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A B S T R A C T

Touch has been shown to regulate emotions, stress responses, and physical pain. However, its impact on 
cognitive functions, such as inhibitory control, remains relatively understudied. In this experiment, we explored 
the effects of low-force, slow-moving touch—designed to optimally activate unmyelinated cutaneous low- 
threshold mechanoreceptor C-tactile (CT) afferents in human hairy skin—on inhibitory control and its psycho-
physiological correlates using the Stroop Task, a classic paradigm commonly employed to assess inhibitory 
control capacity. The Stroop Task was repeated twice before and once after receiving either gentle touch or no- 
touch. Participants were assigned to two groups: the touch group (n = 36), which received low-force, slow- 
moving touch on their forearms at a stroking velocity of ~3 cm/s, and the no-touch group (n = 36), which did 
not receive any touch stimulation. Changes in autonomic nervous system activity were also assessed by 
measuring heart rate variability (HRV) and skin conductance levels before and during cognitive performance. 
Compared to the no-touch group, participants who received gentle, low-force, slow-moving touch demonstrated 
faster responses and higher HRV during the Stroop Task. Additionally, within the touch group, individuals with 
higher HRV exhibited even quicker performance on the cognitive task. While we cannot draw definitive con-
clusions regarding the CT velocity-specific effect, these results provide preliminary evidence that low-force, slow- 
moving touch may influence cognitive processes involved in the inhibitory control of goal-irrelevant stimuli.

1. Introduction

Touch plays a crucial role in fostering social interactions (Suvilehto, 
2023), bonding and attachment (Duhn, 2010; Jablonski, 2021), and 
human development (Cascio et al., 2019). The identification of a system 
of unmyelinated cutaneous low-threshold mechanoreceptor (LTMR) C- 
fibres in human hairy skin has redefined the traditional understanding of 
touch as being solely discriminative in nature. These C-tactile (CT) af-
ferents, characterised by a preference for low-force, skin temperature, 
caress-like stroking touch of between 1 and 10 cm/s (Ackerley et al., 
2014a, 2014b; Löken et al., 2009), are not well-suited for precise tactile 
discrimination (see McGlone et al., 2014 for an extensive review). Psy-
chophysical studies consistently show that participants find this stim-
ulus more pleasant compared to touch delivered at slower or faster 
velocities (Ackerley et al., 2014b; Essick et al., 1999; Löken et al., 2009). 

According to the affective touch hypothesis (Morrison and Croy, 2021), 
these CT afferents have been found to play a key role in conveying 
touch's pleasant and rewarding properties (Morrison et al., 2010; Löken 
et al., 2009; Vallbo et al., 1999). It also reduces negative emotions (e.g., 
social exclusion; Oya and Tanaka, 2023; von Mohr et al., 2017), buffers 
physical pain (Gursul et al., 2018; von Mohr et al., 2018), and increases 
body awareness (Crucianelli et al., 2018; Cazzato et al., 2021; Jenkinson 
et al., 2020).

From a physiological perspective, CT-targeted touch has been shown 
to regulate stress responses (Kidd et al., 2023; Morrison, 2016; Walker 
et al., 2022) and autonomic nervous functions (Püschel et al., 2022; 
Manzotti et al., 2023; Triscoli et al., 2017). For instance, maternal 
stroking touch has been found to increase heart rate variability (HRV) 
(Manzotti et al., 2023; Van Puyvelde et al., 2019). HRV, i.e., the beat-to- 
beat changes in heart rate, is an indirect, well-validated vagal tone index 
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(Laborde et al., 2017). Higher levels of resting HRV, indicating increased 
activity of the parasympathetic nervous system (Berntson et al., 1997; 
Kop et al., 2011), are linked to improved emotional and behavioural 
regulation (Balzarotti et al., 2017; Cai et al., 2019; Mather and Thayer, 
2018), as well as enhanced overall mental and physical wellbeing (Cai 
et al., 2019; Kemp and Quintana, 2013; Sloan et al., 2017). Changes in 
HRV are thought to be pivotal in maternal-infant physiological and 
behavioural regulation and resilience (Poehlmann et al., 2011; Porter, 
2003; Suga et al., 2019). On the other hand, low levels of resting HRV 
have been associated with a range of mental health conditions, including 
anxiety (e.g., Chalmers et al., 2014; Thayer et al., 1996; Kemp et al., 
2014), panic disorder (e.g., McCraty et al., 2001), post-traumatic stress 
disorder (Cohen et al., 1998), depression (e.g., Hartmann et al., 2019; 
Nahshoni et al., 2004), and suicide ideation and behaviour (Adolph 
et al., 2018).

While most existing research has predominantly focused on affective 
touch as a source of affect regulation (Fotopoulou et al., 2022; Silvestri 
et al., 2024), less attention has been given to its potential effects on 
cognitive processes, exploring the bottom-up influence of touch on top- 
down mechanisms. According to the “embodied cognition” framework 
(Gallese and Ebisch, 2013; Wilson and Golonka, 2013), bodily experi-
ences—particularly tactile sensations—play a crucial role in shaping 
and influencing our cognitive functions. As such, touch is not merely a 
passive experience but an active process that integrates with and affects 
cognitive mechanisms.

To date, only a few studies have focussed on how interpersonal touch 
affects the neurocognitive processes that underlie flexible goal-directed 
behaviour involved in cognitive control (Dydenkova et al., 2024; 
Saunders et al., 2018). In particular, the study by Saunders et al. (2018)
recruited romantic partners, with the active partner performing a 
speeded inhibitory control task modified version of a Go-no-Go Task 
while either holding (touch condition) or not holding their partner's 
hand (no-touch condition), whilst Electroencephalography (EEG) ac-
tivity was also recorded throughout. The results demonstrated that 
touch (handholding) enhanced cognitive control, as evidenced by 
reduced error rate on the task and increased error-related negativity 
amplitudes, which reflect the neural response to recognising mistakes 
and potentially triggering cognitive control mechanisms to correct or 
adjust behaviour. Additionally, holding the partner's hand elicited pos-
itive emotional responses, including increased happiness, suggesting 
that interpersonal touch can enhance cognitive control through modu-
lation of emotional and neural mechanisms. A possible explanation for 
these findings is that human proximity can enhance personal efficacy 
(Coan and Sbarra, 2015), helping individuals reduce their tendency to 
ignore or minimise negative feedback signals (e.g., error monitoring), 
which may, in turn, lead to exert inhibitory control over interference. 
While the study's findings suggest a potential link between touch and the 
cognitive/neural monitoring processes underlying flexible goal-directed 
behaviour, several issues might limit the conclusions of this investiga-
tion. The (handholding) interpersonal touch manipulation used in the 
study by Saunders et al. (2018) could not disentangle the specific effects 
of social (interpersonal proximity and interaction) versus affective 
(pleasant) touch on cognitive control. Additionally, it cannot determine 
whether changes in autonomic nervous system (ANS) activity may 
mediate psychophysiological regulation of inhibitory control. In light of 
this, we adopted a touch condition involving gentle, low-force, slow- 
moving touch to the skin specifically designed to activate CT afferents, 
which are thought to regulate stress response in rats (Walker et al., 
2022) and in certain individuals (Kidd et al., 2023; Morrison, 2016) as 
well as a more controlled method (Löken et al., 2009; Wijaya et al., 
2020). Furthermore, to mitigate potential order effects associated with a 
within-subject design (as used by Saunders et al., 2018), we chose to 
employ a between-subjects design to compare low-force, slow-moving 
touch with no-touch conditions. Importantly, our study aimed to explore 
whether and how interpersonal touch enhances cognitive control via 
emotional regulation. Specifically, we sought to account for the 

potential role of vagal activity in supporting response inhibition, as 
highlighted in prior research (e.g., Thayer and Lane, 2009). As an 
important hallmark of executive functions, primarily regulated by the 
prefrontal regions of the brain, inhibitory control refers to the capacity 
to suppress automatic responses and irrelevant information (Bari and 
Robbins, 2013; Cristofori et al., 2019; Grafman, 2002). According to the 
Neurovisceral Integration Model (NIM; Thayer et al., 2009; Thayer and 
Lane, 2000), prefrontal cortex engagement during inhibitory control is 
crucially associated with vagally-mediated high-HRV (parasympathetic 
activity) and reduced sympathetic activation. Research highlights the 
significance of high-frequency (HF) HRV as an index of parasympathetic 
activity in assessing the autonomic regulation linked to demanding tasks 
(Forte et al., 2019; Forte and Casagrande, 2025). HF-HRV is particularly 
valuable because it is sensitive to short-term fluctuations in autonomic 
tone, making it highly responsive to potentially stressful stimuli that 
require rapid autonomic adjustments (Thayer and Lane, 2000). 
Conversely, heightened sympathetic activation, as indicated by galvanic 
skin response (Kim et al., 2023), appears to result from lower prefrontal 
cortex activation and impaired cognitive control mechanisms (Boberg 
et al., 2021; Clark et al., 2018). This leads to disinhibition and altered 
cognitive performance (Thayer and Lane, 2000). Hence, the ANS ac-
tivity, as indexed by increased vagal tone, is proposed to reflect atten-
tional regulation and overall adaptive and flexible behavioural 
strategies in response to high-cognitive tasks or demands (Colzato and 
Steenbergen, 2017; Grol and De Raedt, 2020; Hovland et al., 2012; Park 
and Thayer, 2014; Thayer and Lane, 2000). These findings are further 
supported by studies showing that autonomic reactivity, particularly as 
indicated by changes in HF-HRV in healthy adults, is heightened during 
demanding tasks measuring inhibition (e.g., Stroop Task; Stroop, 1935) 
or executive functioning, thus confirming a strong connection between 
ANS function and cognitive performance (Forte et al., 2019; Forte and 
Casagrande, 2025; Huang et al., 2021; Renaud and Blondin, 1997; 
Thayer et al., 2009). Therefore, an outstanding research question is 
whether the ability to inhibit a response can be influenced by manipu-
lating the ANS activity through gentle, low-force, slow-moving touch. 
Most touch-based interventions have been found to benefit mental and 
physical health (Alp and Yucel, 2021; McGlone et al., 2024). However, 
the specific impact of gentle, low-force, slow-moving touch on auto-
nomic regulation during cognitive inhibition is poorly understood.

This study investigated whether gentle, low-force, slow-moving 
touch, specifically through stimulation designed to activate CT-targeted 
touch preferentially, could enhance inhibitory control during a Stroop 
task. The Stroop Task is a standard test that measures participants' 
abilities to suppress cognitive interference and to examine the efficiency 
of attentional control, processing speed, and overall executive process-
ing abilities. During the Stroop Task, the capacity to overcome reaction 
conflict caused by the intentional suppression of irrelevant and incom-
patible information may elicit physiological stress that can involve the 
sympathetic nervous system (responsible for fight or flight response) 
and the parasympathetic nervous system (responsible for recovery and 
rest) (Hoshikawa and Yamamoto, 1997; Mathewson et al., 2010; Vazan 
et al., 2017; Waxenbaum et al., 2023).

Importantly, in this study, participants completed the Stroop Task 
whilst indexes of the sympathetic and parasympathetic activity, 
including Electrodermal Activity (EDA) and Electrocardiogram (ECG), 
were collected to measure Skin Conductance Level (SCL) and HRV for 
HF-HRV power, respectively. Physiological indexes were obtained 
before and after receiving gentle, low-force, slow-moving touch or 
without receiving any touch at all. We expected that participants who 
received gentle, low-force, slow-moving touch stimulation would 
perform better on the Stroop Task than those who did not receive any 
touch stimulation (Saunders et al., 2018). Accordingly, touch stimula-
tion might modulate participants' physiological states (Mazza et al., 
2023; Pawling et al., 2024; Triscoli et al., 2017), aiding in the imple-
mentation of flexible and adaptive control over conflicting information 
during prefrontal task performance (Thayer et al., 2009). In agreement 
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with the NIM model (Thayer and Lane, 2000; Thayer and Lane, 2009), 
and following touch stimulation, we also anticipated increased HF-HRV 
levels (parasympathetic activity) during Stroop Task performance 
compared to SCL (sympathetic activity).

2. Methods

2.1. Participants

The sample size calculation was determined using G*Power 3.0.10 
(Faul et al., 2007) based on the outcome measures of RTs and accuracy. 
Calculations indicated a minimum of 27 participants per group (touch vs 
no-touch) and Time (pre- vs post-manipulation) for a small effect size 
(f2 = 0.25), with 95 % power and an α level set at 0.05, using a mixed 
design. A total of 72 participants took part in this study, with 36 adults 
(23 females, mean age = 42.78 yrs., SD = 21.90) assigned to the touch 
group and 36 adults to the no-touch group (22 females, mean age =
45.03 yrs., SD = 21.65). Participants were recruited from external 
sources, including poster advertisements in public places, social media, 
and personal contacts of the researcher, as well as internally through the 
Liverpool John Moores University (LJMU) Psychology SONA system. 
Participants were free of neurological diseases and psychiatric disorders, 
skin conditions or nerve impairment, and visual-perception disorders (e. 
g., colour blindness). The study was carried out in accordance with the 
Helsinki Declaration of ethical standards. The study protocol was 
approved by the LJMU's University Research Ethics Committee (UREC, 
22/PSY/019). All participants gave their written informed consent to 
take part in the study. Participants were rewarded with a £5 shopping 
voucher or SONA credits if they were LJMU students.

2.2. General procedure

A schematic representation of the general procedure is presented in 
Fig. 1.

On the day of testing, participants gave written consent and were 
asked to fill out a questionnaire concerning demographic details (i.e., 
gender, age, education), the Positive and Negative Affect Schedule 
(PANAS; Watson et al., 1988) for rating positive and negative emotions, 
and the Depression anxiety stress Scale-21 (DASS-21; Lovibond and 
Lovibond, 1995) to provide a measure of anxiety, depression, and stress 
levels. Then, all participants were asked to perform the Stroop Task at 
Time 1 (T1). At Time 2 (T2), the touch group received gentle, low-force, 
slow-moving touch stimulation delivered at a velocity of ~3 cm/s—a 

speed typically perceived as pleasant and optimal for activating the CT 
system (Löken et al., 2009)—before performing the Stroop Task for the 
second time. The interval between the two times was about 7 min, 
consistently maintained across groups and participants. After receiving 
manual stroking through a cosmetic soft brush applied over their ventral 
forearm, participants were required to report their pleasantness on a 
Visual Analogue Scale (VAS, e.g., Bellard et al., 2023; Sacchetti et al., 
2021). Participants assigned to the no-touch group underwent the same 
procedure except for the touch stimulation. Participants in the no-touch 
group were instructed to remain quietly without being engaged in 
stimulating activities to prevent any sensory/affective input that could 
potentially influence the Stroop Task performance for a time equal to 
that of the participants receiving touch stimulation. In this case, the 
experimenter maintained a non-intrusive presence, staying two metres 
away from the participant to minimise engagement and prevent 
heightened arousal. In the touch condition that closely mirrored this 
setup, participants were invited to remain still, calm, and away from the 
tactile stimulation. We implemented a standardised interaction script 
for the experimenter during the touch stimulation. This script reduced 
variability in non-verbal cues, such as body language and tone of voice, 
ensuring that every participant experienced the same level of engage-
ment. Additionally, both groups were exposed to the same ambient 
lighting and room temperature settings to avoid sensory differences that 
could influence arousal levels. All participants were randomly assigned 
to either the touch or no-touch condition to ensure that any physiolog-
ical and cognitive differences observed were attributable to touch rather 
than pre-existing differences between participants. Participants were 
informed in the participant information sheet that they might receive 
touch during the experiment, although the timing was not specified. On 
the testing day, participants were informed about their group allocation 
(whether they would receive touch or not) after the first Stroop Task 
(T1) and just before they performed the task again (T2) to minimise 
biases and anticipatory effects that might arise from knowing about the 
touch stimulation.

EDA and ECG signals were measured throughout the experiment to 
evaluate sympathetic and parasympathetic activity, respectively. During 
this time, participants were instructed to maintain regular breathing and 
minimise body movements during the physiological recording before 
performing the task. At the end of the experiment, they were asked to fill 
out the PANAS a second time. Overall, the testing procedure lasted 
approximately 45 min.

Fig. 1. Schematic representation of the timeline of the study procedure. Notes. Participants were asked to perform the Stroop task at two different time points, 
referred to as time 1 (T1) and time 2 (T2). At T1, both touch and no-touch groups performed the Stroop task without any additional stimulation. At T2, prior to the 
Stroop task, the touch group received the touch stimulation and subsequently filled out a visual analogue scale (VAS) to assess their perceived pleasantness touch- 
related. In contrast, the no-touch group did not receive any touch stimulation. The inter-stimulus interval (ISI) which represents the time duration between the 
completion of the initial task and the delivery of the touch stimulus was about 7 min. DASS-21 = The Depression, Anxiety, and Stress Scale; PANAS = Positive and 
Negative Affect Schedule; ECG = Electrocardiogram signals used to calculate HF-HRV; EDA = Electrodermal activity used to calculate SCL.
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2.3. Material and measures

2.3.1. Stroop task
The colour word Stroop Task (Stroop, 1935) was performed using 

Millisecond software (Inquisit 6; Draine, 1999; https://www.millis 
econd.com). This task measures the ability to inhibit automatic re-
sponses by requiring participants to ignore the meaning of a word and 
focus on naming the colour of the word's ink. In this study, participants 
were asked to type specific keys corresponding to the colour of the word 
displayed on the screen [i.e., D = red, F = green, J = blue, and K =
yellow)] as quickly and accurately as possible. Each word was displayed 
until one of the four keys was pressed. The task included 84 trials [4 
colours × 3 stimuli (congruent, incongruent, control) × 7 repetitions]. 
This resulted in 28 congruent trials (word and colour match), 28 
incongruent trials (word and colour do not match), and 28 control trials 
(coloured rectangles), randomly presented (Parkin et al., 2017). Prior to 
the start of the task, participants were trained with a short practice 
consisting of 12 practice trials (4 for each trial type). If the response was 
correct during the experiment, the subsequent trial started immediately. 
A red X was flashed on the screen if an incorrect response was made. 
Accuracy was determined by the percentage of correct responses (Tot 
correct/Ntrial) with a score of 1 for correct and 0 for incorrect answers. 
RTs were recorded by measuring the time lapse between the presenta-
tion of the stimulus and the participant's response on the keyboard. We 
calculated the mean latency of congruent or incongruent trials (in mil-
liseconds) to assess RTs for our analyses. Data from the practice and 
control trials were not included in accuracy and RTs performance 
counts.

2.3.2. Touch stimulation
Participants received manual gentle strokes on the ventral forearm 

using a soft brush (No7 cosmetic brush, Boots UK; Cazzato et al., 2021; 
Pawling et al., 2024; Sacchetti et al., 2021) for 2 min (Della Longa et al., 
2021; Ree et al., 2019) before performing the Stroop Task a second time. 
This interval length is sufficient for obtaining accurate measures of 
physiological arousal (Della Longa et al., 2021; Munoz et al., 2015). The 
brush was employed for tactile stimulation as materials perceived as soft 
are typically rated as pleasant (Taneja et al., 2021; Tarvainen et al., 
2014; Wijaya et al., 2020). Following the procedure adopted in a study 
previously published by our research group, each stroking was applied 
at a velocity of ~3 cm/s on the ventral forearm (Sacchetti et al., 2021). 
The rationale for this choice was that this velocity preferentially acti-
vates CT afferents, a type of nerve fiber that typically responds to gentle, 
slow stroking touch (Löken et al., 2009; Olausson et al., 2010; Vallbo 
et al., 1999), triggers pleasant feelings (Löken et al., 2009; Triscoli et al., 
2017) and buffers stress (Morrison, 2016). Accordingly, we delivered 12 
strokes, each separated by a 6-s interval, in a single session to account 
for CT-afferents' tendency to fatigue after repeated exposure to tactile 
stimuli (Schirmer and McGlone, 2022; Vallbo et al., 1999). Strokes were 
delivered at a constant pressure of 22 g/cm2 on about 9 cm long by a 
(female) research assistant trained to deliver the strokes on a scale to 
replicate the same movements on participants' forearms during the 
experiment. A visual metronome was programmed on PsychoPy (Peirce, 
2007) to guide the research assistant in delivering the strokes. During 
the touch manipulation, participants were asked to look at a blank 
screen presented on the computer in front of them. After touch manip-
ulation, a VAS was used to evaluate the pleasantness of touch. The VAS 
consisted of a horizontal line measuring 20 cm. Participants were 
instructed to make a mark on the line using a pen, indicating the level of 
pleasantness experienced during the touch. The scale ranged from − 10 
to +10, representing unpleasant, neutral, and pleasant touch.

2.3.3. Physiological arousal
A Biopac System, Inc., MP36 was utilized to record electrocardio-

gram (ECG) signals from which High-Frequency Heart Rate Variability 
(HF-HRV; variation in time between each heartbeat for high power 

frequency) was taken. HF-HRV (HRV in the 0.15–0.4 Hz band range) 
was used for assessing vagal tone as an index of the parasympathetic 
nervous system activity (Laborde et al., 2017; Shaffer et al., 2014).

During the experiment, three sensors were applied to the torso to 
reproduce Einthoven's triangle (i.e., one electrode on each shoulder and 
one on the left hip). Then, these were connected to The Biopac Student 
Lab Pro 3.7 software. The software was programmed to filter real-time 
data using a band-pass of 0–35 Hz and 0.5–0.35 Hz, respectively. The 
sampling rate for data acquisition was set at 2000 Hz. The recordings 
were interspersed with 30s breaks. To facilitate data recording, we 
configured a graphical template in the Biopac Student Lab software 
allowing us to manually add markers for precise visualisation of time 
intervals within the software's dialogue box (e.g., beginning and end of 
resting state; start and end for HRV during Stroop task, etc.).

ECG signals were first visually inspected to remove artifacts and 
subsequently imported into Kubios HRV software (Tarvainen et al., 
2014) to obtain the frequency domain measure of the High-Frequency 
band (i.e., 0.15–0.4 Hz). The software retrieves the interbeat (or RR) 
intervals from the original ECG signal and applies the smoothness prior's 
method to remove the low-frequency baseline trend component. The 
normalised HF-HRV units were acquired through frequency domain 
estimation employing power spectrum density. This estimation method 
involved Welch's periodogram method, which leverages the fast Fourier 
transformation.

ECG signals were captured in conjunction with electrodermal ac-
tivity (EDA) signals, as shown in previous studies investigating the link 
between touch and ANS activity (Chatel-Goldman et al., 2014; Sacchetti 
et al., 2021). EDA signals, which refer to the electrical activity of the skin 
resulting from variations in sweating, were used for calculating Skin 
Conductance Level (SCL), a measure of the tonic arousal regulated by 
the sympathetic nervous system (SNS; Dawson et al., 2007; see 
Braithwaite et al., 2015, a guide for analysing SCL). When the sympa-
thetic system is activated, the electrical activity of the skin results in 
increased sweating and, thus, increased SCL (Gordan et al., 2015).

While arousal levels were recorded throughout the experiment, our 
analysis focused on changes in HRV and SCL during two distinct phases: 
resting (pre task) and during task performance. These phases were 
analysed at two different time points, i.e., time 1 (T1) and time 2 (T2). 
Therefore, the study design resulted in a total of four recordings for each 
participant, as follows: 

• Pre-Task at T1: before participants performed the Stroop Task during 
the first session;

• During task at T1: during Stroop Task performance in the first 
session;

• Pre-Task at T2: prior to touch stimulation (touch group) or task 
performance in the second session;

• During task at T2: during Stroop Task performance in the second 
session.

Notably, for resting state measurement, participants were instructed 
to remain still and relaxed with their eyes open for 3 min, a sufficient 
time interval length for obtaining accurate measures of physiological 
arousal (Della Longa et al., 2021; Munoz et al., 2015; Ree et al., 2019). 
The rationale for recording physiological arousal before the task was to 
ensure that any differences observed during the tasks were not influ-
enced by pre-existing group differences in the arousal levels (Liang et al., 
2009; Pendleton et al., 2016). Moreover, real-time assessments of the 
HF-HRV/SCL levels during the task contributed to examining specific 
changes in arousal linked to task engagement (Culver et al., 2012; Liang 
et al., 2009; Pendleton et al., 2016), particularly in relation to touch 
stimulation.
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2.3.4. Self-report questionnaires

2.3.4.1. The Depression, Anxiety, and Stress Scale (DASS-21). DASS-21 
(Lovibond and Lovibond, 1995) is a self-report scale of mood that con-
sists of 21 items divided into three subscales assessing depression (e.g., 
lack of interest/involvement in activities, anhedonia, etc), anxiety (e.g., 
restlessness, and physiological arousal associated with anxiety), and 
stress (e.g., being easily upset/agitated, irritable/over-reactive, etc). 
Participants are asked to rate the presence and intensity of their symp-
toms over the past week on a 4-point Likert scale. Each item can be rated 
from “0” which indicates the symptoms were not experienced at all to 
“4” which indicates that the symptoms were experienced most of the 
time.

2.3.4.2. Positive and Negative Affect Schedule (PANAS). The Positive 
and Negative Affect Schedule (PANAS; Watson et al., 1988) was used to 
evaluate positive and negative emotions before and after completing the 
Stroop Task. Participants were asked to respond to a 20-item self-report 
using a 5-point scale with 10 items assessing positive affect and 10 items 
assessing negative affect. Each item can be rated from “1” (very slightly 
or not at all) to “5” (extremely). Scores ranged from 10 to 50 on each 
scale, with higher scores on the positive affect scale indicating a more 
pronounced positive mood (e.g., “enthusiast”) whereas items with 
higher scores on the negative affect scale indicate a more pronounced 
negative mood (e.g., “nervous”).

2.4. Data handling

Statistical analyses were conducted using IBM SPSS 26 (SPSS Inc., 
Chicago, IL). A series of independent sample t-tests were performed to 
determine whether there were any baseline statistically significant dif-
ferences in the demographics (e.g., age and education), DASS-21 sub-
scales, PANAS scores, and HF-HRV/SCL levels between the two groups 
(touch vs. no-touch group). For the analysis of Stroop Task performance, 
we calculated the mean of response times (RTs) in msec and the % of 
correct responses for assessing the accuracy for each word category 
(congruent and incongruent). To assess changes in Stroop Task perfor-
mance, two separate mixed-design two-way ANOVAs were performed, 
with Group [touch vs. no-touch] as a between-subjects factor, and 
Congruency [congruent vs. incongruent words] as a within-subjects 
factor, using RTs or Accuracy as a dependent variable.

Then, we ran two one-way ANOVAs using Group [touch vs no-touch] 
as a between-subjects factor and HF-HRV or SCL as a dependent variable 
to assess changes in the parasympathetic and sympathetic activity 
respectively. Prior to these analyses, we calculated the difference (Δ) in 
mean scores between T1 and T2 for HF-HRV and SCL measurements. For 
both HF-HRV and SCL measures, we considered two temporal windows, 
i.e., recordings before and during the Stroop Task.

To account for a potential trade-off between accuracy and speed, we 
calculated an inverse efficiency score (IES) by taking the ratio of the 
percentage of correct responses (expressed as a decimal) to the mean 
latency for both congruent and incongruent trials. This calculation was 
carried out separately for T1 and T2, for each group. We conducted a 2 
Group [touch vs no-touch] × 2 Time [T1 vs T2] mixed ANOVA to assess 
changes in the IES.

An additional 3-way mixed design ANOVA was performed with 
Group [touch vs no-touch] as a between-subjects factor, and Time [T1 vs 
T2] and Valence [positive vs negative emotions] as within-subjects 
factors to assess changes in emotions based on the PANAS question-
naire scores from T1 to T2.

A series of Pearson correlations were performed to explore the 
relationship between physiological arousal (SCL and HF-HRV) and 
cognitive outcomes (RTs and Accuracy) obtained from the Stroop Test 
within each touch/no-touch group. For our analyses, we calculated the 
Δ difference in mean scores between T1 and T2 for RTs and Accuracy 

(for congruent and incongruent words). Similarly, to establish the 
change indices for arousal levels, we calculated the change (Δ) in mean 
scores for HF-HRV and SCL between T1 and T2 across two phases: 
resting state (before the task) and during task performance. After 
obtaining the Δ change index values for all variables, we proceeded to 
examine the correlations.

Before performing the ANOVAs, all dependent variables were tested 
for homogeneity of variance and sphericity assumptions. To follow-up 
all significant interactions, we conducted a series of independent sam-
ple t-tests to examine differences between the touch and no touch 
groups. P-values were corrected using the Bonferroni method to account 
for multiple comparisons (Rogers and Weiss, 2009). A significance 
threshold of p < .05 was set for all effects. Effect sizes were estimated 
using partial eta square (η2ₚ) and Cohen's d.

3. Results

3.1. Descriptive statistics

Overall, participants in the touch group reported the touch stimu-
lation as relatively pleasant (Mean = 12.95 cm; SD = 3.5). Baseline 
descriptive statistics for demographics, mood (DASS-21), emotions 
(PANAS), and physiological measures (HF-HRV and SCL) for each group 
(touch vs no-touch) are reported in Table 1. Overall, we observed no 
significant differences when comparing baseline measurements between 
the two groups. Therefore, the two groups were comparable in all 
measures.

3.2. PANAS analysis

The 3-way mixed ANOVA on mean scores obtained at the PANAS for 
positive and negative emotions revealed a significant main effect of 
Valence [F(1, 70) = 363.61, p < .001, η2p = 0.84], which was corrob-
orated by a significant interaction of Time × Valence [F(1, 70) = 21.15, 
p < .001, η2p = 0.09]. In both groups, post-hoc tests revealed that 
positive emotions significantly increased, t(71) = 3.02, p = .004, d =
0.35, whereas negative emotions decreased at T2, t(71) = 3.08, p = .003, 
d = 0.36. However, there was no variation in PANAS scores across the 

Table 1 
Descriptive for demographics, affective state, and cognitive outcomes in each 
group (touch and no-touch) at the baseline.

Variables Touch group (n =
36)

No-touch group (n =
36)

p d

Mean ± SD Mean ± SD

Age 42.78 ± 21.90 45.03 ± 21.65 0.76 0.10
Sex (female) 64 % 61 %
Education 15.94 ± 2.10 15.31 ± 1.65 0.65 0.34
PANAS scales

Positive affect 27.42 ± 7.02 26.75 ± 7.02 0.09 0.11
Negative affect 12.03 ± 4.65 12.36 ± 2.06 0.06 0.09

DASS-21 
(subscale)
Depression 4.67 ± 2.01 4.53 ± 2.08 0.95 0.97
Anxiety 3.86 ± 3.42 3.97 ± 3 0.25 0.03
Stress 3.75 ± 2.18 4.03 ± 2.20 0.85 0.13

Arousal
HF-HRV 53.54 ± 5.87 52.98 ± 5.65 0.78 0.10
SCL 0.29 ± 0.14 0.28 ± 0.13 0.71 0.04

Stroop task
RTs 1483.45 ± 157.72 1492.35 ± 175.24 0.45 0.05
Accuracy 82.83 ± 6.09 85.93 ± 7 0.31 0.47

Notes. DASS-21 = The Depression, Anxiety and Stress Scale-21 Items (sub-
scales); PANAS = Positive and Negative Affect Schedule; HF-HRV = High-Fre-
quency Heart Rate Variability; SCL = skin conductance level; RTs = response 
times; the table includes the mean scores of accuracy and RTs for both congruent 
and incongruent trials. Mean scores of HF-HRV and SCL scores refer to the 
resting state (i.e., before the Stroop task).
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touch and no-touch groups from T1 to T2, suggesting that positive and 
negative emotions did not differ between the two groups before and 
after completing the Stroop Task.

3.3. Stroop task outcomes

3.3.1. Response times (RTs)
Findings revealed significant main effects of Group [F(1, 70) =

11.09, p < .001, η2p = 0.14] and Congruency [F(1, 70) = 11.09, p <
.001, η2p = 0.14]. These effects were further qualified by a significant 
Group × Congruency interaction [F(1, 70) = 8.39, p = .005, η2p = 0.11]. 
As shown in Fig. 2, an independent sample t-test revealed a greater 
reduction in RTs in the touch group for congruent trials (Mean = 284.60 
msec, SD = 69.22) compared to the no-touch group (Mean = 98.14 
msec, SD = 153.94), t(70) = 6.63, p < .001, Cohen's d = 1.03. Similarly, 
a greater reduction in RTs was observed in the touch group for the 
incongruent trials (Mean = 168.22 msec, SD = 113.70) compared to the 
no-touch group (Mean = 90.04 msec, SD = 103.69), t(70) = 3.05, p =
002, Cohen's d = 0.72.

To summarise, these findings indicate that the group receiving 
gentle, low-force, slow-moving touch exhibited faster processing in both 
congruent and incongruent trials, compared to the no-touch group.

3.3.2. Accuracy
The analyses did not yield a significant main effect of Congruency [F 

(1, 70) = 0.98, p = .33, η2p = 0.02]. Similarly, there were no significant 
effect of Group [F(1, 70) = 3.88, p = .05, η2p = 0.05] or the Group ×
Congruency interaction [F(1, 70) = 3.39, p = .07, η2p = 0.05].

3.3.3. Inverse efficiency score (IES)
The results showed a significant effect of Time [F(1, 70) = 297.90, p 

< .001, η2ₚ = 0.81], and a significant Time × Group interaction [F(70) 
= 51.55, p < .001, η2ₚ = 0.42], as shown in Fig. 3.

T-test results revealed no significant difference between the touch 
and no-touch groups at T1 (touch group: Mean = 18.02, SD = 2.48; no- 
touch group: Mean = 17.54, SD = 2.93), t(70) = 0.76, p = .45, Cohen's d 
= 0.18. However, at T2, there was a significant difference between the 
two groups (touch group: Mean = 14.87, SD = 2.18; no-touch group: 
Mean = 16.24, SD = 3.06), t(70) = 2.18, p = .03, Cohen's d = 0.51. In 
line with our main results, results suggest that the touch group showed 
better performance at T2, with faster responses while maintaining high 
accuracy, as indicated by the significantly lower IES at T2.

3.4. High-Frequency Heart Rate Variability (HF-HRV) outcomes

3.4.1. HRV during task
When looking at the HF-HRV during the task, results revealed a 

significant main effect of Group [F(1, 70) = 48.55, p < .001, η2p = 0.41], 
indicating a difference in HF-HRV levels between groups. As shown in 
Fig. 4, an independent sample t-test revealed a significant difference in 
the change of HF-HRV between groups, t(70) = − 6.96, p < .001, Cohen's 
d = 1.64. Specifically, HF-HRV was significantly greater in the touch 
group (Mean = − 6.13, SD = 3.92) than in the no-touch group (Mean =
− 1.22, SD = 1.56).

Overall, these results showed a greater increase in HF-HRV in the 
touch group compared to the no-touch group.

3.5. Skin conductance level (SCL) outcomes

We did not observe any significant main effect of Group [F(1, 70) =
1.72, p = .20, η2p = 0.03] for SCL during the Stroop Task performance.

3.6. Correlations analyses: physiological arousal and cognitive outcomes

Correlational analyses between measures of physiological arousal 
(HF-HRV and SCL pre and during task) and Stroop outcomes (RTs and 
Accuracy) were performed for each group. In the touch group, we 
observed a significant and negative association between HF-HRV during 
task and RTs for incongruent words (r = − 0.36, p = .02) but not for 
congruent words (p = .36). However, no significant correlations were 
found between physiological measures during task and accuracy (all ps 
≥. 40). Moreover, when looking at the no-touch group, we did not 
observe any significant association between physiological measures 
during the task and Stroop outcomes (all ps > 0.33).

Lastly, no significant correlations were found between HF-HRV or 
SCL pre-task and cognitive outcomes within each group. Specifically, in 
the touch group, the p-values ranged from above 0.40 to 0.80. Similarly, 
the no-touch group also exhibited no significant correlations, with p- 
values ranging between 0.40 and 0.90. These results suggest that the 
physiological state at rest did not relate to cognitive performance.

4. Discussion

CT afferents contribute to affective touch processing and the regu-
lation of social behaviours (Huzard et al., 2022), including modulating 
stress response and resilience (Walker et al., 2022). This study explored 
the effects of touch, specifically gentle, low-force, slow-moving touch, 
designed to optimally activate CT afferents on physiological arousal and 
cognitive performance, with a particular emphasis on inhibitory control 
of goal-irrelevant stimuli. We hypothesised that touch stimulation 
would positively influence participants' physiological states, enhancing 
their ability to manage conflicting information during a cognitive task. 
Although Saunders et al. (2018) were the first to examine the impact of 
touch (i.e., handholding with a romantic partner) on cognitive func-
tioning (i.e., error monitoring), to our knowledge, this study is the first 
to explore the beneficial effects of gentle, low-force, slow-moving touch 
on inhibitory control ability through the modulation of psychophysio-
logical reactivity. Our findings suggest that participants receiving 
gentle, low-force, slow-moving touch exhibited increased physiological 
arousal, as evidenced by higher HF-HRV, and reduced RTs during the 
Stroop Task, compared to those who did not receive touch. These results 
may point to a potential link between gentle, low-force, slow-moving 
touch and cognitive performance, particularly in a task involving 
inhibitory control. However, further research is necessary to fully 
elucidate the nature of this relationship and determine the specific un-
derlying mechanisms involved.

It is important to note that a practice effect was observed in both 
groups, with a greater reduction RTs in the touch group, suggesting that 
touch may play an active role in cognitive processing, potentially 

Fig. 2. Mean Δ RTs in the Touch vs. the No-Touch Group as a function of 
congruency. Note. The figure illustrates the significant difference in the Δ (T2 - 
T1) change in reaction times (RTs) for both congruent and incongruent trials 
between the groups. Error bars represent standard errors. ***: p ≤ .001.
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extending its influence beyond mere repeated exposure. These findings 
seem to align with the “embodied cognition” framework, which pro-
poses that sensory experiences, including tactile sensations, could play a 
significant role in bolstering cognitive processes (Gallese and Ebisch, 
2013; Wilson and Golonka, 2013).

The mechanism for the increased cognitive performance, as indi-
cated by reduced RTs, may also be grounded in the homeostatic and 
allostatic regulation properties of affective touch (Fotopoulou et al., 
2022). It is possible that in our study, the touch manipulation could have 
facilitated an increase in internal control (e.g., heightened body 
awareness; “homeostatic mechanism”), which might have contributed 
to the regulation of affective and physiological states (“allostatic 
mechanism”) (Burleson and Quigley, 2021; Fotopoulou and Tsakiris, 
2017; Fotopoulou et al., 2022). This effect may be amplified when touch 
involves the activation of CT afferents, as is the case with affective/ 
pleasant stimulation (e.g., Ree et al., 2019; Silvestri et al., 2024; Van 
Puyvelde et al., 2019). Affective regulation is crucial in achieving 
optimal goal-directed behaviour (Cardinale et al., 2019; Rónai et al., 
2024). It can be speculated that integrating sensory information from 

gentle, low-force, slow-moving touch with higher-level cognitive control 
activity might have enabled participants to regulate task-induced 
negative emotions (Ellingsen et al., 2016; McRae et al., 2012), which 
could have helped them to cope with inhibitory control mechanisms 
(Gliga et al., 2019; McCabe et al., 2008). Although speculative, this 
interpretation resonates with the findings of the Saunders et al. (2018), 
which suggest that touch between romantic partners can increase self- 
reported positive emotions and buffer against the threat of negative 
information, possibly making people more open to negative signals or 
processing negative, affectively charged events (e.g., impulses and 
mistakes) during a conflict task performance. Furthermore, touch is 
known to have significant implications for the regulation of the 
Hypothalamic-Pituitary-Adrenal (HPA) axis (Yachi et al., 2018), a crit-
ical system involved in stress management (Smith and Vale, 2006). 
Although this study did not explicitly test this hypothesis, it is possible 
that the type of touch used in our study may have stimulated the release 
of oxytocin (Portnova et al., 2020; Walker et al., 2017), a hormone 
associated with stress reduction (Lee et al., 2009). This release might 
contribute to lower cortisol levels by influencing the hippocampus and 

Fig. 3. Mean IES as a function of Groups and Time. Note. The Inverse Efficiency Score (IES) was computed as the ratio of the percentage of correct responses 
(expressed as a decimal) to the mean latency for both congruent and incongruent trials; lower IE values correspond to better task performance while higher values 
indicated worse performance. T1 = time 1; T2: time 2. Error bars represent standard errors. *: p ≤ .05; **: p ≤ .01. ***: p ≤ .001.

Fig. 4. Mean Δ HF-HRV in the Touch vs the No-Touch Group. Note. The figure depicts the significant difference in the Δ (delta) of HF-HRV between the groups, 
where Δ represents the change in HF-HRV from the initial time point (T1) to the second time point (T2). Error bars represent standard errors. ***: p ≤ .001.
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other brain regions that regulate the HPA axis (Matsushita et al., 2019). 
Consequently, gentle, low-force, slow-moving touch may promote a 
more adaptive stress response, facilitating a timely deactivation of the 
HPA axis and supporting overall physiological homeostasis (Kidd et al., 
2023; Lupien et al., 2009; McEwen, 2007).

Another potential mechanism to support the findings observed here 
may be attributed to changes in physiological arousal following touch 
manipulation. Participants in the touch group exhibited a more pro-
nounced increase in HF-HRV compared to the no-touch group. Accord-
ing to the NIM (Thayer and Lane, 2000, 2009), this effect might reflect a 
boost of flexible and adaptive responses to increasingly cognitive de-
mand. One crucial component of this flexibility could be inhibitory 
control, which involves a series of feedback loops between frontal brain 
areas in the central nervous system, and the ANS, which in turn regulates 
heart rate, as indexed by HRV (Thayer and Friedman, 2002; Thayer, 
2006). It is reasonable to suggest that enhanced physiological reactivity, 
supported by increased HRV levels—potentially fostered by gentle, low- 
force, slow-moving touch (Triscoli et al., 2017; Van Puyvelde et al., 
2019)—might have contributed to participants' quicker reactions during 
the Stroop Task performance (Pallak et al., 1975). These mechanisms 
could include increased allocation of anticipatory attentional resources 
(Bastiaansen and Brunia, 2001; Weiss et al., 2018), cognitive control 
over conflicting and irrelevant information (Banich et al., 2019), and 
error monitoring (Saunders et al., 2018). Supporting this idea, neuro-
imaging studies revealed that, in particular being gently stroked, acti-
vates a brain network including, e.g., the orbitofrontal, insular, and 
cingulate cortices, all of which are involved in interoception, autonomic 
regulation, and high-level cognitive processes (e.g., Craig, 2002, 2008; 
Fotopoulou et al., 2022; Gordon et al., 2013; McCabe et al., 2008; 
McGlone et al., 2012).

It should be noted that even the no-touch group showed an 
improvement in HF-HRV levels. We speculate that participants' expec-
tations regarding the upcoming tasks may have heightened their arousal 
levels in preparation for the next phase of the experiment (Knutson and 
Greer, 2008). Another possible explanation is that repeated exposure to 
the tactile stimulus may have led to sensitization, where initial arousal 
during the first Stroop task primes the nervous system for increased 
arousal in later sessions (Stevens and Bruck, 2019). Presumably ac-
cording to the NIM (Thayer and Lane, 2000), an increase in para-
sympathetic activity is typically expected to enhance executive 
functioning, even in the no-touch group. However, the lack of a signif-
icant correlation between Stroop performance and HF-HRV suggests a 
more complex relationship between physiological measures and cogni-
tive outcomes, particularly in the context of CT-targeted touch. In the 
absence of touch stimulation, this relationship could be weaker.

Partially consistent with NIM (Thayer and Lane, 2000), the changes 
observed in physiological responses during the Stroop Task may have 
been driven by parasympathetic activity, as indicated by significant 
changes in HF-HRV levels. Accordingly, we did not observe any signif-
icant difference in sympathetic activity as measured by SCL levels across 
the two groups. One possible explanation for the divergence between 
SCL and HRV effects is that during cognitive challenges, individuals 
might experience increased sympathetic activation that does not 
correspond to changes in SCL. This could be due to a “feedback loop” 
from cognitive engagement that enhances parasympathetic activity (i.e., 
increased HRV) while inhibiting sympathetic activation (i.e., lower SCL) 
(Knight et al., 2020). This concept further highlights that dimensions of 
arousal may not be uniform and affect all physiological parameters (like 
SCL and HRV) (Dickman, 2002).

Nevertheless, our findings revealed that in the touch group, higher 
HF-HRV levels were linked to faster reaction times compared to the no- 
touch group, but no changes were observed in levels of SCL. This finding 
could be consistent with a relationship between parasympathetic ac-
tivity and cognitive performance (Lazaridi et al., 2022; Nicolini et al., 
2024), particularly under increased cognitive demands, as evidenced by 
the highest HRV levels observed during incongruent trials (Solhjoo 

et al., 2019). These findings may imply that HRV could serve as an in-
dicator of an adaptive stress response (Thayer et al., 2012), where 
greater mental effort may contribute to improved performance, espe-
cially in more complex tasks (Solhjoo et al., 2019). Indirect support for 
this idea comes from findings that CT mediated touch may have a reg-
ulatory effect on the parasympathetic nervous system (i.e., as reflected 
in increased HRV), as observed in previous research (Manzotti et al., 
2023; Triscoli et al., 2017; Van Puyvelde et al., 2019).

4.1. Limitations

Although our findings seem to suggest that gentle, low-force, slow- 
moving touch may enhance cognitive performance through physiolog-
ical regulation, the absence of a group receiving CT-targeted touch at 
suboptimal velocities (e.g., faster speeds outside the optimal CT range, 
such as 30 cm/s; Sacchetti et al., 2021, or static touch; Ali et al., 2023) 
limits our ability to draw definitive conclusions about the specific ve-
locity effects of CT-targeted touch. Including such control groups in 
future research could help disentangle the unique contributions of CT- 
targeted touch from general tactile stimulation, providing a clearer 
understanding of its specific influence on cognitive processes. Further-
more, the current study did not determine whether the effects observed 
are specific to CT-targeted touch or could be attributed to any form of 
tactile stimulation such as tapping and light finger touch (non-affective 
touch; Della Longa et al., 2023; Lee et al., 2018a). Future research could 
explore this distinction to better isolate the potential contributions of 
CT-targeted touch to the observed effects. It is also important to high-
light that gentle skin stroking activates various classes of C-fiber low- 
threshold mechanoreceptors (CLTM), including Aβ field low-threshold 
mechanoreceptors which are highly sensitive to gentle stroking but 
unresponsive to other types of stimuli like hair deflection (Walker et al., 
2022; Watkins et al., 2021; Bai et al., 2015). Future studies should 
further investigate the sensory role of these mechanoreceptors, partic-
ularly in distinguishing their contributions to affective touch vs 
discriminative touch.

In this study, other touch properties (such as duration and manual 
stimulation) may have played a significant role in the interaction be-
tween autonomic regulation and task performance. Therefore, future 
research might consider investigating the impact of various CT-touch 
characteristics (e.g., velocity, temperature, skin locations; Ackerley 
et al., 2014a, 2014b), or non-CT touch characteristics, on both physio-
logical and cognitive outcomes. Furthermore, we do not exclude the 
potential beneficial effects of different tactile texture stimuli (e.g., satin; 
haptic glove; Etzi et al., 2014; Terrile et al., 2021), as well as sensorial 
activities (e.g., light, aroma; Chamine and Oken, 2015; Siraji et al., 
2023) could influence physiological patterns and cognitive processes 
related to inhibitory control. Including control conditions would 
enhance the validity of our findings, allowing to determine whether the 
observed effects are indeed attributable to the specific tactile or sensory 
modalities being tested.

It is also important to acknowledge that improvements in cognitive 
performance may stem from attentiveness or motivation related to social 
facilitation, such as the awareness or presence of other individuals 
(Belletier et al., 2019). To minimise contextual variability, our experi-
mental setup consistently included both the researcher and assistant 
researcher across all participants. However, our effort to keep the ex-
perimenter's presence non-intrusive or at a distance from the participant 
in the control condition may have unintentionally drawn attention to 
proximity as a potential confounding factor. Future studies could 
incorporate more rigorous control over proximity, such as setting fixed 
distances between the participant and the experimenter or using a 
transparent partition to control for the visual and spatial presence of the 
experimenter, thereby reducing its influence on the physiological- 
cognitive outcomes. Furthermore, we recommend an experimental 
design that incorporates additional conditions to isolate the effects of 
touch from social presence, such as using a Rotary Tactile Stimulator 
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(RTS). The RTS allows for the delivery of precise, controlled force and 
velocity, potentially reducing variability introduced by human touch 
and establishing a control condition in which participants receive 
identical tactile stimuli without the influence of social context (Lee 
et al., 2018b). Our study utilized the HF parameter to measure para-
sympathetic activity in the autonomic nervous system through high- 
frequency bands of HRV. Future research should consider incorpo-
rating a variety of HRV measures, such as time-domain indices or 
additional metrics, (e.g., SDNN Index, RMSSD, NN50, and pNN50, see 
Shaffer and Ginsberg, 2017 for an overview) to provide a more 
comprehensive analysis of the cardiac vagal tone related to sensory- 
cognitive stimulation.

During the experiment, gentle, low-force, slow-moving touch at 3 
cm/s was delivered for 2 min, which is generally sufficient to elicit 
physiological activation (Della Longa et al., 2021; Ree et al., 2019). 
Despite this, it is important to note that too high or too low arousal levels 
elicited can have a detrimental effect on cognitive performance 
(Storbeck and Clore, 2008; Yerkes and Dodson, 1908). Thus, further 
research could explore the optimal duration of touch stimulation to 
achieve the desired level of arousal without negatively impacting 
cognitive performance.

Lastly, we assessed emotional distress using the DASS-21 question-
naire and affect through PANAS before and after the experimental 
manipulation. These measures provided insight into participants' 
emotional states, which helped understand potential confounding fac-
tors, such as whether any observed changes in physiological responses or 
cognitive performance could be due to pre-existing emotional states. 
While PANAS has been previously used in studies related to affective 
touch (Mammarella et al., 2012; Sailer et al., 2024), we are aware that 
these questionnaires may not directly capture the influence of social or 
environmental factors.

5. Conclusion

While we cannot make definitive claims about the specific role of CT- 
targeted touch in enhancing inhibitory control through physiological 
regulation, our study provides preliminary evidence of a potential 
connection between gentle, low-force, slow-moving touch and auto-
nomic regulation, as indicated by increased HF-HRV. This was accom-
panied by enhanced processing speed during the Stroop Task. Future 
research employing more rigorous control conditions is necessary to 
further clarify the role of CT-targeted touch in shaping physiological and 
cognitive outcomes.
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