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The benefits of regular physical activity (PA) on disease
prevention and treatment outcomes have been recognized
for centuries. However, only recently has interorgan
communication triggered by the release of “myokines”
from contracting skeletal muscles emerged as a putative
mechanism by which exercise confers protection against
numerous disease states. Cross-talk between active skel-
etal muscles and the gut microbiota reveal how regular PA
boosts host immunity, facilitates a more diverse gut
microbiome and functional metabolome, and plays a pos-
itive role in energy homeostasis and metabolic regulation.
In contrast, and despite the large interindividual variation
in the human gut microbiome, reduced microbial diversity
has been implicated in several diseases of the gastroin-
testinal (GI) tract, systemic immune diseases, and cancers.
Although prolonged, intense, weight-bearing exercise con-
ducted in extreme conditions can increase intestinal
permeability, compromising gut-barrier function and
resulting in both upper and lower GI symptoms, these are
transient and benign. Accordingly, the gut microbiome has
become an attractive target for modulating many of the
positive effects of regular PA on GI health and disease,
although the precise dose of exercise required to induce
favourable changes in the microbiome and enhance host
immunity is currently unknown. Future efforts should
concentrate on gaining a deeper understanding of the
factors involved in exercise-gut interactions through the
generation of functional ‘omics readouts (ie, metatran-
scriptomics, metaproteomics, and metabolomics) that have
the potential to identify functional traits of the microbiome
that are linked to host health and disease states, and
validating these interactions in experimental and preclin-
ical systems. A greater understanding of how PA interacts
with the GI tract and the microbiome may enable targeted
therapeutic strategies to be developed for individuals and
populations at risk for a variety of GI diseases.

Keywords: AMPK; Cross-Talk; Fecal Microbiota Transfer;
Gastrointestinal Tract; Immunity; Inflammation; Ischemia;
mTOR; Myokines; Physical Activity; Probiotics; Skeletal Muscle.

Epidemiologic and cross-sectional data provide
overwhelming evidence to demonstrate that lifelong

physical activity (PA, defined as voluntary bodily movement
produced by skeletal muscles that requires energy expen-
diture) postpones the onset of numerous chronic metabolic

conditions and noncommunicable diseases (NCDs) and is
associated with an enhanced quality of life and extended
health span.1–6 In this regard, there has been belated
recognition that “exercise is medicine” with the advance-
ment and implementation of evidence-based approaches to
elevate the status of PA in primary healthcare settings.7–11

Many interdependent mechanisms underpin the health-
promoting effects of PA although the precise molecular ba-
ses by which lifelong PA (ie, exercise training) promotes
human health and reduces disease risk remain poorly un-
derstood.12 Although the biochemical and metabolic adap-
tations to exercise training have been extensively
investigated in skeletal muscle, heart, adipose tissue, and
the vasculature,13 only recently has there been appreciation
that the gut microbiome plays a fundamental role in pro-
moting some of the beneficial effects of regular PA on both
general health, athletic performance, and anticancer
immunity.14–16 Murine models using a variety of exercise
interventions reveal consistent changes in the gut micro-
biome associated with improved health outcomes and
longevity.17 Despite less than 5% overlap between human
and mouse microbiota composition18 and several interspe-
cies differences,19 such investigations provide opportunities
for examining the mechanistic interactions between exercise
and the gut microbiota that may be of direct translational
value for discovering the functional processes underlying
several human gastrointestinal (GI) disease states.20,21

The gut microbiome constantly interacts with the host
immune system, producing a range of metabolites that exert
both local (cell/tissue/organ) and systemic (whole-body)
effects.22 These interactions can trigger health or disease
states by generating either harmful metabolites that

Abbreviations used in this paper: AMPK, AMP-activated protein kinase;
BMI, body mass index; CI, confidence interval; CRC, colorectal cancer;
FMT, fecal microbiota transplantation; GI, gastrointestinal; IBD, inflam-
matory bowel disease; IBS, irritable bowel syndrome; IL, interleukin;
MASLD, metabolic dysfunction-associated steatotic liver disease; MET,
metabolic equivalent; mTOR, Akt/mammalian target of rapamycin; NK,
natural killer; NCD, noncommunicable disease; PA, physical activity; RR,
relative risk; SCFA, short-chain fatty acids; TNF-a, tumor necrosis factor
alpha; VO2max, maximal oxygen consumption.
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provoke disorders (eg, inflammatory bowel disease [IBD])
or favorable metabolites (ie, short-chain fatty acids [SCFA])
that are health-promoting. For this reason, the role of the
gut microbiome on its host has been the focus of intense
research, with the gut microbiota now established as a
powerful modulator of the efficacy of several treatments of
GI diseases. There has been an emergence of clinical in-
terventions targeting the microbiome to enhance health
outcomes, particularly cancer,23 from diagnosis and recur-
rence to prognosis as well as treatment effectiveness.24 Here
we discuss the role of PA and skeletal muscle metabolic
cross-talk with other tissues and organs, especially the GI
tract, with a focus on how exercise can modulate microbial
diversity. We describe the effects of exercise on the GI tract
concentrating on the role of bacteria and other micro-
organisms in this process. Finally, the role of exercise and
the gut microbiome in the prevention of GI diseases will be
discussed in anticipation of emerging treatments that target
the microbiome to modulate these effects by understanding
the complex and interdependent interactions between PA,
diet, and GI function.

Metabolic Communication During
Exercise
Skeletal Muscle Cross-Talk

The health-promoting effects of regular PA have tradi-
tionally been attributed to exercise-induced increases in
whole-body cardiorespiratory fitness (VO2max) evoked by
extensive remodelling of the vascular system, especially the
peripheral skeletal muscles subjected to exercise.13 How-
ever, during the past 20 years, interorgan communication or
“cross-talk” initiated by contracting skeletal muscles has
emerged as a complementary mechanism through which PA
confers protection against an array of disease states.25

Although the hypothesis of a “general, humoral effect of
exercise” was proposed more than 60 years ago,26 the
concept of skeletal muscle as an endocrine organ gained
credibility just 2 decades ago when it was shown that the
cytokine interleukin-6 (IL6) was released from skeletal
muscle during exercise.27 SinceQ3 that time, cytokines and
other peptides, which are released by contracting skeletal
muscle fibers and exert autocrine, paracrine, or endocrine
effects, have been classified as “myokines.”28,29 The list of
bona fide myokines includes IL6, IL8, IL15, decorin,
follistatin-like 1, fibroblast growth factor-21, irisin, chemo-
kine CXC motif ligand-1 also known as keratinocyte-derived
chemokine, mitochondrially encoded peptide-c and
meteorin-like, although there are likely many more proteins
secreted by contracting skeletal muscles.25,29 Established
roles for “adipokines” and “hepatokines” as exercise-
stimulated signals that coordinate systemic metabolism in
response to PA and inactivity have been reviewed previ-
ously.25,30,31 The discovery of interorgan cross-talk offers a
framework for understanding how PA transmits many of its
beneficial effects on whole-body metabolic health (Figure 1).

Recently, important links between skeletal muscle and
the gut microbiota have been uncovered, revealing how

exercise facilitates a more diverse gut microbiome and
functional metabolome, casting new light on the inter-
connectivity between these 2 organs in health and disease
states.32 Exercise training alters both the bacterial commu-
nity structure and numerous taxa that are associated with
improved host health.33 However, these exercise-induced
changes are not universal with only moderate to high-
intensity exercise undertaken more than 3 times per week
for longer than 8 weeks being consistently associated with
either alterations in bacterial community and/or community
structure.34 In that analysis, the health status of the cohort
under investigation created variability and potential con-
founders in results,34 with a rather liberal definition of
“healthy” that included individuals with no defined exclu-
sion criteria in terms of chronic illness.

Contemporary investigations show that the gut microbiota
exerts multiple effects on skeletal muscle bioenergetics35 and
have revealed how the gut bacteria respond to an exercise
challenge with reciprocal roles in fuel availability, muscle
function, and endurance capacity.16,36 The notion of cross-talk
between the gut microbiota and contracting skeletal muscle
emerged from studies in rodents showing increases in several
species of SCFAs (acetate, butyrate, propionate, and conju-
gated linoleic acid) after endurance training.37–39 Although
early studies demonstrated that SCFAs were absorbed in both
the small and large intestine by similar mechanisms, it is now
accepted that there exist species differences in SCFA pro-
ducers as well as different transporter isoforms expressed in
enterocytes along the intestine.40 SCFAs have a protective
effect on the host by reducing inflammation through tran-
scriptional inhibition of cytokines and inflammatory proteins.
Among the SCFAs, butyrate has received considerable atten-
tion for its beneficial effects on both cellular energy meta-
bolism and intestinal homeostasis: butyrate is the primary
fuel for colonocytes, increasing colonic epithelial cell prolif-
eration, promoting gut barrier integrity, and regulating host
gene expression and immunity.41

Compelling evidence for the existence of a “muscle-gut
axis” came from the study of Lahiri et al42 who compared
the skeletal muscle of germ-free mice that lacked a gut
microbiota to the skeletal muscle of pathogen-free mice with
an intact functional gut microbiota. In contrast to pathogen-
free mice, skeletal muscle from the germ-free animals dis-
played significant atrophy and reduced muscle strength,
underpinned by a decreased expression of insulin-like
growth factor-1 along with reduced transcription of genes
associated with skeletal muscle growth and mitochondrial
function. Treating germ-free mice with a cocktail of SCFAs
resulted in a reduced expression of Atrogin-1 and an
increased expression of myoblast determination protein-1,
and partially reversed the functional impairments to mus-
cle. These data support a role for the gut microbiota in
regulating skeletal muscle mass and function, although
whether this is a direct effect or immune-mediated remains
to be determined. The influence of the microbiota-derived
SCFA on hosts includes proliferation, differentiation, and
aspects of metabolism, with most of these functions acting
via gene expression, with butyrate modulating the expres-
sion of >20% of genes in humans.43
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The first evidence demonstrating that exercise training
in humans was associated with increased microbial di-
versity and abundance of bacterial species came from cross-
sectional studies on well-trained athletic populations. Clarke
et al44 reported that professional rugby players had higher
alpha diversity and a greater relative abundance of the
health-associated genus Akkermansia compared with high-

and low-body mass index (BMI) sedentary controls. Subse-
quent observational studies revealed that trained states
were associated with a higher alpha diversity, an enrich-
ment of beneficial taxa, and a higher abundance of fecal
SCFAs.16 In these investigations, VO2max accounted for up to
a quarter of the variation in taxonomic richness after
allowing for all other factors including diet,45 with higher

Figure 1. Skeletal muscle cross-talk. Regular PA has both acute and chronic effects on multiple organ systems. In response to
contractile stimuli, skeletal muscles secrete a range of molecules that “communicate” with other tissues and organs including
adipose tissue, liver, brain, gut, bone, and the GI tract. While the majority of myokines are released from skeletal muscle in
response to an acute bout of exercise, adipokines and hepatokines exert their biological function in response to repeated
exercise stimuli through changes in whole-body metabolism. The release of cytokines and other mediators, alongside
neurologic and vascular changes induced by exercise, modulate the intestinal barrier and gut function. Such changes are
highly individual and are modified by the prevailing exercise challenge (mode, intensity, duration, and environmental condi-
tions), an individual’s habitual diet, and the microbiome. Exercise training is associated with increased microbial diversity and
abundance of bacterial species, increasing SCFAs, whereas reduced microbial diversity in human intestines has been
implicated in several GI diseases and CRC, with the microbiome exacerbating inflammation or other disease processes with
immunomodulatory functions. BAIBA, b-aminoisobutyric acid; BDNF, brain-derived neurotrophic factor; FFA, free fatty acids;
FGF-2, fibroblast growth factor-2; IGF-1, insulin-like growth factor 1; LPS, lipopolysaccardides; Metrnl, meteorin-like; SPARC,
secreted protein acidic rich in cysteine. Created in BioRender. Belhaj Q21M. (2025) https://BioRender.com/s64m052.
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levels of fitness associated with a greater degree of both
alpha and beta diversity.44–47 These observations suggest
that a high level of cardiorespiratory fitness is related to
certain bacterial species and metabolite production, which
have been implicated in several diseases states including
reduced cancer risk.23 Indeed, a recent study reported
greater gut microbiome diversity and differential abun-
dances between colorectal cancer (CRC) survivors who were
physical active compared with those who were inactive,48

with active patients having enriched abundance of multi-
ple dominant genera including Faecalibacterium and Blautia
and less dominant genera including Succiniclasticum and
Succinivibrio. At the phylum level, active patients had lower
Actinobacteria abundance. These findings are consistent
with studies showing higher abundances of Succinivibrio,
Faecalibacterium prausnitztii, Roseburia hominis, and
Akkermansia muciniphila in healthy individuals and ath-
letes.44,45,47 Faecalibacterium and Succinivibrio have been
linked to health-promoting attributes including decreased
risk for CRC.49

Further evidence of a muscle-gut axis comes from the
work of Scheiman et al.50 Using 16S rRNAQ4 profiling, these
workers reported a higher abundance of Veillonella in 15
runners who completed the 2015 Boston marathon
compared with a group of 10 healthy but sedentary con-
trols. Veillonella species metabolize lactate into the SCFAs
acetate and propionate via the methylmalonyl-CoAQ5 pathway
and, although many other microbes have the capacity to use
lactate, they do not possess the full pathway to convert
lactate to propionate. Using intracolonic infusion, a strain of
Veillonella atypica was isolated from stool samples of the
runners and when this strain was inoculated into mice,
treadmill running time to exhaustion was significantly
increased. These findings are intriguing as they highlight
that the microbiome may be a critical component of
endurance performance but raise the question of how this
performance-facilitating organism came to be more preva-
lent among endurance-trained athletes in the first place.

In contrast, reduced microbial diversity has been impli-
cated in many GI diseases51,52 although direct causation
remains to be determined. In severe liver disease and IBD,
antibiotics are frequently prescribed, leading to periods of
significantly reduced microbial diversity, potentially driving
ongoing disease pathogenesis. Such microbial effects are
also strongly associated with sarcopenia, defined as a loss of
skeletal muscle mass, which is often seen in parallel with
these diseases and is closely related to levels of PA.53,54 This
“dysbiosis” affects host metabolism and the functionality
and pathophysiology of several peripheral organs with ex-
ercise a potential intervention to perturb gut microbiota
composition and re-establish gut symbiosis. There is a large
variation in the outcomes of exercise on the microbiome
across studies38,55,56 due to the complexity of the interac-
tion with individual microbiome variation, different partic-
ipant cohorts, the exercise dose (ie, the intensity, duration,
and frequency) and other variables (diet, cultural, and
geographical demographics).57 For example, the relative
abundance of Prevotella is associated with endurance-based
exercise programs,58 whereas in athletes who undertake

more intense power-based training, there is marked intes-
tinal inflammation and greater abundance of bacteria
involved in inflammatory processes such as Haemophilus,
Rothia, Mucispirillum, and Ruminococcus gnavus.59,60

Although the optimal dose of exercise to induce favour-
able changes in the gut microbiota is unknown, it is likely to
be specific to an individual’s prevailing health status and
background diet. Results from a recent investigation
demonstrate that exercise training–induced alterations to
gut microbiota composition and function were dependent
on the body composition of participants. Allen et al61 re-
ported that short-term endurance exercise training
increased fecal concentrations of SCFAs in lean individuals
(BMI <25 kg/m2) but not those with obesity (BMI >30 25
kg/m2 Q6), an observation that was independent of diet. Of
note, the exercise-induced changes to the microbiota,
VO2max, and body composition were rapidly lost in both
cohorts when the training stimulus was terminated, sug-
gesting that shifts in the metabolic capacity of the gut
microbiota were strongly associated with the prevailing
fitness levels, were transient, and were highly dependent on
a regular exercise stimulus. Clearly, regular PA is necessary
to produce favorable long-term modifications in the gut
microbiota composition, largely through immune-metabolic
pathways associated with anti-inflammatory effects.61–63

Further studies are required to understand the mecha-
nisms that regulate changes in the composition and func-
tions of the microbiome caused by PA along with their
related effects.33

Diseases of the GI Tract and Effects of
Exercise on GI Symptoms

Acute exercise has diverse effects on the GI tract
(Figure 2) that can broadly be divided into upper (ie,
heartburn, belching, regurgitation, and epigastric pain) or
lower GI symptoms (ie, nausea, diarrhea, blood loss, flatu-
lence, urgency, and abdominal pain). Exercise affects both
motility and absorptive properties of the GI tract, with acute
exercise slowing transit times in the upper GI tract due to
increased sympathetic nervous activity.64 There is also a
reduced absorptive capacity during exercise,65,66 with
increased nutrient load to the caecum and colon driving
symptoms in the lower GI tract.67 The altered nutrient envi-
ronment also interacts with the resident microbiome as a
potential modifier of such symptoms. Upper GI symptoms are
more common than lower GI symptoms with prolonged (>90
min) weight-bearing exercise (ie, running) associated with a
greater number and severity of symptoms.68,69 GI problems
are especially common in athletes training for and competing
in endurance events with 30%–50% of athletes reporting 1 or
more GI symptoms Q7.70 However, most GI symptoms are mild,
transient, and of no risk to long-term health.

Ischemia and inflammation
Changes in splanchnic blood flow underpin many of

the adverse clinical effects of exercise on GI function71,72

during which splanchnic ischemia leads to gut barrier
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disorders.73–75 Such exercise-induced ischemia leads to
systemic endotoxemia and an associated inflammatory
response.76–79 Historically intestinal damage has been
measured after exercise through fecal blood loss80 and more
recently with intestinal-fatty acid binding protein75,81 and
calprotectin.75 In healthy individuals intestinal permeability
is related to the prevailing exercise-intensity with intense
exercise (>80% of VO2max) resulting in greater increases in
small intestinal permeability compared with exercise un-
dertaken at 40%–60% of VO2max. However, increases in
permeability do not always result in a higher prevalence of
GI symptoms and increased intestinal permeability.82

A study of endurance-trained athletes performing 1 hour
of intense cycling at 80% of VO2max reported little effect on
barrier function or self-reported GI symptoms,83 suggesting
there is considerable variability in the effect of both the
relative exercise intensity and mode on gut damage, with
well-trained individuals experiencing fewer GI disturbances
compared with exercise-naïve subjects. Indeed, the GI tract
is highly adaptable: gastric emptying as well as stomach
comfort can be “trained” and perceptions of fullness de-
creases in athletes practicing a variety of nutritional stra-
tegies before and during exercise.84,85

Endotoxemia is suggestive of barrier dysfunction or
damage, with either bacteria or their products translocating
across the epithelial lining of the GI tract. Evidence of such
dysfunction during PA is confounded by the different modes
and intensities of exercise, the fitness level of subjects
studied, and the various measures of gut damage used in
investigations. This, in part, explains the wide range of
outcomes reported, although one should also consider that
the resident microbiome is another variable in exercise-
induced barrier stress. For example, a high protein diet
(1.5 g/kg body mass), commonly consumed by athletes
training for strength/power events, may contribute to dys-
biosis (eg, increased Escherichia Q8coli lipopolysaccharide) and
amplify intestinal damage and symptoms. As exercise in-
tensity and duration increases, there is considerable evi-
dence for increases in indices of intestinal injury,
permeability, and endotoxemia, together with impairment of
gastric emptying, slowing of small intestinal transit, and
malabsorption.86 The addition of heat stress and running
mode exacerbates markers of GI disturbance, with an ex-
ercise duration of w2 hours at a moderate (60% of VO2max)
intensity seemingly the “threshold” at which significant GI
perturbations occur.86
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Figure 2. Clinical symptoms associated with “excessive” exercise challenges along with the protective effects of exercise
training on GI diseases. Acute bouts of exercise can induce both upper and lower GI symptoms (left) depending on the
prevailing exercise and environmental factors (middle, lower). Exercise training is associated with favorable outcomes for a
number of GI diseases (right). Created in BioRender. Belhaj M. (2025) https://BioRender.com/s64m052.
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The Potential Role of the Gut
Microbiome as a Mechanism to Reduce
GI Symptoms During Exercise

A potential role for the microbiome in modulating the
effects of PA is through dietary interventions. Carbohydrate
ingestion immediately before or during exercise attenuates
GI symptoms and markers of intestinal damage87–89 and,
while this effect may be independent of the microbiome,
increased carbohydrate availability may temper the dys-
biosis reported by many athletes.86,90 Other diets, including
a gluten-free diet, have been investigated in an attempt to
reduce GI symptoms, but appear ineffective.91 To support
the splanchnic circulation and reduce intestinal damage
during exercise, the nitric oxide precursors and amino acid
supplements L-arginine and L-citrulline supplements have
been investigated, although their efficacy is equivocal.92,93

Although these dietary interventions are likely to have
moderate effects on the microbiome, it remains speculative
whether they would exert any effect on exercise capacity, or
the mechanism of such an effect.

Direct attempts to modulate the microbiome to preserve
permeability and attenuate other exercise-induced barrier
damage have been largely ineffective, including combina-
tions comprising 6 (Bifidobacterium bifidum, Bifidobacte-
rium lactis, Enterococcus faecium, Lactobacillus acidophilus,
LQ9 . brevis, and Lactococcus lactis) and 9 probiotic strains (L
acidophilus, Lactobacillus rhamnosus, Lactobacillus planta-
rum, Lactobacillus fermentum, Lactobacillus casei, Bifido-
bacterium breve, B lactis, B bifidum, and Streptococcus
thermophilus).94,95 In a recent double-blind placebo-
controlled trial, probiotic supplementation (L acidophilus
and Bifidobacterium longum) administered for 5 weeks to
amateur runners reduced GI symptoms and was associated
with less dysbiosis.96 In a double-blind, crossover study 16
runners were randomized to 4 weeks of daily supplemen-
tation with a probiotic cocktail containing Pediococcus
acidilactici bacteria and L plantarum or placebo. Treadmill
running tests (90 minutes at 65%–70% of VO2max or until
fatigue/GI symptoms developed, undertaken in 27�C) were
performed before and after supplementation. GI symptoms,
gut permeability-associated parameters (intestinal-fatty
acid binding protein, lipopolysaccharide-binding protein,
zonulin, and cytokines), and intestinal microbial content
were not altered by the probiotic supplementation.97 L casei
supplementation for 7 days before 2 hours of running at
60% of VO2max in extreme (34oC) heat did not alter resting
circulatory endotoxin concentration or plasma cytokine
profile compared with a placebo, although there was a trend
for higher plasma endotoxin and tumor necrosis factor
alpha (TNF-a) concentrations after exercise in the probiotic-
supplemented group,98 suggesting that changes to the
microbiome may influence barrier function during PA,
although not always favorably. Although probiotic supple-
mentation has traditionally focused on gut health, in recent
years, the clinical applications of probiotics have broadened
to allergic, metabolic, inflammatory, GI, and respiratory
conditions. Probiotic supplementation could yield small
beneficial effects in promoting health in trained individuals,

likely by reducing the risk of respiratory and GI illness
during intensified periods of training and competition but
precise compositions and dosage regimes remain to be
determined. Such benefits would most likely be mediated by
changes in gut microbiota and enhanced mucosal barrier
integrity in the GI and respiratory tracts.99

The Potential Role of Exercise-
Microbiome Cross-Talk in GI Diseases

Exercise undertaken according to the American College
of Sports Medicine guidelines100 is associated with
improved health outcomes in numerous NCDs, including
many nonmalignant conditions of the GI tract and also
several cancers. Perhaps the most obvious GI condition
linked with regular PA is metabolic dysfunction-associated
steatotic liver disease (MASLD), with exercise recom-
mended as a primary treatment across many international
guidelines.101 Although MASLD is intimately related to lack
of PA, obesity, and a poor diet, not all sedentary people with
obesity develop fatty infiltration of the liver. The gut
microbiome is related to this complex interplay with a “gut-
liver axis” of diet, genetics, and inflammation being potential
drivers of the fibrosis and risk of hepatocellular carcinoma.
Treatment strategies for these conditions should consider
combining regular exercise with microbiome modulation to
impact MASLD102 because exercise can reverse gut “dys-
biosis” in MASLD patients.103

IBD has 2 major phenotypic forms: Crohn’s disease and
ulcerative colitis, with rising worldwide incidence. Although
the precise etiology of IBD is unknown, several factors
arising from adipose tissue and skeletal muscle have been
implicated including cytokines, adipokines, and myo-
kines.104 In a high-fat–fed murine model of colitis,
moderate-intensity exercise (voluntary wheel running)
significantly decreased macroscopic and microscopic colitis,
increased colonic blood flow, and attenuated plasma TNF-a,
IL6, monocyte chemoattractant protein-1, IL1b, and leptin
levels. In contrast, in sedentary mice fed the same diet,
colonic lesions were aggravated, colonic tissue weight
increased, and the plasma TNF-a, IL6, monocyte chemo-
attractant protein-1, IL1b and leptin levels significantly
increased.105 In children with IBD, intense exercise did not
alter symptomatic outcomes or changes in serum inflam-
matory cytokines when compared with age-matched con-
trols.106 However, a recent systematic review of 637
patients (34% males) and pooled evidence from 6 ran-
domized clinical trials found exercise improved disease ac-
tivity but not disease-specific quality of life compared with
controls.107 Given that IBD is triggered by an abnormal
immune response to the resident microbiota,108 any effects
of exercise on IBD likely impact the microbiome, although a
systematic review of the systemic inflammatory response in
exercise-based intervention studies in IBD patients reported
no consistent effect.109 A combination of exercise and psy-
chological interventions in a group of patients with Crohn’s
disease led to positive changes in their intestinal micro-
biome with accompanying reductions in systemic markers
of inflammation.110
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A recent meta-analysis concluded there was a reduced
risk of developing IBD in individuals who undertook regular
high- vs low-intensity PA.111 However, early results from
the IBD-FITT study (ClinicalTrials.gov NCT04816812Q10 ), a
RCTQ11 of 12 weeks of aerobic exercise in people with IBD,112

show improvements in quality of life and other health-
related outcomes, without any effect on disease activity.113

These contrasting results suggest strong individual varia-
tion, with differences in the timing of the commencement of
exercise training in relation to disease activity likely to be
important. Fatigue, a major symptom in IBD patients, is
associated with muscle deconditioning, with a small study
showing patients with Crohn’s disease exhibit impaired
postexercise recovery, measuredQ12 based on slower rates of
muscle phosphocreatine resynthesis.114 Although the links
between PA, the microbiome, and disease outcomes in IBD
remain unclear, sarcopenia is associated with poor clinical
outcomes independent of IBD activity and, therefore, muscle
health should be assessed in all IBD patients at routine
intervals.54

In patients with irritable bowel syndrome (IBS), a dis-
ease without an easily measurable inflammatory response,
symptoms are reduced after exercise training115,116 and
associated with exercise-induced improvements in gut
motility along with favorable psychological changes. The
first-line therapy for IBS is the low Fermentable Oligosac-
charides, Disaccharides, Monosaccharides, and Polyols
(FODMAP) diet,117 which modulates its effect through direct
dietary impact on the microbiome. As such, the benefit of
exercise on IBS and other motility-related GI conditions may
be mediated, in part, through the microbiome. A recent trial
reporting fewer IBS symptoms after exercise training118

also found that exercise reduced cell-freeQ13 mitochondrial
DNA in the plasma of the control (non-IBS) group.118,119

Because mitochondrial DNA is a damage-associated molec-
ular pattern that is bidirectionally associated with dysbio-
sis,120 the results from that study suggest that PA can
modify cellular damage–associated molecular patterns in
healthy patients but not in IBS patients, which may be due
to different microbial ecologies in those with IBS. A recent
Cochrane review reported moderate positive outcomes of
regular PA on IBS symptoms without clear improvement in
quality of life,121 again suggesting strong individual varia-
tion in such effects. Putative mechanisms that link the
microbiome to effects of PA on IBS patients include changes
to transit time, greater SCFA production, improvement in
the intestinal barrier, as well as modulation of the immune
response.122

Exercise and GI Cancer Prevention:
Molecular Mechanisms Related to the
Microbiome

The protective effect of regular, moderate to vigorous PA
against cancer risk is well established with evidence from
epidemiologic studies, randomized controlled trials, and
meta-analyses from cohort investigations showing that
regular exercise reduces the risk of between 7 and 13
different cancers and cancer mortality, including less

frequent recurrence and fewer/less severe adverse
effects.123–128 Regular PA is inversely related to the risk of
cancer at the proximal (relative risk [RR], 0.76; 95% confi-
dence intervals [CI], 0.70–0.83) and distal colon (RR, 0.77;
95% CI, 0.71–0.83), although there is limited evidence for
any positive effects of PA on reducing risk of rectal cancers
(RR, 0.98; 95% CI, 0.88–1.08), indicating that different
mechanisms are operating in the development of colon and
rectal cancer.129 The RR for gastroesophageal cancer is 0.82
(CI, 0.74–0.90).130 The cancer for which regular PA confers
the greatest protective effect is CRC,131–133 with moderate
levels of PA associated with a 25% reduction of CRCs and
greater amounts of PA linked to a greater (40%) reduction
in risk.134,135 Even colorectal polyps can be reduced in
number by increasing levels of PA.132,136 After a year-long
exercise training intervention in previously sedentary men
who completed a minimum of 250 min/week of moderate-
to vigorous-intensity exercise and whose VO2max increased
by >5%, there was a significant decrease in colon crypt
proliferation and associated biomarkers (crypt height,
number, and relative position of Ki67þ cells in stained cells
in colon mucosal crypts) compared with nonexercising
control subjects.132 In an analyses of 48 studies that
included 40,674 colon cancer/CRC cases Q14, a graded inverse
dose-response association was observed between PA and
colon cancer for both sexes. This dose-response effect of
physical activity on colon cancer risk was especially strong
when patients performed activities of >4.5 metabolic
equivalents (MET) vs <4.5 MET (where 1 MET is the resting
metabolic rate equivalent to 3.5 mL O2/kg/min).135 Of note,
adjusting for potential cofounding factors including age,
diet, and obesity does not diminish the observed associa-
tions between levels of PA and colon cancer occurrence.132

Exercise training has also been shown to reduce the risk of
gastric cancer with individuals who are more physically
active having a 19% lower incidence.137 A similar prog-
nostic effect was seen for esophageal cancer.138,139 Given
the range of similar risk reduction it appears likely that
there is at least a degree of mechanistic crossover in the
benefits in PA across GI cancers, with the mechanisms un-
derpinning such effects being multifactorial Q15. Here we focus
on those mechanisms potentially related to muscle-
microbiome cross-talk.

Over recent years, the use of immunotherapy in cancer
treatment has highlighted the critical role of the immune
system in cancer pathogenesis. The microbiome is inti-
mately involved in the development of the immune system,
especially in the GI tract.140,141 Exercise induces a biphasic
response in lymphocytes and mobilizes vascular, pulmo-
nary, hepatic, and splenic white blood cells into the pe-
ripheral circulation. This initial lymphocytosis affects mainly
natural killer (NK) cells, which increase several-fold above
resting levels, with their mobilization proportional to the
relative intensity of exercise. This response underpins
adrenaline-stimulation of b2-adrenergic receptors on the
surface of lymphocytes leading to endothelial detachment
and the subsequent recirculation of lymphocytes into the
bloodstream. Blood lymphocyte count decrease 1–2 hours
after exercise cessation with transient lymphopenia not
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uncommon, although NK and T-cell counts return to base-
line within 24 hours.142 The precise mechanisms by which
exercise-stimulated catecholamine signalling drive immune
cell mobilization, redistribution, and function are not
known, nor is the relationship by which this could be
modified by changes in the microbiome.143

The immune-stimulating effects resulting from an acute
bout of exercise persist for several hours and the use of
exercise-stimulated T cells to augment the volume of cells
that could be used for adoptive transfer into lymphopenic
patients has been discussed elsewhere.15 However, it is the
chronic effects of the progressive accumulation of frequent
acute challenges that are likely to play regulatory roles in
tumor growth kinetics and tumor metabolism, through their
effects of immune function in general, and on antitumor
immune function specifically.15 In rodents, a program of
voluntary wheel running for 2 months was linked to
improved antitumorigenic function through an increase in
splenic NK cell cytoxic function, an effect that persisted 3
weeks after the training intervention ceased.144 A similar
immune response has been reported in humans with Lynch
syndrome (a hereditary condition with a high lifetime risk of
CRCs and endometrial cancers), where chronic (12 months)
exercise training decreased inflammatory markers (prosta-
glandin E) in colon and blood and increased the colonic
mucosa levels of NK and CD8þ T cells in the exercise-
trained patients.145 These findings have important implica-
tions for cancer interventions in patients with Lynch syn-
drome because they demonstrate the beneficial biological
effects of exercise in the immune system of a target organ in
patients at risk for cancer. Given the relationship between
mucosal immunity and the microbiome,146 it is conceivable
that such an effect may be mediated through intestinal
microbiota.

While PA modulates pathways regulating local and sys-
temic inflammation and oxidative stress,126 exercise-
induced activation/suppression of pathways that sense
and regulate energy availability, cellular metabolism, tumor
development, proliferation, metastasis, and cytoskeleton
organization are also important in conferring the protective
effect of PA. These pathways include the AMPQ16 -activated
protein kinase (AMPK) and the Akt/mammalian target of
rapamycin (mTOR) pathways. The targets of these signalling
nodes include many transcription factors, coactivators, and
repressors13 with all of these pathways potentially modified
by alternations in the gut microbiome. Indeed, a growing
body of evidence supports the beneficial effects of AMPK on
gut health, such as enhancing intestinal absorption,
improving barrier function, suppressing colorectal carcino-
genesis, and reducing intestinal inflammation and
metabolic-related disease states. Conversely, AMPK is
inhibited under conditions of obesity and diabetes, both of
which are correlated with impaired intestinal barrier
function.147

The AMPK pathway is activated in tumors in response to
an acute bout of PA, although exercise training may inhibit
carcinogenesis by suppressing the activation of the mTOR
signaling network in carcinomas, an effect mediated through
effects of PA on circulating growth factors and hormones

that regulate the mTOR network that are distinct from those
affecting mTOR activity in contracting skeletal muscle.148

Although this premise has some mechanistic basis, no
studies have fully elucidated the direct effects of mTOR
signalling on tumor growth in humans.149 Tumors have
altered cellular metabolism that favors aerobic glycolysis to
support the high energy turnover and rapid cell prolifera-
tion. Accordingly, intratumoral metabolism will be impacted
by whole-body PA, with results from preclinical studies
suggesting that tumors with intrinsically high metabolism
are susceptible to exercise-induced energy depletion. Such
shifts in metabolism induced by exercise modulate the
metabolic reprogramming that occurs during carcinogenesis
to support cell growth and proliferation, and suggest that
carcinogenesis can be inhibited or enhanced by effects on
intermediary metabolism linked to PA and dependent on
exercise intensity and duration. A recent example in CRC
patients provided mechanistic insights into PA impact on
tumor growth. In large CRC datasets, RPS4X expression
(related to “stemness”), which is associated with metastases
and poor outcomes, is down-regulated with exercise.150

Given the relationship between the microbiome and stem
cell regulation in the intestine, it is feasible that exercise
may influence CRC risk via this pathway. This makes CRC a
potential early candidate for combining microbiome mod-
ulation with PA in improving clinical outcomes.

Another potential mechanism for the beneficial effects of
regular exercise on CRC risk and tumor growth is the
training-induced increase in SCFA production. CRC patients
typically present with a compromised gut microbiota char-
acterized by a reduced abundance of butyrate-producing
taxa, including Roseburia and Lachnospiraceae. Results
from in vitro studies demonstrate that butyrate differentially
regulates gene expression in healthy vs cancerous cells.151

In healthy epithelial cells, butyrate is rapidly metabolized
via the mitochondrial TCA Q17cycle, causing in the accumula-
tion of cytosolic citrate and acetyl CoA, thus increasing the
acetylation of histones by histone acetyltransferases. This
epigenetic modification increases expression of genes
involved in cell proliferation and cell turnover, strength-
ening the intestinal barrier. However, in CRC cells, mito-
chondrial dysfunction results in the accumulation of
butyrate in the cytosol. This free butyrate inhibits histone
deacetylases, resulting in the epigenetic suppression of
proliferation and promotion of cell death pathways that may
lead to a reduction in tumor size and reduces the chance of
metastasis.151

Human Microbiome Research: Current
Perspectives and Directions for Future
Research

The benefits of regular PA in preventing and/or treating
numerous NCDs have been known for centuries. However,
the precise mechanisms by which exercise training defends
and protects the body against a range of lifestyle-induced
diseases have not been elucidated. The discovery that con-
tracting skeletal muscle is an endocrine organ acting as the
primary metabolic communicator for interorgan
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communication provides a plausible mechanism by which
exercise training boosts immunity at both the whole-body
and local (tissue) level. Although regular PA facilitates a
more diverse gut microbiome and functional metabolome
with direct and variable effects on GI disease outcomes, the
precise dose of exercise necessary to induce favorable
changes in the gut microbiome and enhance host immunity
is unknown. Although “excessive” PA can have detrimental
effects on intestinal barrier integrity, these are transient and
benign. The gut microbiome, therefore, is an attractive
target for modulating many of the positive effects of exercise
on GI health and disease with the links between certain GI
microbiota and the disease states of peripheral tissues/or-
gans making microbial modulation a potentially potent
immunotherapeutic therapy.

Current evidence indicates that a certain level of horm-
esis is necessary to perturb the human gut microbiota, with
exercise interventions lasting a minimum of 2–3 months
needed to produce consistent changes across alpha and beta
diversity and most genera,34 although some of the observ-
able modifications in gut microbiota occur 2–4 weeks after
the onset of an appropriate exercise stimulus.34 As noted
previously,61 the beneficial effects of exercise training on
the gut microbiota are rapidly reversed after several weeks
of inactivity in both lean and obese individuals, a similar
time-course of loss of adaptation observed in patients with
celiac disease.152 In athletes with a prolonged history of
exercise training, the alpha-diversity and global composition
of the gut microbiome remain unaffected by 3 weeks of
reduced exercise,153 suggesting that changes in exercise
volume have less of an impact on individuals with a back-
ground of regular PA. However, the duration (months or
years) of regular PA required to establish “steady-state”
homeostasis in the gut microbiome that persists in the face
of the removal of an exercise stimulus is unknown.

There remain many challenges facing microbiome sci-
ence with several fundamental questions still remaining. For
example, much of the observed interindividual differences
in the gut microbiome can be attributed to the fact that
some parts of the total microbiome remain poorly charac-
terized, with their biological significance largely unknown.
Nevertheless, an emerging area with potential clinical sig-
nificance to improve host health are a number of microbial
interventions, including fecal microbiota transfer (FMT). A
recent study examined the effects of FMT from exercised-
trained mice to germ-free animals.154 Fecal samples from
sedentary and trained animals were gavaged into germ-free
mice. After receiving fecal samples from trained donor mice,
recipient mice had elevated levels of AMPK and insulin-like
growth factor-1 in skeletal muscle along with improved
whole-body glycemia and insulin sensitivity, effects that
were mediated, in part, by the anti-inflammatory properties
of bile acid deconjugation. This study concluded that FMT
mimics the health-promoting effects of exercise by inducing
critical exercise-inducible signal transduction pathways in
skeletal muscle, thereby improving metabolic health
through the “muscle and gut axis.”154 Other studies in mu-
rine models of obesity also demonstrate that the beneficial
effects of both exercise and diet are transmissible via

FMT.155 In humans, FMT involves the infusion of feces from
a healthy donor to the GI tract of a recipient patient with the
aim of treating diseases associated with alteration of gut
microbiota. Although the results from several rodent studies
reveal positive outcomes of FMT from both exercise- or diet-
manipulated donor animals to germ-free mice on several
health markers,154,155 data from FMT in humans is lacking
for the majority of GI-related disease states. Indeed,
consistent with a European consensus conference on FMT in
clinical practice,156 Clostridium difficile infection is the only
indication where market authorization for FMT has been
achieved.

There are several exciting clinical opportunities in
microbiome science with the recent application of a host of
molecular techniques offering the potential for a greater
understanding of the multiplicity and complexity of net-
works involved in exercise responses and on the mecha-
nisms by which muscle “communicates” with the GI tract to
mediate many of the beneficial effects of PA. While the
structural characteristics of the gut microbiota have been
described through the application of 16S rRNA amplicon
sequencing,157 next-generation sequencing techniques and
the creation and integration of functional ‘omics readouts (ie,
metatranscriptomics, metaproteomics, and metabolomics)
will provide more accurate assessment of health and disease
states and provide a basis for functional and experimental
validation. This is essential as up to 85% of the variance
within the human microbiome from population-based studies
is still unaccounted Q18.57 For example, in a longitudinal study of
patients with Crohn’s disease (n ¼ 303) and ulcerative colitis
(n ¼ 228), most of the compositional variance of the gut
microbiota remained unexplained.158

Resetting gut microbiome-derived signals of “unhealthy”
ageing through personalized or subpopulation-level micro-
biome-associated interventions is a promising area of
research that will be informed by large shotgun
metagenomics-based studies and data analytics coupled
with preclinical experimental models. Resulting
microbiome-based therapeutics for the elderly will need a
combination of therapies, including dietary intervention
with microbial restoration of lost strains.159 The identifica-
tion of microbial profiles in middle-age that confer
increased disease risk later in life (eg, biomarkers for colon
cancer) present a formidable clinical challenge that will be
confounded by the loss of dietary diversity with age, along
with the associated decrease of microbiota diversity
accompanied by increased risk of inflammation.160 Levels of
habitual PA also decrease with age161 and are associated
with sarcopenia and loss of function.160 The influence of
these lifestyle factors on modifying microbiome composition
and controlling for them in large-scale human studies pre-
sents a huge challenge when trying to unravel the mecha-
nisms underpinning the therapeutic effects of PA and diet
interventions on the gut microbiota, and will require inte-
gration of large multicenter cohorts, advanced ‘omics tech-
nologies and sophisticated experimental validations of the
mechanistic associations identified.

Increasing evidence demonstrates the association of
specific taxa in the development of certain GI diseases
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including many cancers; altering the composition of the gut
microbiota to improve the efficacy of anticancer drugs may
be a feasible intervention in the future. Interindividual dif-
ferences in patients’ treatment-naïve gut microbiome may
play a role in the efficacy of the hosts response to certain
therapies, analogous to “low vs high responders” to exercise
training interventions. Another exciting area for future
research is gaining a better understanding of the relation-
ship between gut microbiota, skeletal muscle mass, and
physical function162 particularly during ageing, which is
associated with reduced microbiota biodiversity, increased
interindividual variability, lower representation of butyrate-
producing bacteria, and over-representation of patho-
bionts.163 Reduced muscle mass has been associated with
distinct microbiota composition and reduced fermentive
capacity in mice, with the administration of probiotics and
butyrate to mouse models of muscle wasting, associated
with improved muscle mass.162 Especially promising are the
results from preclinical data showing that colonization of
mice with gut microbiota from exercise-trained mice
attenuated the response to chemically induced colitis,
reduced colon shortening, attenuated mucus depletion, and
augmented expression of cytokines involved in tissue
regeneration.164 As such, future efforts should concentrate
on gaining a deeper understanding of the factors involved in
exercise-gut interactions through the application of
advanced techniques to measure both the microbiome and
the systemic effects of exercise in a variety of diseased
populations. It is hoped that future therapies to treat a range
of GI-related disorders, including cancers, will be based on a
growing recognition that regular PA can positively modify
the human gut microbiome, boost immunity, and decrease
the incidence, progression, and personal burden of these
NCDs. As such, it is recommended that regular PA be
incorporated into standard clinical treatment protocols for
individuals with several GI-related diseases.
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