23(3):1759–1799, 2021.

[12] Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, and Tarik Taleb.
Federated machine learning: Survey, multi-level classification, desirable
criteria and future directions in communication and networking systems.
IEEE Communications Surveys Tutorials, 23(2):1342–1397, 2021.

[13] Shuyan Hu, Xiaojing Chen, Wei Ni, Ekram Hossain, and Xin Wang.
Distributed machine learning for wireless communication networks:
Techniques, architectures, and applications. IEEE Communications
Surveys Tutorials, 23(3):1458–1493, 2021.

[14] Svyatoslav A. Seliverstov, Arseny M. Sazanov, Yaroslav A. Seliverstov,
Elena N. Benderskaya, and Kirill V. Nikitin. Development of the
intelligent traffic management system architecture. In 2021 XXIV
International Conference on Soft Computing and Measurements (SCM),
pages 200–203, 2021.

[15] Benoygopal E B, Abhilash M, Satheesh G, Divya Jose, and Hemant Jee-
van Magadum. Intelligent traffic monitoring and management system.
In 2023 International Conference on Computer, Electronics Electrical
Engineering their Applications (IC2E3), pages 1–5, 2023.

[16] S. Kayalvizhi, J Jayanth, V Karthikeyan, and R Nithish Kumar. Intelli-
gent traffic management system: An advanced solution for helmet com-
pliance, traffic signal violation detection, number plate identification,
cell phone usage tracking, and proximity-based police station alerts. In
2024 2nd International Conference on Computer, Communication and
Control (IC4), pages 1–6, 2024.

[17] Sirojiddin Usmonov, Aneesh Pradeep, Zukhriddin Fakhriddinov, Totli-
boyev Sanjar, Abdugofurov Abdurakhim, and Mukaddas Khusniddinova.
Intelligent traffic management system: Ai-enabled iot traffic lights to
mitigate accidents and minimize environmental pollution. In 2023 3rd
International Conference on Intelligent Technologies (CONIT), pages
1–6, 2023.



[18] Xinzheng Feng, Jun Wu, Ali Kashif Bashir, Jianhua Li, Ao Shen, and
Mohammad Dahman Alshehri. Vulnerability-aware task scheduling for
edge intelligence empowered trajectory analysis in intelligent transporta-
tion systems. IEEE Transactions on Intelligent Transportation Systems,
24(4):4661–4670, 2023.

[19] Devika S G, Govind A, and Lekshmi D. Next-generation traffic control:
Adaptive timer and emergency vehicle priority in intelligent traffic
management. In 2024 International Conference on E-mobility, Power
Control and Smart Systems (ICEMPS), pages 1–6, 2024.

[20] Hongyan Dui, Songru Zhang, Meng Liu, Xinghui Dong, and Guanghan
Bai. Iot-enabled real-time traffic monitoring and control management
for intelligent transportation systems. IEEE Internet of Things Journal,
11(9):15842–15854, 2024.

[21] Zequn Qin, Pengyi Zhang, and Xi Li. Ultra fast deep lane detection
with hybrid anchor driven ordinal classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(5):2555–2568, 2024.

[22] Zhenwu Fang, Jinhao Liang, Chaopeng Tan, Qingyun Tian, Dawei
Pi, and Guodong Yin. Enhancing robust driver assistance control
in distributed drive electric vehicles through integrated afs and dyc
technology. IEEE Transactions on Intelligent Vehicles, pages 1–14,
2024.

[23] Bo Sun, Xumin Yu, Mingzhang Chen, Fan Jiang, Zhongbo Zhu, and
Zhong Zheng. Research on terahertz communication system and the
prospect on space applications. In 2023 IEEE 15th International
Conference on Advanced Infocomm Technology (ICAIT), pages 67–72,
2023.

[24] Li Zhang, Jianbo Xu, Pandi Vijayakumar, Pradip Kumar Sharma,
and Uttam Ghosh. Homomorphic encryption-based privacy-preserving
federated learning in iot-enabled healthcare system. IEEE Transactions
on Network Science and Engineering, 10(5):2864–2880, 2023.

[25] Wei Yang, Wei Xiang, Yuan Yang, and Peng Cheng. Optimizing
federated learning with deep reinforcement learning for digital twin
empowered industrial iot. IEEE Transactions on Industrial Informatics,
19(2):1884–1893, 2023.

[26] Yazan Wassouf, Egor M. Korekov, and Vladimir V. Serebrenny. Decision
making for advanced driver assistance systems for public transport.
In 2023 5th International Youth Conference on Radio Electronics,
Electrical and Power Engineering (REEPE), volume 5, pages 1–6, 2023.

[27] Yihang Tao, Jun Wu, Xi Lin, Shahid Mumtaz, and Soumaya Cherkaoui.
Digital twin and drl-driven semantic dissemination for 6g autonomous
driving service. In GLOBECOM 2023 - 2023 IEEE Global Communi-
cations Conference, pages 2075–2080, 2023.

[28] Qianqian Pan, Jun Wu, Xinping Guan, and M. Jamal Deen. Swarm
learning irs in 6g-metaverse: Secure configurable resources trading for
reliable xr communications. In GLOBECOM 2023 - 2023 IEEE Global
Communications Conference, pages 74–79, 2023.

[29] Siyu Wang, Fangfang Liu, and Hailun Xia. Content-based vehicle
selection and resource allocation for federated learning in iov. In 2021
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), pages 1–7, 2021.

[30] Atif Mahmood, Miss Laiha Mat Kiah, Zati Hakim Azizul, and
Saaidal Razalli Azzuhri. Analysis of terahertz (thz) frequency prop-
agation and link design for federated learning in 6g wireless systems.
IEEE Access, 12:23782–23797, 2024.

[31] Ahmet M. Elbir, Wei Shi, Kumar Vijay Mishra, and Symeon Chatzino-
tas. Federated multi-task learning for thz wideband channel and doa
estimation. In 2023 IEEE International Conference on Acoustics,
Speech, and Signal Processing Workshops (ICASSPW), pages 1–5, 2023.

[32] Hoang D. Le, Chuyen T. Nguyen, Thang K. Nguyen, and Anh T. Pham.
Hybrid fso/sub-thz-based vertical networks for internet of vehicles. IEEE
Transactions on Aerospace and Electronic Systems, pages 1–16, 2023.

[33] He Li, Kaoru Ota, and Mianxiong Dong. Learning iov in 6g: Intelligent
edge computing for internet of vehicles in 6g wireless communications.
IEEE Wireless Communications, 30(6):96–101, 2023.

[34] Weike Chen, Xingshuo Hai, Dongming Fan, Longyan Tan, Wenliang
Zhang, and Qiang Feng. Resilience-oriented real-time decision-making
for autonomous recovery in multi-uav systems. In 2024 IEEE 19th
Conference on Industrial Electronics and Applications (ICIEA), pages
1–6, 2024.

[35] Shuyue Zhao, Wenpeng Jing, F. Richard Yu, Xiangming Wen, and
Zhaoming Lu. Mobility-aware computation offloading for ar tasks over
terahertz wireless networks: An offline reinforcement learning approach.
IEEE Transactions on Vehicular Technology, pages 1–13, 2024.

[36] Po-Chun Hsu, Li-Hsiang Shen, Chun-Hung Liu, and Kai-Ten Feng.
Federated deep reinforcement learning for thz-beam search with limited
csi. In 2022 IEEE 96th Vehicular Technology Conference (VTC2022-
Fall), pages 1–6, 2022.


