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Abstract. Many image synthesis tasks, such as image compositing, rely
on the process of image harmonisation. The goal of harmonisation is to
create a plausible combination of component elements. The subjective
quality of this combination is directly related to the existence of human-
detectable appearance differences between these component parts, sug-
gesting that consideration for human perceptual tolerances is an impor-
tant aspect of designing automatic harmonisation algorithms. In this
paper, we first investigate the impact of a perceptually-calibrated com-
posite artifact detector on the performance of a state-of-the-art deep
harmonisation model. We first evaluate a two-stage model, whereby the
performance of both pre-trained models and their naive combination is
assessed against a large data-set of 68128 automatically generated image
composites. We find that without any task-specific adaptations, the two-
stage model achieves comparable results to the baseline harmoniser fed
with ground truth composite masks. Based on these findings, we design
and train an end-to-end model, and evaluate its performance against a
set of baseline models. Overall, our results indicate that explicit modeling
and incorporation of image features conditioned on a human perceptual
task improves the performance of no-reference harmonisation algorithms.
We conclude by discussing the generalisability of our approach in the
context of related work.

Keywords: image compositing · harmonisation · artifact detection ·
end-to-end compositing · deep learning

1 Introduction

Image harmonisation is an important task in image compositing and synthesis,
aiming to minimise appearance-based differences between individual elements
of a composite, in order to produce a perceptually plausible end result [32].
An image composite commonly consists of at least one object, inserted into a
background image, referred to as the scene. As the object and scene are com-
monly captured under different environmental conditions, visible appearance
mismatches between them may exist, due to differences in illumination, cam-
era intrinsics, post-processing, encoding or compression. Thus, the goal of image
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harmonisation is to minimise such differences and create a realistic result. This
process can be performed manually by compositing artists, however, many au-
tomatic approaches have been proposed, including alpha matting - linear combi-
nations of object and scene pixel values [23], gradient-domain optimization tech-
niques [22, 1, 20], statistical appearance transfer [25, 19] and multi-scale methods
[4, 5, 29].

With the advent of deep learning (DL), automatic image synthesis tech-
niques have garnered renewed interest and afforded considerable improvements
in state-of-the-art image compositing and harmonisation techniques. Methods
using variants of convolutional autoencoders (AEs) have been successfully used
to directly approximate the harmonisation function, in a supervised learning
setting. Notably, Tsai et al. (2017) [30] use a convolutional AE in a multi-task
setting to both segment and harmonise an input image, provided the target ob-
ject mask. Another approach [7] uses a generative adversarial network (GAN)
to perform both colour and geometric transformations, pre-training their model
on synthetically-generated data. Conditional GANs have also been applied in
this context, by learning to model joint distributions of different object classes
and their relationships in image space. This allows for semantically similar re-
gions to undergo similar transformations [2]. A more recent method combines
state-of-the art attention mechanisms and GAN-based architectures with explicit
object-scene knowledge implemented through masked and partial convolutions
and provide a dedicated benchmark image harmonisation dataset, dubbed iHar-
mony [8].

A common requirement of these state-of-the-art techniques is the provision of
binary object/scene segmentation masks at input, both during training and infer-
ence. These masks serve as an additional feature, identifying the corresponding
image pixels that require harmonisation. As such, these methods are applicable
to scenarios where new composites are generated, and these masks are avail-
able. However, in cases where these ground truth masks are not available, these
techniques can not be easily applied without human intervention, limiting their
application to scenarios such as harmonisation of legacy composites. Moreover,
existing methods do not explicitly leverage human perception - the usual tar-
get audience of image composites. This includes human sensitivity to different
local image disparities between object and scene, shown to correlate with sub-
jective realism ratings [12]. Lastly, binary object masks used in these techniques
provide only limited information about the nature of the required corrections,
indicating only the area where corrections are needed. This can result in the
harmonisation algorithm over- or under-compensating in different local regions
of the composite.

In a recent pilot study [11], the authors argue that explicit modeling of the
perception of compositing artifacts, in addition to their improvement, would al-
low for harmonisation algorithms to be used in a no reference setting, whereby
the input mask is not required at inference time. Thus, the model performs
both the detection and harmonisation task. They also show that combining two
off-the-shelf, pre-trained models – a detector [10] and a harmoniser [30] – can
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achieve comparable results to mask-based state-of-the-art harmonisation algo-
rithms. This enables design of end-to-end harmonisation networks without the
need for input object masks, allowing automatic harmonisation of content for
which masks are not readily available. The authors also claim that the explicit
encoding of the location and perceptual magnitude of errors in the model could
allow the process to take advantage of the benefits of multi-task learning, fea-
ture sharing and attention mechanism in terms of generalisation [24, 26]. The
potential applications of such automatic compositing systems are wide-ranging,
including improvement of legacy content, detection of image manipulations and
forgery, perceptually-based metrics and image synthesis.

In this paper, we recapitulate and extend this work to an end-to-end model
designed, trained and evaluated from scratch. First, we present the original proof-
of-concept two-stage compositing pipeline [11]. This consists of a detector net-
work, which outputs masks corresponding to regions in an input image requiring
harmonisation, and a harmoniser network, which corrects the detected regions.
We then evaluate the performance of the harmoniser based on using object masks
predicted by the detector, versus using ground truth object masks. Based on the
evaluation of the two-stage model, we then propose a single end-to-end model,
and compare its performance to a set of baselines trained from scratch on the
challenging iHarmony dataset, as well as the synthetic COCO-Exp dataset from
the original study [11]. We show that our end-to-end model outperforms the base-
lines on both datasets. This indicates the usefulness of the pre-trained perceptual
features to the compositing task using two different end-to-end architectures. To
our knowledge, this is the first work investigating an end-to-end combination of
a DL-based feature extractor, conditioned on a perceptual task, with an image
harmonisation network to perform no reference image harmonisation.

The remainder of the paper is structured as follows: Section 2 introduces re-
lated work and discusses state-of-the-art techniques, Section 3 describes the orig-
inal methodology adopted for the two-stage model evaluation, Section 4 presents
the results of this evaluation and Section 5 discusses the findings [11]. In Section
6 we detail the methodology, architecture and optimisation details of the pro-
posed end-to-end models, which are evaluated in Section 7. Finally, in Section
8, we review our findings in the context of the original study and wider appli-
cation to image harmonisation. We also discuss the strengths and weaknesses
of our approach, before concluding and considering future research directions in
Section 9.

2 Related Work

2.1 Image Compositing & Harmonisation

Automatic image compositing and harmonisation are both active and challeng-
ing problems in the domain of image understanding, synthesis and processing.
While, image compositing concerns the entire process of combining regions from
different source images into a plausible whole, image harmonisation focuses on
the problem of matching the various appearance features between the object and
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scene, such as noise, contrast, texture or blur, while assuming correctly aligned
geometric and illumination properties [29].

Similarly to the problem of image in-painting, compositing and harmonisa-
tion are both ill-posed problems [16]. For a given region requiring correction,
many different arrangements of pixels could be deemed plausible. This is in con-
trast to problems where the solution is unique. Depending on the content and
context of an image composite, some scene properties, and thus required object
corrections, may be inferred from the information contained within the image or
its metadata, such as the characteristics of the illuminant [27], colour palette,
contrast range or the camera response function. Other properties, such as an
object’s albedo, texture or shape are often unique to the object and cannot be
derived directly from contextual information in the scene. While methods for
approximation of these properties do exist [15], they are difficult to integrate
into end-to-end systems and can be challenging to parametrise. The recent suc-
cesses in DL have motivated a number of approaches [30, 2, 7, 8] which attempt
to exploit the huge amount of natural imagery available in public datasets in or-
der to learn the mapping between a corrupted composite image and a corrected
composite, or natural image.

2.2 Multi-task Learning, Feature Sharing & Attention

Due to the abundance of natural image data and the ill-posed nature of the
compositing problem, DL approaches are well-suited for this task. However, su-
pervised DL methods require large amounts of annotated data in order to learn
and generalise well. This requirement grows along with the complexity of a prob-
lem and the desired accuracy. In order to tackle this issue, many architectural
considerations have been proposed, many of which focus on learning good feature
representations, which generalise well between tasks.

Multi-task learning approaches rely on performing multiple related tasks in
order to learn better feature representations. In recent years many tasks in im-
age understanding have achieved state-of-the-art performance by incorporating
multi-task learning [14], for example in predicting depth and normals from a
single RGB image [13], detection of face landmarks [36] or simultaneous image
quality and distortion estimation [17]. This is afforded by the implicit regular-
isation that training a single model for multiple related tasks imposes [6], and
the resulting improved generalisation. Feature sharing approaches combine deep
features from related domains or tasks in order to create richer feature repre-
sentations for a given task. This is similar to the multi-task paradigm, however
instead of sharing a common intermediate feature representation, features from
one or multiple layers of two or more networks are explicitly combined. The
Deep Image Harmonisation (DIH) model [30] adopts both these paradigms, by
combining the tasks of image semgentation and harmonisation and sharing deep
features of both task branches. Finally, attention mechanisms [9] can also be used
to learn the relative importance of latent features for different combinations of
task and input sample.
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2.3 No more masks

State-of-the-art image harmonisation methods focus largely on improving com-
posites in scenarios where the identity of pixels belonging to the object and scene
are known a priori. For example, the DIH approach [30] uses a AE-based archi-
tecture to map corrupted composites to corrected ones, incorporating a two-task
paradigm, which attempts to both correct the composite, as well as segmenting
the scene. However, this approach does not explicitly condition the network to
learn anything more about the corruption, such as its magnitude, type or loca-
tion. Instead object location information is explicitly provided at input, using
a binary mask. A similar approach [7] inputs the object mask at training time,
while also introducing mask segmentation and refinement within a GAN archi-
tecture, in addition to learning of geometric transformations of the object. The
segmentation network, as part of the adversarial training process, discriminates
towards ground truth binary masks as an output - omitting any perceptual fac-
tor in the discrimination task. This achieves improved results compared to the
AE, however at the cost of a more complex architecture and adversarial train-
ing. Due to the many dimensions along which combinations of object and scene
may vary, compositing systems should be equipped to encode such differences
before attempting to correct them. Kang et al. (2015) [17] show that a multi-
task approach is an efficient way to ensure that distortions are appropriately
encoded by the model. Other approaches to this problem include self-supervised
pre-training to enforce equivariance of of the latent representation to certain
input transformations [34], which has been used to train perceptually-aligned
local transformation classifiers [10], also used in the proposed model.

3 Two-Stage Model: Methodology

3.1 Motivation

Whilst multi-task learning has been shown to be efficient in the coupled process
of detecting and correcting arbitrary pixel level transformations within images,
perceptually-based encoding of artifacts within masks has not yet been shown to
be effective in the image harmonisation field. Before approaching the multi-task
model, it is necessary to prove empirically that this end-to-end process is viable.
Thus we first design a two-stage approach using two existing standalone networks
for both detection and harmonisation to test the efficacy of these perceptual
masks in this domain.

3.2 Approach

Our overarching goal is the design of an end-to-end automatic compositing
pipeline, capable of detection and correction of common compositing artifacts,
without the need for specification of an object mask. In order to evaluate the
effectiveness of this approach, we assess predicted, perceptually-informed object
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masks, rather than ground truth object masks, as input to the deep harmoni-
sation algorithm. We then measure similarity between ground truth images and
composites corrected with the harmonisation algorithm, using either the orig-
inal synthetic binary masks Ms or the perceptually-based masks predicted by
the detector Mp. Accordingly, we refer to composites harmonised using ground
truth masks as Cs, and composites generated by the end-to-end system as Cp.

Fig. 1: Illustration of research methodology adopted in the two-stage model eval-
uation. Reprinted from [11].

We evaluate the hypothesis that the performance of an end-to-end detec-
tion and harmonisation model is comparable to a harmonisation model using
manually created object masks. Confirmation of this hypothesis would support
our case for incorporating explicit detection of composite artefacts into end-
to-end image composite harmonisation systems. Our research methodology is
summarised in Figure 1.

3.3 Detector and Harmoniser Models

Both the detector (referred to as the PTC henceforth) [10] and the harmoniser
(referred to as the DIH) [30] are deep, image-to-image, fully convolutional au-
toencoder networks. The PTC takes a single image as input and generates a
2-channel output mask, which encodes probabilities for each pixel, p, in the in-
put image as being affected by a negative (channel 0) or a positive (channel 1)
perceptually suprathreshold exposure offset. We combine these two suprathresh-
old channels by taking a pixel-wise maximum max(p0, p1). This way we generate
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Fig. 2: System overview: illustration of the detector and harmoniser combined
into a two-stage composite harmonisation system. A synthetic composite image is
first supplied to the detector, which outputs a 2-channel mask indicating detected
negative and positive (not pictured here) exposure shifts. This mask is converted
to a single-channel representation by taking a maximum over predicted pixel-
wise probabilities and fed to the harmonisation network, which then produces a
harmonised composite, which we compare against the ground truth. Reprinted
from [11].

a single mask of the same resolution as Ms, with the difference that each pixel
encodes the probability of a suprathreshold exposure offset. We do not apply
any modifications to the DIH and adopt the authors’ original trained implemen-
tation. The final detector+harmoniser (PTC+DIH) system can be see in Figure
2.

3.4 COCO-Exp Dataset

To perform a fair comparison, we follow the composite generation approach of
[30]. Specifically, we sample pairs of images containing objects belonging to the
same semantic category (e.g. person, dog, bottle etc.) from the MSCOCO dataset
[21]. Using their corresponding object masks, we perform statistical colour trans-
fer based on histogram matching, proposed by [25]. This process can be see in
Figure 3. This colour transfer is performed between object regions of the same
semantic category. As the detector is only conditioned for exposure offsets, we
perform colour transfer only on the luminance channel of Lab colourspace. We
generate a total of 68128 composites and corresponding ground truth images.
We also extract corresponding ground truth masks for comparison against the
masks predicted by the detector. For the sake of brevity, we refer to this dataset
as COCO-Exp throughout the remainder of this paper.

3.5 Similarity Metrics

To evaluate each of the two approaches, we calculate similarity metrics between
ground truth images Cgt and harmonised images, corrected by the methods
under test: Cs (harmonised using ground truth masks), and Cp (harmonised
using predicted masks). We adopt the objective metrics used in the original
work, i.e. Mean Squared Error (MSE):
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Fig. 3: Dataset generation process adapted from [30]: a) source image sampled
from MSCOCO, b) corresponding object mask, c) target image, d) target image
object mask, e) result of luminance transfer [25] of source - c), to target - e.
Reprinted from [11].

MSE =
1

N

n∑
i=0

(Yi − Ŷi)
2 (1)

where Y is the ground truth and Ŷ is the harmonised image (either Cp or Cs),
and Peak Signal-to-Noise ratio (PSNR):

PSNR = 10 log10

( R2

MSE

)
(2)

here R is the maximum possible pixel intensity - 255 for an 8 bit image. In
addition, we leverage the Learned Perceptual Image Patch Similarity (LPIPS)
[35], which measures similarity based on human perceptual characteristics. We
denote these errors with subscripts referring to the method the composite was
fixed with, e.g. MSEp for MSE between the ground truth image and correspond-
ing composite fixed using predicted masks;MSEs for MSE between ground truth
and a composite fixed using the original MSCOCO masks.

3.6 Evaluation Procedure

Using our generated composite dataset we first evaluate the DIH with ground
truth masks. We then use the same dataset to generate predicted object masks
using the PTC and feed these along with the corresponding composite images
to the DIH. We obtain two sets of corrected composites: composites corrected
using the ground truth masks Cs and composites fixed using masks predicted
by the PTC Cp. We then calculate similarity metrics between the ground truth
images used to generate the composites in the first place, and each of the two
sets of corrected images Cs and Cp. These are reported in the following section.

4 Two-Stage Model: Results

The results of our evaluation can be seen in Figure 4, which shows distributions
of each of the similarity metrics calculated between ground truth images and
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composites fixed using Cs and Cp respectively. Mean similarity metrics can be
seen in Table 1. Overall, masks predicted by the detector yield higher average
errors across all three metrics compared to the ground truth masks, however the
magnitude of these differences is small for each of the metrics. Figure 5 shows
distributions of image-wise error differentials for both techniques.

Metric DIH PTC+DIH

MSE 19.55 22.65
PSNR 35.81 35.18
LPIPS 0.0227 0.0292

Table 1: Means of similarity metrics for both techniques evaluated against ground
truth: DIH, and the PTC+DIH. Lower is better for LPIPS and MSE, higher is
better for PSNR. Reprinted from [11].

Fig. 4: Similarity metric distributions for both Cs (composites corrected with
synthetic ground truth masks) and Cp (corrected with masks predicted by the
detector) (a) MSE, (b) PSNR and (c) LPIPS. Larger values indicate poorer
performance for MSE and LPIPS, better for PSNR. Reprinted from [11].

Fig. 5: The image-wise error differentials for Cp-Cs, for each of the three metrics:
(a) MSE, (b) PSNR and (c) LPIPS. Note, negative values for MSE and LPIPS
indicate images for which Cp (composites corrected with masks predicted by
the detector) achieves lower error than Cs (composites corrected with synthetic
ground truth masks). For PSNR, the obverse is true. Reprinted from [11].
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5 Two Stage Model: Discussion

Our results indicate that using detected, instead of ground truth object masks
can yield comparable results when performing automatic image composite har-
monisation. Errors obtained using ground truth masks are on average lower com-
pared to those obtained using predicted masks, however in a number of cases
the situation is reversed. Figure 6 illustrates examples of failure cases, where
Figures 6c 6d show cases of the DIH over-compensating, while the PTC+DIH
combination achieves a more natural-looking result. We stress that these results
were obtained with no additional training. Further investigation indicates par-
ticular scenarios where this occurs. In some cases, the harmonisation algorithm
applies an inappropriate correction, rendering a higher error for Cs compared to
the un-harmonised input. Then, if Mp does not approximate Ms well, is blank
(no detection) or its average intensity is lower than that of Ms, the additional
error induced by the harmonisation algorithm is minimised, rendering lower er-
rors for Cp. This can be seen in both images in 6d. This indicates the benefit of a
perceptually motivated approach to mask prediction, allowing the influence over
the weight of the transformation applied by the harmoniser. We also notice that
the deep harmonisation network tends to apply colour transformations regard-
less of whether they are required. In some cases, the perceptually-based masks
mitigate this problem. Images showing examples of comparable performance of
the two methods can be found in Figure 7. Subfigures c and d show the results
of harmonisation using the approaches under test and subfigures e and f show
Mp and Ms respectively.

Fig. 6: Examples of the DIH with ground truth masks over-compensating, and
applying colour shifts to compensate a luminance transform, resulting in sub-
optimal output. From left: a) ground truth, b) input composite, c) output of
PTC+DIH, d) output of DIH with ground truth masks, e) masks predicted by
PTC, f) ground truth masks. Reprinted from [11].

Due to the nature of the PTC currently operating solely on luminance trans-
forms, a further benefit to the multi-task learning paradigm is the generalisability
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Fig. 7: Comparison of harmonisation outputs from our evaluation. From left to
right: a) ground truth, b) input composite, c) corrected with PTC+DIH (Cp),
d) corrected with ground truth masks + DIH (Cs), e) Detected masks (Mp), f)
ground truth masks (Ms). Masks in colour indicate the raw output of the PTC,
where the direction of detected luminance shifts is indicated - red for negative
and green for positive shifts. Reprinted from [11].
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to arbitrary pixel level transforms, for example colour shifts. The binary masks
accepted by harmoniser networks currently do not separate across these trans-
forms, they treat them all homogeneously. A perceptually motivated approach
to the predicted mask can encode, on a feature-by-feature basis, the perceptual
likelihood of harmonisation required. This is not to say, necessarily, that deep
harmonisation networks cannot learn this behaviour, but provision of further
support to encode this non-linearity at the input to the network, and/or by ex-
plicit optimisation at the output, would likely benefit performance and improve
generalisation [6]. This is conceptually similar to curriculum learning improving
convergence in reinforcement learning problems [3], or unsupervised pre-training
techniques improving convergence in general.

6 End-to-End Model: Methodology

In Section 4 we illustrated that perceptually-based detection of local image trans-
formations can be leveraged to generate composite masks, achieving comparable
results to ground truth masks when evaluated on an image harmonisation task
using a state-of-the-art harmonisation model. This indicates that an end-to-end
model combining both these tasks could be used to perform no reference har-
monisation, removing the need for provision of object masks for both training
and inference, as opposed to current state-of-the-art approaches. Joint train-
ing would also allow for overall performance improvements and enable different
combinations of the source models to be evaluated. Thus, to perform a fair evalu-
ation, we implement the end-to-end model and the state-of-the-art baseline from
scratch, and train both on the iHarmony dataset [8].

6.1 Model Architectures

The end-to-end model is designed by combining the DIH and PTC models.
First, we implement the DIH model in Tensorflow, according to the authors’
specification and perform random initialisation. We remove one outer layer of
the DIH model, following [8], in order to accomodate for the lower resolution of
the PTC and perform all training using a resolution of 256 × 256.

We evaluate two approaches to combining the source models. The first ap-
proach, PTC-DIH combines the models sequentially, whereby the PTC generates
a mask from the input image, which is then concatenated with the input and
fed to the DIH model, as illustrated in Figure 2. We replace the original 3-class
softmax output of the PTC, and replace it with a single-channel sigmoid out-
put, to match the input of the DIH model. We also add up- and downsampling
operations in order to adapt the input image to the 224 × 224 resolution of the
PTC, and its output to the 256 × 256 input of the DIH.

The second approach, PTC-att-DIH, inspired by self-attention mechanisms
[31], relies on combining the latent features of both models through an attention-
like dot product:
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ajoint = fc3

(
σ
(
fc1(aptc)

)
·fc2(adih)

)
(3)

where aptc is a vector of flattened activations from the bottleneck layer of the
PTC, adih is a vector of activations from the last convolutional layer of the DIH
encoder, fcn are fully-connected layers with 512 neurons each, and σ is a softmax
activation.

In both the PTC-DIH and PTC-att-DIH the encoder of the PTC is frozen
during training, as in [10], however in the case of PTC-DIH, the decoder of the
PTC is allowed to learn, while in the PTC-att-DIH only the encoder is used. The
PTC does not receive any additional supervisory signals, such as ground truth
object masks, or scene segmentation, only the end-to-end MSE harmonisation
loss.

The performance of our joint model is evaluated against two baselines - the
vanilla DIH (without semantic segmentation branch), which requires input masks
(DIH-M ), and a no-mask version of the same model (DIH-NM ), where masks
are not provided as input during training. To ensure a fair comparison, we train
all models from scratch, using the same dataset and evaluate their performance
on the COCO-Exp dataset from Section 3.4 and the iHarmony validation set.
We motivate this by the fact that the original PTC implementation is only con-
ditioned on exposure shifts, so a comparison across both datasets can illustrate
the performance for simple exposure shifts (COCO-Exp) versus more complex
colour transformations (iHarmony). If the perceptually-based features learned
by the PTC generalise well across image features, an improvement should be
seen over the naive DIH-NM model when evaluated on both these datasets.

6.2 Optimization Details

All of our models are trained for 50 epochs using the entire training set of the
iHarmony dataset, consisting of 65742 training images and evaluated using the
validation set, consisting of 7404 validation images. The Adam optimizer [18]
with default parameters and an initial learning rate of 0.001 is used. We set the
batch size to 32 and enforce a 256 × 256 resolution. We apply pre-processing
to all input images scaling the pixel intensity range from [0, 255] to [−1, 1]. For
each training run, we select the model minimising validation loss for further
evaluation.

7 End-to-End Model: Results

This section presents the evaluation of the proposed models on both the valida-
tion set of the iHarmony dataset, as well as the COCO-Exp dataset generated
for the preliminary study.

Table 2 shows average MSE and PSNR values for both datasets and each
of the models. We find that both of our proposed end-to-end models improve
performance on both the iHarmony and COCO-Exp datasets, as compared to
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the naive baseline, when performing harmonization with no input mask. This
suggests the PTC features are relevant to the image harmonisation task. Overall,
the PTC-DIH achieves best performance in harmonisation with no input mask,
outperforming the PTC-att-DIH and the DIH-NM baseline.

Model
iHarmony COCO-Exp

MSE PSNR MSE PSNR

DIH-M 89 32.56 201 32.18

DIH-NM 153 30.93 276 31.12
PTC-att-DIH 151 31.02 264 31.37
PTC-DIH 124 31.39 214 31.61

Table 2: Test metrics for all evaluated models, across the two datasets used in our
experiments. Lower is better for MSE, higher is better for PSNR. Best results
using no input mask in bold. Results for the input-mask-based baseline (DIH-M)
shown for reference. Higher is better for PSNR, lower is better for MSE.

Figure 8 illustrates the performance of all models under evaluation for sev-
eral images from the COCO-Exp dataset. Specifically, in each row the input and
ground truth are shown in Figures 8a and 8b respectively. Figures 8c, 8e and
8g show the harmonised outputs of the DIH-NM, PTC-att-DIH and PTC-DIH
models respectively, while Figures 8d, 8f and 8h are difference image heatmaps
between the input and the harmonised output predicted by each model. These
heatmaps provide an illustration of the magnitude, direction and location of
the applied correction. Upon inspection of similarity metrics, the harmonised
outputs and the difference heatmaps, it can be seen that the PTC-DIH model
outperforms both the baseline (DIH-NM) and the latent-space-based combina-
tion of both models (PTC-att-DIH). This can be seen clearly when comparing
the difference images: the PTC-DIH applies corrections more consistently across
the region of the target object, compared to the two alternatives. Figure 9 com-
pares the performance of the PTC-DIH to the mask-based DIH-M model for 3
versions of an input image from iHarmony. It can be noticed that the output
of both the PTC-DIH and DIH-M closely follow that of the reference. The area
corrected by the PTC-DIH aligns with the ground truth mask. Small differeneces
in the output images can be noted, particularly around edges, where the PTC-
DIH sometimes contribues to softness and smearing (e.g. Fig.9e, middle row).
We found this was often related to artifacts around the edges of objects and near
edges of images produced by the PTC. Nonetheless, despite the lack of input
mask, the PTC-DIH achieves consistent and comparable results for each of the
image variations and, in some cases, avoids the colour shifts induced by the DIH
(e.g. compare columns d) and e) with column c) of Figure 9), as discussed in
Section 5.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8: Comparison of outputs from each model under evaluation for a range of
images from the COCO-Exp dataset. a) input image b) ground truth c) DIH-NM
result d) Difference image between input and output for DIH-NM e) PTC-att-
DIH result f) difference image between input and output for PTC-att-DIH g)
PTC-DIH result h) PTC-DIH difference image. In difference images, red indi-
cates that ŷi,j − xi,j > 0.0 whereas blue indicates the opposite.

(a) Input (b) Target (c) DIH-M (d) Mask (e) PTC-DIH (f) Diff

Fig. 9: Comparison between the corrections applied by PTC-DIH, and the mask-
based DIH-M models for multiple variants of the same image. a) input composite,
b) ground truth image c) output of DIH-M, d) Difference heatmap between out-
put of DIH-M and ground truth, e) output of PTC-DIH, f) Difference heatmap
between output of PTC-DIH and ground truth.
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Examples of failure cases can be seen in Figure 10. The top two rows illustrate
the most common failure case, where the region requiring harmonisation is not
detected, and thus not corrected by the model. The top row illustrates this
scenario for a larger object size, while the middle row does so for a small object
(one of the sheep near the bottom of the image). The bottom row shows a
scenario where the harmonisation is performed on the correct object, however the
amount of correction is insufficient. In addition, the model applies harmonisation
to a part of the image not requiring harmonisation (the screen). This behaviour
is likely due to the fact that the PTC was originally conditioned on exposure
shifts, resulting in higher sensitivity to over-exposure, compared to other image
distortions.

The impact of object size on harmonisation performance of all models is sum-
marised in Table 3 for both the iHarmony and COCO-Exp datasets. Because the
MSE is calculated across the entire image, errors are overall lower for smaller
objects. However, when comparing the MSE of harmonised images against their
baseline MSE (calculated between the input image and ground truth), the rel-
ative MSE improvements are greatest for larger objects. This trend is present
across both datasets. The PTC-DIH achieves lowest errors in each object size
category across both datasets. Notably, for objects in the COCO-Exp dataset
with areas ranging 20-40% of the image size, the PTC-DIH model achieves lower
errors than the mask-based DIH-M baseline. This illustrates the impact of the
PTC being conditioned on only exposure shifts, but also indicates that these
features are useful when transferred to a different type of transformations, such
as those in iHarmony.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10: Examples of failure cases. a) input image b) ground truth c) DIH-NM
result d) Difference image between input and output for DIH-NM e) PTC-att-
DIH result f) difference image between input and output for PTC-att-DIH g)
PTC-DIH result h) PTC-DIH difference image.
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iHarmony

Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 33.0 116.1 206.5 335.05 456.2 485.48 484.58 705.12

MSE orig. 47.1 235.02 449.84 642.75 1170.31 1222.97 1151.83 1752.12
DIH-NM 50.73 192.22 360.98 497.42 919.29 1058.39 888.11 1534.94
PTC-att-DIH 50.36 190.2 370.65 462.72 884.22 1001.85 933.02 1659.24
PTC-DIH 45.02 150.04 311.72 359.99 623.03 895.33 720.82 1464.62

COCO-Exp

Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 73.74 401.55 655.11 785.35 927.68 1042.68 1119.19 1129.01

MSE orig 86.11 524.29 878.42 1131.53 1503.27 1802.57 2072.08 2097.13
DIH-NM 94.3 502.63 828.69 1045.05 1373.97 1661.55 1876.75 1958.01
PTC-att-DIH 93.26 492.65 802.24 986.49 1271.15 1510.16 1684.99 1806.24
PTC-DIH 82.35 410.08 647.13 778.76 946.99 1084.28 1240.54 1295.38

Table 3: Average MSE on the iHarmony and COCO-Exp datasets for each of the
evaluated models, grouped by area of harmonised object as a fraction of image
size. MSE orig is the MSE between unharmonised inputs and ground truth. Bold
values indicate lowest error for each object size, given no mask input. DIH-M
model shown for reference.



Perceptually-Informed No-Reference Image Harmonisation 19

8 Discussion

The results of both experiments indicate that, in the context of image harmon-
isation, perceptually-based detection of harmonisation targets can be used to
remove the requirement for input object masks. While the proposed approach
does not outperform baseline mask-based approaches, it performs significantly
better than the state-of-the-art baseline when trained with no input masks.
Furthermore, despite the PTC being only conditioned on exposure shifts, its
combination with the DIH model improves results on both datasets, suggesting
that the perceptually-based features learned by the PTC are useful to the har-
monisation task. This is reinforced by the fact that even combining PTC and
DIH features in latent space affords a modest improvement over the baseline.
Some bias towards exposure shifts is nonetheless noticeable - largest improve-
ments across both datasets occur for achromatic objects (e.g. the sink or toilet in
Fig. 8). This could be addressed by training the PTC on a wider range of local
transformations. The problem of object size and its impact on harmonisation
accuracy is likely connected to the fact that larger objects tend to contribute to
the MSE more, compared to smaller objects. The MSE for a small object requir-
ing a 0.5 stop exposure shift will be lower than that of a larger object requiring
the same shift. To alleviate this, when training with input masks, the MSE can
simply be scaled by the mask size [28], however with no input mask, estimation
of target object area becomes nontrivial and presents and interesting direction
for further research.

Not unlike the original DIH implementation, the proposed end-to-end model
can suffer from gradient artifacts along mask edges, particularly when the initial
error to be corrected is large. This issue could be addressed by adopting masked
convolutions and utilising self-attention mechanisms, as in [8] or by explicitly
incorporating gradient information, as in [33]. While we plan to address these
issues in future work, the advantages of our proposed model demonstrated in
this work still hold in the context of image harmonisation with no input mask.
Following [10], we argue that in order to improve image harmonisation perfor-
mance, particularly in scenarios where input masks are not available, detection
of target regions for harmonisation should leverage intermediate representations
equivariant to the transformations of the input to be harmonised. Input masks
used in state-of-the-art harmonisation algorithms mimic this role - they encode
the presence and location of all input transformations requiring harmonisation as
a local binary feature, thus receiving a form of an extra supervisory signal. Our
results show that explicitly incorporating the artifact detection paradigm into
the harmonisation process can be beneficial, while alleviating the requirements
for presence of object masks at inference time.

9 Conclusions & Future Work

In this paper, we have evaluated a novel method for performing image harmon-
isation without the need for input object masks. Our approach leverages two
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state-of-the-art models - an artifact detector and a harmoniser - which, when
combined, produce competitive results to mask-based models. We first perform
a two-stage evaluation of the original pre-trained models, and based on evalua-
tion results, extend this to a custom end-to-end model in two variants, trained
from scratch on the challenging iHarmony dataset. We show that both vari-
ants of our end-to-end model outperform the baselines when evaluated on two
different datasets. These findings indicate that information about location and
magnitude of composite artifacts can be useful in improving the performance
of existing compositing and harmonisation approaches. We motivate this by
illustrating that ground truth object masks commonly used in harmonisation
algorithms essentially substitute the process of detecting local transformations
and inconsistencies requiring correction. Accordingly, our results show that the
requirement for provision of object masks for such algorithms can be relaxed
or removed entirely by the explicit combination of composite artifact detection
with their correction. This provides a basis for investigation in future work of
joint modeling of both the detection and correction of composite image artifacts,
e.g. under a multi-task learning paradigm, where a joint latent representation is
conditioned both to be equivariant with respect to input transformations and to
encode the structure of the image. In such a scenario, input masks may be used
during the training stage, but would not be necessary during inference.
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