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SHORT REPORT

Women’s Health Research and Hormone Replacement Therapy and Menopause

Oral contraceptive pill phase does not influence muscle protein synthesis or
myofibrillar proteolysis at rest or in response to resistance exercise
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Daniel J. Wilkinson,4 Kenneth Smith,4 and Stuart M. Phillips1,6
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United Kingdom; 4MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research,
Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom; 5Faculty of Sport
and Health Science, Ritsumeikan University, Kyoto, Japan; and 6Department of Sport and Exercise Science, Institute of Sport,
Manchester Metropolitan University, Manchester, United Kingdom

Abstract

There is speculation that the use of oral contraceptive pill (OCP) affects skeletal muscle biology and protein turnover in response
to resistance exercise; however, research in this area is scarce. We aimed to assess, using stable isotope tracers and skeletal
muscle biopsies, how second-generation OCP phase affected muscle protein synthesis and whole body proteolysis. Participants
(n ¼ 12) completed two 6-day study phases in a randomized order: an active pill phase (active; week 2 of a monthly active OCP
cycle) and an inactive pill phase (inactive; final week of a monthly OCP cycle). They performed unilateral resistance exercise in
each study phase, exercising the contralateral leg in the opposite phase in a randomized, counterbalanced order. The active
phase myofibrillar protein synthesis (MPS) rates were 1.44 ± 0.14%·day�1 in the control leg and 1.64 ± 0.15%·day�1 in the exercise
leg (P < 0.001). The inactive phase MPS rates were 1.49 ± 0.12%·day�1 in the control leg and 1.71 ± 0.16%·day�1 in the exercise
leg (P < 0.001), with no interaction between phases (P ¼ 0.63). There was no significant effect of OCP phase on whole body
myofibrillar proteolytic rate (active phase k ¼ 0.018 ± 0.01; inactive phase k ¼ 0.018 ± 0.006; P ¼ 0.55). Skeletal muscle remains
equally as responsive, in terms of stimulation of MPS, during active and inactive OCP phases; hence, our data do not support a
proanabolic or catabolic, based on myofibrillar proteolysis, effect of OCP phase on skeletal muscle in females.

NEW & NOTEWORTHY We discovered that women taking a second-generation oral contraceptive pill (OCP) showed no differ-
ence in integrated daily muscle protein synthesis or whole body myofibrillar proteolysis in the active or placebo pill phases of
the pill cycle. Our data show that OCP phase neither influences skeletal muscle protein turnover in females and nor supports a
marked procatabolic or anabolic effect.

anabolism; female; protein turnover; resistance exercise

INTRODUCTION

Premenopausal females are frequently excluded from
exercise physiology research, with an often-cited reason
being the potential for the effects of menstrual cycle (MC)
hormones or oral contraceptive pills (OCP) on the outcomes
(1). Although the primary purpose of ovarian hormones [es-
tradiol (E2) and progesterone (P4)] is for reproductive func-
tion, it has been proposed that E2 may be proanabolic and
involved in pathways and processes that influence muscular
adaptations to exercise (2). In contrast, the presence of P4
has been proposed to antagonize the action of E2 (3). Despite

this speculation, we recently showed that MC phase does not
affect rates of MPS or whole body myofibrillar proteolysis
(4). We have also pointed out that P4 is more androgenic
than E2, which conflicts with the notion that high P4 in the
luteal phase creates a catabolic environment (3, 5, 6).

Hansen et al. studied the effects of OCP on myofibrillar
protein synthesis (MPS) (7) and tendon and muscle connec-
tive tissue synthesis (8). These authors reported lower MPS
and tendon as well as muscle (and possibly bone based on
indirect biomarkers) connective tissue protein synthesis in
OCP users (8). When data were split into those taking second-
versus third-generation OCP, Hansen et al. (7, 8) concluded
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that the lower MPS was predominantly due to third-genera-
tion OCP users (n ¼ 7) who showed a marked lowering of
MPS versus those taking second-generation OCP (n ¼ 4).
Notably, rates of myofibrillar proteolysis were also deter-
mined using microdialysis and reported to be no different
between OCP users and controls and were unaffected by
OCP generation (7). These were short-term studies lasting
several hours, and the exercise used was a high-intensity sin-
gle-leg kicking (7, 8); thus, the effects over longer periods
and with a more anabolic exercise stimulus, such as resist-
ance exercise training (RET), are less well known. Given that
the net balance of MPS and muscle protein breakdown
(MPB), along with other processes (9), contribute to RET-
induced hypertrophy, there is an important research gap.

It is unknown how OCP use may affect RET outcomes
such as hypertrophy and strength; however, speculation
is that since OCP use downregulates the production of en-
dogenous E2 and P4, this suppression may affect molecu-
lar mechanisms that are important in hypertrophy and
somehow suppress normal adaptation (2, 10). RET studies
involving females taking OCP have produced mixed results
(11–15); however, generally, no significant differences were
observed between OCP users and nonusers regarding RET-
induced muscle hypertrophy. Nolan et al. (10) systemati-
cally reviewed how OCP affects RET outcomes and found
no consistent effect on hypertrophy, power, or strength.

The purpose of this study was to investigate MPS and
myofibrillar proteolysis in response to resistance exercise in
females on OCP. Subjects were assessed during their active
pill phase and the inactive phase of second-generation OCP.
We aimed to test the hypothesis that muscle protein synthe-
sis would increase in response to resistance exercise in both
phases but with no differences between phases.

MATERIALS AND METHODS

The study was approved by the Hamilton Integrated
Research Ethics Board (project number: 14067) and con-
formed to the standards for the use of human subjects in
research as outlined by the Canadian Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans—
TCPS 2, 2022 (https://ethics.gc.ca/eng/policy-politique_tcps2-
eptc2_2022.html) and the Declaration of Helsinki (https://
www.wma.net/policies-post/wma-declaration-of-helsinki-
ethical-principles-for-medical-research-involving-human-
subjects/). Each participant was informed about the purpose of
the study, experimental procedures, and potential risks before
written informed consent was obtained. The trial was regis-
tered with the National Institutes of Health at http://www.
clinicaltrials.gov repository as NCT05347667.

Participants

Healthy young females (n ¼ 12) were recruited for the
study. Eligible participants were between the ages of 18
and 30 yr and in good health (as determined by a medical
screening questionnaire). All participants reported taking
second-generation OCP (Allese or Alysena) for at least 6
mo before taking part in the study. Participants were
excluded if they: 1) suffered from an orthopedic, cardiovas-
cular, pulmonary, renal, liver, infectious disease, immune,

metabolic, or gastrointestinal disorder likely to impact
study outcomes; 2) took medications known to affect pro-
tein metabolism (i.e., corticosteroids, nonsteroidal anti-
inflammatory drugs, or high strength acne medication,
testosterone replacement); 3) used tobacco or cannabis or
tobacco/cannabis-related products (smoking or vaping); 4)
had been previously diagnosed with a menstrual cycle dis-
order, polycystic ovarian syndrome, or endometriosis.
Participants’ characteristics are shown in Table 1.

A sample size of nine subjects, using a crossover design,
was determined based on an a priori power analysis calcu-
lated using G�power (Version 3.1.9.6, Franz Faul, Kiel
University, Germany) based on our previous trial (4) (target
alpha of 0.05 and power of 0.80) with a small effect size of
0.2 to be sufficient to detect a change of�25% inmuscle pro-
tein synthesis, which we deemed to be physiologically rele-
vant. To protect power and account for any dropouts, we
included 12 subjects.

Study Overview

Participants completed two 6-day study phases in a
randomized order during each phase of their OCP cycle:
active pill phase (days 9–14) and inactive pill phase (days 23–
28). A schematic of the study protocol is shown in Fig. 1.

Participants completed a general health questionnaire
to indicate their current health status and medication use
to ensure eligibility for the study. Height and body mass
were assessed using a calibrated stadiometer and scale.
Participants underwent a dual X-ray absorptiometry (DXA;
GE-Lunar iDXA; Aymes Medical, Toronto, ON) scan to
assess body composition. DXA-derived lean mass was used
to determine oral dose of deuterated water (D2O) dosing.
Unilateral knee extension 10 repetition maximum (RM)
was assessed for each leg to determine the starting load for
subsequent study visits.

Much of the details of the protocol and methods we
used, such as RET protocol and the calculation of the rates
of MPS and whole body myofibrillar proteolysis, were
reported in our previous paper (4); thus, we provide only
relevant details here. The salient difference between our
previous protocol (4) and this study was the timing of the
study protocols, which was completed within one OCP
cycle and took place during the active and inactive pill

Table 1. Participant characteristics and serum hormone
levels

Age, yr 20 ± 2
Height, cm 164 ± 2
Body mass, kg 61.9 ± 8.3
BMI, kg·m�2 22.9 ± 2.3
Lean mass, kg� 40.8 ± 4.9
Muscle mass, kg�� 22.3 ± 1.2

Inactive phase

(OC cycle days 23–28)

Active phase

(OC cycle days 9–14)

visit 1 visit 6 visit 1 visit 6
E2, pM 97 ±26 153 ± 47 108 ±50 101 ± 29
P4, nM 9±3 7 ± 2 8 ± 3 7 ± 3
LH, IU·L�1 3 ± 3 4 ± 3 3 ± 2 2 ± 3

Values are means ± SD. �Derived from DXA. ��Derived from D3-
creatine. BMI, body mass index; DXA, dual X-ray absorptiometry;
E2, estradiol; OC, oral contraceptive; P4, progesterone; LH, lutei-
nizing hormone.
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phases. Participants arrived for the first study visit after an
overnight fast. Following a pregnancy test, subjects pro-
vided a baseline saliva sample (to obtain baseline body
water enrichment), a baseline urine sample (to measure
D3-creatinine enrichment for muscle mass; see below), a
blood sample (to assess serum hormones), and a baseline
muscle biopsy (Bx) from the vastus lateralis of the control
leg (Fig. 1). The control (nonexercised) leg was randomly
determined for phase 1, and the contralateral leg served as
the control for phase 2. On the priming dose day, partici-
pants were given three (1.25 mL·kg�1 lean mass) aliquots of
70 atom % D2O to consume 30 min apart. An oral dose of
30 mg D3-Creatine was included in the third aliquot of D2O
to assess skeletal muscle mass, as previously described in
detail (6, 16). Participants performed three sets of 10 uni-
lateral knee extensions to volitional fatigue, defined as an
inability to complete a repetition through the full range of
motion. If the participant completed >12 or <8 repetitions,
the load was adjusted, up or down, accordingly.

Participants returned to the laboratory 48 h after visit 1 to
provide a urine sample and perform three additional sets of
unilateral knee extensions, as outlined above. Participants
returned to the laboratory 72 h after visit 1 to provide a urine
sample and 18 h prior to the scheduled visit 5 to consume 10
mg of D3-3-methylhistidine (3MH) dissolved in water. After
an overnight fast, they reported to the laboratory for the final
visit. Muscle biopsies were taken from the exercise and con-
trol legs. Blood samples were collected hourly for 5 h to
assess plasma D3-3MH and measured whole body myofibril-
lar proteolysis, as described earlier (4, 6, 16, 17).

Blood Analysis

Blood samples were analyzed using the Ortho Vitros
MicroWell, using the VITROS 5600 Integrated System that
provides enhanced chemiluminescence detection for serum
estradiol [E2; pmol·L�1; by competitive immunoassay; inter-
assay coefficient of variation (CV) < 4%], progesterone (P4;
nmol·L�1; by competitive immunoassay; interassay CV <
6%), and luteinizing hormone (LH; IU·L�1; by noncompeti-
tive immunometric assay; interassay CV < 5%) by Hamilton
Regional Laboratory Medicine and D3-3-methylhistidine
enrichment, as described earlier (4, 6, 16, 17).

Deuterium Oxide

The incorporation of deuterium (as D2O) into muscle
protein-bound alanine was assessed to quantify MPS rates

(6, 16–18). The protocol consisted of one loading day and
four maintenance days with the goal of enriching and
maintaining the body water pool (Fig. 1).

Muscle Biopsies

Muscle biopsy samples were obtained on seven occa-
sions using a 5-mm Bergstrom needle modified for manual
suction under 1% xylocaine local anesthesia. The first bi-
opsy site was �15 cm above the patella, and subsequent bi-
opsy sites were spaced �3–5 cm apart. Biopsies were taken
from the control limb pre-exercise [phase (randomized to
active or inactive) 1, visit 1] and the control and exercise
limbs (phase 1, visit 5; phase 2, visit 1; and phase 2, visit 5).
Visible connective and adipose tissue were dissected from
each specimen before being snap-frozen in liquid nitrogen
and stored at �80�C.

Saliva Analysis

Saliva samples were obtained by gently chewing on a cot-
ton swab for 2–3 min until completely saturated with saliva.
Salivates were centrifuged at 1,500 g for 10 min and diluted
in double distilled water (ddH2O). Saliva samples were ana-
lyzed for 2H (D) enrichment by cavity ringdown spectroscopy
(L2130-i, Picarro Inc., Santa Clara, CA). Measurements were
corrected for machine drift and background enrichment,
and the 2H (D) isotopic enrichments for saliva were con-
verted to atom percentage excess using standard equations,
as reported earlier (4, 6, 16, 17).

Myofibrillar Extraction

Snap-frozen muscle samples were homogenized using 5-
mm stainless steel beads in a 2 mL Eppendorf (2 � 40 s at 20
Hz, TissueLyser, Hilden, Germany) with 500 μL fresh, ice-
cold homogenization buffer f25 mM Tris buffer [Tris-HCl,
Trizma Base, doubly distilled H2O (ddH2O) pH 7.2], one
PhosStop Tablet (Roche, Switzerland), one complete (Roche)
mini protease inhibitor tab, 100 lL TritonX-100g. Samples
were then processed as described in our previous work (4, 17).

Integrated Myofibrillar Protein Synthesis

Ingestion of D2O was used to label newly synthesizedmyo-
fibrillar proteins (18). Myofibrillar protein synthesis rates
were determined using the standard precursor-product
method (19, 20). Total body water (saliva) deuterium (2H)
enrichment (converted to its natural log) was used as a surro-
gate for plasma alanine labeling (precursor). The change in

Day 1 2 3 4 5 6

RT � �

Bx � �

Blood � ���

Urine � �

Saliva � � � � � �

D2O ��� � � � �

D3-Cr �

D3-3-MH �

Figure 1. Schematic depiction of the protocol that was
repeated in each OCP phase. The exercised limb was ran-
domly selected and switched in a counterbalanced manner,
as the phase in which each participant began the protocol.
Bx, muscle biopsy; D2O, oral dose of deuterated water;
D3Cr, oral dose of deuterated creatine; D3-3-MH, oral dose
of deuterated 3-methyl histidine; OCP, oral contraceptive
pill; RT, resistance training.
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2H enrichment (relative to 1H) of muscle alanine (product)
over time was used to calculate the myofibrillar fractional
synthesis rates (4, 17).

Creatinine Enrichment

Samples were thawed at room temperature and had 250
μL of ice-cold acetonitrile added, then were vortexed, mixed,
and cooled on ice for 30 min. Samples were then centrifuged
at 17,000 g for 20 min. The supernatant was filtered through
a 0.2 μm filter and transferred to vials ready for mass spec-
trometry analysis, as described earlier (4, 6, 16, 17). The esti-
mated creatine pool size was divided by 4.3 g·kg�1, which
reflects the average concentration of creatine found in whole
wet muscle tissue (21). Details of the analyses are provided in
our previous papers (4, 6, 16, 17).

Plasma D3-3-Methylhistidine

We have previously described the methods used for this
analysis (4, 6, 16, 17). Briefly, plasma samples were
defrosted and centrifuged at 1,200 g for 3 min. A 0–10%
D3-3-methylhistidine enrichment curve was prepared as a
serial dilution. About 100 μL of plasma was deproteinized
using 1 mL of MeCN: MeOH (1:1). Samples were vortex
mixed and incubated at �20�C for 1 h. Samples were cen-
trifuged at 20,800 g for 5 min at 4�C. The supernatant was
dried down in a TechneBlock at < 40�C using nitrogen gas.
Samples were resuspended using 100 μL MeCN:ddH2O
(65:35) and ready to be analyzed using high-performance
liquid chromatography (HPLC; Dionex Ultimate3000,
Thermo Scientific) mass spectrometry (MS; Q-Exactive,
Thermo Scientific) with a Sequant ZIC-HILIC column
(150 mm 200 Å pore size 5 μm particle size; Merck
Millipore) using previously described methods (6, 16). The
enrichment ratios were log-transformed to determine the

decay rates (k), representative of the rate of whole body
MPB (22).

Statistical Analysis

Data were analyzed using SPSS (IBM Corporation, Released
2023, IBM SPSS Statistics for Windows, Version 29.0.2.0
Armonk, NY: IBM Corporation) using a two-way ANOVA with
repeated measures with OCP phase (active or inactive) and leg
(exercise or control) as within-subject factors (all factors nested
within subject). Significance was set at P < 0.05. Data are pre-
sented as means ± SD in tables and as box and whisker plots
showing interquartile range, median, and upper and lower
bounds in figures unless otherwise indicated.

RESULTS

Participants

Participants used daily monophasic pills (Alesse and
Alysena) containing 0.02mg ethinylestradiol and 0.1 mg lev-
onorgestrel (days 1–21), with a 7-day inactive week (days 22–
28). Their characteristics are shown in Table 1.

Hormones

Serum E2, P4, and LH were assessed in both phases. Data
are presented in Table 1. There were no differences across
any phase in any hormonemeasured (all P> 0.4).

Myofibrillar Protein Synthesis

The mean MPS rates in the active pill phase were 1.44±
0.14%·day�1 in the control leg and 1.64±0.15%·day�1 in the
exercise leg (P < 0.001). The inactive phase MPS rates were
1.49±0.12%·day�1 in the control leg and 1.71 ±0.16%·day�1 in
the exercise leg (P < 0.001). The two-way ANOVA showed a
main effect of condition (leg, P < 0.001) but no significant
effects of phase (P ¼ 0.48; effect size 0.16) or interaction
between phases (P ¼ 0.63; effect size 0.12). The results are
presented in Fig. 2.

Myofibrillar Protein Breakdown

The mean rate (k) of whole body myofibrillar proteolysis
was 0.018 ± 0.01 in the active phase and 0.018 ± 0.006 in

Figure 2. Integrated muscle protein synthesis in active and inactive
phases. �Significant (P < 0.001) difference (main effect) between EX and
CON. There was no significant effect of OCP phase nor an interaction
between phases and conditions (all P > 0.5). CON, control; EX, exercised;
OCP, oral contraceptive pill.

Figure 3.Whole body myofibrillar protein breakdown rate (k) in active and
inactive OCP phases. OCP, oral contraceptive pill.
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the inactive phase (P ¼ 0.55). The results are presented in
Fig. 3.

DISCUSSION

Although there was a strong and consistent effect of RET
on MPS in both phases, the response did not differ between
the active and inactive OCP phases (Fig. 2). We also observed
no difference in whole body myofibrillar proteolysis (Fig. 3),
which would include and may be predominantly skeletal
muscle-derived (22). Our work shows that females taking
OCP derive no specific anabolic advantage, nor are they in a
procatabolic state in any particular phase. We also note that
compared with our recent data (using an identical design)
from naturally cycling women (4), we observed no marked
differences between resting or postexercise anabolic and cat-
abolic rates. In fact, combining datasets and running statisti-
cal analyses, including a between factor for OCP use and
either phase of the MC, showed no pill-by-phase interaction
and only main effects for exercise (exercise > rest; data not
shown). Thus, our data show, in accordance with meta-ana-
lytic analyses of cross-sectional OCP effects (10) and phase-
specific effects across the MC (5, 23), that there are no spe-
cific differences in terms of muscle anabolism or catabolism
in response to RET related to OCP use.

As expected, endogenous ovarian hormones were downre-
gulated, compared with normally cycling females (4), in the
OCP cohort across all time points. Our data indicate that a
week of inactive pills was insufficient to restore the endoge-
nous hormone profile of a naturally menstruating individ-
ual. Despite the lower endogenous hormone concentrations
synthetic hormones have a high affinity for andogen recep-
tors, and yet we did not see a change in the muscle protein
synthetic or whole bodymyofibrillar proteolysis responses.

We acknowledge that our data are short-term (days) but
propose that they offer new and deeper insight than acute
infusions of isotopes taking place over hours (7, 8). Longer-
term trials and the use of third- and fourth-generation OCP,
as well as intrauterine progesterone-emitting contraception,
would be interesting avenues in which to apply similar
methods to those we have used here. We note, however,
that these methods of contraception have been compared
in vascular and cellular physiology and showed statistically
significant but physiologically trivial differences (24). We
hypothesize that since third- and fourth-generation OCPs
have even less androgenic forms of progesterone (25) than
second-generation OCPs, it is unlikely that there would be
marked anabolic or catabolic effects of these OCPs com-
pared with earlier generations (5).

Our results are largely in line with those of Hansen et al.
(7), who assessed MPS in a group of naturally cycling par-
ticipants compared with a group of habitual OCP users,
reporting that MPS and MPB did not differ between groups.
However, MPS was significantly lower in a subgroup (n ¼ 7)
of third generation but not second generation (n ¼ 4) OCP
users compared with the naturally cycling group (n ¼ 9).
Further investigations into other forms of contraception,
including intrauterine devices, would be an interesting ave-
nue to pursue.

We conclude that second-generation OCP phase does not
alter muscle anabolic capacity or influence myofibrillar

proteolysis in response to RET. Our results concur with
reviews and meta-analyses showing no influence of OCP or
MC-related changes in sex hormones on muscle propensity
for anabolism (3, 5, 10, 23). Longer-term trials and studies of
other contraceptive methods will be needed to confirm
whether our findings on day-to-day protein turnover are
generalizable and align with RET phenotypes.
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