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Conv-MTD: A CNN Based Multi-Label Medical
Tubes Detection and Classification Model to
facilitate resource-constrained point-of-care

devices
Moneeb Abbas, Wen-Chung Kuo, Khalid Mahmood Senior Member, IEEE , Waseem Akram,

Sajid Mehmood, and Ali Kashif Bashir Senior Member, IEEE

Abstract— Computer-aided detection through deep
learning is becoming a prevalent approach across various
fields, including the detection of anomalies in medical
procedures. One such medical procedure involves the
placement of medical tubes to provide nutrition or other
medical interventions in critically ill patients. Medical
tube placement can be highly complex and prone to
subjective errors. Malposition of medical tubes is often
observed and associated with significant morbidity and
mortality. In addition, continuous verification using manual
procedures such as capnography, pH testing, auscultation,
and visual inspection through chest X-ray (CXR) imaging
is required. In this paper, we propose a Conv-MTD, a
medical tube detection (MTD) model that detects the
placement of medical tubes using CXR images, assisting
radiologists with precise identification and categorizing
the tubes into normal, abnormal, and borderline placement.
Conv-MTD leverages the EfficientNet-B7 architecture
as its backbone, enhanced with an auxiliary head in
the intermediate layers to mitigate vanishing gradient
issues common in deep neural networks.The Conv-MTD is
further optimized using post-training 16-bit floating-point
(FP16) quantization, which significantly reduces memory
consumption by 50% and 2x improvement in inference
speed without compromising accuracy. This optimization
allows Conv-MTD to achieve efficient performance without
requiring high-end computational resources, making it
suitable for deployment on point-of-care devices. Conv-
MTD provided the best performance, with an average area
under the receiver operating characteristic curve (AUC)
of 0.95 using the open-source RANZCR CLiP dataset.
The proposed Conv-MTD has the potential to operate on
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resource-constrained point-of-care devices due to its use
of FP16 computation, enabling low-cost and automated
assessments in various healthcare settings.

Index Terms— Medical Tube Detection, Classifica-
tion,Chest X-ray Analysis,Deep Learning in Radiology,
Computer-Assisted Diagnosis

I. INTRODUCTION

THE current state-of-the-art convolutional neural networks
(CNNs) can learn complex features from images, facil-

itating transformative applications in medical image analysis.
Numerous CNNs are currently used in medical image analysis,
enabling automated detection of abnormalities across various
medical modalities [1]–[5]. One such application of these
advancements is the precise identification and monitoring of
medical tube placements. This proposed work examined four
distinct medical tubes, namely endotracheal tube (ETT), na-
sogastric tube (NGT), Swan-Ganz catheter (SGC), and central
venous catheter (CVC). The annotated multi-labelled Chest
X-rays (CXRs) of these medical tubes are depicted in Fig 1.

The primary usage of ETT is to provide artificial ventilation
to critically ill patients, and ETT malpositioning can result
in the collapse of the left lung and overinflation of the right
lung. Similarly, the main purpose of NGT is to provide
nutrition by enteral feeding to patients unable to consume
food or liquids orally, and NGT malpositioning could lead to
aspiration pneumonia [6]–[9]. The same is true of CVC and
Swan-Ganz catheters. Both devices are important to perform
several medical procedures. Incorrect placement of CVCs can
cause pneumothorax, hemothorax, and arterial puncture, while
misplacement of SGC can result in vascular injury, thrombosis,
air embolism, and extravasation [10]–[12]. These associated
risks highlight the importance of accurate tube placement and
identification to enhance patient care.

Currently, radiologists follow strict medical protocols with
the utmost importance during tube placement, utilizing man-
ual verification procedures such as capnography, pH testing,
auscultation, and visual inspection through CXRs [13]–[21].
However, the aforementioned verification methods can be
time-consuming, and human error remains a potential risk
factor, particularly when hospitals are at full capacity. Given
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these challenges, there is a pressing need for fast and reliable
computer-assisted interpretation to overcome the limitations of
the existing healthcare system.

Recently, deep neural networks such as EfficientNet,
ResNet50, MobileNet, and Inception V3 have proven effective
for automated medical image analysis [22]–[29]. Considering
these successes, researchers have turned their attention to
applying deep learning for automated medical tube detection
using CXRs [30]–[45]. However, most of studies have focused
on detecting a single type of medical tube, such as [30],
[36]–[41], [43], [44], despite the fact that patients could have
multiple tubes during ventilation, each serving a unique and
critical function. Several studies try to overcome this limitation
by proposing multi-label tube detection models such as [33],
[35], [45]. To the best of our knowledge, none of the prior
studies have addressed the added challenge of implementing
such models on resource-constrained point-of-care devices.
This complexity underscores the need for more sophisticated
models capable of accurately detecting the position of multiple
tubes in real-time while being computationally efficient.

In this study, EfficientNet-B7 is chosen over MobileNet,
which is also well-suited for resource-constrained environ-
ments, due to its superior performance in accuracy and feature
extraction, particularly in complex multi-label classification
tasks. EfficientNet-B7 achieves a Top-1 accuracy of 84.4%
on the ImageNet dataset, significantly outperforming Mo-
bileNetV2 Top-1 accuracy of 71.8% and MobileNetV3 Top-1
accuracy of 75.2% [46]. ResNet-50 achieves a Top-1 accuracy
of 76.2%, while its deeper variant, ResNet-101, achieves
77.3%. Similarly, DenseNet-121 achieves 74.9% Top-1 accu-
racy, and the deeper DenseNet-201 achieves 77.3%. Despite
EfficientNet-B7’s higher accuracy, it operates with approxi-
mately 37 billion FLOPs, more than MobileNetV3 Large at
approximately 0.6 billion FLOPs, but provides a much better
balance between computational cost and model scalability for
handling large datasets. In addition, the architectural modifica-
tions in Conv-MTD, including auxiliary head and optimization
techniques such as focal loss, enable the model to effectively
handle class imbalance, a common challenge in medical
datasets. Focal loss down-weights the loss contributions of
easily classified samples while focusing more on hard to
classify samples, leading to improved sensitivity and overall
performance.

The primary objective of this study is to develop a deep
learning model that can accurately detect and classify the
placement of multi-label medical tubes in CXR images, with
a focus on optimizing the model for deployment on resource-
constrained devices.

Major contributions of this research are:
• The proposed Conv-MTD framework automates the de-

tection and verification of medical tubes (ETT, NGT,
SGC, and CVC) in multi-labelled CXRs, aiming to reduce
reliance on manual methods that can be time-consuming
and error-prone.

• The proposed model addresses two common issues in
training neural networks: class imbalance and the van-
ishing gradient problem. It resolves this by giving more
weight to hard-classified examples using focal loss and

an auxiliary head to incorporate additional loss functions
to help stabilize training.

• The proposed model significantly reduces overall mem-
ory consumption and inference latency, providing a
lightweight, scalable, and real-time solution to support
radiologists across varied healthcare setting.

TABLE I: List of Abbreviations

Abbreviation Meaning

CXR Chest X-Rays
DNN Deep Neural Network
CNN Convolutional Neural Network
MTD Medical Tube Detection
AUC Area Under the Curve
ROC Receiver Operator Characteristics
FP16 Floating Point 16
ETT Endotracheal Tube
CVC Central Venous Catheter
NGT Nasogastric Tube
SGC Swan Ganz Catheter

The list of commonly used abbreviations in this research 
is explained in Table I.

II. PROPOSED METHODOLOGY

The proposed Conv-MTD model is designed to auto-
mate the detection and classification o f m edical tube 
placements in CXRs by utilizing the EfficientNet-B7 
architecture as its backbone. It is enhanced with an 
auxiliary head to support additional loss function and 
quantization of the trained weights to support resource-
constrained devices. This section details the dataset and 
Conv-MTD framework, highlighting the architectural de-
sign and optimization strategies implemented to improve 
detection accuracy, address class imbalance, and ensure 
compatibility with resource-limited devices.

A. Dataset

In this study, we utilized the publicly available RANZCR 
CLIP dataset [47], which contains 30,083 labelled CXRs 
images specifically aimed at the detection and classifica-
tion of medical tube placements. This dataset addresses 
a critical need for rapid identification o f malpositioned 
catheters and lines, which, if undetected, can lead to 
severe complications or even fatal outcomes. The dataset 
includes three main categories of tube placements. 
Normal: This category includes tubes that are positioned 
correctly and do not require any adjustments. Borderline: 
This category consists of tubes that, while generally 
functioning in their current positions, ideally need mi-
nor repositioning to ensure optimal patient safety and 
efficacy. Abnormal: This category encompasses critically 
misaligned tubes requiring immediate repositioning to 
avoid complications. The dataset was created with a con-
sistent labelling protocol to ensure high-quality, reliable 
annotations across images, addressing potential issues of



TABLE II: Distribution of Labels

Label Number of Images

ETT - Abnormal 500
ETT - Borderline 2000
ETT - Normal 7500
NGT - Abnormal 200
NGT - Borderline 250
NGT - Incompletely Imaged 300
NGT - Normal 4000
CVC - Abnormal 3500
CVC - Borderline 8000
CVC - Normal 21000
Swan Ganz Catheter Present 1500

labelling variance. The dataset class distribution is shown 
in Table II.
The dataset presents significant c lass i mbalance chal-
lenges, particularly evident in the disparity between nor-
mal and abnormal cases. For example, CVC-Normal 
cases include 21,000 images, which substantially outnum-
ber CVC-Abnormal cases with 3,500 images, while NGT-
Abnormal cases represent only 200 images. Analysis of 
the class distribution revealed significant imbalances, with 
ratios of up to 1:105 between the least and most repre-
sented classes. To remedy this disparity, we enhanced the 
data set with a 3x augmentation along with focal loss, 
which dynamically adjusts the loss contribution of the 
majority class samples. In addition, we implemented a 
strict data segregation protocol to prevent any potential 
overlap between training and validation sets. The dataset 
is first s plit i nto t raining a nd v alidation s ets w ith an 
80:20 ratio. We ensured complete patient-level separation, 
meaning that multiple images from the same patient were 
kept within the same split to prevent data leakage. This 
separation is verified u sing t he u nique p atient identifiers 
provided in the RANZCR CLIP dataset metadata. For 
the k-fold cross-validation process, we maintained this 
patient-level segregation across all folds, ensuring that our 
model performance metrics reflect genuine generalization 
capability rather than memorization of patient-specific 
features.

B. Data Preparation

To prepare the data for input into the model, each image is 
resized to 600×600 pixels to match the input dimensions 
required by the EfficientNet-B7 backbone.
1) Data Augmentation: CNNs are often susceptible to 
scaling and orientation issues during training. This study 
used random brightness and horizontal and vertical flip-
ping techniques to mitigate these issues to simulate real-
world variation in imaging conditions. Augmentation 
improves the model’s performance in handling scale and 
orientation issues common to clinical imaging [48]–[51]. 
The following transformations are applied to increase the 
robustness of the training data. where I represents an 
original CXR image.

Brightness Adjustment: Given an intensity level I , a
brightness factor β is randomly sampled from a range
[βmin, βmax]. The transformed image I ′ with adjusted
brightness is computed as:

I ′ = I × β, β ∈ [0.8, 1.2] (1)

This random adjustment helps the model adapt to varying
lighting conditions commonly faced in CXR imaging.
Horizontal and Vertical Flips: Given that orientation
inconsistencies can affect model performance, horizontal
FH(I) and vertical FV (I) flips are applied probabilisti-
cally. The transformations are defined as:

I ′ =

{
FH(I) with probability pH ,
FV (I) with probability pV .

(2)

where pH and pV are probabilities assigned to each flip, 
set at 0.5 for random application. These transformations 
improve generalization by simulating positional varia-
tions of tubes and lines within CXR images. The resulting 
images are presented in Fig. 2.
I’ll revise the section to better explain how focal loss 
improves model performance with imbalanced datasets. 
Here’s the professional revision with new content in blue: 
2) Handling Imbalance Data: The RANZCR CLiP dataset 
is highly imbalanced. The imbalance dataset refers to 
a problem in which more examples are from one class 
than another. Imbalanced classes could render the model 
highly biased in favor of the more dominant class. To 
remedy the class imbalance problem, Focal loss [52]–
[54] is utilized. Unlike traditional loss functions that 
treat all misclassifications equally, focal loss dynamically 
adjusts the loss contribution of each sample based on 
classification d ifficulty. Fo cal lo ss ai ms to  emphasize 
hard classifier e xamples w hile r educing t he w eight of 
good classifier e xamples. T hus, t he w eight v alues of 
the incorrectly predicted sample are much higher as 
compared to the correctly predicted samples.
Focal Loss is defined a s a n e xtension o f Cross-Entropy 
Loss, with an additional modulating term focusing on 
misclassified e xamples. F or b inary c lassification, the 
Cross-Entropy (CE) loss is given by:

CE(p, y) =

{
− log(p) if y = 1,
− log(1− p) otherwise, (3)

where p represents the model’s predicted probability for
the actual class y.
In imbalanced datasets, standard cross-entropy loss can
be problematic as the majority class samples dominate
the gradient updates during training. Focal loss addresses
this by automatically down-weighting the contribution
of easy examples typically from the majority class and
focusing on hard examples often from the minority class.
To address the imbalance, Focal Loss (FL) introduces a
modulating factor (1 − pt)

γ to the Cross-Entropy Loss,
where pt is the probability of the true class, defined as:

pt =

{
p if y = 1,
1− p otherwise. (4)



(a) (b) (c)

Fig. 1: (a) CXR image of a patient with CVC normal, abnormal, and borderline. (b) CXR image of a patient with NGT normal,
CVC normal, and ETT normal. (c) CXR image of a patient with ETT Normal, CVC Borderline, NGT incomplete image, NGT
incomplete image, CVC borderline, CVC borderline.

(a) (b)

(c) (d)

Fig. 2: Comparison of transformations applied to
the original CXR image. (a) shows the original
CXR image. (b) and (c) show the same image after
random left-right and up-down flips, respectively.
(d) shows the image after applying a random
brightness transformation.

This leads to the formulation of Focal Loss as:

FL(pt) = − (1− pt)
γ
log(pt), (5)

γ is a focusing parameter that adjusts the rate at which
easy examples are down-weighted. It is typically set to
values between 0.5 and 2 to fine-tune this adjustment.
Through empirical testing on our medical tube detection
task, we found that γ = 2 provides optimal perfor-
mance by effectively reducing the loss contribution of
well-classified majority class samples while maintaining
sufficient gradient signal for learning. In Equation 5,
when the value of the modulating term Fγ = (1 − pt)

γ

increases, it minimizes the loss contribution of correctly
predicted samples and increases the weight of incorrectly
predicted samples. This adaptive weighting mechanism
proves particularly effective for our medical tube detec-
tion task, where normal tube placements significantly out-

number abnormal cases, as it ensures the model maintains
high sensitivity to rare but critical abnormal placements
while preserving overall classification a ccuracy. Hence,
the model becomes more balanced and accurate, leading
to improved performance and results.

C. Model Architecture

The proposed framework utilizes a pre-trained
EfficientNet-B7 a s t he b ase m odel. A pre-trained
model offers several advantages over training from
scratch, such as faster convergence due to prior
optimization on large-scale datasets and improved
accuracy from learned features. Fig. 3 shows the
proposed methodology enhanced with an auxiliary head,
which provides additional gradient flow, a iding effective
backpropagation and contributing to refined feature
extraction. This refinement e nhances t he m odel’s ability
to capture nuanced differences among tube types. The
network is augmented with a global average pooling
layer at the bottom in order to reduce feature map
dimensions. This preserves essential information while
streamlining the transition to classification. Following
this, a dense layer with a sigmoid activation function is
used for final classification.
1) EfficientNet Model: In this research, we used the pre-
trained EfficientNet-B7 f or w eight i nitialization. One
of the main benefits o f u sing E fficientNet-B7 is that
it uniformly scales up all the dimensions resolution,
depth and width using a compound scaling technique.
The compound scaling allows the model to outperform
conventional CNNs in terms of accuracy and efficiency
while reducing parameter size [46]. The selection of
EfficientNet-B7 o ver o ther v ariants B 0-B6 i s d riven by
our empirical analysis of the trade-off between model
complexity and computational requirements for medical
tube detection. While smaller variants B0-B4 showed
faster inference times, they could not capture fine-grained
differences in tube positioning. B7 provided the optimal
balance between accuracy and computational complexity



Fig. 3: The proposed Conv-MTD model, featuring an auxiliary connection head designed to detect and classify multi-label
tubes. This auxiliary head is implemented by attaching a lightweight network to the fourth layer of EfficientNet-B7’s feature
extraction process. The auxiliary head enhances gradient flow, improves feature learning, and stabilizes the overall training
process.

for our specific use case. The main concept of compound
scaling is to balance all the dimensions with a constant
ratio. The constant ratio is determined by coefficients γ,
α, and β. Resolution ( r: γφ), Depth(d : αφ),Width(w :
βφ).

f = α · βφ · γφ (6)

f = d · wφ · rφ (7)

The values of α and β γ are fixed by a grid search. The values
of these coefficients were: α = 1.2, β = 1.1, and γ = 1.15, the
Constant values of α, β, and γ indicate that if the resolution
of an image is increased by 15%, then the width of the model
will be increased by 10%, and the depth will be increased
by 20%. Depth coefficient ( α= 1 .2) w as c hosen t o allow
sufficient n etwork d epth f or c apturing h ierarchical features
while avoiding the diminishing returns observed with deeper
architectures. The value of φ may be changed to upscale
the model depending on the available resources. The detailed
training configuration h yper-parameters a nd a rchitectural pa-
rameters are summarized in Table III and Table IV.
2) Auxiliary Head: An auxiliary head is added to the
EfficientNet-B7 a rchitecture t o a ct a s a r egularizer a nd im-
prove model stability by enhancing gradient flow during train-
ing, as shown in Fig. 3. This connection introduces an auxiliary
prediction head, denoted as Auxiliary Head, attached to an
intermediary layer 4 output, haux. By generating an additional
loss term, Laux, this auxiliary head provides supplementary
gradient flow t hrough t he e ntire n etwork, a ddressing chal-
lenges with vanishing gradients in DNNs. The EfficientNet-

TABLE III: EfficientNet-B7 Configuration Parameters

Parameter Value

Depth Coefficient (α) 1.2
Width Coefficient (β) 1.1
Resolution Coefficient (γ) 1.15
Dropout Rate 0.5
Number of Parameters 66M
Input Image Size 600 × 600
Model FLOPs 37B
Training Dataset ImageNet
Number of Classes 1000

TABLE IV: EfficientNet-B7 Architectural Parameters

Stage Operator Resolution / Channels / Layers

1 Conv3x3 600×600 / 64 / 1
2 MBConv1, k3x3 300×300 / 32 / 3
3 MBConv6, k3x3 150×150 / 48 / 5
4 MBConv6, k5x5 75×75 / 80 / 7
5 MBConv6, k3x3 38×38 / 160 / 14
6 MBConv6, k5x5 19×19 / 224 / 18
7 MBConv6, k3x3 19×19 / 384 / 5
8 Conv1x1 19×19 / 1536 / 1
9 Pooling 1×1 / 1536 / 1
10 Fully Connected 1×1 / 1000 / 1

B7 model consists of 813 layers, formed by stacking multiple
modules. While this deep structure enables complex feature
learning, it complicates weight updates in deeper layers during
backpropagation, which can result in diminished accuracy.
The auxiliary head predicts the same classes as the main model
output. The overall loss function, Ltotal, combines the main



output loss Lmain with the auxiliary loss Laux:

Ltotal = α · Lmain + β · Laux (8)

where α = 0.9 and β = 0.1 are weights that prioritize the main
output loss while leveraging auxiliary feedback to reinforce
training stability.
The auxiliary head itself is designed with dense and dropout
layers to refine intermediate features and reduce overfitting.
Let haux denote the feature representation from the interme-
diary layer. The auxiliary head computes the intermediate
classification logits, zaux, as follows:

zaux = Waux · haux + baux (9)

where Waux and baux represent the weight matrix and bias
vector of the auxiliary head, respectively. The final auxiliary
prediction ŷaux is produced using a softmax activation function:

ŷaux = softmax(zaux) (10)

As a result, the model produces two predictions: one from the
auxiliary head and one from the main EfficientNet-B7 output.
The final classification relies on the main EfficientNet-B7 out-
put, with the auxiliary head acting as a stabilizing regularizer
to maintain robust gradient flow through the network.

D. Quantization
Quantization is the process of converting a real-valued number
into a lower-precision format, typically an integer multiple
of a base unit. This approach is commonly used to reduce
model size, increase inference speed, and decrease memory
requirements, which in turn enhances model efficiency and
throughput.
In conventional deep learning models, mathematical operations
are performed using 32-bit floating-point (FP32) numbers with
millions of additions and multiplications during inference.
This becomes computationally expensive and time-consuming.
Quantization addresses this by using lower precision, such
as 16-bit floating point (FP16) or 8-bit integers (INT8), to
approximate the original FP32 weights and activations.
In this research, FP16 quantization is applied to the trained
Conv-MTD model weights to ensure compatibility with low-
powered edge devices. The quantization process can be math-
ematically represented as follows:

q(x) = round
(x
s

)
× s (11)

where:
– x is the original FP32 value,
– s is the quantization scale factor, and
– q(x) is the quantized representation of x.

For FP16 quantization, each 32-bit floating point value x
is converted to a 16-bit representation, reducing memory
usage by half. The error introduced by quantization can be
minimized by selecting an optimal scale factor s, which can be
defined based on the maximum absolute value of the weights
or activations:

s =
max(|x|)
2n−1 − 1

(12)

where n is the number of bits used for quantization (e.g., 16 for
FP16). Algorithm 1 shows that the details of the quantization
process. By performing quantization, we not only reduce the
model size but also increase inference speed, making the
model more suitable for deployment on resource-constrained
edge devices.

Algorithm 1 Quantization Algorithm for FP32 to FP16 Con-
version

1: Input: Input values x = {x1, x2, . . . , xm}, number of bits
n

2: Output: Quantized representation q(x) =
{q(x1), q(x2), . . . , q(xm)}

3: Step 1: Calculate the maximum absolute value of the input
set x:

4: xmax = max(|x1|, |x2|, . . . , |xm|)
5: Step 2: Compute the scale factor s based on the maximum

value and number of bits:
6: s = xmax

2n−1−1
7: for i = 1 to m do
8: Normalize xi by dividing it by the scale factor s:
9: x̂i =

xi

s
10: Quantize x̂i by rounding to the nearest integer:
11: q(x̂i) = round(x̂i)
12: De-normalize q(x̂i) back to the original scale by

multiplying by s:
13: q(xi) = q(x̂i)× s
14: end for
15: Return quantized values q(x) =

{q(x1), q(x2), . . . , q(xm)}

E. Experimentation Setup
All experiments used the TensorFlow framework and the Kag-
gle TPU hardware accelerator. The selection of TensorFlow is
driven by its robust support for TPU acceleration and efficient
handling of large datasets. Initial hyperparameter values are
set based on recommendations in the literature [55], [56]. The
choice of optimization strategy and associated hyperparam-
eters are guided by extensive experimentation and theoreti-
cal considerations: Model optimization is achieved using the
Adam optimizer, with an initial learning rate of 0.001. Adam
is selected over other optimizers (SGD, RMSprop) due to its
adaptive learning rate capabilities and superior convergence
properties as demonstrated in our ablation studies Table IX.
The learning rate gradually reduced to 5×10−4 by applying a
decay factor of λ = 0.5 every two epochs. The decay schedule
is empirically determined through experiments showing that
more aggressive decay rates led to premature convergence,
while slower decay resulted in training instability. The learning
rate at epoch (n) is defined as:

Learning Rate(n) = Learning Rate(n− 2)× λ (13)

Focal loss is chosen to compute prediction errors, with default
parameters (α = 0.25 and γ = 2). These specific values were
selected after conducting a grid search over α ∈ [0.15, 0.35]
and γ ∈ [1, 3]. The chosen parameters provided optimal



handling of class imbalance in our medical tube dataset as
demonstrated in Table XI. The focal loss function is defined
as:

FL(pt) = −α(1− pt)
γ log(pt) (14)

Initial training is set to 30 epochs. However, peak model
performance is observed between the fifth and eighth epochs.
The 30-epoch limit is selected based on our observation that
training beyond this point showed no significant improvement
in validation metrics while increasing the risk of overfitting.
Model checkpoints are saved at each epoch to allow restoration
to the weights associated with the lowest validation loss.
Early stopping is also implemented to prevent overfitting by
terminating training if validation loss does not improve after
five consecutive epochs. The patience value of 5 epochs is
selected as a balance between allowing sufficient time for
escape from local minima while preventing unnecessary com-
putational overhead. The early stopping criterion is defined
as:

Early Stop =


Stop if val lossi ≥ min(val loss1:i−1)

and i ≥ p

Continue otherwise
(15)

where ( p = 5 ) is the patience parameter.
The details of the model parameters are presented in Table V.

TABLE V: Classifier Parameters

Parameter Value

Image input size 600×600
Training parameters 63,825,702
Batch Size 16
Epochs 30
Stopping patience 5
Reduce Learning Rate patience 2
Learning rate 5 × 10−4

Optimizer ADAM
Evaluation Metric ROC AUC

1) Evaluation Metrics: The area under the ROC curve (AUC)
is used to evaluate the performance of the trained model,
calculated by averaging the AUC for each of the 11 labels.
AUC measures the ability of the model to distinguish between
classes, with higher values indicating better discrimination.
For a single label, the AUC is calculated as the integral of the
True Positive Rate (TPR) over the False Positive Rate (FPR)
along the ROC curve:

AUC =

∫ 1

0

TPR d(FPR) (16)

The definitions for TPR, TNR, and FPR are given as follows:

TPR =
TP

TP + FN
(17)

TNR =
TN

TN + FP
(18)

FPR = 1− TNR =
FP

FP + TN
(19)

For multi-label classification, True P ositive (TP) r efers t o the 
correct identification o f m isplaced t ubes, a nd F alse Positive 
(FP) represents normally placed tubes that are incorrectly 
classified as misplaced. TPR and FPR enable the evaluation of 
classification accuracy across all labels. The final AUC score is 
calculated by averaging the individual AUCs across all labels, 
providing an overall measure of model performance.

III. RESULTS AND DISCUSSIONS

The applicability and feasibility of a Conv-MTD have exten-
sively examined throughout this study. This section details the 
results of the proposed Conv-MTD, its applicability in the 
malposition medical tube detection task and its feasibility in 
a resource-constrained clinical setting.

A. Results Evaluation
To rigorously evaluate the proposed model, we employed a 5-
fold cross-validation to ensure robust and unbiased assessment. 
The Conv-MTD demonstrated the best performance in the 
detection and classification o f m edical t ubes u sing CXRs, 
achieving a mean AUC of 0.95 ± 0.0078. This high accuracy 
highlights the model’s potential as an effective tool in clinical 
settings, where rapid and accurate tube verification i s crucial. 
The evaluation of the trained model has carried out in a 
Three-fold approach: 1) Base Evaluation, 2) Evaluation with 
data augmentation, and 3) Evaluation with the addition of an 
auxiliary head.
1) Baseline Performance: The initial evaluation of the Conv-
MTD, utilizing the EfficientNet-B7 backbone, has resulted in 
a mean AUC of 0.92 ± 0.0024. This robust performance has 
validated the feature extraction capabilities of the architecture, 
which helps in effective differentiation between tube classes.
2) Data Augmentation Impact: Data augmentation introduces 
variability in the training dataset, which enhances the model’s 
generalization across diverse X-ray imaging conditions, such 
as varying brightness, angles, and patient anatomies. By in-
corporating data augmentation techniques, the model’s per-
formance has improved significantly from a mean AUC of 
0.92 ± 0.0024 to 0.93 ± 0.0037. Fig. 4 (a) and Fig. 4(b) 
illustrate the learning curves for models trained with and 
without augmentation. The augmented model Fig. 4 (a) tended 
to overfit the training data, and 4 (b) demonstrated smoother 
convergence, suggesting that data augmentation contributed to 
improved generalization.
3) Auxiliary Head Contribution: The proposed Conv-MTD has
further enhanced by adding auxiliary head connected to hidden
layers to improve the training stability. Adding an auxiliary
head aids in mitigating vanishing gradient issues in the base
network, enabling enhanced feature learning. This architecture
refinement improved the classification accuracy for subtle dis-
tinctions in tube positioning resulting in improved learning to
capture nuanced differences among normal, borderline, and ab-
normal categories. This improvement is evident in the model’s



TABLE VI: Performance Comparison of Classifier Models in Terms of AUC, Hardware Support, and Computational Efficiency. The table presents the
model size, mean AUC with standard deviation (STD), supported hardware platforms, and the number of floating-point operations per second (Flops).

Model Model Size Mean AUC ± STD Supported Hardware Flops

Base EfficientNet-B7 244 MB 0.92 ± 0.0024 Only GPU supported 32 bits
Conv-MTD without Augmentation 244 MB 0.93 ± 0.0037 Only GPU supported 32 bits
Conv-MTD with Augmentation 244 MB 0.95 ± 0.0080 Only GPU supported 32 bits
FP16 based Conv-MTD 122 MB 0.95 ± 0.0078 GPU, CPU supported 16 bits

TABLE VII: Comparison of the proposed Conv-MTD methodology with existing techniques. The proposed Conv-MTD approach demonstrates a balanced
performance with an AUC of 0.95 on a large dataset (30,083 CXRs) while supporting multi-class detection (ETT, NGT, CVC, SGC) and edge device
deployment using 16-bit quantization. Although some existing methods achieve slightly higher AUC (e.g., Cascaded CNNs [37], AUC: 0.99), they are

limited to single-tube detection and lack support for multi-class scenarios and edge devices.

Methods Dataset Size Target Tubes Multi-class Edge Device Support Results Notes

Neural network ensemble [30] 7,081 CXRs NGT only No No AUC: 0.86 Single tube detection
DenseNet-121 CNN [40] 4,693 CXRs NGT only No No AUC: 0.92 Limited dataset

EfficientNet B0 with Mask R-CNN [36] 1,985 CXRs ETT only No No F1: 0.88 Small dataset
Cascaded CNNs [37] 16,000 CXRs ETT only No No AUC: 0.99 Single tube focus

Weakly-supervised CNN [39] 175 CXRs NGT only No No AUC: 0.76 Very limited data
DeepLabv3+ResNeSt50 [44] 7,378 CXRs NGT only No No AUC: 0.96 Single modality

ResNet-50 CNN [35] 777 CXRs ETT,NGT,CVC Yes No AP: 0.97∗ Extremely small dataset
ResNet50V2 DCNN [33] 30,083 CXRs ETT,NGT,CVC,SGC Yes No AUC: 0.80 No quantization

EfficientNet + Segmentation masks [45] 30,083 CXRs ETT,NGT,CVC,SGC Yes No AUC: 0.96 No edge device support
Proposed Conv-MTD 30,083 CXRs CVC, NGT, Yes Yes AUC: 0.95 Edge Device Support,

ETT, SGC (16-bit) FP16 bit computation
∗AP (Average Precision) is not directly comparable with AUC metrics

overall performance, as shown in Table VI. The enhanced 
model achieved a mean AUC of 0.95 ± 0.0080, outperforming 
both the baseline and augmented variants, which highlight the 
effectiveness of these architectural adjustments in addressing 
the complexities of multilabel classification tasks.
4) Baseline Comparison: To establish the incremental benefits 
of Conv-MTD, We conducted comprehensive experiments 
with several baseline architectures. The evaluation included 
ResNet152v2, Inception V3, and Xception, As shown in 
Table VIII, ResNet152v2, despite its substantial parameter 
count 58.2M, achieved a baseline AUC of 0.88. Inception 
V3, with a more efficient a rchitecture o f 2 1.7M parameters, 
performed better with AUC of 0.92. Xception, utilizing 20.8M 
parameters, demonstrated strong performance with AUCs of 
0.93. The proposed Conv-MTD, while having the largest 
parameter count 63.8M, justified i ts c omplexity b y achieving 
superior performance with AUCs of 0.95. These comparisons 
demonstrate that the architectural choices in Conv-MTD con-
tribute to meaningful performance improvements over simpler 
approaches, with a consistent 2-9 percentage point advantage 
in AUC over baseline models.

TABLE VIII: Comparison with Baseline Models

Model Parameters AUC

ResNet152v2 58.2M 0.88
Inception V3 21.7M 0.92
Xception 20.8M 0.93
Conv-MTD (Proposed) 63.8M 0.95

The confusion matrix of the proposed Conv-Mtd, illustrated in
Fig. 5, shows detailed insights into the model’s classification

behaviour across various tube types and conditions. The model
exhibits strong performance in identifying normal cases, with
1386 correct classifications for ETT and 2266 for CVC.
However, challenges arise in distinguishing borderline cases
from normal ones, particularly in CVC classification, where
246 borderline cases are misclassified as normal. Minimal
confusion across tube types is observed, as most misclassi-
fications occur within the same tube type but under different
conditions. This demonstrates that while the model effectively
differentiates between tube types, there is a need for im-
provement in distinguishing subtle variations within each tube
category, especially for borderline cases.In NGT classification,
the model performs well for normal cases, achieving 142
correct classifications, but shows limitations in classifying
incompletely imaged cases, with only 43 correct classifications
and several misclassifications across other categories. These
patterns suggest that the model’s performance is influenced
by the completeness and quality of the imaging, particularly
in NGT cases. Furthermore, the confusion patterns under-
score the impact of class imbalance, with the model showing
stronger performance in categories with a higher abundance
of training examples, particularly in normal cases across all
tube types.
The multilabel ROC curves in Fig. 6 further illustrate the
model’s performance across various tube classifications. Fig.
6a) highlights the performance for Endotracheal Tube (ETT)
and Nasogastric Tube (NGT) classifications, achieving AUC
values of 0.95 for ETT-Abnormal, 0.955 for ETT-Borderline,
0.99 for ETT-Normal, and 0.96 for NGT-Abnormal. These
results reflect the model’s strong ability to differentiate be-
tween normal and abnormal states while maintaining high
sensitivity in borderline cases. Similarly, Fig. 6(b) focuses on
additional NGT classifications and Central Venous Catheter



(a)

(b)

Fig. 4: (a) Train and validation learning curves
without augmentation. (b) Train and validation
learning curves with augmentation.

(CVC), showing robust performance with AUC values of 0.97
for NGT-Borderline, 0.98 for NGT-Incompletely Imaged, 0.98
for NGT-Normal, and 0.90 for CVC-Abnormal.
Finally, Fig. 6(c) emphasizes the performance for CVC and
Swan Ganz Catheter classifications. The model maintained
an AUC of 0.84 for CVC-Borderline, 0.90 for CVC-Normal,
and achieved a perfect AUC of 1.00 for Swan Ganz Catheter
Present, highlighting exceptional precision in identifying this
specific category. Across all categories, the AUC values indi-
cate the model’s effectiveness in handling subtle distinctions,
even in borderline and incomplete cases, which are inherently
more challenging to classify.

B. Weights Quantization

The quantized Conv-MTD model maintained a competitive
AUC of 0.95 ± 0.0080 while achieving a 50% reduction in
model size and offering a 2x speedup. Our analysis of FP16
precision impact revealed varying effects across different tube
placement scenarios. For common tube placements (CVC-
Normal), FP16 maintained a similar performance to FP32
with an AUC difference < 0.01. However, for rare cases
like NGT-Abnormal and Swan Ganz Catheter, FP16 showed
slight performance degradation in AUC decrease of 0.02-0.03,
which is within acceptable clinical margins. The negligible
performance impact can be attributed to the inherent resilience
of the EfficientNet-B7 architecture to reduced numerical pre-
cision.Our experiments showed that the quantized model re-
quires only 8GB of RAM compared to the 16GB needed for
the FP32 model, making it suitable for deployment on edge
devices commonly available in clinical settings. The results of

Fig. 5: Confusion matrix showing the classification
results for the multi-label medical tube classifica-
tion task, illustrating the frequency of true positive,
false positive, true negative, and false negative
predictions for each category of tube class with
confidence threshold > 75.

optimized Conv-MTD have presented in Table VI.

C. Scalability and Limitations
The Conv-MTD architecture demonstrates potential for scaling
to larger systems through its modular design and efficient
resource utilization. The model’s architecture can be adapted
to handle additional tube types by modifying the output layers
while maintaining the core feature extraction capabilities.
However, scaling to larger systems would require careful
consideration of computational resources and potential trade-
offs between model complexity and inference speed. Several
limitations of the current implementation warrant discussion.
First, while Conv-MTD performs well on CXR, its application
to other imaging modalities such as CT or MRI would
require significant architectural modifications to handle 3D
data and different image characteristics. Second, the model’s
performance may be impacted when dealing with novel tube
types not represented in the training data, particularly those
with unique positioning requirements or visual characteristics.
Third, the current implementation is optimized for specific
hardware configurations, and deployment on different plat-
forms may require additional optimization work.

D. Ablation study
We conducted an ablation study comprising five experiments
with different optimizers and loss functions, and detailed
results of the ablation study are shown in Table IX, and
Table XI. The Adam optimizer with a learning rate of 0.001
provided the highest AUC of 0.95, outperforming AdaGrad
and RMSProp, suggesting that Adam is particularly effective
given the data characteristics and network architecture.
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Fig. 6: Receiver Operating Characteristic (ROC)
curves for the multi-label medical tube classifica-
tion task, illustrating the performance of the model
in distinguishing different classes of tubes.

We further conducted architectural ablation studies to quantify
the impact of key model components. Table X presents these
results. The base model without auxiliary head achieved an
AUC of 0.92, while adding the auxiliary head improved per-
formance to 0.95, demonstrating its effectiveness in enhancing
feature learning. The auxiliary head’s contribution particularly
notable in improving the detection of borderline cases, where
the AUC increased from 0.90 to 0.95. We also evaluated the
impact of quantization, and deployment feasibility. Initially,
the model is trained on TPU for optimal training efficiency.
Table X presents the results across different configurations and
hardware settings. The 16-bit quantized model reduced size by
50% (from 244.64 to 122.32) with only a minimal performance
drop of 0.01. We evaluated the quantized model’s practical
deployment metrics across different resource-constrained en-

TABLE IX: Ablation study of Proposed Model on RANZCR
CLIP dataset with varying optimizers

Optimizer Adam AdaGrad RMSProp

LR 0.001 0.001 0.001
AUC 0.95 0.82 0.83

vironments on 32GB RAM systems, it achieved an average
inference time of 48ms per image on 32GB systems, 50ms on
16GB and on 8GB systems 55ms. These results demonstrate
the model’s ability to maintain clinically viable performance
even on hardware configurations typical of point-of-care de-
vices.

TABLE X: Model Performance and Deployment Metrics
Across Different Configurations

Configuration Parameters Size AUC Inference Time (ms)

Base Model (32GB RAM) 244.63 0.92 86
With Auxiliary Head (32GB RAM) 244.64 0.95 88
Quantized Model (32GB RAM) 122.32 0.949 48
Quantized Model (16GB RAM) 122.32 0.949 50
Quantized Model (8GB RAM) 122.32 0.949 55

Table XI presents the model’s performance using Focal Loss
and Binary Cross-Entropy (BCE). The effectiveness of Focal
Loss is particularly evident in handling minority classes. For
NGT-Abnormal cases, Focal Loss improved the detection AUC
from 0.90 (with BCE) to 0.96. For ETT-Abnormal, Swan
Ganz, and CVC-Abnormal, the AUCs improved from 0.91
to 0.95, 0.95 to 0.99, and 0.86 to 0.90, respectively. This
improvement stems from Focal Loss’s ability to assign higher
weights to minority class samples during training.

TABLE XI: Class-wise Performance Comparison: BCE vs
Focal Loss

Tube Class BCE (AUC) Focal Loss (AUC)

NGT - Abnormal 0.90 0.96
ETT - Abnormal 0.91 0.95
Swan Ganz 0.95 0.99
CVC - AbNormal 0.86 0.90

Furthermore, it is crucial to acknowledge a limitation in
our methodology arising from inconsistent CVC-Normal and
CVC-Abnormal, NGT-Normal and NGT-Abnormal labels for
same class applied by radiologists, which is impossible. Future
work will focus on the integration of multi-modal AI ap-
proaches by combining images from different modalities, such
as CT scans and MRI scans, to enhance model performance.
In summary, the Conv-MTD model successfully addresses
several challenges in medical tube detection and classification.
Its high AUC score, robustness against class imbalance, and
compatibility with edge devices underscore its potential as a
valuable tool in clinical diagnostics. While certain limitations
exist in terms of scalability and cross-modality applications,
the identified future directions provide a clear pathway for
advancing this technology toward more comprehensive clin-



ical solutions. Future studies could build on this work by 
incorporating more diverse datasets and exploring multi-modal 
capabilities, ultimately aiming to further enhance patient care 
in high-demand healthcare settings.

IV. CONCLUSION

In this study, we developed and evaluated Conv-MTD, a deep 
learning-based model for the detection and classification of 
medical tube placements in CXRs. Conv-MTD demonstrated 
robust feature extraction, achieving high accuracy with an 
AUC of 0.95. The auxiliary head effectively mitigated the 
vanishing gradient problem in the base EfficientNet-B7 ar-
chitecture, ensuring stable and efficient t raining. To enhance 
the model’s applicability in real-world healthcare settings, 
we implemented a quantization process that reduced memory 
and computational requirements through FP16 quantization. 
This optimization allows Conv-MTD to operate efficiently on 
resource-limited edge devices, making it suitable for real-
time and point-of-care diagnostics. The ability to deploy 
Conv-MTD on such devices significantly expands its potential 
impact, enabling timely and accurate medical tube placement 
assessments in diverse clinical environments. For future work, 
we aim to explore multi-modal data integration by combining 
CXR images with corresponding doctor diagnostic reports, 
which could provide additional context for more precise 
decision-making. We also plan to enhance the model’s capa-
bilities by integrating a functionality to calculate the precise 
distance from the ideal tube placement position in centimeters, 
offering actionable insights for clinical interventions. Further-
more, we intend to address dataset limitations by incorporating 
a larger and more diverse dataset that includes rare tube mis-
placements scenarios and variations across different imaging 
modalities. These advancements will improve the robustness, 
accuracy, and generalizability of Conv-MTD, ensuring broader 
applicability in varied healthcare settings.
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