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Abstract Recently, Baykara et al. (The Quasicrystalline
string landscape, 2024; New non-supersymmetric tachyon-
free strings, 2024) discussed the existence of quasicrystalline
string vacua that contain a single neutral moduli, the dilaton,
and studied compactifications of the non-supersymmetric
SO(16) x SO (16) heterotic-string on these spaces. We dis-
cuss a specific class of quasi-realistic string vacua with simi-
lar properties that has been known since the late eighties and
analyse the vacuum energy in several non-supersymmetric
examples that correspond to compactifications of tachyon
free ten dimensional vacua as well as compactifications of
tachyonic ten dimensional vacua. Our analysis uses the Free
Fermionic Formalism of the heterotic-string in four dimen-
sions and employs asymmetric boundary conditions that
project all the geometrical moduli by Generalised GSO pro-
jections. This methodology produces models with both pos-
itive and negative spacetime potential at one-loop.
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1 Introduction

String theory is the most developed contemporary framework
to explore the systhesis of the gauge and gravitational interac-
tions. Perturbative string theory predicts that a specific num-
ber of degrees of freedom, beyond those that are observed
in present-day experiments, are required for its consistency.
In some guise, some of these degrees of freedom may be
interpreted as extra spacetime dimensions, which are com-
pactified on an internal manifold. The vast richness of the
space of possibilities hinders the path toward extracting the
configuration which may correspond to our physical world.
However, the observed particle and cosmological data pro-
vide strong constraints on the construction of viable mod-
els. The string vacua typically contain fields whose Vaccum
Expectation Value (VEV) determine the characteristics of
the internal manifolds and in turn fix the phenomenological
properties of the string models. Generic string vacua contain
a large number of such fields. However, string vacua that are
relevant for our physical world should contain few of those,
if any at all.

The question of the existence of stable De Sitter string
vacua has generated substantial interest in string phe-
nomenology over the past two decades. String vacua with
positive vacuum energy exist in abundance [3-5]. The vital
question is their stability. Typically, this question is investi-
gated in an effective field theory limit of the string vacua,
although some progress has recently been made scanning
the string landscape [6—8]. Whether such effective field the-
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ory limits have a realisation in string theory is an open
question. However, closed string theory provides alternative
routes to stabilise, or fix, the vacua. The independence of the
left- and right-moving solutions allows for their asymmet-
ric treatment. This, for example, enables the construction of
the heterotic-string [9] in which the left-moving sector is
fermionic, whereas the right-moving sector is bosonic. One
can similarly assign asymmetric actions on the degrees of
freedom that correspond to the six dimensions of the com-
pactified manifold. This facilitates fixing of some or all of
the internal dimensions at fixed points in the moduli space.
It implies that the associated neutral moduli fields, which
allow the continuous deformations of the internal radii, are
projected out from the physical spectrum.

Phenomenological string models that reproduce the main
characteristics of the Standard Model, like the existence of
three generations charged under a viable gauge group, i.e. one
that may be reduced to the Standard Model gauge group, were
constructed since the late 1980s. A particular class that pro-
duces arich space of quasi-realistic, three generation models
is the class of heterotic-string models in the free fermionic
formulation [10-19], which correspond to Z, x Z; toroidal
orbifold compactifications at enhanced symmetry points in
the moduli space [20]. Many of the appealing phenomeno-
logical properties of the free fermionic models are rooted in
the underlying Z, x Z, orbifold structure [20]. In particular,
as we discuss below in detail, this formulation facilitates the
projection of all the geometrical moduli, which imposes that
the internal space is completely fixed. The projection of the
geometrical moduli is generated by the utilisation of asym-
metric boundary conditions for the worldsheet fermions that
correspond to the internal compactified dimensions. How-
ever, the projection of all the geometrical moduli is achieved
only in some special cases.

In the fermionic worldsheet constructions, the marginal
operators that generate the moduli deformations correspond
to worldsheet Thirring interactions among the worldsheet
fermions [21-23]. These worldsheet Thirring interactions
correspond to massless fields in the string spectrum, which
are the moduli fields. The allowed worldsheet Thirring inter-
actions, and the corresponding moduli fields, must be invari-
ant under the Generalised GSO (GGSO) projections. These
GGSO projections are induced by the boundary condition
basis vectors that define the string models. For specific
assignments, the worldsheet Thirring interactions are forbid-
den, and the corresponding moduli fields are projected out
from the spectrum. In very special cases, all of the worldsheet
Thirring interactions are forbidden and, therefore, all of the
moduli fields are projected out. In those cases, all the geo-
metrical coordinates are fixed at specific values in the moduli
space. Furthermore, in the special cases that we discuss here,
the projection of the moduli fields is obtained in tandem with
the reduction of the number of chiral generations to three.

@ Springer

It is important to emphasise that, while all the geometrical
moduli can be fixed in the models discussed in this paper, the
dilaton field remains unfixed at the perturbative level. To fix
the dilaton field requires some nonperturbative effect, such as
the racetrack mechanism [24,25]. This can be implemented
in the vacua that we discuss here as they contain multiple
hidden sector factors with varying number of matter states.
The racetrack mechanism is implemented in the effective
field theory limit and therefore will not be discussed fur-
ther here. We note that discussions of moduli fixing in the
effective field theory limit of string compactifications date
back to the early days of string phenomenology [26]. The
fixing of the geometrical moduli by the assignment of asym-
metric boundary conditions can operate in supersymmetric
vacua as well as in non-supersymmetric string models. In the
case of models with N = 1 spacetime supersymmetry, the
vacuum energy is identically zero and it has a finite value
in non-supersymmetric models that can be either positive
or negative, depending on the GGSO phase matrix. That is
to say that in these non-supersymmetric models, there is no
inherent necessity that the one-loop potential be positive or
negative, and it can be manipulated by refining the GGSO
matrix.

Motivated by the recent interest in non-supersymemtric
heterotic models [1,27-33], in this paper we calculate the
vacuum energy of such models, constructed in the Free
Fermionic Formalism. The models we focus on, derived from
both tachyonic and tachyon-free ten dimensional vacua, have
previously been shown to have favourable phenomenologi-
cal properties [29,34], and have all geometric moduli fixed.
We build on these models and construct examples in which
the vacuum energy is positive and negative. In Sect.2, we
review the Free Fermionic Formalism (FFF). Following this,
Sect. 3 gives a brief review of moduli fields in free fermionic
models. We give a description of the partition function and
potential under this formalism in Sects. 4 and 5. In Sect. 6 we
review examples of non-supersymmetric models from previ-
ous works [29,34], calculating their potential, and adapting
them further to find models with positive and negative values
of the potential. Finally, we draw our conclusions and look
towards future work in Sect. 7.

2 Free fermionic formalism

In this section we present an overview of the Free Fermionic
Formalism (FFF) originally formalised within Refs. [35-37]
and recently reviewed in [38]. In the FFF of the heterotic
string in four dimensions, all the additional degrees of free-
dom (18 left-moving and 44 right-moving) that are required
to cancel the conformal anomaly are represented as free
fermions propagating on the string worldsheet. In the light-
cone gauge, the (worldsheet) supersymmetric left-moving
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sector includes the two transverse spacetime fermionic coor-
dinates ¥ and 18 internal worldsheet real fermions. In
the right-moving bosonic sector, the additional fermions are
often represented as 12 real fermions, relating to the compact-
ified manifold, and 16 complex fermions. The worldsheet
fermions can propagate around the non-contracting loops of
the torus and in doing so can therefore pick up a phase
f— =D a(f) e (=1, +1]. Q2.1
where o (f) is our boundary condition for the fermion f.
Real boundary conditions are represented by «(f) € {0, 1},
corresponding to Neveu—Schwarz or Ramond boundary con-
ditions. In the following models it also becomes necessary
to utilise complex boundary conditions, such that «(f) €
{%, —%}. The phases between sectors are given as a GGSO
phase matrix with elements, C [,',’;] from which the Hilbert
space is constructed.

The construction of quasi-realistic free fermionic mod-
els involves the selection of specific basis vectors of bound-
ary conditions. The general construction process follows two
main steps. The first step of this process involves looking at
the NAHE-set [39], a set of five basis vectors used to con-
struct SO (10) vacua. These vectors, v;, are {1, S, by, by, b3}
defined as:

— 1,..,6 1,...,6 1,...,6
1= {wﬂ»X » Y , W |

— 1,2 34 5,6
S = {W“) X » X s X }
— 1,2 3,456 53,456 -1 71,2345
b1={WL»X >y |y 71771/[ }
_ 34 1,2 56 51,2 =56 =2 71,2345
bZZ{WM»X Y , W |y , W J’lalﬁ }

by = {yh, x50, wh234 | 1234 53 512345, 2.2)

In the second step of the construction, additional basis
vectors are introduced to reduce the number of generations to
three and break the four dimensional gauge group. A general
additional basis vector can be defined as

b, = {a(w), o a(@®) | aGY, o) a(q'ss)}, 2.3)

where in general the labeling b4 5 ¢ indicate vectors that
do not break the SO(10) symmetry and «, 8, y indictat-
ing those that do. For example, SO (10) is broken by the
boundary conditions of 1}1 in &, B, y, which can lead to
SUGB) x U(1),SO(6) x SO4) or SU(3) x SU(2) x U(1)?
gauge groups. Each model we analyse in this paper follows
this structure, with ¢, B8, y varying to achieve different gauge
groups and fulfil various phenomenological conditions. The
partition function is then given by the sum of all possible sec-

tors modulated by the GGSO matrix elements, as described
in Sect. 4.

3 Moduli fields in free fermionic models

The phenomenological free fermionic heterotic-string mod-
els correspond to toroidal Z, x Z; orbifolds at special points
in the moduli space. This correspondence is discussed in
detail in the literature [40—42] and elaborate dictionaries exist
that facilitate translating the vacua from one representation
to the other. In four dimensions the models are described
in terms of two dimensional conformal and superconformal
field theories with central charges Cgp = 22 and C;, = 9,
respectively. Deformations from the free fermionic point in
the moduli space are incorporated by worldsheet Thirring
interactions between the worldsheet fermions that are com-
patible with the conformal and modular invariance contraints.
Untwisted moduli fields in the massless string spectrum are
in one-to-one correspondence with the coefficients of the
allowed Thirring interactions.

The exactly marginal operators associated with untwisted
moduli fields in symmetric orbifold models have the form
aX'9X’, where X!, I = 1,...,6, are the coordinates of
the six-torus 7°. The untwisted moduli fields admit a geo-
metrical interpretation and appear as the couplings of the
exactly marginal operators in the non-linear sigma model
action. In the construction of the current algebra from chiral
bosons, the operator id X’ is a U(1) generator of the Car-
tan sub-algebra. In the fermionic formalism, idX! ~ y’w’
and id X% ~ 7'&!, and the exactly marginal operators are
given by Abelian Thirring operators of the form J} (z)J, Ié (2),
where Ji (2), J Ije (z) are some left- and right-moving U (1)
currents in terms of worldsheet fermions. The untwisted
moduli fields are the coefficients of the Abelian Thirring
interactions, which are invariant under the GGSO projec-
tions generated by the basis vectors in a given string model.
The two dimensional action of the Thirring interactions takes
the form

S = / d*zhij(X)J} (@) T3 ~ / d*zhijy'e' e,
(3.1)

where J i (i =1,...,6) are the left-moving chiral currents
of U(1)% and J_Ije (j =1,...,22), are the right-moving chiral
currents of U (1)%2.

The models that we consider here are NAHE [39]
and NAHE [4,34] based models, where the NAHE-set is
given by the set of five basis vectors described in Sect.2,
{1, S, by, by, b3}, and the NAHE-set is obtained by § — S
map [4,43]:

S ={yH x"2 x> x>0 - §
3 23
= {yh, x 12, 3 50 330y

The Thirring interactions that are left invariant by the NAHE-
and NAHE-set are

(3.2)

@ Springer
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]1 2J1 2, J2,4j1?;,4; J5,6J‘5,6
y12w12y12w12 y34w34y34w34

y5 16,5, 6y5 675,60

(3.3)

These set of untwisted moduli are present in all symmet-
ric Zy X Z; orbifold models and correspond to the set of
untwisted fields in these models. The corresponding scalar
untwisted moduli fields from the Neveu—Schwarz sector are

(i, j=12)
hij =1x")L ® ¥/ w)g =G, j=3,4) (3.4)
(i,j=5,6)

From these we can form the complex and Kihler structure
moduli of the Z, x Z, orbifold that are given by [23,41],

and similarly for 75 3 and U3 3. The three complex structure
and three Kéhler structure moduli are present in all symmetric
Zo x 7 orbifold compactifications.

In the FFF we can assign asymmetric boundary con-
ditions for the set of internal fermions {y,w | y, ®} that
correspond to the six left- and right-moving fermionised
coordinates. We remark that while the identification of the
fermionised coordinates is fixed on the left-side by the super-
current constraint, there is some arbitrariness on the bosonic
side, as discussed in Ref. [44]. In the quasi-realistic free
fermionic models the symmetric versus asymmetric assign-
ment is made in the basis vectors that extend the NAHE-
set, which are constructed to reduce the number of gener-
ations to three and break the NAHE-based SO (10) sym-
metry to one of its subgroups. Additional properties of the
models, like the existence of untwisted electroweak Higgs

1
@O _ g
I = E(H | TiHy) doublets in the massless string spectrum and the existence
| of a leading Top Quark Yukawa coupling, depend on the
= — |x"+ix?), v —iy?wi), assignment of symmetric versus asymmetric boundary con-
V2
1 (3.5)  ditions [45,46]. An example of a three generation model with
U, = T(Hl(l) + in(l)) SU(3)x U (1) x SU (2)? unbroken S O (10) subgroup is given
2 b
y
1 . o1, -2
=5 X' +ix®) @' e + i),
| Y | X120 x4 56 | AR | L LS P8
a| O 0 0 0 11100 | O O O 11110000
B| O 0 0 0 11100 | O O O 11110000
111 1 1 1 111111
yi0p0 0 0]32200]37 37 3[0337222320
| Y330 3454 3555 5356 | ylwd 3252 w0ad 51@° | wle* 0'd! 0’ @?at
o 1 1 1 0 1 1 1 0 1 1 0 3.6)
B 0 1 0 1 0 1 0 1 0 0 0 '
y 0 0 1 1 1 0 0 O 1 0 1

@ Springer
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This model gives rise to one type of (level-matched) tachyon
producing sectors with

(@?,0%) = (2,6) and Ng = 0 (3.7)
with the set of GGSO phases given by
1 S by by b3 a By
1 1 1 -1 -1 -1 1 1 i
1 1 1 1 1 1 1 -1
b -1 -1 -1 -1 -1 -1 -1 i
v; 1 -1 -1 -1 -1 -1 -
C[vj:| _ b> 1 1 1 1 1 1 1 i (3.8)
b3 -1 -1 -1 -1 -1 -1 1 i
o 1 1 1 1 1 1 1 1
1 1 -1 -1 1 =1 -1 -1
y 1 -1 1 =1 1 -1 -1 1

The full massless spectrum of this model together with the
cubic level superpotential was presented in [34]. It can easily
be checked that all the terms in Eq. (3.3) are not invariant
under the GGSO projections induced by the basis vectors in
Eq. (3.6), irrespective of the GGSO phases in Eq. (3.8). That
is to say that the corresponding scalar fields are projected, and
so in this model all the geometrical moduli are fixed. Further-
more, the model does not contain any entirely neutral fields
aside from the dilaton. The model contains, like many other
models in this class, three untwisted states that are neutral
under the entire four dimensional gauge group. These are
obtained by acting on the NS vacuum with the oscillators
X12@0°@°)0), x340'5°10), x569>¥*|0). Such states are ubiq-
uitous in the free fermionic models. However, as seen from
Eq. (3.3), they do not correspond to moduli fields. They corre-
spond to charged states that become neutral due to the trunca-
tion of the rank of the four dimensional gauge group and carry
discrete gauge charges. They arise because the free fermionic

models are constructed at the enhanced symmetry point in
the Narain moduli space. At the level of the extended NAHE-
set [47], the right-moving world sheet fermions {y, @} give
rise to an enhanced SO (4)? gauge symmetry, corresponding
to the {7°}; (312, @> Nl 4} groups of right-moving
real worldsheet fermions, that are periodic in the sectors by,
b, and b3, respectively. One can combine pairs of these real
worldsheet fermions to form the Cartan subalgebra and there
is some freedom in the choice of these pairs, correspond-
ing to the permutation symmetry of the right-moving real
worldsheet fermions [44]. The completely neutral states in
the model of table 3.6 are then charged states. They become
neutral states because of the reduction of the rank in the
model that break the Cartan generators under which they are
charged. We can see, however, that they do not correspond
to geometrical moduli, which is our main interest here. This
conclusion is borne out by analysing the moduli in a bosonic
interpretation of the model [44], and observing that what-
ever combination of right-moving real fermions is taken, the
Thirring interactions and the corresponding moduli fields are
always forbidden and projected out. This analysis confirms
that in this model all the geometrical moduli are fixed. We
emphasise, and as emphasised in modulifix [? ], FGNP [? ],
that this is not generically the case and is particular to the class
of models to which the model in table 3.6 belongs. Specif-
ically, to the pairings of the real right-moving worldsheet
fermions. In general, they give rise to non-vanishing terms
in the cubic level superpotential and therefore generically
will become massive in supersymmetric preserving vacua
along F'- and D-flat directions [48]. We note that the model
still contains numerous charged fields and a fully dynamical
analysis of the vacuum is yet to be performed. The space of
charged fields can further be constrained by using a com-
bination of symmetric and asymmetric boundary conditions
with respect to the set of internal fermions {y, w|y, »} L6
as e.g. in the model of Table 3.9

| wu | X12 X34 X56 &l,.. 5 f]l 77]2 ﬁ3 (]_51 ..... 8
«a] 0] 0 0 OJ]1 1 1 0 O0[]1 0 O0]1 I 0 0O O 0O 0 0
gl ol o o o1 1 1 0 ol0O 1 o0|lO0O O 1 1 0 0 0 O

1 1 1 1 1 1 1 1 1 1 1 1

y{0p 0 0 O0f3 53 3 7 2/l2 2 2[00 0 0 53 53 53 3

| y3y6 y4 -4 y5y5 y3y6 yle y2y2 W (,z) 3y 0)2(1)4 (,()1(,7)1 (,()3(,?)3 (1)25)4
o T 0 0 1 0 0 1 1 0 0 1 1 (3.9)
B 0 0 1 1 1 0 0 1 0 1 0 1
Y 01 0 0 01 0 0 1 0 0 0
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As can be checked from Eq. (3.3), all the Thirring inter-
action terms are not invariant under the GGSO projections
defined by the basis vectors in Eq. (3.9). However, from the
boundary conditions in Eq. (3.9) we note for example that
the boundary conditions with respect to the set of internal
fermions {70} is symmetric in « but asymmetric in
and the same is the case with respect to the set of fermions
{§]’2, 5)5’6}, whereas both are asymmetric with respect to
the set of fermions {@" " +*}. The basis vectors o and S
both break the SO(10) symmetry of the NAHE-set to the
SO(6) x SO (4) subgroup. The consequence of assigning a
mixture of symmetric and asymmetric boundary conditions
is the reduction in the number of charged fields in the model
[49,50].

To summarise this section we note that the boundary con-
dition basis vectors in Egs. (3.6) and (3.9) forces the pairing
of the pairs of real fermions y'w’, w?w* and y3y® into com-
plex fermions. It entails that none of the worldsheet Thirring
interactions in Eq. (3.3) are allowed by these boundary con-
ditions and that all of the associated moduli fields in Eq. (3.4)
are projected out by the GGSO projections. Hence, the inter-
nal space in models that utilise this pairing is completely
fixed. Reference [44] provided a bosonic interpretation of
this construction.

4 Partition function

In the FFF, the partition function can be calculated in the
following modular invariant form:

2= n el [50]
- 5B o[
:\/E

where Zp describes the bosonic contribuition and is given
by

“.1)

4.2)

1 1

ZB = — 5 5-
© n%ip?

(4.3)
The sectors are labelled by o and §; the sum is over the
sectors and the product is over the fermions in each sector,
with complex fermions contributing to the product twice;
7> is the imaginary component of the modular parameter.
Definitions of ¥ and n/n in terms of /T can be found in
Appendix A of [4].

For non-supersymmetric models, it is more useful to
express the partition function more overtly as a polynomial

in terms of the ‘nome’ ¢ = 7™M+ and p = g =

@ Springer

e 2im(T—in) The general form of this polynomial is

_ Amn m n
Z_Zrqus

m,n

(4.4)

where the additional factor of 7, is omitted from the poly-
nomial in the following examples, and reintroduced during
integration. In this form the coefficients a,,, correspond to
the difference between the number of bosonic and fermionic
states, N, — N, at mass level (m, n). Moreover, divergent
terms can be identified easily in the polynomial. This idea is
discussed further in Sect. 5.

5 Potential

Once the partition function has been found and expressed
as a polynomial, the spacetime potential can be found from
integrating this over the fundamental domain of the torus.

4 2
_IM / T 5 T, g
2 (27_[)4 r ‘[22 s Uy 3

1 M f d*t -
=557 . 3 2 md"q
2t Jr < 2

= E AmnLmn,

2. . . .
where df—f is the modular invariant measure and the funda-

Vi —loop =

5.1)

2
mental domain, F, is defined as:

F=F+Fr 5.2)

]-"1={te(C| n>1 A (5.3)

|71 !
< —-
=3

1
fzz{re(C| TP>1 A <1 A |11|<§}.

(5.4)

Importantly, it can be shown that the integral over F, will
always be finite, however the conditions for finiteness over
JF are as follows [4]:

ifm+4+n<O0andm —n ¢ Z\ {0}

In = 15 55

" ™| Finite otherwise. ©-)
Because of this, both level-matched and non level-matched
tachyonic states can lead to divergences and destabilise the
vacuum. For NAHE- and NAHE-based models with only real
boundary conditions, a finite vacuum energy can be achieved
by simply projecting out the level-matched tachyons. We
believe that this can be generalised to imaginary boundary
conditions also, and it is indeed the case in the models we
consider.
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6 Analysis of models
6.1 S-models

As we have discussed, there are multiple ways to break super-
symmetry in this formalism. The first way we will consider
is through GGSO projections acting on a model derived from
atachyon free SO (10) vacuum. This was considered in [29],
and we adopt the same basis vectors and GGSO matrix below.
We remark that classifying the supersymmetry breaking as
explicit or spontaneous requires analysis of the dependence
of the model on the geometric moduli, in order to establish
whether supersymmetry is restored on the boundary of the
moduli space, in which case it is classified as “spontaneous-
breaking”. There is not other simple criteria that informs us
whether the breaking is spontaneous or explicit. As there is
no dependence of the vacuum energy here on any moduli,
there is no evidence for either conclusion. Reference [29]
discusses how some sectors maintain their supersymmetric
structure, whilst in other sectors this is not the case

wu’ 1,2’ X3,4, X5,6}

1,2 3,456 53456 -1 71234,
,’y3 56‘y3 56’n’1// 3 5}

(¥, x
{y", x
b2 =y = {,(//[L’ X3"4’ y1,2’ w5,6 [ y1,2’ 11)5’6, ﬁZ’ ]/}1,2.&4.5}
{y", x
{
{

s 1,2,3,4 | -1234 -3 71234,

x20w | w Y 5 6.1)
1,2,3,4,5, 1,2,3,4,5,6 | 52,45 -1,3,6 7123 71,234
B3I 123436 243 136 123 gl23dy

2,4 24 ,51,2346 -5 7123 71,234
ot yhadAe @3 23 gl

15, 1,5, =356 -1.24 7123
w |y , W Y

1 - 1
123 _ 1 234567 _1
X 3

It was shown in Sect.3 that these basis vectors fix the
geometric moduli and project the associated scalar fields.
Depending on the choice of GGSO phases, one can build
supersymmetric and non-supersymmetric models. Below we
present the GGSO matrix previously used to construct a non-
supersymmetric model:

1 S by by b3 a B vy

b; | -1 -1 -1 -1 -1 -1 -1 i

v _ _ _ _ _ _ _ .
c [vj] _ b> 1 1 1 1 1 1 1 . (6.2)
b; | -1 -1 -1 -1 -1 -1 1 i

B 1 1 -1 -1 -1 =1 —1 -1

The full spectrum of this model is given in Appendix A. The
gauge group of the model is:
6
SUB)e x U(l)e x SUQ)L x SUQ)r x [ [ Ui
i=1
10
xSUB)my x SURm, x [ U;
j=7

(6.3)

The survival of supersymmetry in this model is dependent
onC [3] and C [g] , and can be restored through the following
modification:

C |:S:| — —1l,and C |:S:| — —1
o B

The supersymmetric case of course gives a vanishing parti-
tion function when calculated, whereas the
supersymmetric model returns the following partition func-
tion:

(6.4)

non-

2 S6q 16g2

Z=56+=+20_ 29" 4 o884 4 2048pigs
P )4 pi
1
12807 pr648pt g
qi
8704p3 3 3
+22P  410624pi gt
qZ

+138048p + 1494784 pq..., (6.5)

where we define ¢ = ¢*™7 and p = § = e~ 277, We give

the partition function here to O(1) in p and ¢ as higher order
terms give diminishing corrections to the potential, and our
aim is simply to determine if the potential we find is finite and
to give an example of a model with a positive cosmological
constant.

Integrating the partition function, as defined in Sect.5,
we find the model returns a positive Cosmological Constant,

corresponding to a De Sitter vacuum
A = 0.00499799M%, (6.6)

In pursuit of additional examples, we modify the previous
GGSO matrix in the following way

B b3
c [bj — l,and C [ﬂ} - 1, (6.7)
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giving the following GGSO matrix: ~1,23 _ l 75,6,7,8 _ l
n —_— 7¢ -
2 2
v;
c[,,.] 6.11)
J
1 S b1 bz b3 o ﬂ y~ 1 S bl b2 b3 o ,B ¥
1 } } _11 _11 _11 ! } ’1 1 11 =1 =1 =1 =1 =1
S ! - s 11 111 -1 -1
El —i —} —i —} —i —i —i i by [ -1 -1 -1 -1 -1 -1 -1
_b (-1 -1 -1 -1 -1 =1 =1 6.8 ["l} by | -1 -1 -1 -1 =1 -1 1
b3 | -1 -1 -1 -1 -1 -1 =1 | ©8 ¢ Vil Ty [ -1 -1 -1 -1 -1 1 -1 1 (6.12)

11 1 1 I 1 1
1 1 -1 -1 1 -1 -1 -1
1 -1 1 -1 1 -1 -1 1

R ™ R

Whilst the coefficients of the partition function differ, the
cosmological constant remains positive and finite:

1 3
2 56 32g7 512g3%
7542y 300, 7 51
p p? p*
192p 11
3360 + 1024piqt + — 24576p2g2
q?
8704p1 3 3
+ - 346112p3g 3 + 138240p
q
+1427456 pg...., (6.9)
A = 0.0174667 M. (6.10)

6.2 S-models

The second route to non-supersymetric models is through
explicit supersymmetry breaking at the SO(10) level, via
the § — S map [4,43]. The following supersymmetric basis
set and GGSO matrix was defined in [49] and later adapted
to the S-model in [34]:

1,...,6 1,..,6 | =1,....6 =1,....6

]l:v] {wﬂ ”,y”,w”|y”,w”,
-1,2,3 1,2,3,4,5 71,....8
7 g N0 }

S — v2 — {1//11 1,2’ X3’49 X5,6}

X L
bl_v?’_{wu 3456|y ,4,5,6 771’101,2,3,4,5}

3,4 2 1,2,3,4,
by = vg = {y, x y 2 w0 312 w30 2, 234y
b'§=v5={1/fﬂ X56 w1,2,3,4|w1234 -3 w12345}

o =vg= {y3y6 )—]3)—)6 w6w6
)—} II} 3w3 w2w4 wl 23”7] ¢1,2}
v7

B =vr={y5,57°, yw v, wle',

@ Springer

e | -1 -1 -1 -1 1 11 1
g l-1 -1 -1 1 -1 -1 1 1
y \—=1 -1 1 1 -1 -1 -1 —i

Following the pattern of Sect.6.1, we begin with a stable
supersymmetric model with vanishing partition function and
cosmological constant.

In [34], the following modifications are discussed:

S— 8={yH x"?

S . [B
C|:yi|—>l,C|:§:|—>1.

We further develop the matrix in the following way:

[ el -sefi] el

(6.15)

x> 50 P30y, (6.13)

(6.14)

For clarity and completeness, the resulting matrix is given
below.

1 -1 -1 -1 1 -1 i

1 S by by bz a By
1
1 1 1 1 1 -1 -1 i

- by |-1 -1 -1 -1 -1 -1 -1 i
i .
C|:vj1| _bf{-1 -1 -1 -1 -1 -1 1

b3 | -1 -1 -1 -1 -1 1 -1 1 (6.16)
14 1 -1 -1 -1 1 -1 1 1
g |-t 1 -1 1 -1 -1 1 1
b4 -1 -1 1 1 -1 -1 -1 —i
The gauge group is now enhanced and is given by
6
SUB)e x Ue x SUQR)L x U x [ Ui
i=1
4
xSU(4) x HSU(Z)j x U(1), (6.17)
j=1

where the last three terms are contributions from the hidden
sector. The full spectrum is given in Appendix B. Applying
the same formula, we find the partition function and vacuum
energy to be the following:
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1 3
2 56 16g2 6494  240g3
Z= 168+ = 4L 24" 00T T
p P p? pI p§
1864 + 336¢5 pS + 1408¢ 1 p?
1 3
96p? 8256p1
+ 207 9777647 p? — 2232045 pi + P
q? g7
3 3
—395520g 4 p*
+142464p + 1530368¢p.... (6.18)
A = —0.0199M%. (6.19)

Here we see that at the one-loop level, we find a finite neg-
ative cosmological constant, providing a counter example to
the suggestion in [2] that “more rigid” tachyon-free string
theories always have positive cosmological constant.

7 Discussion and conclusion

In this paper we analyse non-supersymmetric heterotic-
string models with all geometric moduli fixed, and calcu-
lated the vacuum energy in such models. This paper fol-
lows the work of Baykara, Tarazi and Vafa [2], who recently
presented models of similar properties, constructed using
quasicrystaline orbifolds. Angelantonj, Florakis, Leone and
Perugini [30] have since also presented non-tachyonic, non-
supersymmetric heterotic vacua with this property. We used
the free fermionic formulation to construct the string vacua
that correspond to Z, x Z, toroidal orbifold compactifi-
cations at special points in the moduli spaces. The inter-
nal spaces that we utilised in our investigations were used
since the late eighties in the construction of phenomenolog-
ical three generation string models and led, for example, to
a prediction of the top quark mass several years prior to its
experimental observation [51].

This method is well established and builds on the NAHE-
set with three additional basis vectors with asymmetric
boundary conditions. These basis vectors project the scalars
associated with the geometric moduli and fixes the inter-
nal space, such that only the dilaton is unfixed. The quasi-
realistic models we consider here have previously been
shown to conform to the following phenomenological condi-
tions: projection of level matched tachyons; three generations
of chiral fermions; and contain a Higgs doublet. The starting
points to achieve these phenomenological models are quite
different, and have been achieved through compactification
of a tachyon free ten dimensional vacuum in S-Models,
and through compactification of a tachyonic ten dimensional
vacuum in S-Models. We have shown in Sects.6.1 and 6.2
that both routes to non-supersymmetric models can produce
vacua with finite potential, and that the value of this one-loop
potential can be positive or negative, relating to De Sitter and
anti-De Sitter spaces.

However, there is a number of phenomenological issues
with the models we have presented here. Consider the S-
Model, which starts from a tachyon free, supersymmetric
vacuum and has a finite, positive cosmological constant when
supersymmetry is broken through GGSO projection. In Ref.
[29], it is noted, “...in this model the untwisted Higgs bi-
doublets, which couple at leading order to the twisted sector
states, are projected out and consequently the leading mass
term which is identified with the top mass is absent”. There-
fore work remains to be done to find a model which adheres
to the TQMC fertility condition [52] without compromising
the stability of the vacuum potential. We have no reason to
assume these two conditions are mutually exclusive. Simi-
larly, there is no reason to assume the vacuum potential will
always be positive in S-Models, though we only give posi-
tive examples above. Turning our attention to the S-Model
of Ref. [34], which arises from a tachyonic ten dimensional
vacuum. By modifying the GGSO phase matrix, we show
it is possible to construct models with finite, negative cos-
mological constant, and provide the new spectrum for this
model.

As in the S-Model, there is no reason a priori that an
S-Model cannot be found that meets the fertility conditions
and has a finite potential, which may be positive or negative.
It is our understanding that the infrastructure to find such
models already exists in the methodology described above.
Incorporating the *fertility methodology’ as discussed in e.g.
Ref. [19], we conjecture that stable, fertile models with all
geometric moduli fixed can be found in abundance.

As a word of caution we remark that the question of the
stability of non-supersymmetric string vacua should be fur-
ther examined. In the first place, the question of stability at
higher orders remains open, as emphasised in Refs. [29,34],
higher order terms may cause instabilities in the potentials.
Similarly, a full analysis of the potential of the string vacua
is yet to be performed, e.g. hidden sector condensates may
stabilise the dilaton but may also destablise the vacuum. Fur-
thermore, while it is found quite generally that all the geo-
metrical moduli are projected out in the models studied here,
the role of the three untwisted states that are neutral under
the four dimensional gauge group, Xlzc?)36)6|0), X34J)1j5 10),
x56725%10), ought to be further understood. These ques-
tions are not unique to the models we have presented here
and are ubiquitous across both supersymmetric and non-
supersymmetric models. However we view this work as a
natural extension to the phenomenological analysis of these
models in previous papers.
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Appendix A: Spectrum of model in Sect. 6.1

The notation for the table is the following: The first col-
umn describes if the states correspond to spacetime bosons
or spacetime fermions and specifically for b; the type of
particle. The second column is the name of the sector. The
third column gives the dimensionality of the states under
SU@B)c x SU(2)1, x SU(2)g and the fourth the charges of
the observable U (1)s. Columns 5 and 6 describe the hidden
sector. The only charges appearing in the table that do not
have a self-evident name are:

@ Springer

QC = Qal +QE2+Q$3 s
Og = Q$2+Q$3+Q$4,

Qg = Q55 + Qaﬁ + Q$7 . (A.1)

To avoid writing fractional numbers all the charges in the
table have been multiplied by 4. Finally, for every state the
CPT conjugate is also understood to be in the spectrum and
has not been written explicitly (Tables 1, 2, 3,4, 5, 6, 7).

Appendix B: Spectrum of model in Sect. 6.2

The following tables present the spectrum of the S model
given in Sect.6.2. As in Appendix A, all charges are multi-
plied by four and the CPT conjugates are omitted (Tables 8,
9,10, 11, 12, 13, 14, 15, 16, 17). Throughout the tables we
use the vector combination: { = 14b1+by+b3 = {p18).
We also use the following notation:

Q8=Q$5+Q$6+Q$7+Qas.
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Table 1 The untwisted Neveu—Schwarz sector matter states and charges

F SEC (C; Ly R) Qc O (s O Q536 Q515 Q24 SUB)u,, (OF S 0sg Q9 Ogs

b NS 1,1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,1, 1 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,1, 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,1, 0 —4 4 0 0 0 0 (1, 1) 0 0 0 0
1,1, 0 4 —4 0 0 0 0 (1, 1) 0 0 0 0
a,1, 1 0 0 —4 4 0 0 0 (1, 1) 0 0 0 0
a,1, 1 0 0 4 —4 0 0 0 (1, 1) 0 0 0 0
a,1, 1 0 —4 0 4 0 0 0 (1, 1) 0 0 0 0
a,1, 1 0 4 0 4 0 0 0 (1, 1) 0 0 0 0

Table 2 The untwisted S-sector matter states and charges

F SEC (CiLiR)  Qc Qp  Qp QOp Qpe  Qpg  Qps  SUGm, Qp Os Qo Qg

f S (1,1, 1) 0 0 0 0 0 0 0 (3.,3) 0 —4 4
1,1, 0 0 0 0 0 0 0 (3,3) 0 4 —4
1,1, 0 0 0 0 0 0 0 (1, 1) 4 0 0
1,1, 0 0 0 0 0 0 0 (1, 1) 4 0 0 —4
1,1, 0 0 0 0 0 0 0 (1, 1) —4 0 0 4
(1,1, 0 0 0 0 0 0 0 (1, 1) —4 0 0 —4
3,1, D) —4 4 0 0 0 0 0 (1, 1) 0 0 0 0
G, 1,1 4 —4 0 0 0 0 0 (1, 1) 0 0 0 0
3,1, —4 0 4 0 0 0 0 (1, 1) 0 0 0 0
(3.1,1) 4 0 —4 0 0 0 0 (1, 1) 0 0 0 0
3,1, —4 0 0 4 0 0 0 (1, 1) 0 0 0 0
(3.1,1) 4 0 0 —4 0 0 0 (L, 1) 0 0 0 0
1,2,2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,2,2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 —4 0 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 0 —4 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 0 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 —4 0 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
1,1, 1) 0 0 0 0 0 —4 0 (1, 1) 0 0 0 0
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Table 3 The observable matter sectors
F SEC (C; Ly R) Oc Q5 O O Q5.6 Q5145 Q24 SUQB)H,, O 0sg Q9 Ogs
0r, by 3,2, 1) 2 2 0 0 -2 0 0 1,1) 0 0 0 0
Or, (3,1,2) -2 -2 0 0 -2 0 0 (1,1) 0 0 0 0
Ly, (1,2,1) -6 2 0 0 -2 0 0 1,1) 0 0 0 0
Lg, 1,1,2) 6 -2 0 0 -2 0 0 1,1 0 0 0 0
b S+ by 3,1,2) 2 2 0 0 -2 0 0 1,1 0 0 0 0
(3,2, 1) -2 -2 0 0 -2 0 0 1,1) 0 0 0 0
(1,2, 1) 6 -2 0 0 -2 0 0 1,1) 0 0 0 0
(1,1,2) -6 2 0 0 -2 0 0 1,1) 0 0 0 0
01, by (3,2, 1) 2 0 2 0 0 -2 0 1,1) 0 0 0 0
Or, (3,1,2) -2 0 -2 0 0 -2 0 1,1) 0 0 0 0
L, 1,2, 1) —6 0 2 0 0 -2 0 1,1) 0 0 0 0
Lg, 1,1,2) 6 0 -2 0 0 -2 0 1,1) 0 0 0 0
b S+ by 3,1,2) 2 0 2 0 0 -2 0 1,1) 0 0 0 0
3,2, 1) -2 0 -2 0 0 -2 0 1,1 0 0 0 0
1,2, 1) 6 0 -2 0 0 -2 0 1,1 0 0 0 0
1,1,2) —6 0 2 0 0 -2 0 1,1) 0 0 0 0
01, b3 3,2, 1) 2 0 0 2 0 0 -2 1,1 0 0 0 0
Or, (3,1,2) -2 0 0 -2 0 0 -2 1,1) 0 0 0 0
L, (1,2, 1) -6 0 0 2 0 0 -2 1,1) 0 0 0 0
Lpg, 1,1,2) 6 0 0 -2 0 0 -2 1,1) 0 0 0 0
b S+ b3 3,1,2) 2 0 0 2 0 0 -2 1,1) 0 0 0 0
3,2,1) -2 0 0 -2 0 0 -2 1,1) 0 0 0 0
(1,2, 1) 6 0 0 -2 0 0 -2 1,1) 0 0 0 0
(1,1,2) -6 0 0 2 0 0 -2 1,1) 0 0 0 0
Table 4 Vector-like SO (10) singlet states
F SEC (C; Ly R) Oc Q;)] Q;,z Q;,z Q);3.6 Q}-,IIDS Q24 SUQB)H,, O (o} Qo9 Ogs
f S+ (1,1, 1) 0 2 -2 0 0 0 0 (1, 1) 0 0 0 4
by + by 1,1, 1 0 2 -2 0 0 0 0 1,1) 0 0 0 —4
+a+ B (1,1, 1) 0 -2 0 0 0 0 1,1 0 0 0 4
1,1, 1 0 -2 0 0 0 0 1,1) 0 0 0 —4
1,1, 1 0 2 0 0 0 0 3, 1) 0 4 0 0
1,1, 1 0 -2 -2 0 0 0 0 3, 1) 0 4 0 0
1,1, 1 0 2 2 0 0 0 0 3.1 0 —4 0 0
(1,1, 1) 0 -2 -2 0 0 0 0 3,1 0 —4 0 0
b b1 + by 1,1, 1 0 2 -2 0 0 0 0 1,1) 4 0 0 0
+a+p (1,1, 1) 0 2 -2 0 0 0 0 1, 1) —4 0 0 0
(1,1, 1) 0 -2 0 0 0 0 1,1) 4 0 0 0
1,1,1) 0 -2 0 0 0 0 1,1) —4 0 0 0
(1,1,1) 0 2 0 0 0 0 (1,3) 0 0 4 0
(1,1, 1) 0 -2 -2 0 0 0 0 (1,3) 0 0 4 0
(1,1, 1) 0 2 2 0 0 0 0 1,3) 0 0 -4 0
1,1, 1 0 -2 -2 0 0 0 0 (1,3) 0 0 —4 0
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Table 5 Vector-like SO (10) singlet states
F SEC (C; Ly R) QOc Q,—Il Q,-)z Q,-Is Q93,o Q}-,IIDS Q24 SUB)H,, 041 (o] Qo9 Ogs
f S+ 1,1, 1 0 -2 0 0 0 -2 -2 1,1) 0 6 0 2
1+ by 1,1, 1 0 0 0 0 -2 -2 1,1) 0 —6 0 -2
+a + 2y (1,1, 1) 0 0 0 0 -2 -2 3, 1) 0 2 0 -2
1,1, 1 0 -2 0 0 0 -2 -2 3.1 0 -2 0 2
b 1+ b 1,1, 1 0 -2 0 0 0 2 -2 1,1) 0 6 0 2
+a + 2y (1,1, 1) 0 2 0 0 0 2 -2 1,1) 0 —6 0 -2
1,1, 1 0 2 0 0 0 2 -2 3, 1) 0 2 0 -2
(1,1, 1) 0 -2 0 0 0 2 -2 3.1 0 -2 0
f S+ (1,1,1) 0 0 -2 0 -2 0 -2 (1, 1) 0 6 0 2
14 by (1,1,1) 0 0 2 0 -2 0 -2 (1, 1) 0 —6 0 -2
+a +2y 1,1, 1D 0 0 2 0 -2 0 -2 3,1 0 2 0 -2
a,1, 1 0 0 -2 0 -2 0 -2 3.1 0 -2 0
b 1+ by 1,1,1) 0 0 -2 0 2 0 -2 1,1) 0 6 0
+o + 2y (1,1,1) 0 0 0 2 0 -2 1,1) 0 —6 0 -2
(1,1,1) 0 0 0 2 0 -2 3,1 0 2 0 -2
1,1, 1 0 0 -2 0 0 -2 3.1 0 -2 0 2
f S+ (1,1, 1) 0 0 -2 0 -2 0 -2 1,1) -2 0 6 0
by + b3 1,1, 1 0 0 2 0 -2 0 -2 1,1 2 0 —6 0
+a + 2y (1,1, 1) 0 0 2 0 -2 0 -2 (1,3) 2 0 2 0
(1,1,1) 0 0 -2 0 -2 0 -2 (1,3) -2 0 -2 0
b b1 + b3 (1,1,1) 0 0 -2 0 2 0 -2 (1, 1) -2 0 6 0
+a + 2y (1,1,1) 0 0 2 0 2 0 -2 1,1) 2 0 —6 0
a,1, 1 0 0 2 0 0 -2 1,3) 2 0 2 0
(1,1,1) 0 0 -2 0 0 -2 (1,3) -2 0 -2 0
f S+ (1,1,1) 0 0 0 -2 -2 -2 0 1,1) -2 0 6 0
b1+ b (1,1,1) 0 0 0 2 -2 -2 0 1,1) 0 —6 0
+a + 2y 1,1, 1 0 0 0 2 -2 -2 0 1,3) 0 2 0
a,1, 1 0 0 0 -2 -2 -2 0 (1,3) -2 0 -2 0
b b1 + b 1,1, 1 0 0 0 -2 2 -2 0 1,1) -2 0 6 0
+a 42y (1,1, 1) 0 0 0 2 2 -2 0 1,1) 2 0 —6 0
1,1, 1 0 0 0 2 2 -2 0 1,3) 2 0 2 0
1,1, 1 0 0 0 -2 2 -2 0 (1,3) -2 0 -2 0
f S+ (1,1, 1) 0 -2 0 0 0 -2 -2 1,1 -2 0 6 0
by + b3 1,1, 1 0 2 0 0 0 -2 -2 1,1) 2 0 —6 0
+a + 2y (1,1, 1) 0 2 0 0 0 -2 -2 1,3) 2 0 2 0
(1,1,1) 0 -2 0 0 0 -2 -2 (1,3) -2 0 -2 0
b by + b3 (1,1,1) 0 -2 0 0 0 2 -2 1,1) -2 0 6 0
+a +2y (1,1,1) 0 0 0 0 2 -2 1,1) 2 0 —6 0
(1,1,1) 0 0 0 0 2 -2 (1,3) 2 0 2 0
(1,1, 1) 0 -2 0 0 0 2 -2 (1,3) -2 0 -2 0
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Table 5 continued

F SEC (C; Ly R) Qc O Oy 73 Q5.6 Qj145 Q24 SUB)H,, 041 0Og Q9 Ogs
f S+ (1,1, 1) 0 0 0 -2 -2 -2 0 (1, 1) 0 6 0 2
1+ b3 (1,1, D 0 0 0 -2 -2 0 (1, 1) 0 —6 0 -2
+a +2y (1,1, 1) 0 0 0 -2 -2 0 3,1 0 2 0 -2
(L1, D 0 0 0 -2 -2 -2 0 (€)) 0 -2 0 2
b 1+ b3 (1,1, 1) 0 0 0 -2 2 -2 0 (1, 1) 0 6 0 2
+a +2y (1,1, 1) 0 0 0 2 -2 0 (1, 1) 0 —6 0 -2
(LD 0 0 0 2 -2 0 @3, 1) 0 2 0 -2
(1,1, 1 0 0 0 -2 2 -2 0 G, D 0 -2 0 2

Table 6 All the massless sectors for which the “would-be superpartners” are massive and do not form part of the massless spectrum. The “would-be
superpartners” arise from the sectors that are obtained by adding the basis vector S to a given sector and are the fermionic counterparts

F SEC (C; L; R) Oc Q5 Op e 0536 Q5155 Q24 SUB)H,, Og1 [0 Q9 [OF S
b aty (1, 1,1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
(1,1,1) -3 1 1 1 2 0 (1, 1) 2 -3 3 0
(1, 1,1) -3 1 1 1 2 0 (1, 1) 2 -3 3 0
1, 1,1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
a,1,1n 3 -1 -1 -1 -2 0 -2 1,1 -2 3 -3 0
a,1, 1 3 -1 -1 -1 2 0 1,1 -2 3 -3 0
a,1,1n 3 -1 -1 -1 2 0 1,1 -2 3 -3 0
a,1, 1 3 -1 -1 -1 -2 0 -2 1,1) -2 3 -3 0
b Bty a,1, 1 -3 1 1 1 0 2 2 1,1 -2 -3 3 0
a,1, 1 -3 1 1 1 0 -2 -2 1,1 -2 -3 3 0
a,1, 1 -3 1 1 1 0 -2 -2 1,1 -2 -3 3 0
1,1, 1 -3 1 1 1 0 1,1 -2 -3 3 0
a,1, 1 3 -1 -1 -1 0 1,1) 2 3 -3 0
a,1, 1 3 -1 -1 -1 0 -2 -2 1,1 2 3 -3 0
a,1, 1 3 -1 -1 -1 0 -2 -2 1,1) 2 3 -3 0
a,1, 1 3 -1 -1 -1 0 1,1) 2 3 -3 0
b 1+ by a,1, 1 -3 1 1 1 0 1,1) 0 3 -3 2
+by + b3 (1, 1,1) -3 1 1 1 0 -2 -2 1,1) 0 3 -3 2
+B8ty (1, 1,1) -3 1 1 1 0 -2 -2 1,1) 0 3 -3 2
(1,1, 1) -3 1 1 1 0 (1, 1) 0 3 -3 2
(1,1, 1) 3 —1 —1 —1 0 (1, 1) 0 -3 3 -2
(1,1, 1) 3 —1 —1 —1 0 -2 -2 (1, 1) 0 -3 3 -2
(1,1, 1) 3 —1 —1 —1 0 -2 -2 (1, 1) 0 -3 3 -2
(1,1,1) 3 —1 —1 —1 0 2 2 (1, 1) 0 -3 3 -2
b 1+b; 1,1,1) -3 1 1 1 2 0 -2 (1, 1) 0 -3 -2
+by + b3 1,1,1) -3 1 1 1 -2 0 2 (1, 1) 0 -3 -2
+aty (1,1,1) -3 1 1 1 2 0 -2 (1, 1) 0 -3 -2
(1,1,1) -3 1 1 1 -2 0 2 (1, 1) 0 -3 -2
(1,1,1) 3 -1 -1 —1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1,1) 3 -1 —1 —1 -2 0 2 (1, 1) 0 -3 3 2
(1,1,1) 3 -1 -1 —1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1,1) 3 -1 -1 -1 -2 0 2 (1, 1) 0 -3 3 2
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Table 7 Vector-like exotic states
F SEC (C; Ly R) Oc O 7 Qﬁz 3.6 lezb5 Q24 SUB)n,, (OFS 03 Q9 Ogs
f S+ 1,1, 1) -3 -3 -1 -1 0 0 0 (1,1 -2 -3 3 0
by + b3 1,1, 1) -3 1 3 -1 0 0 0 (1,1 -2 -3 3 0
+B8ty 1,1, 1) -3 1 -1 3 0 0 0 (1,1 -2 -3 3 0
(1,1, 1) —1 1 1 0 0 0 (1,3) -2 1 0
1,1, 1) 3 1 1 0 0 0 (1, 1) 2 -3 0
1,1, 1) -1 -3 1 0 0 0 (1, 1) 2 -3 0
1,1, 1) —1 1 -3 0 0 0 (1,1 -3 0
1,1, 1) -3 1 -1 -1 0 0 0 (1,3) -3 -1 0
b by + b3 G, 1,1 1 1 -1 -1 0 0 0 1,1) -2 -3 3 0
+B8ty 1,1, 1) -3 1 -1 -1 0 0 0 3. 1) 1 3 0
3, 1L, 1) —1 —1 1 1 0 0 0 (1,1 3 -3 0
1,1, 1) 3 —1 1 1 0 0 0 3,1 -2 -1 -3 0
f S+ (1,1, 1) -3 3 1 -1 0 0 0 1,1) -3 3 0
b1 + b3 (1,1, 1) -3 -1 -3 -1 0 0 0 1,1) -3 3 0
oty (1,1, 1) -3 -1 1 3 0 0 0 1,1) -3 3 0
1,1, 1) 1 -1 1 0 0 0 (1,3) 1 0
1,1, 1) -3 -1 1 0 0 0 (1,1 -2 -3 0
1,1, 1) 1 3 1 0 0 0 (1,1 -2 -3 0
1,1, 1) 1 -1 -3 0 0 0 (1,1 -2 -3 0
1,1, 1) -3 -1 1 -1 0 0 0 (1,3) -2 -3 -1 0
b b1 + b3 G, 1,1 1 —1 1 -1 0 0 0 (1,1) 2 -3 3 0
+at+y (1,1,1) -3 —1 1 -1 0 0 0 3.1 -2 1 3 0
3,1,1 —1 1 —1 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 —1 1 0 0 0 3,1 2 —1 -3 0
f S+ 3.1, 1) -3 -1 1 -1 0 0 0 (1,1 0 3 -3 -2
14+ by (1,1, 1) -1 1 -1 0 0 0 (1,3) 0 3 2
oty 3,1, 1) 1 -1 1 0 0 0 1,1) 0 -3 3 2
1,1, 1) -3 1 -1 1 0 0 0 (1,3) 0 -3 -3 -2
b 14+ by 1,1, 1) -3 3 1 -1 0 0 0 (1, 1) 0 -3 -2
oty 1,1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 0 -3 -2
1,1, 1) -3 —1 1 3 0 0 0 (1, 1) 0 -3 -2
(1,1, 1) -3 —1 1 —1 0 0 0 3,1 0 -3 -3
(1,1, 1) -3 —1 1 0 0 0 1,1) 0 -3
(1,1, 1) 1 3 1 0 0 0 1,1) 0 -3
(1,1, 1) 1 —1 -3 0 0 0 1,1) 0 -3
(1,1, 1) 1 -1 1 0 0 0 3, 1) 0 -2
f S+ (1,1, 1) -3 -3 -1 -1 0 0 0 1,1) 0 -3 2
14 b (1,1, 1) -3 1 3 -1 0 0 0 (1,1) 0 -3 2
+8ty 1,1, 1) -3 1 -1 3 0 0 0 1,1) 0 -3 2
1,1, 1) -3 1 -1 -1 0 0 0 3, 1) 0 -3 -3 -2
1,1, 1) 3 3 1 1 0 0 0 (1, 1) 0 -3 3 -2
1,1, 1) 3 -1 -3 1 0 0 0 (1, 1) 0 -3 3 -2
1,1, 1) 3 -1 1 -3 0 0 0 (1, 1) 0 -3 3 -2
(1,1, 1) 3 —1 1 1 0 0 0 3,1 0 3 3 2
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Table 7 continued
F SEC (C; Ly R) Oc Q;Il Q,-]z Q,—,3 Q_\-,s.e Q;.IIDS Q24 SUB)u, , (OF 03 Q9 Ogs
b 14 b G, 1,1 3 1 —1 -1 0 0 0 1, D 0 3 -3 2
+B Ly (1,1, 1) -3 1 -1 —1 0 0 0 (1,3) 0 3 3 -2
3,1, -3 -1 1 1 0 0 0 (1, 1) 0 -3 3 -2
(1,1,1) 3 -1 1 1 0 0 0 (1,3) 0 -3 -3
f 1+ b 1,2,1) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0
+b3 + 2y (1,2, 1) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2
(1,1,2) 0 0 2 0 0 (1, 1) 2 0 0 -2
(1,1,2) 0 0 -2 0 0 (1, 1) -2 0 0 2
b S+ (1,2, 1) 0 0 -2 0 0 (1, 1) -2 0 0 2
14+ by (1,2, 1) 0 0 2 0 0 1,1 0 0 -2
+b3 +2y (1,1,2) 0 0 -2 -2 -2 0 0 (1, 1) 0 0 -2
(1,1,2) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2
f 1+ b (1,2,1) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2
+b3 +2y (1,2,1) 0 -2 0 -2 0 -2 0 (1, 1) 0 0 -2
(1,1,2) 0 0 2 0 2 0 (1,1 0 0 -2
(1,1,2) 0 0 2 0 -2 0 (1,1 -2 0 0 2
b S+ (1,2, 1) 0 0 2 0 -2 0 (1, D -2 0 0 2
1+ b (1,2,1) 0 0 2 0 2 0 (1,1 0 0 -2
+b3 +2y (1,1,2) 0 -2 0 -2 0 -2 0 1, D 0 0 -2
(1,1,2) 0 -2 0 -2 0 2 0 1, D -2 0 0 2
f 1+ b (1,2,1) 0 -2 -2 0 0 0 2 1, D -2 0 0 2
+by + 2y (1,2,1) 0 -2 -2 0 0 0 -2 1, D 0 0 -2
(1,1,2) 0 0 0 0 2 1, D 0 0 -2
(1,1,2) 0 0 0 0 -2 1, D -2 0 0 2
b S+ (1,2,1) 0 0 0 0 -2 1, D -2 0 0 2
14 b (1,2,1) 0 0 0 0 2 1, D 0 0 -2
+by + 2y (1,1,2) 0 -2 -2 0 0 0 -2 1, D 0 0 -2
(1,1,2) 0 -2 -2 0 0 0 2 1, D -2 0 0
f S+ (1,1, 1) -6 0 0 -2 0 0 0 1, 2 0 0
1+b3 3,1, -2 0 0 2 0 0 0 (1,1 -2 0 0 -2
+a + B (1,1, 1) 6 0 0 2 0 0 0 1, -2 0 0 -2
+2y G, 1,1 2 0 0 -2 0 0 0 1, D 2 0 0 2
b 14 b3 (1,1,1) 6 0 0 2 0 0 0 1, D -2 0 0 -2
+a + B (1,1, 1) —6 0 0 -2 0 0 0 1, D 0 0 2
+2y G, 1,1 2 0 0 -2 0 0 0 1, 0 0 2
3,1, -2 0 0 2 0 0 0 (1, D -2 0 0 -2
Table 8 The untwisted Neveu—Schwarz scalar states
F Sector Name (C,L) QOc or 05 O (OF3) Q;,S,G lews Q724 SU)1,..4 SU4) [of}
b NS (h) (1,2) 0 —4 0 0 4 0 0 0 (1,1,1,1) 1 0
(h) (1,2) 0 4 0 0 —4 0 0 0 (1,1,1,1) 1 0
(Psp) (1,1) 0 0 0 0 0 4 4 0 (1,1,1,1) 1 0
(Ps6) (1,1) 0 0 0 0 0 —4 —4 0 (1,1,1,1) 1 0
(P%) (1,1) 0 0 0 0 0 —4 4 0 (1,1,1,1) 1 0
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Table 8 continued

F Sector Name (C,L) Oc or O O 7 0536 Flis Q2.4 SU2)1,..4 SU4) (o}
(d_>/56) (1,1) 0 0 0 0 0 4 —4 0 (1,1,1,1) 1 0
(DP4s) (1,1) 0 0 0 0 0 4 0 (1,1,1,1) 1 0
(Ps6) (1,1) 0 0 0 0 0 —4 0 —4 (1,1,1,1) 1 0
(D) (1,1) 0 0 0 0 0 —4 0 4 (1,1,1,1) 1 0
(d_>ﬁl6) (1,1) 0 0 0 0 0 4 0 —4 (1,1,1,1) 1 0
(Dys) (1,1) 0 0 0 0 0 0 4 4 (1,1,1,1) 1 0
(P45) (1,1) 0 0 0 0 0 0 —4 —4 (1,1,1,1) 1 0
(P)s) (1,1) 0 0 0 0 0 0 —4 4 (1,1,1,1) 1 0
(d_DQS) (1,1) 0 0 0 0 0 0 4 —4 (1,1,1,1) 1 0
(£1.23) (1,1) 0 0 0 0 0 0 0 0 (1,1,1,1) 1 0

Table 9 The S and S + ¢ sector

F Sector Name (C,L) Oc or in Qﬁz Qﬁ3 Oj3.6 Qy],bs Q2.4 SU)1,..4 SU4) 0Os

f S (+2) h (1,2) 0 4 0 0 0 0 0 0 (1,1,1,1) 4 —4
ﬁ (1,2) 0 —4 0 0 0 0 0 0 (1,1,1,1) 4 4
&y (1,1) 0 0 0 0 0 0 0 0 (1,2,2,1) 1 0
&s (1,1) 0 0 0 0 0 0 0 0 (1,2,2,1) 1 0
& (1,1) 0 0 0 0 0 0 0 0 2,1,1,2) 1 0
&7 (1,1) 0 0 0 0 0 0 0 0 2,1,1,2) 1 0
1 (1,1) 0 0 0 0 4 0 0 0 (1,1,1,1) 4 —4
b1 (1,1) 0 0 0 0 —4 0 0 0 (1,1,1,1) 4 4

Table 10 The observable matter sectors

F Sector Name (C, L) Oc or O O oFs Qg6 Q5145 Q24 SU@2)1,.4 SU4) O3

f by 0 (3,2) 2 0 -2 0 0 -2 0 0 (1,1,1,1) 1 0
u§ 3, -2 —4 -2 0 0 2 0 0 (1,1,1,1) 1 0
df 3,D -2 4 -2 0 0 -2 0 0 (1,1,1,1) 1 0
Ly (1,2) —6 0 -2 0 0 2 0 0 (1,1,1,1) 1 0
ef (1,1) 6 4 -2 0 0 2 0 0 (1,1,1,1) 1 0
Ny (1,1) 6 —4 -2 0 0 -2 0 0 (1,1,1,1) 1 0

f by 0> (3,2) 2 0 0 -2 0 0 2 0 (1,1,1,1) 1 0
u§ 3, -2 —4 0 -2 0 0 -2 0 (1,1,1,1) 1 0
ds (€R)) -2 0 -2 0 0 2 0 (1,1,1,1) 1 0
L, (1,2) —6 0 0 -2 0 0 -2 0 (1,1,1,1) 1 0
5 (1,1) 6 0 -2 0 0 -2 0 (1,1,1,1) 1 0
N3 (1,1) 6 —4 0 -2 0 0 2 0 (1,1,1,1) 1 0

f b3 03 (3,2) 2 0 0 0 2 0 0 -2 (1,1,1,1) 1 0
u§ 3, -2 —4 0 0 2 0 0 2 (1,1,1,1) 1 0
d§ (3.2 -2 0 0 2 0 0 -2 (1,1,1,1) 1 0
Lj (1,2) —6 0 0 0 2 0 0 (1,1,1,1) 1 0
e (1,1) 6 0 0 2 0 0 (1,1,1,1) 1 0
Ny (1,1) 6 —4 0 0 2 0 0 -2 (1,1,1,1) 1 0
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Table 11 The hidden sectors

F  Sector Name (C.L) Qc Q1 Qpn Qp Qpf Qps Qg Qps  SUQ.a SU@) Qg
f 14b+b+by ¢ (1,1) 0 0 0 0 0 0 0 (1,1,1,1) 4 0
¢ (1,1) 0 0 0 0 0 0 0 (1,1,1,1) 4 0
b b +b %7 a,n 0 0 0 0 0 2 2 0 1,1,1,1) 6 0
+a + B (+0) SN R) 0 0 0 0 0 ) ) 0 (1,1,1,1) 6 0
%P (1,1) 0 0 0 0 0 -2 2 0 (1,1,2,2) 1 0
%7 (1,1) 0 0 0 0 0 2 -2 0 (1,1,2,2) 1 0
% (1,1) 0 0 0 0 0 -2 2 0 2.2,1,1) 1 0
&:g‘ﬂ (LD 0 0 0 0 0 2 -2 0 (2,2,1,1) 1 0
%’ (1,1) 0 0 0 0 0 -2 0 (1,1,1,1) 1 8
ci>f{5 (1,1 0 0 0 0 0 2 -2 0 (1,1,1,1) 1 -8
% a.n 0 0 0 0 0 -2 2 0 1,1,1,1) 1 8
 an 0o 0o 0 o 0 -2 2 0 (1,1,1,1) 1 -8
f  S+b+b G N! 0 0 0 0 0 2 ) 0 2,1,2,1) 1 0
+a + B(+2) §>‘;‘ﬁ (1,1) 0 0 0 0 0 -2 2 0 (2,1,2,1) 1 0
%P a,n 0 0 0 0 0 2 -2 0 1,2,1,2) 1 0
é‘;ﬁ (1,1) 0 0 0 0 0 -2 2 0 (1,2,1,2) 1 0
Table 12 SO(10) singlets without S-partners
F  Sector Name (C.L) Qc Q. Qun Qn Qpn O sigs Qs SUQi..4  SUM)
b a+pH N 1,1) 0 0 -2 2 0 0 0 0 (1,1,1,1) 6 0
N, 1,1 0 0 -2 0 0 0 0 (1,1,1,1) 6 0
Ny a,n 0 0 -2 0 0 0 0 (1,1,1,1) 6 0
N> (1,1) 0 0 -2 2 0 0 0 0 (1,1,1,1) 6 0
Table 13 SO(10) singlets with S‘—paﬁners
F  Sector Name (C,L) Oc or Qi Oy Op Q;s.e Flas Q24 SU2)1,..4 SU4)
f  bi+2y+0) W 1,1 0 0 0 ) -2 0 0 1,1,2,2) 1
Vs a,1) 0 0 0 -2 2 -2 0 0 1,1,1,1) 1
V3 (1,1 0 0 0 ) -2 0 0 1,1,1,1) 1
V4 (1,1 0 0 0 ) 2 0 0 1,1,1,1) 6
Vs (1,1 0 0 0 -2 2 -2 0 0 (2,2,1,1) 1
f b2y (0 Vs (1,1) 0 0 -2 0 2 0 2 0 (1,1,2,2) 1
Vs (1,1 0 0 -2 0 2 0 2 0 (1,1,1,1) 1
Vg (1,1 0 0 -2 0 2 0 2 0 (1,1,1,1) 1
Vo (1,1) 0 0 -2 0 2 0 -2 0 (1,1,1,1) 6
Vio (1,1 0 0 -2 0 2 0 2 0 (2.2,1,1) 1
£ by+2y (40 Vi (1,1) 0 0 -2 -2 0 0 0 -2 (1,1,2,2) 1
Via (1,1 0 0 -2 -2 0 0 0 -2 (1,1,1,1) 1
Vi3 (1,1) 0 0 -2 -2 0 0 0 -2 (1,1,1,1) 1
Vig (1,1 0 0 -2 -2 0 0 0 2 (1,1,1,1) 6
Vis (1,1) 0 0 -2 -2 0 0 0 -2 (2.2,1,1) 1
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Table 14 SO(10) singlets” S-partners
F  Sector Name (C,L) OQOc or Q5 O O Q536 Q514 Qizs SUD,.., SU@4) Qg
b S+by+2y (+0) Vie (1,1) 0 0 0 2 -2 0 0 (1,1,1,1) 4 —4
Viz 1,1 0 0 0 2 2 0 0 (1,1,1,1) 4 4
Vig (1,1 0 0 0 2 -2 2 0 0 (1,2,1,2) 1 0
Vig (1,1) 0 0 0 2 -2 2 0 0 2,1,2,1) 1 0
b S+by+2y(+)  Va (1,1) 0 0 2 0 0 2 0 (1,1,1,1) 4 —4
Va1 (1,1 0 0 2 0 0 -2 0 (1,1,1,1) 4 4
Vo (1,1 0 0 2 0 -2 0 -2 0 (1,2,1,2) 1 0
Va3 (1,1) 0 0 2 0 -2 0 -2 0 (2,1,2,1) 1 0
b S4+b3+2y(HL)  Vay (1,1) 0 0 2 -2 0 0 0 2 (1,1,1,1) 4
Vas (1,1) 0 0 2 -2 0 0 0 -2 1,1,1,1) 4 —4
Vae (1,1) 0 0 2 2 0 0 0 2 1,2,1,2) 1 0
Va7 (1,1) 0 0 2 2 0 0 0 2 2,1,2,1) 1 0
Table 15 Exotic states with S -partners (i)
F Sector Name (C,L) QOc or Q;]l Qﬁz Qﬁs Q)—,_z,e Q5155 Q24 SUQ2)1,..4 SU4) (o}
f by + B H (1,2) 0 0 0 0 2 0 -2 (1,2,1,1) 1 0
H, (1,2) 0 0 0 0 -2 0 2 (1,2,1,1) 1 0
b S+bh+58 H; (1,2) 0 0 0 0 2 0 -2 (1,1,2,1) 1 0
H> (1,2) 0 0 0 0 -2 0 2 (1,1,2,1) 1 0
b by+bs H3 (1,1 -3 2 1 1 -1 -2 0 0 (1,2,1,1) 1 4
+B Ly H; (1,1 3 -2 -1 -1 1 2 0 0 (1,2,1,1) 1 —4
Hy (1,1 -3 2 1 1 -1 -2 0 0 2,1,1,1) 1 —4
Hy 1,1 3 -2 -1 -1 1 2 0 0 2,1,1,1) 1
f S+by+ b3 Hs a,1) -3 2 1 1 —1 -2 0 0 (1,1,2,1) 1
+BEy H;s (1,1) 3 -2 —1 -1 1 2 0 0 (1,1,2,1) 1 —4
Hg (1,1) -3 2 1 1 -1 -2 0 0 (1,1,1,2) 1 —4
Hg 1,1 3 -2 -1 -1 1 2 0 0 (1,1,1,2) 1 4
b b +bs3 H7; 1,1 -3 2 1 1 -1 0 -2 0 2,1,1,1) 1 4
taty o) Hy (1,1) 3 -2 —1 -1 1 0 2 0 2,1,1,1) 1 —4
Hg 1,1 -3 2 1 1 -1 0 -2 0 (1,2,1,1) 1 —4
Hg (1,1) 3 -2 -1 -1 1 0 2 0 1,2,1,1) 1 4
f  S+b+b Hy 1,1) -3 2 1 1 —1 0 -2 0 (1,1,2,1) 1 —4
Yoty +¢ Hyg (1,1) 3 -2 —1 —1 1 0 2 0 (1,1,2,1) 1 —4
H (1,1) -3 2 1 1 -1 0 -2 0 (1,1,1,2) 1 4
Hio (1,1) 3 -2 -1 —1 1 0 2 0 (1,1,1,2) 1
f b3ty Hiy 3, 1 -2 1 1 -1 0 0 -2 (1,1,1,1) 1 4
Hi 3,1 —1 -1 -1 1 0 0 2 (1,1,1,1) 1 —4
Hi (1,2) -3 1 1 —1 0 0 -2 (1,1,1,1) 1 4
Hi> (1,2) 3 -2 -1 —1 1 0 0 2 (1,1,1,1) 1 —4
His (1,1) -3 -2 -3 1 —1 0 0 -2 (1,1,1,1) 1 4
Hiz (1,1) 3 2 3 —1 1 0 0 2 (1,1,1,1) 1 —4
Hiy (1,1) -3 -2 1 -3 -1 0 0 -2 (1,1,1,1) 1 4
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Table 15 continued
F  Sector Name (C, L) Oc oL Q;]l 72 Q;]3 Q)—,z,s Qy] s Q24 SUR2)1,..4 SU4) 03
His (1,1) 3 2 —1 3 1 0 0 2 (1,1,1,1) 1 —4
His (1,1) -3 -2 1 1 3 0 0 -2 (1,1,1,1) 1 4
Hs 1,1 3 2 -1 -1 =3 0 0 2 (1,1,1,1) 1 —4
b S+b3Ety(+7) Hig (1,1) -3 -2 1 1 —1 0 0 2 (1,1,1,1) 0
His (1,1) 3 2 -1 -1 1 0 0 -2 (1,1,1,1) 0
Table 16 Exotic states with S -partners (ii)
F  Sector Name (C,L) Oc or Qi 7 O Q;,S,G 1S Q524 SU) 1.4 SU@) (o}
b bi+b Hy; 3, —1 2 1 1 1 -2 -2 0 (1,1,1,1) 1 —4
+a+pBLty+¢ Hi7 3,1) 1 -2 -1 -1 -1 2 2 0 (1,1,1,1) 1 4
Hig (1,2) 3 -2 1 1 1 -2 -2 0 (1,1,1,1) 1 —4
Hig (1,2) -3 -1 —1 -1 2 2 0 (1,1,1,1) 1 4
Hyo (1,1) 3 -3 1 -1 -2 -2 0 (1,1,1,1) 1 —4
Hyo (1,1) -3 -2 3 —1 1 2 2 0 (1,1,1,1) 1 4
Hyo (1,1) 3 2 1 -3 —1 -2 -2 0 (1,1,1,1) 1 —4
H>o (1,1) -3 -2 -1 3 1 2 2 0 (1,1,1,1) 1 4
Hy; (1,1) 3 2 1 1 -3 -2 -2 0 (1,1,1,1) 1 —4
H> (1,1) -3 -2 -1 -1 3 2 0 (1,1,1,1) 1
f  S4+bi+b Hy (1,1) 3 2 1 1 1 -2 2 0 (1,1,1,1) 4
+a+ Bty (+0) Hp (1,1) -3 -2 -1 —1 -1 2 -2 0 (1,1,1,1) 4
b b+ b3 Hy; 3.1 -1 2 1 -1 -1 =2 0 2 (1,1,1,1) 1 —4
+a+pBEty+¢ Ho3 3,1) 1 -2 -1 1 1 2 0 -2 (1,1,1,1) 1 4
Hyy (1,2) 3 -2 1 —1 —1 -2 0 2 (1,1,1,1) 1 —4
Hoy (1,2) -3 -1 1 1 2 0 -2 (1,1,1,1) 1 4
Hjs (1,1) 3 -3 1 -1 -2 0 2 (1,1,1,1) 1 —4
Hos (1,1) -3 -2 3 -1 1 2 0 -2 (1,1,1,1) 1 4
Hyg (1,1) 3 2 1 3 -1 -2 0 2 (1,1,1,1) 1 —4
Hag (1,1) -3 -2 -1 -3 1 2 0 -2 (1,1,1,1) 1 4
Hy; (1,1) 3 2 1 1 3 -2 0 2 (1,1,1,1) 1 —4
H>; (1,1) -3 -2 -1 —1 -3 2 0 -2 (1,1,1,1) 1
f  S+b+b; Hog 1,0 3 2 1 -1 -1 =2 0 -2 (1,1,1,1) 4 0
ta+BEy(+¢)  Hag (1,1) -3 -2 -1 1 1 -2 0 -2 (1,1,1,1) 4 0
b  by+b3 Hyo 3, -1 2 -1 1 —1 0 2 2 (1,1,1,1) 1 —4
+a+pBLty+¢ Hoo 3,1) 1 -2 1 —1 1 0 -2 -2 (1,1,1,1) 1 4
Hzg (1,2) 3 -2 -1 1 -1 0 2 2 (1,1,1,1) 1 —4
Hxo 1,2) -3 1 —1 1 0 -2 -2 (1,1,1,1) 1 4
Hy, 1,1) 3 -3 1 -1 0 2 2 (1,1,1,1) 1 —4
Hz (1,1) -3 -2 3 —1 1 0 -2 -2 (1,1,1,1) 1 4
Hz; (1,1) 3 2 1 -3 -1 0 2 2 (1,1,1,1) 1 —4
Hz» (1,1) -3 -2 -1 3 1 0 -2 -2 (1,1,1,1) 1 4
Hzs (1,1) 3 2 1 1 3 0 2 2 (1,1,1,1) 1 —4
Hy3 (1,1) -3 -2 -1 —1 -3 0 -2 -2 (1,1,1,1) 1
f  S4+by+b Hzy (1,1) 3 2 -1 1 -1 0 -2 (1,1,1,1) 4
ta+BEy(+0)  Hu (1,1 -3 2 1 -1 1 0 -2 (1,1,1,1) 4
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Table 17 Exotic states without S-partners
F  Sector Name (C,L) Oc or Q;’] O O Q}-,3,6 15 Q24 SU2)1,..4 SU4) (o]
f b ta His (1,2) 0 0 0 0 ) 2 2,1,1,1) 1 0
His (1,2) 0 0 0 2 ) 2,1,1,1) 1 0
b S+bi+b+by Hx  (1L1) 0 0 -2 0 0 0 (1,1,1,2) 1 0
+a+ < Hig (1,1) 0 —4 0 2 -2 0 0 0 (1,1,1,2) 1 0
Hay (1,1) 0 4 0 2 2 0 0 0 (1,1,1,2) 1 0
H7 (1,1) 0 4 0 2 2 0 0 0 (1,1,1,2) 1 0
b S4b+b Hig (1,2) 0 o0 -2 0 2 0 0 0 (1,1,2,1) 1 0
+b3 + B His (1,2) 0 0 2 0 2 0 0 0 (1,1,2,1) 1 0
Hio (1,2) 0 0o -2 0 2 0 0 0 (1,1,2,1) 1 0
Hzo (1,2) 0 0 0 2 0 0 0 (1,1,2,1) 1 0
Hyo (1,1) 0 4 0 -2 0 0 0 (1,1,2,1) 1 0
Hyp 1,1 0 -4 -2 0 2 0 0 0 (1,1,2,1) 1 0
Hyp (1,1) 0 4 2 0 -2 0 0 0 (1,1,2,1) 1 0
Hap (1,1) 0 —4 -2 0 0 0 0 (1,1,2,1) 1 0
b S+b Ha (1,2) 0 0 0 -2 2 (1,1,1,2) 1 0
+a+¢ Hip (1,2) 0 0 0 2 ) (1,1,1,2) 1 0
f by +bytbs Hu Ly =3 -2 2 1 -1 2 2 (1,1,1,1) 1 4
ta+BLy+¢  Hp (L) 3 2 2 11 ) ) ) (1,1,1,1) 1 4
Hus Ly -3 -2 2 1 -1 =2 ) 2 (1,1,1,1) 1 4
1:144 (1,1) 3 2 2 —1 1 2 -2 (1,1,1,1) 1 4
Hus (1,1) 3 2 -2 1 -1 =2 ) (1L,1,1,1) 1 —4
Hys (1,1) 3 2 2 —1 1 2 -2 2 (L,1,1,1) 1 4
Hug Ly =3 -2 2 1 -1 2 ) ) (1,1,1,1) 1 —4
Hug Ly 3 2 2 -1 1 ) 2 2 (1,1,1,1) 1 4
b a+B+2y+¢  Hay (12 -6 0 0 0 2 0 0 0 (1,1,1,1) 1 0
Hyy (12) 6 0 0 0 2 0 0 0 (1,1,1,1) 1 0
Hag (12) -6 0 0 0 2 0 0 0 (1,1,1,1) 1 0
Has (12 6 0 0 0 2 0 0 0 (1,1,1,1) 1 0
Hao G -4 -2 0 0 2 0 0 0 (1,1,1,1) 1 0
Hyo 3,1 4 2 0 0 2 0 0 0 (1,1,1,1) 1 0
Hs @3,1) —4 -2 0 0 -2 0 0 0 (1,1,1,1) 1 0
Hso 3. 4 0 0 2 0 0 0 (1,1,1,1) 1 0
Hs; (1,1) 3 2 0 0 -2 0 0 0 (1,1,1,1) 1 0
Hs (1,1) -3 -2 0 0 2 0 0 0 (1,1,1,1) 1 0
Hs) (1,1) 3 2 0 0 -2 0 0 0 (1,1,1,1) 1 0
Hsy (L =3 -2 0 0 2 0 0 0 (1,1,1,1) 1 0
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