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Robust Fault Diagnosis of Drilling Machinery under
Complex Working Conditions Based on Carbon

Intelligent Industrial Internet of Things
Kai Fang, Lianghuai Tong, Xiaojie Xu, Jijing Cai, Xueyuan Peng, Marwan Omar, Ali Kashif Bashir, and Wei

Wang

Abstract—As sustainable development gains attention, inte-
grating carbon-intelligent computing into fault diagnosis systems
has emerged as a critical strategy to reduce energy consumption
and carbon footprints. This approach uses Artificial Intelligence
(AI) and the Internet of Things (IoT) to optimize task schedul-
ing, aligning it with low-carbon energy sources based on time
and location. In fault diagnosis, energy-intensive tasks such as
data processing and model inference can be scheduled dur-
ing periods of abundant renewable energy, thereby minimizing
emissions. However, drilling machines operate under complex
conditions that generate non-stationary noise, which distorts
signals and complicates fault diagnosis. Therefore, this paper
combines Bidirectional Long Short-Term Memory (BiLSTM)
with the Kolmogorov-Arnold Network (KAN) and integrates
Wavelet Transform and Convolutional Autoencoder, proposing
a highly robust fault diagnosis model for drilling machines,
named WCBK. The Wavelet Transform converts pressure time-
series data, which contains fault information, into time-frequency
images, facilitating the detection of fault frequency components.
The Convolutional Autoencoder preserves essential features while
removing noise by learning low-dimensional representations of
the signal, effectively capturing local features in time-frequency
images through local connections to enhance denoising perfor-
mance. Finally, the composite deep learning network, which
combines BiLSTM and KAN, achieves highly robust fault di-
agnosis under complex working conditions. The effectiveness
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of the proposed WCBK model was validated through ablation
experiments, experiments on different individuals, experiments
on different parts, and model adaptability evaluations. In ex-
periments involving different individuals and parts, the WCBK
model improved fault diagnosis accuracy by 10.9% and 8.8%,
respectively, compared to existing models.

Index Terms—Carbon-intelligent Computing, IoT, Fault Diag-
nosis, Noise Filtering, BILSTM, KAN.

I. INTRODUCTION

As a critical piece of equipment in modern industry and in-
frastructure construction, drilling machines play a vital role in
resource extraction, geological exploration, and infrastructure
development. With the increasing emphasis on sustainability
[1], [2], [3], the interation of carbon-intelligent computing
into the operation and fault diagnosis of drilling machines has
gained significant attention. Carbon-intelligent computing op-
timizes energy consumption by scheduling high-energy tasks,
such as data processing and fault prediction, with periods of
low-carbon energy availability. This approach not only reduces
the carbon footprint of drilling operations but also enhances
operational efficiency. By incorporating technological inno-
vations and equipment upgrades alongside carbon-intelligent
solutions, construction efficiency can be improved, economic
benefits maximized, and production safety significantly en-
hanced, making these strategies both strategically important
and practically valuable. Drilling machines are designed to
penetrate thick and hard rock layers to achieve specific
operational targets, requiring sustained high-load operation.
However, this operational demand imposes substantial stress
on mechanical components, accelerating metal fatigue and
promoting the formation of cracks. Over time, the progressive
accumulation of such damage can lead to the failure or
breakage of critical mechanical parts. Therefore, the imple-
mentation of timely and effective fault diagnosis is essential
for prolonging equipment lifespan, ensuring operational safety,
and reducing downtime.

While fault diagnosis is crucial for drilling machines, it
faces significant challenges in practical applications. The com-
plex operating conditions of drilling machinery, influenced
by factors such as rock properties, workload, and tempera-
ture, generate significant vibration, impact, and environmental
noise. These interferences often distort sensor signals, com-
plicating the fault diagnosis process. Noise components in
the signals can obscure genuine fault characteristics, making
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fault detection more difficult. Complex noise may cause the
fault diagnosis system to mistakenly identify noise signals as
faults, increasing the false alarm rate. This not only wastes
maintenance resources but also causes unnecessary downtime
and disrupts production schedules. Additionally, noise inter-
ference can obscure actual fault signals, increasing the risk of
missed detections. Such oversights prevent the system from
identifying and addressing issues promptly, potentially leading
to further equipment damage and compromising operational
safety

The development of modern technology has provided inno-
vative solutions for fault diagnosis in drilling machinery. By
introducing sensor technology [4], [5], the Internet of Things
[6], [7], [8], and advanced deep learning algorithms [9], [10],
[11], it is possible to monitor the operational status of drilling
machinery in real-time and detect faults promptly [12]. Tradi-
tional fault diagnosis methods, which rely heavily on expert
knowledge and manual feature extraction, are being supplanted
by deep learning approaches capable of automatically learning
and extracting features. This shift has significantly improved
the accuracy and efficiency of fault diagnosis. Deep learning
models such as Convolutional Neural Networks (CNN) [13]
and Recurrent Neural Networks (RNN) are particularly adept
at handling complex nonlinear data and identifying subtle fault
characteristics in rotating machinery. Tang A et al. [14], from
a data-driven perspective, proposed a fault diagnosis method
for the fluid end of drilling pumps based on Generalized S-
transform (GST) and CNN. Vibration signals from the fluid
end were analyzed, with GST converting these signals into
time-frequency images to enhance the characterization of fault
features. The study addressed challenges related to noise pollu-
tion in vibration signals, which often obscure feature informa-
tion and hinder extraction. By introducing batch normalization
and optimizing the number of neurons in the fully connected
layers, the AlexNet model was refined to classify the fluid
end’s operational states, including normal, slightly damaged,
and severely damaged conditions. Chen et al. [15] proposed
a novel Multi-Scale Shared Learning Network (MSSLN) ar-
chitecture to extract and classify the inherent fault features of
vibration signals at multiple scales. This architecture combines
hierarchical activation with multi-scale stream fusion, enabling
the network to fully capture consistent shared representations
among multi-scale factors. This characteristic helps MSSLN
provide more reliable diagnostics than existing single-scale
and multi-scale methods. Song et al. [16] introduced a fault
detection method combining Fault-Targeted Gated Recurrent
Units (FTGRU) and Canonical Correlation Analysis (CCA).
FTGRU was employed to extract temporal features sensitive
to early-stage faults, improving detection accuracy. CCA was
subsequently applied to construct the fault detection model. To
enhance robustness, a multi-layer strategy was proposed: the
first layer employed a basic CCA model, while the second
layer activated the FTGRU-CCA method if no faults were
detected in the initial layer. The method was validated through
two industrial case studies.

To enhance fault diagnosis capabilities for drilling ma-
chines under complex working conditions, this paper proposes
a highly robust fault diagnosis model, WCBK. Firstly, the

Wavelet Transform is applied to convert pressure time-series
data into time-frequency images, providing information in both
the time and frequency domains. This approach effectively
captures the frequency variations of the signal at different
time points and provides a robust solution for handling sub-
stantial amounts of complex non-stationary noise. Next, a
Convolutional Autoencoder is used to extract the features of
the input images. Through the joint training of the encoder
and decoder structure, the Convolutional Autoencoder can
learn a compressed representation of the input images and
reconstruct clear images, thereby removing noise. Finally,
the model integrates BILSTM and KAN. The bidirectional
structure of BILSTM captures dependencies in both forward
and backward sequences, improving the representation of fault
features. In contrast, KAN abandons the linear weight matrix
and utilizes a combination of continuous functions to represent
high-dimensional data. This approach enhances its ability to
handle key fault features, thereby improving the accuracy of
fault diagnosis. Here are the main contributions of this paper:

• Complex working conditions generate a substantial
amount of non-stationary noise, composed of multiple
frequency components, which is challenging to eliminate
using a single frequency filter. To address this issue, this
paper first applies Wavelet Transform to convert time-
series data into time-frequency images, thereby facili-
tating the preliminary separation of signals from differ-
ent frequency bands. Subsequently, a Convolutional Au-
toencoder further processes the time-frequency images,
learning low-dimensional representations and perform-
ing feature reconstruction, thereby effectively mitigating
complex multi-frequency noise.

• In long sequence fault data, fault features often represent
a small fraction of the overall dataset, while normal
state features tend to dominate, making it challenging
to identify and extract the fault features. A single neural
network architecture is insufficient for efficient feature
extraction and fault diagnosis in such complex data. To
address this challenage, this paper proposes a composite
neural network model, BILSTM-KAN, for efficient fault
feature extraction. The BiLSTM model captures temporal
dependencies within fault features, improving detection
of dynamic fault patterns. The KAN model replaces
traditional weight matrices with continuous functions to
better handle complex fault features. The combination of
BiLSTM and KAN enhances the model’s ability to pro-
cess nonlinear fault patterns and improves fault diagnosis
accuracy.

• This paper evaluates the effectiveness of the model
through the implementation of ablation experiments, in-
dividual experiments, positional experiments, and model
adaptation experiments. The results of these experiments
demonstrate that the WCBK model exhibits an improve-
ment in fault diagnosis accuracy of 10.9% and 8.8%,
respectively, compared to the existing model.

The remainder of this paper is organized as follows: Section
II presents related work, Section III discusses noise interfer-
ence analysis, Section IV describes the model methodology,
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Section V presents the experiments, and Section VI concludes
the paper.

II. RELATED WORK

A. Noise filtering

Noise filtering is crucial in the fault diagnosis process of
drilling machinery. It enhances signal quality and diagnostic
accuracy, reduces false alarms and missed detections, opti-
mizes maintenance strategies, and ensures safe operation. Yin
et al. [17] introduced a tap-segmented Volterra filter, where
an extensive-tap Volterra filter is decomposed into several
short-tap filters using the closest Kronecker decomposition.
Since the decomposed filters have significantly fewer taps
than the original filter, the suggested approach substantially
lowers the implementation expenses of the Volterra filter.
Zhu et al. [18] introduced the random Fourier filter-based
filtered-x least mean square algorithm, a random Fourier filter
to handle impulse noise, simplifying computation through a
cascaded model. Zheng et al. [19] proposed the Type I Filter,
a low-complexity noise suppression filter that outperformed
current methods, such as the Moving Average Algorithm,
under severe noise conditions. Lone et al. [20] suggested
a nearest-neighbor filtering method to reduce impulse noise
by leveraging pixel correlation. Wang et al. [21] developed
multi-channel noise reduction filters in the short-time-Fourier-
transform domain, showing their iterative filter’s advantages
over traditional filters. Brahmi et al. [22] combined adap-
tive median, 2D adaptive Wiener, and adaptive local noise
reduction filters for seismic data, improving fault structure
imaging. Qiao et al. [23] proposed an improved Kalman filter-
ing algorithm with adaptive sliding windows and variational
Bayesian techniques for better noise robustness. Liu et al.
[24] introduced a Maximum Entropy Kalman fusion filter,
achieving better estimation performance under non-Gaussian
noise. Lee et al. [25] developed a backward error analysis
framework for adaptive recursive least squares filters, which
facilitates the use of lower-precision arithmetic in adaptive
filtering.

B. Fault diagnosis

Fault diagnosis in mechanical operations ensures safe oper-
ation, extends equipment lifespan, reduces maintenance costs,
improves production efficiency, and enhances product quality,
making it crucial in modern industry. Zhang et al. [26]
proposed a Selective Kernel Convolutional Deep Residual
Network, which integrates channel-spatial attention mecha-
nisms and feature fusion for mechanical fault diagnosis. This
model effectively extracts fault features from vibration signals,
improving diagnosis efficiency. Yu et al. [27] introduced a fault
diagnosis framework based on Graph Neural Networks (GNN)
and Dynamic Graph Embedding. CNN extracts hidden fault
features from raw signals, and GNN further identifies fault
features sensitive to operating condition fluctuations. A ”node
electorate” mechanism optimizes fault pattern recognition. Yan
et al. [28] presented an automatic fault detection and diagnosis
method using Transformer Conditional Wasserstein Genera-
tive Adversarial Network coupled with Deep Reinforcement

Learning. This method synthesizes and selects high-quality
fault data samples, which are then integrated with real fault
samples to train traditional classifiers. Xue et al. [29] proposed
a motor-bearing fault diagnosis framework that leverages
multi-transform domain analysis and multi-source data fusion.
This approach enables the extraction of features from the
time, frequency, and time-frequency domains. Zhao et al.
[30] developed an adaptive decomposition algorithm based on
Improve Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise and fractal dimension analysis. Combined
with CNN, this method offers intelligent fault diagnosis by
employing principal component analysis and fractal dimension
to select and reconstruct sub-signals for feature extraction and
pattern recognition. Qiang et al. [31] introduced a real-time
fault diagnosis method based on transmission control unit
signal time series feature pattern recognition. By establishing
time series patterns from different fault sources, the method
applies variational mode decomposition and signal selection
for feature extraction.

III. ANALYSIS OF NOISE INTERFERENCE WITH THE
ORIGINAL SIGNAL

This paper employs a simulation approach to investigate
the interference affecting drilling machinery under complex
working conditions. The simulation employs composite noise,
which consists of Gaussian noise and uniform noise. Gaussian
noise is used to simulate random environmental interference
and unpredictable fluctuations within the equipment, whereas
uniform noise is employed to represent systematic and evenly
distributed external interference, such as equipment vibrations
and mechanical resonance. The combined effect of these
noise types on the pressure time series data X(t) of the
drilling machine is represented as a superposition, which more
accurately reflects the complex interference factors present
in real-world working environments. The generation of a
simulated dataset encompassing various interference factors
is achieved by overlaying composite noise onto the original
pressure time series data. The enhanced dataset offers a more
profound comprehension of the influence of noise on drilling
machine pressure signals, thereby establishing a basis for
subsequent fault diagnosis in the context of interference. In this
paper, IG(t) represents the Gaussian noise, IE(t) represents
the uniform noise, and the composite noise is denoted as
IN (t) = IG(t) + IE(t). The pressure time series data after
applying noise interference is represented as:

Xnoise(t) = X(t) + IN (t) (1)

A. Gaussian noise
In this paper, Gaussian noise IG(t) is used to simulate

random environmental interference and unpredictable fluctu-
ations within the equipment [32], [33]. The mathematical
representation of Gaussian noise is derived from the normal
distribution, which provides a probabilistic description of its
characteristics. The probability density function of Gaussian
noise IG is expressed as:

pG(x) =
1

η
√
2π

exp

(
−(x− µ)2

2η2

)
(2)
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where µ represents the mean value of the noise, η represents
the range of noise fluctuations, and η2 represents the degree
of noise dispersion. The Gaussian noise IG(t) at time t can
be represented as a random variable that follows the above
normal distribution. For Gaussian noise with a mean value of
µ and a standard deviation of η, it can be expressed as:

IG(t) = µ+ η · Z(t) (3)

where Z(t) is a standard normal distribution random variable.

B. Uniform noise

The article models systematic and uniformly distributed ex-
ternal disturbances, such as equipment vibrations and mechan-
ical resonances, using balanced noise IE(t). Balanced noise
is a type of noise with uniform distribution characteristics,
where its probability density function is constant within a
defined interval. The specific expression of balanced noise
can be represented using a uniform distribution. For balanced
noise over an interval [a,b], its probability density function is
expressed as follows:

pE(x) =

{
1

b−a a ≤ x ≤ b
0 otherwise

(4)

The balanced noise IE(t) at time t can be represented as a
random variable following a uniform distribution U(a, b). The
process is expressed as:

IE(t) ∼ U(a, b) (5)

Generate a standard uniformly distributed random number
U(t) within the interval [0,1]. Convert this uniformly dis-
tributed random number to the target interval [a,b] to obtain
the balanced noise IE(t). The related process is expressed as
follows:

IE(t) = a+ (b− a) · U(t) (6)

C. Variation of pressure signal under noise interference

Fig. 1 provides a visual representation of how pressure
signals are affected by varying levels of noise interference.
Fig. 1(a) compares the original pressure signal with the signal
impacted by composite noise at an intensity of 0.3, while Fig.
1(b) illustrates the effect of composite noise at an intensity of
0.7.

Fig. 1(a) depicts a relatively low noise intensity, wherein the
noise-interfered signal exhibits a waveform that is largely con-
sistent with the original signal, exhibiting comparable trends,
peaks, and valleys. The distortion of the signal due to noise is
not significant; rather, the interference mainly manifests as an
increase in local minor fluctuations. As the noise intensity rises
in Fig. 1(b), the discrepancies between the interfered signal
and the original signal become more pronounced. While the
general trend can still be discerned, the accuracy and reliability
of the data are significantly compromised. The interference
affects all areas with greater prominence, particularly in the
high and low peak regions, resulting in considerable data
deviations and impairing the accuracy of fault diagnosis.

In conclusion, an increase in noise intensity markedly
affects the accuracy and usability of the pressure signal for

fault diagnosis. Consequently, denoising and signal recovery
are essential steps to ensure the accuracy of fault diagnosis.
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Fig. 1. Variation of raw pressure signal under different intensity of noise
interference. (a) Comparison of signal curves at noise intensity 0.3. (b)
Comparison of signal curves at noise intensity 0.7.

IV. METHODOLOGIES

The proposed high-robustness fault diagnosis model for
drilling machinery under complex working conditions, desig-
nated WCBK, is depicted in Fig. 2. The model can be divided
into three principal sections. The initial phase of the process
entails the creation of a fault dataset for the drilling machine
in the presence of composite noise interference. In this phase,
the pressure time series data of the drilling machine under
various faults are gathered, and a composite noise comprising
Gaussian noise and uniform noise is employed to emulate the
interference encountered by the drilling machine in complex
operational conditions. The outcome is a dataset contain-
ing fault data with noise interference, which serves as the
foundation for subsequent diagnostic processes. The second
phase is the noise-filtering process. This phase comprises a
Wavelet Transform and Convolutional Autoencoder. Initially,
the Wavelet Transform is employed to transform the time
series into time-frequency images, thereby decomposing the
signal into distinct frequency bands to achieve preliminary
noise filtering. Subsequently, a Convolutional Autoencoder
is employed for additional denoising. The Convolutional
Autoencoder effectively preserves essential signal features
while removing extraneous noise by learning a compressed
representation in low-dimensional space. Furthermore, local
connections and weight-sharing mechanisms are employed to
more effectively capture local features in the time-frequency
images, thereby enhancing the denoising effect. The inverse
Wavelet Transform is then applied to transform the time-
frequency images back into the time series. The third phase
is the composite neural network, which is comprised of the
BILSTM and KAN models. The bidirectional structure of the
BILSTM model enables it to capture the feature information of
forward and backward dependencies in the sequence, thereby
enhancing the expression of fault features. In contrast to the
linear weight matrix, the KAN model employs a combination
of continuous functions to express high-dimensional functions,
thus enhancing its ability to handle critical fault features and
improving the accuracy of fault diagnosis.
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A. Wavelet transform

Wavelet Transform [34], [35] on pressure time series under
interference involves selecting wavelet mother function ψ(t)
and scale a. The Wavelet Transform of the time series data
Xnoise(t) is defined as:

WT (a, b) =
1√
a

∫ ∞

−∞
Xnoise(t)ψ

(
t− b
a

)
dt (7)

where a controls the stretching of the wavelet function, while
the position parameter b determines its placement in time.
Equation (7) measures how similar the input signal Xnoise(t)
is to the wavelet functions at different scales and positions. For
each combination of a and b, a wavelet coefficient WT (a, b) is
calculated, indicating the energy of the signal at that particular
scale and time.

Subsequently, the calculated wavelet coefficients are sys-
tematically arranged into a two-dimensional matrix M , where
the element Mi,j corresponds to the wavelet coefficients at
specific scales ai and time positions bj . This process is
expressed as:

MT =


WT (a1, b1) WT (a1, b2) · · · WT (a1, bn)
WT (a2, b1) WT (a2, b2) · · · WT (a2, bn)

...
...

. . .
...

WT (am, b1) WT (am, b2) · · · WT (am, bn)


(8)

where MT represents the features of the signal Xnoise(t)
across different scales and time points, allowing for effective
analysis and visualization of its time-frequency characteristics.

This structure also facilitates subsequent signal processing
tasks, such as signal reconstruction and feature extraction.
Since wavelet coefficients can exhibit significant variability,

normalization ensures that the coefficients are accurately rep-
resented when converted into an image format. The normal-
ization process is expressed as follows:

MTnorm[i, j] =
MT [i, j]−min (MT )

max (MT )−min (MT )
(9)

where MT [i, j] represents an element within the original
wavelet coefficient matrix, while min(MT ) and max(MT ) sig-
nify the minimum and maximum values, respectively, within
the coefficient matrix MT .

Subsequently, the normalized coefficient matrix
MTnorm[i, j] is mapped to a time-frequency image. The
aforementioned process is expressed as follows:

I[i, j] = 255 •MTnorm[i, j] (10)

where I[i, j] represents the grayscale value of the correspond-
ing pixel in the time-frequency image, ranging from 0 (com-
pletely black) to 255 (completely white). This ensures that the
dynamic range of the wavelet coefficients is fully expressed in
the grayscale levels of the time-frequency image. Each element
in I[i, j] corresponds to a pixel in the time-frequency image I ,
so matrix I[i, j] can be equivalently represented as the time-
frequency image I .

B. Convolutional autoencoder
The time-frequency image I undergoes denoising through

a Convolutional Autoencoder[36], [37], as depicted in Fig. 3.
This process involves sequential convolutional, pooling, fully
connected, and deconvolutional operations. In the convolution
layer Conv, the processing of the time-frequency image I is
as follows:

Ifconv = σ

(
K∑

k=1

w(k)
c · I(k) + bc

)
+ λc ∥wc∥22 (11)
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where Ifconv represents the feature map of the time-frequency
image I , obtained after processing through the convolutional
layer. σc represents the activation function of the convolutional
layer, w

(k)
c denotes the weight of the k − th filter in the

layer, b signifies the bias term of the layer, λc represents
the regularization parameter of the layer, and ‖wc‖22 indicates
the L2 norm of wc. The feature map Ifconv is subsequently
subjected to a Flatten operation, resulting in a one-dimensional
array Iflat, which is then input into the fully connected layer.

The Flatten operation linearizes the spatial and channel
information from the convolutional layer, allowing the data to
be weighted and summed by the weights and biases of each
neuron in the fully connected layer. This process is expressed
as:

Iflat = flatten (Ifconv)

h = σfc (wfc · Iflat + bfc) + λfc ‖wfc‖22
(12)

where h represents the one-dimensional array obtained after
the weighted sum in the fully connected layer. σfc, wfc, bfc,
and λfc refer to the activation function, weight matrix, bias
term, and regularization parameter of the fully connected layer,
respectively, with ‖wfc‖22 representing the L2 norm of wfc.

Subsequently, the one-dimensional array h undergoes a
Reshape operation, which adjusts the output of the fully
connected layer back to the dimensions and shape acceptable
by the deconvolution layer. This process is expressed as:

hreshape = reshape(h)

Î = σde (wde · hreshape + bde) + λde ‖wde‖22
(13)

where σde, wde, bde, and λde are the activation function,
weight matrix, bias term, and regularization parameter of
deconvolution layer, respectively, and ‖wde‖22 is the L2 norm
of wde.

The denoised time-frequency image, Î , is converted back
into a time series through inverse Wavelet Transform. By
remapping the time-frequency image data back into the form
of wavelet coefficients, the process is as follows:

M̂T [i, j] = Î[i, j] · (max (MT )−min (MT )) + min (MT )
(14)

where Î[i, j] represents the normalized coefficient value ex-
tracted from the time-frequency image Î , which is generated
by the autoencoder. MT denotes the original wavelet coeffi-
cient matrix, while M̂T [i, j] signifies the result of converting
these values back to the original wavelet coefficient scale.

Subsequently, the recovered wavelet coefficients, designated
as M̂T , are converted back to time series data through the
application of the inverse Wavelet Transform. This entails

employing the identical wavelet mother function utilized in the
forward Wavelet Transform, albeit with the operation reversed.
This process is expressed as follows:

x̂(t) =
∑
i

∑
j

M̂T (ai, bj) · ψai,bj (t) (15)

where x̂(t) represents the reconstructed time series data of the
faults observed in the drilling machine, M̂T (ai, bj) denotes
the recovered wavelet coefficients, and ψai,bj (t) signifies the
wavelet basis function adjusted for the corresponding scale
and translation.

C. BILSTM-KAN

The reconstructed fault signal, x̂(t), obtained through
Wavelet Transform, Convolutional Autoencoder processing,
and inverse Wavelet Transform, is then fed into the com-
posite neural network BILSTM-KAN for fault diagnosis. The
BILSTM neural network model is composed of bidirectional
LSTM [38]. The forget gate in the LSTM determines how
much of the past information should be forgotten at the current
time step. The equation for the forget gate can be expressed
as:

ft = σ (Wf · [ht−1, x̂t] + bf ) (16)

where σ represents the sigmoid activation function, which is
employed to scale the input values to the range [0, 1]. ht−1

signifies the hidden state derived from the preceding time step,
while Wf denotes the forget gate’s weight matrix, which is
applied to the previous hidden state and the current input. bf
represents the forget gate’s bias term, and ft signifies the forget
gate’s output.

The input gate in the LSTM network determines the quantity
of novel information that should be incorporated into the
memory cell at the present time step. The equation that relates
to the input gate is expressed as follows:

it = σ (Wi · [ht−1, x̂t] + bi) (17)

where Wi and bi represent the weight matrix and bias term of
the input gate, respectively, and it denotes the output of the
input gate.

Furthermore, the new candidate memory cell information c̃t
is generated using the tanh function, thereby ensuring that the
values remain within the specified range of [-1, 1]. The related
equation is expressed as follows:

c̃t = tanh (Wc [ht−1, x̂t] + bc) (18)

where Wc and bc represent the weight matrix and bias term
of the candidate memory cell, respectively.

The process of updating the memory cell with the candidate
memory cell information c̃t is described as follows:

ct = ft · ct−1 + it · c̃t (19)

where ct−1 represents the cell state of the previous time step.
The output gate in the LSTM network is responsible for

determining the output information at the current time step.
The related equation is expressed as follows:

ot = σ (Wo [ht−1, x̂t] + bo) (20)
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where Wo and bo represent the weight matrix and bias term
of the output gate, respectively.

The final hidden state information is scaled by applying
the tanh function to the state of the memory cell. The related
equation is expressed as follows:

ht = ot · tanh (ct) (21)

The forward and backward hidden states,
−→
h t and

←−
h t, respec-

tively, are computed from the drilling machine fault time series
data, x̂(t). The final hidden state, Ht = [

−→
h t,
←−
h t], is produced

by the BILSTM. These hidden states contain the features of
the drilling machine fault time series, x̂(t), which are then
input into the KAN network for further processing and fault
diagnosis.

The KAN model is developed based on the Kolmogorov-
Arnold representation theorem [39]. The fundamental concept
of KAN is to decompose high-dimensional functions into a
series of one-dimensional functions, thereby enhancing the
model’s capacity for expression and interpretability. In KAN,
weight parameters are replaced with univariate functions, typ-
ically represented by B-splines. In this context, the univariate
function is represented by ϕj,i, where j and i denote the output
and input indices, respectively. For each layer input xi, the
output yj is calculated. This process is expressed as follows:

yj =
d∑

i=1

ϕj,i (xi) (22)

The deep structure of KAN is achieved through the stacking
of multiple layers of univariate functions. The output of each
layer is utilized as the input for the subsequent layer. If there
are L layers, the computation for each layer can be expressed
as follows:

y
(l+1)
j =

nl∑
i=1

ϕ
(l)
j,i

(
y
(l)
i

)
(23)

where y(l+1)
j represents the output of the (l+1)−th layer, y(l)i

signifies the output of the l− th layer, nl denotes the number
of nodes in the l− th layer, and ϕ(l)j,i represents the univariate
function of the l − th layer. The final output of the KAN is
determined by the result of the last layer’s computation. The
related process is expressed as follows:

youtput = (Φl−1 ◦ Φl−2 ◦ . . . ◦ Φ1 ◦ Φ0) (Ht) (24)

where Φ is the spline function matrix, and youtput represents
the result of the fault diagnosis.

V. EXPERIMENT

A. Dataset and experimental configuration
The dataset utilized in this study was derived from the

2022 PHM competition [40]. The data were procured from
hydraulic drilling machinery, with faults introduced during the
data collection process. Hydraulic pressure was monitored at
a frequency of 50 kHz at three distinct locations, yielding
comprehensive pressure time-series data for each fault. The
schematic diagram of the test setup is illustrated in Fig. 4
[40], the different acquisition positions are shown in Table I,
and the 10 fault types and their corresponding labels are shown
in Table II.

TABLE I
DESCRIPTION OF DIFFERENT COLLECTION POSITIONS

Position Description

pdmp Pressure at the inlet fitting during percussion
pin Pressure within the outer chamber of the damper
po Pressure in the volume behind the piston

TABLE II
FAULT LABELS AND FAULT DESCRIPTIONS

Label Description

NF Normal
T Increased thickness of drill pipe
A A-seal missing
B B-seal missing
R Return accumulator damaged
S Increased length of drill pipe
D Abnormal damper orifice
Q Abnormal flow in damper circuit
V Damage to valves
O Abnormal control line outlet
C Abnormal high pressure accumulator

B. Performance indicators

In this paper, accuracy, recall, precision, and F1 score
are used as performance metrics for fault diagnosis of the
model. Accuracy provides an overall performance evaluation;
precision measures the proportion of true positive samples
among those predicted to be positive by the model; recall
helps to understand the model’s ability to identify positive
samples; and F1 score provides a single metric that balances
precision and recall, which is particularly useful in unbalanced
class scenarios. Higher values of accuracy, recall, F1 and
precision indicate better detection performance of the model.
The corresponding formulas for each metric are shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Recall =
TP

TP + FN
(26)

Precision =
TP

TP + FP
(27)

F1 = 2× Precision×Recall
Precision+Recall

(28)

where TP is the number of correctly diagnosed positive
samples, TN is the number of correctly diagnosed negative
samples, FP is the number of negative samples incorrectly
diagnosed as positive, and FN is the number of positive
samples incorrectly diagnosed as negative.

C. Ablation experiment

This paper aims to verify the effectiveness of each model
component by comparing the baseline BiLSTM and KAN
models, the composite BiLSTM-KAN model, and the pro-
posed WCBK model under noise intensities of 0.3 and 0.5. The
specific performance metrics of each model are presented in
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TABLE III
PERFORMANCE INDICATORS OF ABLATION EXPERIMENT

0.3 noise intensity 0.5 noise intensity

Model Accuracy Recall Precision F1 Accuracy Recall Precision F1

BILSTM 0.9605 0.9602 0.9603 0.9598 0.9237 0.9223 0.9229 0.9222
KAN 0.9631 0.9622 0.9625 0.9618 0.9297 0.9275 0.9271 0.9273

BILSTM-KAN 0.9691 0.9687 0.9688 0.9686 0.9394 0.9380 0.9391 0.9382
WCBK 0.9714 0.9705 0.9709 0.9706 0.9450 0.9439 0.9452 0.9440

S T
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A B O V R
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Q

Shank 
adapter

Impact piston

Fig. 4. Simulation of the internal structure of the drilling machine
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Fig. 5. Visualization of ablation experiment metrics. (a) Accuracy metric
results. (b) Precision metric results. (c) Recall metric results. (d) F1 metric
results.

Table III, with a visual representation of these metrics shown
in Fig. 5.

Compared to the BiLSTM model, the BiLSTM-KAN com-
posite model improves accuracy, recall, precision, and F1
by 0.0086, 0.0085, 0.0085, and 0.0088, respectively, under
0.3 intensity noise interference. Under 0.5 intensity noise
interference, these metrics improve by 0.0157, 0.0157, 0.0162,
and 0.016, respectively. Compared to the KAN model, the
BiLSTM-KAN composite model improves accuracy, recall,
precision, and F1 by 0.006, 0.0065, 0.0063, and 0.0068,
respectively, under 0.3 intensity noise interference. Under
0.5 intensity noise interference, accuracy, recall, precision,
and F1 are improved by 0.0097, 0.0105, 0.012, and 0.0109,
respectively.

This indicates that the combination of BiLSTM and KAN

models can improve fault diagnosis accuracy under noisy
interference. The bidirectional structure of the BiLSTM model
allows it to capture fault features with temporal dependencies
within the sequence, while the KAN model enhances flexibility
by replacing weight parameters with learnable univariate func-
tions. This adjustment helps KAN align better with fault data
characteristics. Fig. 5 further shows that as the noise inten-
sity increases, the performance metrics of the BiLSTM-KAN
model improve more significantly compared to the BiLSTM
and KAN models, highlighting the enhanced robustness of the
composite model in noisy environments.

Compared to the composite BILSTM-KAN model, the
WCBK model demonstrates a more pronounced enhancement
in performance. At a noise intensity of 0.3, the accuracy, recall,
precision, and F1 scores were observed to improve by 0.0023,
0.0018, 0.0021, and 0.002, respectively. At a noise intensity
of 0.5, these scores improved by 0.0056, 0.0059, 0.0061, and
0.0058, respectively. This serves to validate the effectiveness
of the Wavelet Transform and Convolutional Autoencoder
in noise reduction. This is because the Wavelet Transform
converts time series into time-frequency images, decomposing
the signal into distinct frequency bands for preliminary noise
filtering. The Convolutional Autoencoder performs a further
denoising process on the time-frequency images, retaining the
main features while removing noise components through the
learning of a low-dimensional representation of the signal.
Furthermore, the model employs local connections and weight-
sharing mechanisms to more effectively capture local features
in the time-frequency images, thereby enhancing the denoising
effect.

D. Individuals with different drilling machines

1) Experiments under different noise intensities: This paper
presents an experimental investigation of the efficacy of vari-
ous deep-learning architectures in predicting the noise inten-
sity of drilling machines. The architectures include RNN, 1D-
CNN, 2D-CNN, LSTM, BILSTM, BILSTM-KAN, Physics-
guided CNN (PGCNN) [41], BO-CNN-LSTM [42], One-
dimensional LSTM-residual (1D-LSTMRes) [43], and the
proposed WCBK. The noise ratio applied is 0.5. The specific
metrics of the experiments are presented in Table IV. In the
pdmp position, the accuracy of the RNN model exhibited
a gradual decrease as the noise intensity increased, with a
drop from 0.9647 to 0.8637. The 1D-CNN exhibits superior
recognition accuracy, reaching 0.9699 at 0.1 noise intensity
and declining to 0.9022 at 0.9 noise intensity. The 2D-CNN
exhibits a recognition accuracy of 0.9655 at 0.1 noise intensity
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TABLE IV
EXPERIMENTS ON DIFFERENT NOISE INTENSITIES WITH 0.5 NOISE RATIO

Position pdmp pin po

Noise intensity 0.1 0.3 0.5 0.7 .0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

RNN 0.9647 0.9400 0.9150 0.8843 0.8637 0.9829 0.9599 0.9266 0.8847 0.8564 0.9397 0.8566 0.8174 0.7675 0.7473
1D-CNN 0.9699 0.9576 0.9384 0.9141 0.9022 0.9629 0.9615 0.9529 0.9260 0.8898 0.9289 0.9028 0.8746 0.8174 0.7753
2D-CNN 0.9655 0.9533 0.9307 0.9166 0.9000 0.9777 0.9705 0.9613 0.9280 0.9037 0.9576 0.9047 0.8636 0.8070 0.7728
LSTM 0.9700 0.9410 0.9379 0.9123 0.8904 0.9863 0.9735 0.9518 0.9186 0.8950 0.9289 0.9077 0.8402 0.7781 0.7450

BILSTM 0.9717 0.9682 0.9598 0.9282 0.8993 0.9910 0.9857 0.9660 0.9332 0.9115 0.9742 0.9456 0.8847 0.8169 0.7860
BILSTM-KAN 0.9837 0.9752 0.9630 0.9504 0.9284 0.9912 0.9870 0.9757 0.9576 0.9396 0.9839 0.9539 0.9136 0.8686 0.8296

PGCNN 0.9751 0.9588 0.9455 0.9335 0.9134 0.9914 0.9786 0.9677 0.9400 0.9260 0.9672 0.9333 0.8842 0.8716 0.8481
BO-CNN-LSTM 0.9722 0.9585 0.9484 0.9277 0.9117 0.9905 0.9735 0.9657 0.9264 0.8857 0.9477 0.9320 0.8899 0.8388 0.6817

1D-LSTMRes 0.9685 0.9449 0.9256 0.8976 0.8728 0.9847 0.9733 0.9416 0.9094 0.8843 0.9545 0.9035 0.8515 0.7932 0.7467
WCBK 0.9876 0.9822 0.9750 0.9644 0.9584 0.9932 0.9883 0.9784 0.9686 0.9445 0.9874 0.9669 0.9426 0.9081 0.8656

and 0.9004 at 0.9 noise intensity. The LSTM exhibits supe-
rior recognition accuracy under low noise intensity, reaching
0.9700, and shows a decrease to 0.8993 at 0.9 noise intensity.
The BILSTM’s recognition accuracy decreases from 0.9717
to 0.9086. The BILSTM-KAN model demonstrates a more
gradual decrease in accuracy with increasing noise intensity,
from 0.9837 to 0.9294. The PGCNN model demonstrates
minimal variation in accuracy, with a slight decrease from
0.9751 to 0.9134. The BO-CNN-LSTM model exhibits an ac-
curacy of 0.9722 at 0.1 noise intensity and 0.9171 at 0.9 noise
intensity. The accuracy of the 1D-LSTMRes model decreases
from 0.9685 to 0.8941. The WCBK model exhibits the highest
accuracy, decreasing from 0.9876 to 0.9584, demonstrating
excellent robustness.

In the pin position, the accuracy of the RNN model ex-
hibited a decrease, from 0.9829 to 0.9397. The 1D-CNN
exhibits an accuracy of 0.9629 at 0.1 noise intensity and
0.9289 at 0.9 noise intensity. The accuracy of the 2D-CNN
decreases from 0.9684 to 0.9392. The LSTM demonstrates
superior performance at low noise intensities, achieving an
accuracy of 0.9731. However, at 0.9 noise intensity, its accu-
racy decreases to 0.9408. The BILSTM exhibited a decrease
in accuracy, from 0.9790 to 0.9442. The accuracy of the
BILSTM-KAN model decreases from 0.9887 to 0.9600. The
PGCNN’s accuracy decreases from 0.9810 to 0.9566. The BO-
CNN-LSTM model exhibits an accuracy of 0.9847 at 0.1 noise
intensity and 0.9630 at 0.9 noise intensity. The accuracy of the
1D-LSTMRes model decreases from 0.9702 to 0.9440. The
WCBK model exhibits the highest accuracy, decreasing from
0.9932 to 0.9686, demonstrating exceptional robustness.

In the po position, the accuracy of the RNN decreases from
0.9829 to 0.7473. The 1D-CNN exhibits an accuracy of 0.9629
at 0.1 noise intensity and 0.7753 at 0.9 noise intensity. The
accuracy of the 2D-CNN model exhibited a notable decrease,
from 0.9684 to 0.7853. The LSTM demonstrates superior per-
formance under low noise intensity, achieving an accuracy of
0.9731. However, at 0.9 noise intensity, its accuracy decreases
to 0.7792. The BILSTM exhibited a notable decrease from
0.9790 to 0.7790 in accuracy. The accuracy of the BILSTM-
KAN model decreases from 0.9887 to 0.8686. The PGCNN’s
accuracy exhibits a decrease from 0.9810 to 0.8174. The BO-
CNN-LSTM model exhibits an accuracy of 0.9847 at 0.1 noise
intensity and 0.8481 at 0.9 noise intensity. The accuracy of the
1D-LSTMRes model decreases from 0.9702 to 0.7540. The

WCBK model exhibits the highest accuracy, decreasing from
0.9932 to 0.8656, demonstrating excellent robustness.

The WCBK model exhibits the highest accuracy and
strongest robustness across different noise intensities, particu-
larly maintaining high accuracy under higher noise intensities.
In contrast, traditional RNN and LSTM models exhibit a
notable decline in performance when subjected to high noise
intensity. However, composite models like BILSTM-KAN and
WCBK demonstrate robust resilience to noise. This under-
scores the benefits of the WCBK model in noise filtration and
feature extraction.

As shown in Table V, the overall accuracy of all models
tends to decrease as the noise intensity increases. However,
at a noise intensity of 0.9, the WCBK model maintains a
high accuracy of 0.7945 on the PD dataset, which is at least
0.07 higher than that of the other models. This highlights the
model’s excellent noise suppression capability. The WCBK
model also outperforms others on the PDMP dataset, demon-
strating its ability to capture and optimize the dataset’s intrinsic
features more effectively. Compared to traditional models such
as LSTM and BILSTM, advanced composite models like
WCBK offer better adaptability and performance. In partic-
ular, for nonlinear and non-stationary signals, a single model
may fail to capture all relevant features, whereas composite
models, by integrating multiple techniques, can provide a
more comprehensive analysis. The WCBK model consistently
performs well across various noise intensities and dataset parts,
while other models, like 2D-CNN, show suboptimal perfor-
mance at specific noise levels or sections. This indicates the
superior robustness and generalization ability of the WCBK
model. The WCBK model combines Wavelet Transform and
Convolutional Autoencoders for noise removal, along with
BILSTM and KAN networks. This combination is key to
its strong performance in high-noise environments. Wavelet
Transform effectively separates noise components from the
signal, while Convolutional Autoencoders learn deep feature
representations, facilitating more accurate signal reconstruc-
tion. BILSTM captures long-term dependencies in time series
data, and KAN processes critical fault features, enabling high-
precision fault diagnosis even under noise interference.

2) Experiments with different noise ratios: This study em-
ploys a series of experiments to assess the performance of
various neural network models under varying noise ratios.
The models included in this investigation are RNN, 2D-
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TABLE V
EXPERIMENTS ON DIFFERENT NOISE INTENSITIES WITH 1 NOISE RATIO

Position pdmp pin po

Noise intensity 0.1 0.3 0.5 0.7 .0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

RNN 0.9257 0.9295 0.8906 0.8477 0.8117 0.9765 0.9415 0.9019 0.8501 0.8053 0.9218 0.8548 0.7632 0.6651 0.5984
1D-CNN 0.9643 0.9534 0.9292 0.8991 0.8822 0.9460 0.9555 0.9358 0.9032 0.8448 0.8641 0.8533 0.8108 0.7473 0.6886
2D-CNN 0.9636 0.9487 0.9221 0.9001 0.8830 0.9831 0.9647 0.9404 0.8909 0.8764 0.9296 0.8847 0.8210 0.7390 0.6873
LSTM 0.9660 0.9383 0.9169 0.8858 0.8520 0.9557 0.9430 0.9398 0.8891 0.8397 0.9705 0.8691 0.7997 0.7070 0.6351

BILSTM 0.9759 0.9605 0.9237 0.8913 0.8763 0.9886 0.9787 0.9387 0.9109 0.8865 0.9705 0.9270 0.8379 0.7401 0.6786
BILSTM-KAN 0.9826 0.9691 0.9394 0.9082 0.8690 0.9912 0.9816 0.9567 0.9225 0.8832 0.9783 0.9453 0.8590 0.7764 0.7245

PGCNN 0.9822 0.9633 0.9448 0.9189 0.8968 0.9924 0.9801 0.9596 0.9396 0.8940 0.9698 0.9304 0.8322 0.7918 0.7176
BO-CNN-LSTM 0.9660 0.9444 0.9269 0.8858 0.8760 0.9557 0.9709 0.9441 0.8891 0.8857 0.9705 0.9071 0.8159 0.7573 0.6817

1D-LSTMRes 0.9616 0.9431 0.8995 0.8699 0.8312 0.9808 0.9589 0.9259 0.8837 0.8391 0.9440 0.8790 0.8136 0.7146 0.6297
WCBK 0.9883 0.9714 0.9624 0.9432 0.9190 0.9922 0.9871 0.9762 0.9522 0.9137 0.9885 0.9623 0.8991 0.8264 0.7945

Fig. 6. Noise intensity 0.3 visualizations of accuracy metrics for each model at different noise ratios. (a) Results in the pdmp position. (b) Results in the pin
position. (c) Results in the po position.

CNN, KAN, BILSTM-KAN, PGCNN, BO-CNN-LSTM, 1D-
LSTMRes, and WCBK. Fig. 6 and Fig.8 depict the accuracy
metrics of each model under 0.3 and 0.7 noise intensity,
respectively. Fig. 6 illustrates that, at lower noise intensities,
the performance of each model is relatively robust. However,
as the noise ratio increases, the performance of some models
declines only slightly.

Fig. 7 depicts a notable decline in the recognition accuracy
of each model in comparison to Fig. 6, which illustrates
the general performance degradation of models under higher
noise intensities. This phenomenon reflects the differences in
robustness and adaptability of the models when confronted
with varying levels of noise interference.

In the context of low noise ratios (0.1 and 0.3), the 1D-
LSTMRes model demonstrates a commendable performance,
sustaining a high degree of fault diagnosis accuracy. This is

because, in low-noise environments, the model can effectively
capture the essential features of the time series. However, as
the noise ratio increases, the performance of the 1D-LSTMRes
model exhibits a notable decline, with accuracy decreasing
significantly. Higher noise ratios impede the extraction of
features from the time series, thereby constraining the model’s
capacity for prediction.

At medium noise ratios (0.3 and 0.5), the BO-CNN-
LSTM model demonstrates satisfactory performance, main-
taining high accuracy in fault diagnosis. This is due to the
model combining the strengths of CNN and LSTM networks,
with Bayesian Optimization fine-tuning the hyperparameters,
thereby enhancing the model’s adaptability under moderate
noise conditions. Nevertheless, at elevated noise ratios (0.7
and 0.9), the accuracy of the BO-CNN-LSTM model markedly
declines, indicating diminished adaptability to high-noise en-
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Fig. 7. Noise intensity 0.7 visualizations of accuracy metrics for each model at different noise ratios. (a) Results in the pdmp position. (b) Results in the pin
position. (c) Results in the po position.

vironments. This may be attributed to the interference of noise
with the efficacy of convolutional feature extraction and time
dependency capture.

As the noise ratio rises, the PGCNN model’s accuracy
declines markedly, indicating a high degree of sensitivity
to noise. The PGCNN model demonstrates satisfactory per-
formance under low noise ratios. However, its capacity for
recognition rapidly diminishes as the noise ratio increases.
This suggests that the model is susceptible to performance
degradation in high-noise environments, as the presence of
noise impairs the model’s capacity to extract features from
graph-structured data.

The BILSTM-KAN model demonstrates relatively consis-
tent performance across varying noise ratios, exhibiting a
comparatively smaller decline in accuracy compared to other
models. This model fuses the capabilities of the KAN and BiL-
STM, enabling the capture of intricate nonlinear relationships
and time series dependencies within the data. Even in high-
noise environments, it demonstrates a relatively high level of
fault diagnosis accuracy, indicating robust noise resistance and
adaptability.

The accuracy of the 2D-CNN model is markedly diminished
with the escalation of noise ratios, exhibiting pronounced
deficiencies at elevated noise ratios (0.7 and 0.9). While the
2D-CNN model has certain advantages in processing image
data, its feature extraction capability is significantly impaired
in high-noise environments, resulting in a notable decline in
recognition performance. This demonstrates the inadequate

resilience of the 2D-CNN model in the presence of noise
interference.

The RNN model exhibits the poorest performance across
all noise ratios, with accuracy rapidly declining as the noise
ratio increases, indicating weak noise resistance. The RNN has
limited capacity in handling time series data and is susceptible
to disruption by noise, rendering it ineffective in recognizing
fault features in high-noise environments. This illustrates the
significantly poor adaptability of the RNN model in high-noise
environments.

The WCBK model demonstrates optimal performance
across all noise ratios, maintaining superior accuracy com-
pared to other models even at the highest noise ratio of
0.9, which reflects its robust noise resistance. This is due
to the Wavelet Transform’s ability to effectively separate
noise components from fault features, thereby suppressing
high-frequency noise. Convolutional Autoencoders learn low-
dimensional representations of the data, removing noise while
retaining important fault features, enabling the model to
extract effective features even in high-noise environments.
The BiLSTM network captures long-term dependencies and
dynamic features in time series data, which remain effective
even under noisy conditions. The KAN model excels at
identifying intricate nonlinear relationships within the data,
crucial for recognizing complex patterns in fault diagnosis.
As a result, the WCBK model achieves consistent and reliable
fault diagnosis accuracy, even in the presence of high noise
intensities.
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TABLE VI
ACCURACY METRICS FOR DIFFERENT NOISE INTENSITIES AT 0.5 SCALE

Machine 1 Machine 5

Noise intensity 0.1 0.3 0.5 0.7 .0.9 0.1 0.3 0.5 0.7 0.9

RNN 0.9416 0.8998 0.8710 0.8253 0.8187 0.8184 0.7648 0.7108 0.6741 0.6525
1D-CNN 0.9479 0.9207 0.8934 0.8706 0.8600 0.8651 0.8320 0.7867 0.7530 0.7199
2D-CNN 0.9420 0.9124 0.8853 0.8601 0.8495 0.8861 0.8267 0.7837 0.7360 0.7211
LSTM 0.9241 0.8771 0.8306 0.8169 0.7441 0.8492 0.8095 0.7603 0.7147 0.6960

BILSTM 0.9454 0.9094 0.8860 0.8691 0.8540 0.8217 0.8045 0.7465 0.7165 0.6896
BILSTM-KAN 0.9575 0.9239 0.8996 0.8739 0.8461 0.8754 0.7967 0.7737 0.7352 0.7187

PGCNN 0.9523 0.9120 0.8903 0.8690 0.8502 0.8381 0.8049 0.7917 0.7530 0.7179
BO-CNN-LSTM 0.9485 0.8818 0.8771 0.8560 0.8169 0.8828 0.7919 0.7456 0.7246 0.7092

1D-LSTMRes 0.9342 0.8825 0.8564 0.8290 0.8050 0.8201 0.7840 0.7354 0.6783 0.6392
WCBK 0.9491 0.9210 0.8934 0.8835 0.8749 0.8682 0.8191 0.7977 0.7574 0.7446

E. Experiments between different positions of the drilling
machine

1) Experiments under different noise intensities: This pa-
per selects the RNN, 1D-CNN, 2D-CNN, LSTM, BILSTM,
BILSTM-KAN, PGCNN, BO-CNNLSTM, 1D-LSTMRes, and
WCBK models to conduct experiments on various parts of
the drilling machine. The pressure data from three different
sections of Machines 1 and 5 serve as the experimental dataset.
Comparative experiments are performed under different noise
intensities with noise ratios of 0.5 and 1. The specific experi-
mental metrics are presented in Tables VI and VII.

At a noise ratio of 0.5, the accuracy of the RNN model on
the Machine 1 dataset exhibited a notable decline as the noise
intensity increased from 0.2 to 1, with the accuracy dropping
from 0.9416 to 0.8177. Similarly, on the Machine 5 dataset,
the RNN model demonstrated a significant reduction in ac-
curacy, falling from 0.8184 to 0.6525 as the noise intensity
increased. As the noise ratio increases to 1, the RNN model’s
performance declines even more significantly, indicating a lack
of resilience to noise.

In the Machine 1 dataset at a 0.5 noise ratio, the accuracy
of the 2D-CNN model is observed to decline from 0.9420
to 0.8945. At a noise ratio of 1, the performance metrics
demonstrate a further decline, indicating that while the 2D-
CNN has some capacity to handle noise, it is less effective
at higher noise levels. The LSTM model’s accuracy declines
from 0.9241 to 0.7441, indicating a lack of resilience to noise.
Despite its proficiency in processing time series data, high
noise intensity impedes the LSTM’s ability to extract fault
features.

In comparison to the LSTM model, the BILSTM model
demonstrates a relatively stable performance, indicating an
enhanced capacity to resist noise interference. The BILSTM’s
bidirectional structure facilitates the capture of bidirectional
dependencies in time series data, thereby reducing the impact
of noise. The BILSTM-KAN model exhibits superior perfor-
mance compared to the BILSTM model at both noise ratios
of 0.5 and 1. This is attributed to the fact that the BILSTM-
KAN integrates the capture of bidirectional time series fea-
tures with the modeling of complex nonlinear relationships,
effectively addressing noise interference and extracting crucial
fault features. In the Machine 1 dataset at a 0.5 noise ratio, it
can be observed that the PGCNN model’s accuracy undergoes

a decline, from 0.9523 to 0.8502. At a 1 noise ratio on
the Machine 5 dataset, the model’s performance drops from
0.8762 to 0.6491, indicating that composite neural network
models are more robust in high-noise environments than single
neural network structures.

In the Machine 1 dataset at a 0.5 noise ratio, the BO-CNN-
LSTM model’s accuracy decreases from 0.9485 to 0.8169,
indicating a satisfactory level of performance. The application
of Bayesian optimization enables the BO-CNN-LSTM to
maintain a high level of accuracy in the presence of moderate
noise intensities. The 1D-LSTMRes model demonstrates ro-
bust performance at low noise intensities but exhibits a notable
decline at high noise intensities.

The WCBK model exhibits the most comprehensive perfor-
mance across a range of machines and noise intensities. This
is because the WCBK model incorporates Wavelet Transform
and Convolutional Autoencoder denoising techniques, which
are capable of effectively separating and removing noise
at different frequencies. Furthermore, the integration of the
BILSTM-KAN composite neural network offers substantial
benefits in the processing of intricate noise and the extraction
of pivotal features.

2) Experiments with different noise ratios: Figs. 8 and 9
demonstrate the degree of accuracy variation among different
models on the Machine 1 and Machine 5 datasets when
subjected to varying noise ratios (0.2, 0.4, 0.6, 0.8, 1.0) at
noise intensities of 0.3 and 0.9. Figs. 8(a) and 9(a) depict
the Machine 1 dataset, while Figs. 8(b) and 9(b) illustrate
the Machine 5 dataset. The performance of each model is
represented by a distinct color line. In general, the WCBK and
BILSTM-KAN models exhibit excellent performance across a
range of noise ratios, demonstrating the strongest resilience to
noise. The accuracy of these two models remains consistently
high and declines only slightly as the noise ratio increases,
demonstrating outstanding performance.

The BILSTM and 2D-CNN models demonstrate a relatively
gradual decline in accuracy, indicating a certain level of noise
resistance. Although accuracy declines with increasing noise
ratios, it remains relatively high at higher noise ratios.

The accuracy of the RNN and 1D-LSTMRes models is
significantly reduced with increasing noise ratios, indicating a
high degree of sensitivity to noise. These models demonstrate
the most pronounced decline in accuracy at elevated noise
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TABLE VII
ACCURACY METRICS FOR DIFFERENT NOISE INTENSITIES AT 0.7 SCALE

Machine 1 Machine 5

Noise intensity 0.1 0.3 0.5 0.7 .0.9 0.1 0.3 0.5 0.7 0.9

RNN 0.9139 0.8612 0.8114 0.7675 0.7357 0.8029 0.7192 0.6550 0.5710 0.5385
1D-CNN 0.9105 0.8722 0.8422 0.8132 0.6703 0.8238 0.7590 0.7321 0.6703 0.6555
2D-CNN 0.9285 0.8844 0.8517 0.8204 0.7986 0.8556 0.7900 0.7339 0.6787 0.6496
LSTM 0.9084 0.8635 0.8347 0.7981 0.7744 0.8108 0.7511 0.6764 0.6326 0.5905

BILSTM 0.9236 0.8827 0.8354 0.8062 0.7805 0.8075 0.7602 0.6959 0.6434 0.6017
BILSTM-KAN 0.9257 0.8688 0.8277 0.7939 0.7658 0.7364 0.7259 0.6730 0.6145 0.5690

PGCNN 0.9405 0.8823 0.8538 0.8502 0.8236 0.8762 0.7928 0.7369 0.6696 0.6491
BO-CNN-LSTM 0.9347 0.8602 0.8411 0.8136 0.7958 0.8085 0.7260 0.7063 0.6460 0.6197

1D-LSTMRes 0.8932 0.8510 0.8083 0.7678 0.7400 0.7810 0.7106 0.6421 0.5858 0.5457
WCBK 0.9321 0.8848 0.8583 0.8396 0.8185 0.8472 0.7995 0.7731 0.7139 0.6944

Fig. 8. The proportion of different noises at noise intensity is 0.3. (a) Dataset for different positions of machine 1. (b) Dataset for different positions of
machine 5.

ratios, indicating a lack of resilience to high levels of noise.
The PGCNN and BO-CNN-LSTM models demonstrate

satisfactory performance at moderate noise ratios but exhibit
a notable decline in accuracy at high noise ratios, indicating
average adaptability. These models demonstrate high accuracy
at low to moderate noise ratios but exhibit poor performance
at high noise ratios.

In the comprehensive examination, the RNN model demon-
strates a notable reduction in accuracy on both machines,
suggesting a high degree of sensitivity to noise. The 2D-
CNN model initially exhibits high accuracy but subsequently
demonstrates a gradual decline in performance as noise ratios
increase. However, it does exhibit some resilience to noise. The
BILSTM model demonstrates a relatively stable performance
at high noise ratios, indicating good noise resistance. The
BILSTM-KAN model demonstrates consistent accuracy across
all noise ratios, indicating excellent noise resistance. The
PGCNN and BO-CNN-LSTM models demonstrate a notable
decline in performance at elevated noise ratios, indicating a
discernible impact of noise. The 1D-LSTMRes model exhibits

a notable decline in accuracy with elevated noise ratios,
indicative of its high sensitivity to noise. The WCBK model
exhibits the highest accuracy across all noise ratios, thereby
demonstrating the most robust noise resistance. The excep-
tional performance of the WCBK model can be attributed to
its multi-level and multi-modal feature extraction and fusion
mechanisms, along with its robust time-series processing and
nonlinear modeling capabilities. The denoising capabilities
of the Wavelet Transform and Convolutional Autoencoders,
the time-series feature capturing of the BILSTM, and the
nonlinear mapping capability of KAN, when combined with
comprehensive feature fusion and robust training strategies,
enable the WCBK model to maintain high accuracy under
various noise conditions, thereby demonstrating outstanding
noise resistance.

F. Model adaptation experiments

This paper employs a noise ratio of 1 and a noise intensity
of 0.3 to investigate the adaptability of diverse models for fault
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Fig. 9. Proportion of different noises at noise intensity 0.9. (a) Dataset for different positions of machine 1. (b) Dataset for different positions of machine 5.

TABLE VIII
MODEL ADAPTATION ACCURACY METRICS FOR A NOISE SCALE OF 1 AND INTENSITY OF 0.3

pdmp pin po

Machine 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

RNN 0.4084 0.2800 0.5304 0.4899 0.4770 0.3617 0.4984 0.7246 0.8594 0.7710 0.3383 0.3907 0.4571 0.7951 0.6450
1D-CNN 0.4883 0.3756 0.5783 0.5245 0.4776 0.4095 0.6926 0.7406 0.8667 0.6501 0.3474 0.5495 0.6237 0.8276 0.7467
2D-CNN 0.5300 0.4213 0.6227 0.5330 0.4333 0.4253 0.6037 0.7226 0.8731 0.7953 0.2712 0.5076 0.6127 0.8785 0.7102
LSTM 0.4543 0.3093 0.5740 0.4833 0.5031 0.3295 0.4930 0.6971 0.8612 0.6386 0.2791 0.3203 0.3573 0.7848 0.6264

BILSTM 0.4190 0.3698 0.7109 0.4871 0.5168 0.3063 0.5917 0.6532 0.8469 0.5742 0.2977 0.3363 0.4380 0.7767 0.6349
BILSTM-KAN 0.5155 0.3625 0.6900 0.4657 0.5229 0.3134 0.5129 0.6957 0.8460 0.6991 0.3501 0.3512 0.4566 0.7385 0.6592

PGCNN 0.5062 0.4260 0.6327 0.5801 0.5198 0.4324 0.6916 0.7485 0.8930 0.7467 0.4086 0.5045 0.6348 0.8656 0.7175
BO-CNN-LSTM 0.5467 0.5204 0.6101 0.5173 0.4785 0.3645 0.5834 0.7267 0.8366 0.7160 0.4219 0.4793 0.6011 0.8242 0.7610

1D-LSTMRes 0.4483 0.3293 0.6288 0.4965 0.4652 0.3059 0.5638 0.7263 0.8657 0.7528 0.2436 0.3822 0.4683 0.8105 0.6832
WCBK 0.4305 0.5739 0.7853 0.6854 0.4962 0.4724 0.6524 0.8770 0.9053 0.6744 0.5458 0.6059 0.7385 0.8883 0.7767

diagnosis in a range of drilling machines. The data from five
machines are divided into three distinct categories for analysis.
Machines 1, 2, 3, 4, and 5 are employed as test sets, while
the remaining data are utilized as a training set to assess the
adaptability of each model to diverse drilling machine fault
diagnoses. The specific performance metrics of each model
are presented in Table VIII.

In the pdmp dataset, the RNN model demonstrates con-
siderable variability in accuracy across the test sets, with a
range of 0.28 to 0.5304, suggesting instability. The 1D-CNN
model demonstrates relatively balanced accuracy, although
it performs less well on test set 3. The 2D-CNN model
demonstrates stability, although its accuracy on test sets 2
and 3 is relatively low. The LSTM model demonstrates the
most optimal performance on test set 3, with an accuracy of
0.574, while exhibiting moderate performance on the other test
sets. The BILSTM model demonstrates a relatively balanced
performance, attaining the highest accuracy of 0.7109 on test
set 3. The BILSTM-KAN model demonstrates remarkable
performance, particularly on test set 5, attaining the highest
accuracy of 0.5229 and outperforming all other comparison

models. The PGCNN model demonstrates overall performance
that is above average, achieving the highest accuracy of
0.6327 on test set 3. The BO-CNN-LSTM model exhibits the
highest accuracy of 0.6101 on test set 3 while demonstrating
relatively balanced performance on the remaining test sets.
The 1D-LSTMRes model demonstrates average performance
across all metrics. The WCBK model demonstrates exemplary
performance on test sets 2, 3, and 4, attaining the most favor-
able performance metrics, particularly achieving the highest
accuracy of 0.7853 on test set 3.

In the pin dataset, the RNN model demonstrates subop-
timal performance on test set 1, with an accuracy of 0.36.
Conversely, it exhibits superior performance on test set 5,
achieving an accuracy of 0.771. The 1D-CNN model demon-
strated the highest level of accuracy on test set 2, with
a score of 0.69, outperforming all other models. The 2D-
CNN model demonstrates remarkable performance on test set
4, exhibiting above-average results on other test sets. The
LSTM model demonstrates the highest level of accuracy on
test set 4, with a score of 0.7848, indicating a relatively
balanced overall performance. The BILSTM model exhibits
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suboptimal performance on test set 1, with an accuracy of
0.3063. Conversely, it demonstrates superior performance on
test set 4, achieving an accuracy of 0.8469. The BILSTM-
KAN model demonstrates remarkable overall performance,
attaining the highest accuracy of 0.846 on test set 4. The
PGCNN model demonstrates the highest performance on test
set 4, achieving 0.893 and exhibiting above-average overall
performance. The BO-CNN-LSTM model demonstrates the
highest accuracy on test set 4, with a score of 0.8366, while
exhibiting average performance on the remaining test sets. The
1D-LSTMRes model demonstrates satisfactory performance
on test set 2, with an accuracy of 0.75, indicating average over-
all performance. The WCBK model demonstrates balanced
and excellent performance across all test sets, particularly
achieving the highest accuracy among all models on test sets
1, 3, and 4.

In the po dataset, the RNN model demonstrates subopti-
mal performance on test set 1, with an accuracy of 0.3383.
Conversely, it exhibits superior performance on test set 4,
achieving an accuracy of 0.7951. The 1D-CNN model demon-
strates a noteworthy performance on test set 4, with an
accuracy of 0.8276. However, its performance on other test
sets is more average. The 2D-CNN model attains the highest
level of accuracy, 0.8785, on test set 4. The LSTM model
demonstrates satisfactory performance on test set 3, with an
accuracy of 0.78, indicating an average overall performance.
The BILSTM model exhibited the highest accuracy on test
set 4, with a accuracy of 0.7767. The BILSTM-KAN model
demonstrates overall efficacy, attaining the highest accuracy
of 0.7385 on test set 4. The PGCNN model exhibits the
highest performance on test set 4, achieving 0.8656, and
demonstrates above-average overall performance. The BO-
CNN-LSTM model demonstrated the highest accuracy of
0.8242 on test set 4, while exhibiting average performance on
the remaining test sets. The 1D-LSTMRes model demonstrates
satisfactory performance on test set 4, with an accuracy of
0.8105, indicating average overall performance. The WCBK
model demonstrates balanced and excellent performance on all
test sets, particularly achieving the highest accuracy of 0.8883
on test set 4.

The WCBK model exhibits balanced and excellent perfor-
mance across all test sets and dataset types, indicating strong
adaptability and robustness. The WCBK model’s combination
of Wavelet Transform, Convolutional Autoencoders, BILSTM,
and KAN networks forms a multi-level, multi-dimensional
feature extraction and analysis framework, exhibiting remark-
able adaptability and robustness. The model is capable of
adapting to signal features of varying frequencies and time
scales, handling complex time series dependencies, modeling
nonlinear and high-dimensional data, and maintaining high
performance even in noisy environments.

VI. CONCLUSION

This paper proposes and validates an innovative fault di-
agnosis model, WCBK, for drilling machines that aims to
improve the accuracy of fault diagnosis under complex work-
ing conditions. The main contribution of this model is its

ability to maintain fault diagnosis capability under strong noise
interference. The Wavelet Transform is used to decompose
input signals into the time-frequency domain, effectively ex-
tracting key fault features and reducing noise interference.
The Convolutional Autoencoder then processes these features,
focusing on retaining fault-related information. To enhance
analytical capacity, BILSTM captures long-term dependencies
and temporal dynamics in the fault data. The KAN dynami-
cally highlights key features, improving both interpretability
and attention to critical information. The integration of BIL-
STM and KAN strengthens the model’s ability to analyze
and classify fault patterns accurately. The effectiveness of
the model is verified through ablation experiments, different
individual experiments, different part experiments, and model
adaptability experiments.

Although the WCBK model demonstrates good fault diag-
nosis performance under strong noise interference, its perfor-
mance may vary under different operating conditions. There-
fore, future research can explore ways to further enhance the
model’s generalization ability to ensure it maintains efficient
fault diagnosis performance in more complex and variable
working environments. Techniques such as transfer learning
can be employed to enable the model to quickly adapt to new
operating conditions or equipment types, thereby improving
its adaptability and robustness in different scenarios.
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