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ABSTRACT

This study introduces a novel approach to chronic wound seg-
mentation, a critical aspect of automated wound monitoring
that has the potential to significantly reduce clinical workload.
Addressing the challenges posed by varying wound sizes and
compositions, our experiments utilise the U-Net architecture
with an innovative integration of multiple colour spaces -
RGB, HSV, CIE-LAB, and YCbCr. Our method involves the
merging of various combinations of colour channels from
these selected colour spaces. We trained and evaluated our
method on the Diabetic Foot Ulcer Challenge 2022 dataset,
with improved Intersection-Over-Union (+0.0187), and Dice
Similarity Coefficient (+0.0183), in comparison with the
baseline model. Additionally, improvements are observed
on alternative test sets that include; Complex Wound DB,
Advancing the Zenith of Healthcare, and Foot Ulcer Seg-
mentation Challenge datasets. These findings highlight the
importance of strategic colour channel selection in chronic
wound analysis, and offer a promising direction for future re-
search in medical image analysis. These enhancements show
our method’s effectiveness in capturing complex wound char-
acteristics using colour channel selection, contributing a new
research direction for medical image analysis.

Index Terms— wound segmentation, diabetic foot ulcer,
deep learning, chronic wounds, colour space.

1. INTRODUCTION

Diabetic Foot Ulcers (DFUs) are a common and severe com-
plication of diabetes mellitus, affecting approximately 6.3%
of people globally [1]. These persistent wounds contribute
to a significant healthcare burden [2, 3] and drastically di-
minish the quality of life for those affected [4, 5, 6], mak-
ing timely and accurate diagnosis essential for effective treat-
ment. Recent advances in medical imaging analysis, particu-
larly through deep learning, have shown promise in automat-
ing the segmentation of DFUs, which is an important com-
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ponent in the automated analysis of these types of chronic
wounds. Segmentation allows for the monitoring of wounds,
including the changes in shape and size over time, which may
provide important indicators of wound healing status [7]. This
is a complex task due to the highly variable appearance of the
wounds, influenced by factors such as lighting, skin tones,
and distinct characteristics of the wounds themselves, includ-
ing size, shape, or the presence of infection [8]. The conven-
tional RGB colour model, which has been a staple in medical
imaging, is often limited in capturing the complexities nec-
essary for accurate wound analysis. This limitation has led
researchers to investigate alternative colour spaces that could
potentially offer more detailed information or additional in-
sights pertinent to chronic wound assessment.

In this study, we introduce an innovative method that inte-
grates alternative colour space data into the models input ten-
sor to improve chronic wound segmentation accuracy. This
paper presents our approach, the results of its application, and
its potential impact on the field of medical image analysis. All
source code used in the experiments described in this paper
can be found at the following repository: to be added upon
acceptance of paper.

2. RELATED WORK

Colour space augmentation has become a growing interest in
recent deep learning research. Its application is promising
in DFU segmentation to enhance deep learning model accu-
racy. While RGB has been the conventional colour space of
choice, alternatives such as HSV, CIE-LAB, and YCbCr offer
additional benefits for improved handling of varying lighting
conditions and colour consistency [9]. However, these studies
proved inconclusive due to the use of very small datasets in
training and testing.

Prior research works have refined training workflows to
incorporate additional colour representations and have shown
performance improvements in segmentation tasks [10]. Ex-
panding upon colour space channels within deep learning
frameworks is an emerging research area. Ramadan and Aly



Fig. 1. Multi-colour integration strategy using OpenCV library functions (Cv2) to convert a 3-Dimensional image tensor to
a 4-Dimensional image tensor. Process includes converting image colour space, extracting individual colour channels, and
merging into selected number of dimensions.

(2022) [11] explored the use of a modified U-Net architec-
ture [12] with dual and tri-colour space inputs, leading to
performance increases in skin lesion segmentation. However,
these methods treat colour spaces independently in the in-
put stages of the model which incurs significant additional
computational requirements.

The potential of alternate colour spaces for improved
chronic wound segmentation accuracy is largely unexplored
in the current literature. This research gap persists despite the
promise of richer information and enhanced representation
provided by these colour spaces. Our hypothesis explores
the integration of additional colour channels from different
colour spaces into single image tensors for enhanced segmen-
tation performance.

3. METHODOLOGY

In this section, we define the methodology for the exploration
of multi-colour space channel selection for enhancing chronic
wound segmentation. We outline the preprocessing procedure
that includes image normalisation, followed by the expansion
of the image tensor to integrate additional colour channel in-
formation.

3.1. Dataset Description

We use 4 publicly available chronic wound segmentation
datasets for our experiments: Diabetic Foot Ulcer Challenge
(2022) [13], Complex Wound DB (2022) [14], Advancing the
Zenith of Healthcare (2020) [15], and Foot Ulcer Segmenta-
tion Challenge (2021) [16].

The Diabetic Foot Ulcer Challenge 2022 (DFUC2022)
dataset is used for both training and testing in our exper-
iments. Analysis of the dataset reveals its composition of
4000 DFU images and corresponding binary masks, divided
into training (1600), validation (400), and testing (2000) sub-
sets. All images and corresponding masks are 640× 480 pix-
els. The DFUC2022 dataset is the largest publicly available

chronic wound segmentation dataset to date. The Complex
Wound DB (CWDB) dataset comprises 27 chronic wound
photographs (DFU and pressure ulcers) captured at various
resolutions and includes corresponding binary masks. We
use this dataset in its entirety as an exclusive test set. The
Advancing the Zenith of Healthcare (AZH) dataset comprises
1109 DFU photographs at a resolution of 224 × 224 pixels,
with 831 images in the training set and 278 images in the
testing set with corresponding binary masks. We use only the
testing set from this dataset in our experiments. The Foot Ul-
cer Segmentation Challenge (FUSC) dataset comprises 1210
DFU images, with 810 images in the training set, 200 images
in the validation set, and 200 images in the testing set. All
images in this dataset are 512 × 512 pixels. The testing set
masks are not publicly available for this dataset, therefore
we used the 200 validation images and corresponding masks
in our experiments as an exclusive test set. All images and
masks from the CWDB, AZH, and FUSC datasets are resized
to match the resolution of the DFUC2022 images (640× 480
pixels). The aspect ratio of the images is maintained, with
black pixel padding applied where appropriate.
Data Preprocessing: To ensure correct formats for the train-
ing, validation, and testing phases of the proceeding experi-
ments, images are preprocessed as follows:
Multi-Colour Space Tensor Merging: In line with the core
purpose of this study, additional colour channels are inte-
grated into the preprocessing pipeline (Section 3.2). This
integration occurs after image loading and before image nor-
malisation.
Image Normalisation: Pixel values within the images are nor-
malised from the conventional range of 0-255 to a normalised
range between 0 and 1. This normalisation is pivotal for the
convergence and stability of deep learning models.

3.2. Model Implementation

U-Net Model: The U-Net architecture builds the foundation
of our chronic wound segmentation model, selected for its
robust performance in medical image segmentation [17, 18].



The implementation of this model is adapted for our specific
task of chronic wound segmentation.

For our experiments, we use a standard 4-level U-Net
with skip connections at each level, with each level incor-
porating two 3 × 3 convolutional layers, followed by batch
normalisation and a ReLU activation function. The final out-
put mask is produced using the sigmoid activation function
for binary segmentation.
Multi-Colour Space Integration Pipeline: The colour chan-
nel integration process begins by loading the input image in
its standard RGB format. We then apply the necessary colour
space conversion and extract individual colour channels.
These selected channels are concatenated to the original RGB
channels to form a 4-6 dimensional input tensor in a process
we call ”tensor merging”, as illustrated in Figure 1, which
is then fed to the U-Net model. This higher-dimensional
tensor accommodates a richer representation of image colour
features.

4. EXPERIMENTAL DESIGN

Prior to completing our investigation, we determine a suitable
base U-Net model which will be used in the following seg-
mentation experiments. Our model is evaluated using a chal-
lenging testing set that comprises of 50% of the total images,
ensuring performance validation and generalisability assess-
ment.
Experimental Setup: All of our experiments were com-
pleted using the following hardware and software configura-
tion: Intel® Core™ i7-8700 CPU @ 3.20GHz CPU, NVIDIA
Quadro P5000 16GB GPU, Python (version 3.9.16), PyTorch
(version 1.12.1) and CUDA (version 11.6).
U-Net Training Settings: The base U-Net training settings
are summarised in Table 1. These settings were used for all
experiments described in this paper. Other than the methods
detailed in the augmentation experiments, no other prepro-
cessing was used during training, except image normalisation
on the training and validation sets.

Parameter Value
Batch Size 8
Max Epochs 1000
Early Stopping 20 Epochs
Initial LR 0.001
Scheduler Reduce on Plateau
Scheduler Factor 0.1
Scheduler Patience 6
Loss Function Dice Loss
Evaluation Batch IOU

Table 1. U-Net base model training parameters.

Determining the Baseline Model: In pursuit of establishing
a comparable baseline for the DFU segmentation task, the U-

Net model was initially trained using a standard RGB colour
space. We trialed various batch sizes up to the limitations of
the hardware: 2, 4, 8 and 16. The baseline model achieved
its best performance at a batch size of 8, with the following
validation metrics: Intersection over Union (IoU) of 0.5950
and Dice Similarity Coefficient (Dice) of 0.7341.

5. RESULTS AND DISCUSSION

Table 2 shows the top-4 best performing models in terms of
training and validation metrics for the colour space experi-
ments. The best performing model from these experiments, in
terms of validation IoU and validation Dice was the RGB+Y
model, with an IoU of 0.5966 and a Dice of 0.7354.

Table 2. Experiment results of multi-colour space ten-
sor merging with training and validation metrics on the
DFUC2022 dataset. Results shown are the top-4 best per-
forming models. Ep - epoch, T - train, V - validation.

Colour Space Ep T-Loss T-IoU T-Dice V-Loss V-IoU V-Dice
RGB 45 0.2371 0.7067 0.8193 0.4034 0.5950 0.7341
RGB + Y 48 0.2272 0.7164 0.8260 0.3987 0.5966 0.7354
RGB + A 34 0.3024 0.6501 0.7782 0.4016 0.5827 0.7239
HSV + LAB 44 0.2382 0.7150 0.8247 0.4017 0.5957 0.7331

Table 3 shows the test results of the top-4 best perform-
ing models on 4 different chronic wound test sets. For
DFUC2022 and CWDB, the HSV+LAB model demonstrates
the best performance in IoU (DFUC2022 = 0.4207, CWDB
= 0.6698), and Dice (DFUC2022 = 0.5364, CWDB = 7791).
The test results for the DFUC2022 test set indicate notable
improvements1 in IoU (+0.0187), Dice (+0.0183), FNE (-
0.0206), and FPE (-0.0497).

The RGB+A model shows the best performance on the
AZH dataset, with improvements in IoU (+0.0025), Dice
(+0.005), FNE (-0.0236), and FPE (-0.0087). In contrast, the
RGB+Y model shows best performance on the FUSC test set,
with IoU (+0.0391), Dice (+0.0431), FNE (-0.0187), and FPE
(-0.0642). These results highlight the importance of selecting
the best colour channels for integration based on the specific
characteristics of wounds in the segmentation task.

Table 4 provides detailed analysis of the performance of
the models on wounds of different sizes. For small wounds
(200 test samples, < 10% of wounds), the results are vari-
able by metric. For IoU and Dice, the HSV+LAB model
is the best performing model, in terms of IoU (+0.0041),
and Dice (+0.0087). RGB+Y demonstrated the best FNE
(-0.0118), and RGB+A the best FPE (-0.0433). For medium
wounds (between 10% and 90% of wounds), HSV+LAB
again demonstrated the best performance in terms of IoU
(+0.0217), closely followed by RGB+Y (+0.0209), which has
the highest Dice (+0.0212), and FNE (-0.0317). In the large

1All improvements in the form (±0.0000) are in comparison with corre-
sponding RGB model for the test results unless otherwise specified.



Table 3. Test results for the top-4 best performing models
using four chronic wound test sets.

Dataset Colour Space FNE FPE IoU Dice
DFUC2022 RGB 0.4313 0.3947 0.4020 0.5181

RGB + Y 0.4038 0.3912 0.4176 0.5347
RGB + A 0.4481 0.3418 0.4121 0.5364
HSV + LAB 0.4107 0.3838 0.4207 0.5364

CWDB RGB 0.2317 0.1871 0.6224 0.7376
RGB + Y 0.1959 0.1813 0.6550 0.7730
RGB + A 0.2313 0.1632 0.6362 0.7537
HSV + LAB 0.2168 0.1374 0.6698 0.7791

AZH RGB 0.2787 0.4243 0.5208 0.6048
RGB + Y 0.2613 0.4264 0.5120 0.5958
RGB + A 0.2551 0.4156 0.5231 0.6098
HSV + LAB 0.3069 0.4559 0.5003 0.5802

FUSC RGB 0.4027 0.2571 0.4855 0.5948
RGB + Y 0.3840 0.1929 0.5246 0.6379
RGB + A 0.4654 0.2201 0.4630 0.5742
HSV + LAB 0.4008 0.2563 0.4982 0.6031

wound category, RGB+Y shows significant performance in-
creases in all test metrics - IoU (+0.0391), Dice (+0.0431),
FNE (-0.0187), and FPE (-0.0642).

Table 4. Test results for the multi-colour tensor merging on
DFUC2022 test data with wound size splits.

Wound Size Colour Space FNE FPE IoU Dice
Small RGB 0.7878 0.4213 0.1956 0.2628
<10% RGB + Y 0.7752 0.4264 0.1954 0.2659

RGB + A 0.8066 0.3780 0.1730 0.2447
HSV + LAB 0.7764 0.4205 0.1997 0.2715

Medium RGB 0.4079 0.3212 0.4464 0.5633
10-90% RGB + Y 0.3762 0.3170 0.4672 0.5845

RGB + A 0.4260 0.2592 0.4566 0.5787
HSV + LAB 0.3821 0.3119 0.4681 0.5833

Large RGB 0.1108 0.3953 0.5569 0.6744
>90% RGB + Y 0.0970 0.4017 0.5548 0.6694

RGB + A 0.1133 0.3324 0.6058 0.7196
HSV + LAB 0.1011 0.3593 0.5891 0.7035

These results show that careful selection of individual
colour channels from diverse colour spaces can result in im-
proved model performance in comparison with training on
an individual colour space. In medical imaging of chronic
wounds, characteristics of wounds can vary significantly; we
show that by selection of colour channels such as ‘A’ chro-
maticity, significant increases are observed in larger wound
types, whereas when training models with HSV and CIE-
LAB colour spaces, improved predictions are observed with
smaller wound types, emphasising the need for colour space
and colour channel consideration in a dedicated segmentation
task. As well as demonstrable performance increases, there is
also the benefit of not having to feed as many images into the
model during training. Additionally, the results from alterna-
tive test sets demonstrate that models trained only on DFU
wounds are able to generalise to other wound types (pressure

ulcers).

(a) (b)

Fig. 2. Example of a small, partially visible DFU wound pre-
diction made by the HSV+LAB model for a case where the
RGB model failed to generate a prediction. Image (a) shows
the original DFU wound photograph, (b) shows the prediction
mask from the HSV+LAB model. Example shown is from the
DFUC2022 test set.

6. CONCLUSIONS

Our innovative method merges multiple colour channels from
HSV, CIE-LAB, YCbCr, and RGB into a single tensor when
training a U-Net model, addressing challenges posed by
chronic wound variation. This approach offers an alternative
to prior works [11], enhancing segmentation performance
while reducing computational load. Our results on diverse
testing sets display significant improvements in segmentation
accuracy, marking notable improvements in terms of IoU,
Dice, FPE, and FNE. This indicates the importance of colour
channel selection in medical image analysis.

Given that the encoder for the U-Net model represents
a classifier, we suggest our findings could extend to clas-
sification networks, and encourage further research in such
methodologies, as well as investigation into performance in
alternative model architectures, and application across other
medical imaging domains. Our approach offers a step for-
ward in developing more precise and efficient automated di-
agnostic tools, suggesting the potential for larger influence in
medical imaging.
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