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A Hybrid Multi-Objective Optimisation for
6G-enabled Internet of Things (IoT)

Shailendra Pratap Singh, Naween Kumar, Gyanendra Kumar, Balamurugan Balusamy, Ali Kashif Bashir, and
Yasser D. Al-Otaibi

Abstract—The advent of 6G-enabled networks marks a trans-
formative era in the Internet of Things (IoT), promising un-
paralleled connectivity and innovation. These networks are set
to revolutionize the IoT landscape by offering remarkable ca-
pabilities, including ultra-high data speeds, ultra-low latency,
and extensive network coverage and connectivity. However, op-
timizing such networks’ is a complex challenge, mainly when
dealing with numerous conflicting objectives. So far, existing
works have employed heuristic or meta-heuristic algorithms to
address this issue. This research introduces a novel approach,
’Hybrid Multi-Objective Optimization,’ which combines Multi-
Objective forms of Red fox (RFOX) optimization with Differential
Evolution (DE) to address this issue. This hybrid framework is
designed to solve the complexity of Multi-Objective optimization
within the context of 6G-enabled IoT networks. It leverages
the flexibility and search capabilities of RFOX, along with the
population-based search techniques of DE. The primary objective
of this research paper is to identify the Pareto-optimal front,
which encapsulates the complex trade-offs among various conflict
objectives in Multi-Objective optimization. Extensive simulation
outcomes demonstrate the significant efficacy of the proposed
Algorithm for its adaptability, diversity, and multi-objective
optimization capabilities compared to existing ones in terms of
data throughput, delay, energy efficiency, and packet loss ratio
in 6G-enabled IoT applications.

Index Terms—Adaptation, Red fox Optimization, Differential
Evolution, Multi-Objective Evolutionary Algorithms, Internet of
Things

I. INTRODUCTION

The ongoing evolution of wireless networks, leading to the
anticipated sixth generation (6G), holds the promise of signif-
icant advancements in network capabilities and applications,
shaping our digital interactions. The IoT is at the forefront
of this transformation, a paradigm shift connecting an ever-
expanding array of devices and sensors. The IoT paves the
way for defence [1], health-care [2], [3], motion tracking [4],
and more [5]. Crucially, 6G-enabled networks are expected to
underpin this IoT-driven future.
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6G networks are projected to deliver terabit-per-second
data speeds, ultra-low microsecond latency, and support for
numerous devices in confined spaces. However, optimizing in-
tegrated 6G-enabled WSN-IoT poses multifaceted challenges
with conflicting objectives [6]. These objectives include maxi-
mizing data throughput, enhancing energy efficiency, reducing
packet loss, improving packet delivery ratio, and minimizing
latency for optimal efficiency, dependability, and responsive-
ness. Maximized data throughput ensures network connectiv-
ity, efficient resource utilization, and a seamless user expe-
rience for high-bandwidth applications and critical scenarios.
Energy efficiency extends the network’s operational lifespan.
Reducing packet loss, enhancing packet delivery ratio, and
minimizing latency ensure reliable data communication and
responsiveness, which is crucial in critical scenarios like
remote surgery. Balancing these goals is essential to exploit
the network’s potential fully. The dynamic 6G-enabled IoT
ecosystem demands adaptable optimization strategies to meet
evolving user demands and network dynamics.

Traditional optimization methods often face limitations
when confronted with the complexities of multi-objective
challenges involving the simultaneous optimization of diverse
network parameters, such as data throughput, packet loss ratio,
energy efficiency, packet delivery ratio, and sustainability [7].
While some attempts have been made to balance various
network parameters [8], [9], these methods often fall short
of achieving a significant mathematical balance between ex-
ploration and exploitation. Notably, existing approaches like
NSGA-III [10], MOPSO [11], and MOFOX (derived from
[12]) algorithms have succeeded in striking a balance between
exploration and exploitation but lack the robustness required
for managing complex and multi-modal optimization prob-
lems, similar to those posed in our study.

Many studies have investigated ensuring Quality of Service
(QoS) in communication and network optimization, defin-
ing communication index dimensions corresponding to QoS
factors like data throughput, delay, energy efficiency, data
gathering time, and packet loss ratio. Intelligent capabilities
become crucial, introducing considerations beyond communi-
cation performance, including end-to-end delay, data through-
put, data loss, energy efficiency, traffic congestion [13], and
other relevant factors [9]. This shift underscores the inade-
quacy of single-objective approaches and traditional multi-
objective methods in addressing the complexities of emerging
network optimization challenges in 6G-enabled IoT systems.
To address the concurrent optimisation of multiple network
factors in the 6G-enabled IoT communication ecosystem, the
Contributions of this article are as follows:
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• To introduce two different Multi-Objective algorithms,
namely MOFOX and MODE, which are derived by adapt-
ing the RFOX [12] and DE [14] algorithms, respectively,
to address the proposed optimization problem, while
maintaining the network performance requirements of
6G-enabled IoT networks.

• To introduce a flexible, robust, and adaptive hybrid of
MOFOX and MODE algorithms, leveraging MOFOX’s
adept exploration of diverse solution spaces and MODE’s
efficient exploitation of discovered solutions, the algo-
rithm is tailored to address the proposed problem effec-
tively. This hybrid approach enhances network perfor-
mance and adaptability.

• To propose Pareto-optimal front solutions for Multi-
Objective problems of various conflicting 2-objective
and 3-objective scenarios, capturing valuable trade-offs
among conflicting objectives. This empowers network
operators to navigate complex optimization environments
and make better-informed decisions.

• To perform experimental evaluation of proposed hybrid
algorithm and compare and validate with the state-of-the-
art approaches NSGA-III [10], MOPSO [11], MOFOX
[12], and MODE [8] algorithms to prove the proposed
method efficacy in achieving data throughput, packet loss
ratio, energy consumption, packet delivery ratio, delay,
and data transfer time.

The subsequent sections of this research paper are structured
as follows: Section II briefly surveys the related work on uti-
lizing multi-objective evolutionary solutions in the 6G-enabled
IoT domain and basic preliminaries. Section III describes the
proposed Hybrid-based Multi-Objective technique designed
around IoT services. The experimental results and analysis
are presented in Section IV. Finally, Section V concludes the
study and highlights potential directions for future research.

II. LITERATURE REVIEW

In this section, we briefly survey a few existing multi-
objective optimisation methods relevant to this work. Zhang et
al. [15] devised an evolutionary method with Penalty strategy
to address the constrained multi-objective optimization of cost
and QoS. Shrestha et al. [16] have shown the adaptability
of 6G-enabled networks to improve coverage of Industrial
IoT devices. Barakabitze et al. [17] exploited network or-
chestration and management to improve QoS using pervasive
artificial intelligence, machine learning, and big data analytics.
Chaudhry et al. [18] devised an improved-multi-objective PSO
method called MOPSO scheme with improved running time
to handle multicast routing issues, including different metrics
such as energy consumption, latency, and packet loss. Qi
et al. [19] introduced two innovative multi-objective-based
joint beamforming schemes to maximize the network’s overall
performance while concurrently minimizing the total transmit
power while adhering to stringent performance requirements.
Jain et al. [20] introduced a novel metaheuristic approach
intricately combined with a blockchain-based resource alloca-
tion technique for effectively managing and sharing network
resources. Sheena et al. [21] devised an improved, energy-
efficient seagull-based multi-objective-optimisation scheme for

clustering and load-balancing for IoT-enabled Disastrous Man-
agement Scenarios with minimal overhead and better conver-
gence. Salimian et al. [22] used the MOPSO Algorithm to
optimize IoT service placement. Their goal was to enhance
the utilization of fog resources and improve the QoS in
IoT. Khosroabadi et al. [23] introduced the SCATTER algo-
rithm for delay-sensitive applications in integrated fog-cloud
environments and addressed the service placement problem
with the primary objective of enhancing QoS. Natesha et al.
[24] devised a two-level resource provisioning fog framework
using a containerization approach and formulated the service
placement problem in a fog computing environment as a multi-
objective optimization problem for minimizing the cost, energy
depletion, service time and thus ensuring the QoS of IoT
applications.

Despite extensive research on 6G-enabled IoT networks,
there’s a need for deeper exploration of conflicting goals,
such as data throughput and energy efficiency improvement,
requiring further refinement of multi-objective optimization
techniques in real and dynamic environments. Additionally,
the integration of emerging technologies like machine learn-
ing and artificial intelligence remains insufficiently explored,
demanding a thorough examination of their applications and
limitations. Closing these gaps is crucial for advancing the
field for deploying efficient 6G-enabled IoT.

The limitations mentioned above emphasize the need for
a comprehensive, efficient, multi-objective solution with the
following features: (1) exploiting a multi-objective Algorithm
to balance multiple IoT parameters simultaneously, (2) an effi-
cient computational algorithm that works effectively in multi-
dimensional space, (3) combining various network attributes
to ensure reliable data communication and responsiveness,
(4) exploiting a hybrid multi-objective variant where MOFOX
having exceptional mathematical ability to balance exploration
and exploitation, controls population optimization and adapta-
tion and robustness are controlled by mutation and crossover
of MODE for finding a real-time optimal solution to enhance
the network performance in adaptable 6G-enabled IoT. Table
I compares existing and proposed work across five essential
parameters: energy, delay, throughput, packet loss ratio, and
data gathering time. In this Table I, a cross mark (×) indicates
the parameter’s absence, and a tick mark (✓) signifies its
presence in a specific research study.

A. Problem Statement
In the context of a 6G-enabled Healthcare IoT ecosystem,

the goal is to optimise the QoS for a given set SN of
IoT devices (s1, s2, . . . , sN ) along with their respective data-
availability set DAA and initial remaining energy distribution
set IRE across a random 2-D plane. The objective is to jointly
optimise various conflicting objectives [8], [10], [25] expressed
as:

• Data Throughput Enhancement: Balancing the diverse
goals involves improving the overall data throughput in
the network.

• Data Loss Minimization: Simultaneously, minimizing the
packet loss ratio is crucial to ensure the reliability of the
IoT ecosystem.
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TABLE I. Comparative analysis of relevant related works

Authors Multiple Network Parameters
Energy Delay Throughput Packet Loss Ratio Data Gathering Time

Sheena (2023) × ✓ × × ×
Shrestha (2023) × ✓ × × ×

El-Shorbagy
(2019)

✓ × ✓ ✓ ×

Qinyin (2022) × × ✓ × ×
Liang (2021) × ✓ × × ×

Zaborski (2022) ✓ ✓ × × ×
Chaudhry (2019) ✓ ✓ × ✓ ×

Reffad (2023) ✓ ✓ × × ×
Urgelles (2022) ✓ × × × ✓
Natesha (2021) ✓ × × ✓ ✓

Khosroabadi
(2021)

✓ × × ✓ ×

Salimian (2022) × ✓ × × ×
Our Scheme ✓ ✓ ✓ ✓ ✓

• Packet delivery ratio maximization: Maximizing packet
delivery ratio is crucial to ensure the data quality trans-
ferred in the IoT ecosystem.

• Energy Efficiency Improvement: The optimization frame-
work aims to enhance energy efficiency, maximizing the
utilization of available energy resources.

• Ultra-Low Latency Achievement: Achieving ultra-low
latency is a key objective, ensuring swift response times
in the dynamic environment.

B. Proposed 6G-enabled IoT Framework

This section introduces a 6G-enabled IoT optimization
framework comprising several vital components. Subsection
A defines a taxonomy for categorizing services within this
6G-enabled IoT framework. Following that, in Subsection B,
the paper provides a detailed explanation of the architecture
and intricacies characterizing an IoT-based smart healthcare
system. The subsequent Section C introduces a comprehensive
framework for an IoT-based healthcare system, setting the
stage for the study’s subsequent analysis and exploration.

1) Taxonomy of service placement for 6G-enabled IoT:
This sub-section presents a taxonomy of IoT service-based
applications within IoT service placement, as illustrated in
Fig. 1 [26], [27]. The taxonomy helps to identify the use
of different services, architectures, resources, problem-solving
approaches, and applications in the context of the 6G-enabled
IoT landscape. This taxonomy highlights the inherent chal-
lenges of ensuring QoS and uninterrupted service delivery.
To address this issue, a conceptual optimization solution to
effectively and efficiently select optimal resources to fulfil
service requests across various layers of service processing.
This study proposes the problem as a multi-objective opti-
mization problem, considering the heterogeneity intrinsic to
IoT-based healthcare applications, the resources at hand, and
the distinctive service requirements.

2) Architecture of IoT based smart healthcare system :
The architecture of an IoT-based smart healthcare system [28]
is structured around four fundamental layers: Perception, De-
cision/Optimization, Cloud/Middle, and Application/Business.
The Perception layer consists of sensors that capture various
health-related data, including temperature, blood pressure,

position, heartbeat, vibration, pulse oximetry, and respiratory
rate. These sensors utilize various communication technologies
such as Wi-Fi, Infrared, ZigBee, Bluetooth, 5G, and 6G,
among others, to transmit this data for further processing.
Notably, the optimization technique employed here is agnostic
to specific communication technology setups, ensuring com-
patibility with 5G and 6G and adaptability to other commu-
nication technologies. Processed data is then forwarded to the
following processing stage. The Decision/Optimization layer
is crucial in selecting the most appropriate sensor source using
optimization techniques considering IoT’s core objectives.
This layer dynamically adapts to maximize various objectives,
encompassing parameters like service cost, energy efficiency,
service load, delay, and other fitness functions. The selected
source transfers the data to the upper layers for additional pro-
cessing. Energy and delay optimization are the primary focus
areas within the Optimization layer. In the Middle layer, the
primary goal is to enhance QoS by minimizing service costs
within the IoT healthcare framework. This layer is dedicated
to refining the system’s efficiency and performance, ensuring
that healthcare services are delivered with the highest possible
quality while optimizing operational costs. To evaluate the
performance of 6G-enabled IoT systems, we introduce several
key metrics, which are explained in detail below:

3) Proposed 6G-enabled IoT Framework Overview: The ar-
chitecture enables seamless information exchange, encompass-
ing patient health records, blood or tissue samples, imaging
data, and other related information among the IoT interface
devices or nodes. However, it’s essential to recognize that
the continuous and real-time exchange of multi-sensory in-
formation within this IoT ecosystem significantly emphasizes
real-time data quality, energy efficiency, and system latency.
Furthermore, the energy-intensive operations within this sys-
tem can potentially lead to rapid energy depletion and the
emergence of non-functional or ’dead’ IoT nodes [29]. To
evaluate the performance of this system, six key objective
metrics are used as follows:

1) Data Throughput (DT ) - Maximizing
It is defined mathematically as follows [30]:

Obj1 = (DT ) =
TotDatareceived

TotDGT
, (1)
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Fig. 1. Various taxonomy of the service placement for 6G-enabled IoT [26], [27]

where TotDatareceived
denotes total amount of data

collected, and TotDGT denotes total amount of time
taken to receive TotDatareceived

unit data.
2) Packet Loss Ratio (PLRatio) - Minimizing

It is exprssed as follows [31]:

Obj2 = (PLRatio) =
TotDatasent

− TotDatareceived

TotDatasent

(2)
3) Energy Consumption (TEcon) - Minimizing

Energy consumption (TEcon) is the total energy all
the sensors consume to transfer their all-sensed data to
destinations [32]. Its unit of measurement is KiloJoules
(KJ).

Obj3 = (TEcon) =
TotDatasent

ET
, (3)

where Et =
Et

µ is a constant and denotes the effective
energy consumption for transmission of one unit of data.

4) Packet Delivery Ratio (PDRatio) - Maximizing
The packet delivery ratio PDRatio presents the ratio of
the number of received packets and the amount of sent
packets [31].

Obj4 = PDRatio =
TotDatareceived

TotDatasent

(4)

5) Delay - (Minimizing)
Delay is the time duration to transfer the packet from
source to destination than the actual time [32]. Its unit
of measurement is in microseconds (µSec).

Obj5 = D =
TotDatasent

− TotDatareceived

dtr
, (5)

where D denotes delay.
6) Data Transfer Time (DT ) - Minimizing

It is the total time for Transferring the total data from
all senders to all receivers [33], expressed as follows:

Obj6 = DT =
TotDatasent

dtr
, (6)

where dtr is measured in terms of Mbps.

a) Fitness function of IoT-framework:: The fitness func-
tion in an IoT framework refers to a mathematical rep-
resentation that evaluates the quality or performance of a
particular solution or configuration within the framework. It
helps guide the optimization process by quantifying the fitness
or suitability of different settings, configurations, or decisions.
The fitness function in an IoT framework can incorporate
various factors and metrics relevant to the specific application
and optimization problem, as expressed in Eq. 7.

Fitness(x, y) = Min(−Obj1(x, y), Obj2(x, y), Obj3(x, y),
−Obj4(x, y), Obj5(x, y), Obj6(x, y)),

(7)
where x denotes TotDatasent

and y denotes TotDatareceived
.

b) Formulation of 2-objective of IoT service framework:
We created 2-objective functions based on IoT service esti-
mation that conflict with each other during this procedure. As
stated in Eq. 8, all objectives are turned into MOP utilizing
IoT service settings.

F (x, y) = Min(−Obj1(x, y), Obj5(x, y)) (8)

The maximization problem of Obj1(x, y) involves calculat-
ing the data throughput for the IoT framework when sending
data between sensors and receiver, and the term Obj5(x, y)
represents the measurement of calculating the delay.

c) Formulation of 3-objective of IoT service framework:
We designed 3-objective-based IoT-based service estimations
that conflict during this procedure. As demonstrated in Eq. 9,
all objectives are turned into multi-objective functions utilizing
IoT-based service parameters.

F (x, y) = Min(Obj3(x, y),−Obj4(x, y), Obj5(x, y)) (9)

The minimization problem of Obj3(x, y) involves calcu-
lating the energy consumption for sensors in IoT services.
Similarly, the maximization problem of Obj4(x, y) pertains
to calculating the packet delivery ratio for IoT services based
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on data transmission from sensor nodes, and Obj5(x, y)
represents the objective of minimizing the delay between
sensor nodes. The Table II includes the relevant terminology
considered in this work.

III. PROPOSED METHODOLOGY: HYBRID
MULTI-OBJECTIVE OPTIMISATION ALGORITHM

The key strength of the proposed approach lies in its ability
to handle a multitude of often conflicting objectives simultane-
ously. Within the realm of 6G-enabled IoT networks, it handles
the need to optimize various aspects such as data throughput,
packet loss reduction, energy efficiency, packet delivery ratio,
minimizing delays, and optimizing data transfer times. The
proposed hybrid methodology employs Red Fox and DE,
a comprehensive Multi-Objective optimization framework to
generate solutions that balance these diverse objectives.

The Red Fox algorithm demonstrates a high capability to
find the best optimal solution by leveraging its foraging-
inspired exploration strategies. On the other hand, DE excels in
generating a diverse population, contributing to a more robust
exploration of the solution space. Combining the strengths of
these algorithms in our proposed approach aims to achieve a
balance between exploration and exploitation, enhancing the
overall efficiency of optimization in the context of 6G-enabled
IoT networks.

A. Proposed MOFOX Optimization

Red FOX Optimisation is the leading exploration and ex-
ploitation approach, and Red foxes’ adaptability inspires it.
Each ” Red fox” in the population represents a different opti-
misation strategy. These Red foxes dynamically modify their
tactics according to how well they achieve the various objec-
tives, enabling them to navigate the challenging optimisation
environment efficiently. The 6G-enabled IoT networks provide
complicated optimisation issues, where various and sometimes
competing objectives must be considered simultaneously. The
suggested MOFOX Algorithm for Many Objectives has been
developed to address these challenges. This technique aims
to find a collection of Pareto-optimal solutions, which reflect
trade-offs between several goals, including increasing data
throughput, minimising packet loss, conserving energy, im-
proving packet delivery ratio, lowering latency, and speeding
up data transmission.

The Proposed MOFOX algorithm begins by initializing
a population of Red foxes randomly. These ”Red foxes”
represent individual optimization strategies and dynamically
adapt their exploration and exploitation behaviours based
on their success in improving the objectives. Key pa-
rameters, including the maximum number of generations
(MaxGenerations), mutation rate (MutationRate), and
crossover rate (CrossoverRate), are initialized. The objec-
tives to be optimized, denoted as f1, f2, . . . , fk, are defined
for the 6G-enabled IoT network scenario. The fitness of each
Red fox in the population is evaluated by considering these
objectives. The Algorithm employs a generation counter, t,
initialized to zero, to keep track of the optimization process.
In the main loop, the Algorithm iteratively selects parent

Algorithm 1: Proposed MOFOX Algorithm
Require: Initialize population of Red foxes P randomly, parameters:

MaxGenerations, MutationRate, CrossoverRate, objectives
f1, f2, . . . , fk

Ensure: Pareto-optimal solutions and corresponding trade-offs
1: Set t← 0 {Initialize generation counter}
2: for t < MaxGenerations do
3: Select parent Red foxes for reproduction based on fitness
4: Generate offspring using crossover and mutation operators
5: Evaluate the fitness of offspring using objectives
6: Select the best offspring based on Pareto dominance
7: Update the population P with the best offspring
8: Apply dynamic adaptation mechanisms to adjust parameters
9: t← t+ 1

10: end for
11: Identify the Pareto-optimal solutions in P

Red foxes for reproduction based on their fitness, generating
offspring using crossover and mutation operators. The fitness
of the offspring is evaluated concerning the defined objectives.
The best offspring, determined through Pareto dominance, is
selected to update the population P . Furthermore, dynamic
adaptation mechanisms are applied to adjust algorithm param-
eters, allowing it to adapt to changing network conditions and
objectives. This iterative process continues until the maximum
number of generations specified by MaxGenerations is
reached. Subsequently, the Algorithm identifies the Pareto-
optimal solutions within the population P , representing the
trade-offs between the multiple objectives.

TABLE II. Terminologies & Notations

Symbol Description
Fitness Fitness function
MOP multi-Objective Optimization Problem
MOA multi-Objective Optimization Algorithm
MaxGenerations Maximum number of generations of Algorithm
PopulationSize Size of population of solution
MutationRate Mutation method
CrossoverRate Crossover method
DV1 Dynamic-based vectors in search area
D Dimensions of search space
IoT Internet of Things
Obj1, Obj2, Obj3, Obj4, Obj5,&Obj6 Objectives functions of IoT service framework
fitRank Candidate solution select to high fitness value
α⃗rand,G Random vector of search area
αri1,G

, αri2,G
Target vector1 and vector2 of search area

γi,G Standard donor vector of DE algorithm
P Set of Pareto optimal solution
Ranki First rank Pareto front solutions

B. Modified Multi-Objective-based DE Optimisation (MODE)

The proposed MODE algorithm begins by randomly ini-
tializing a population of candidate solutions, denoted as P .
These candidate solutions are potential solutions to the opti-
mization problem. Essential parameters, including the maxi-
mum number of generations (MaxGenerations), population
size (PopulationSize), mutation rate (MutationRate), and
crossover rate (CrossoverRate), are set to govern the Algo-
rithm’s behaviour. Additionally, the specific objectives to be
optimized, labelled as f1, f2, . . . , fk, are defined based on the
characteristics of the problem. Each candidate solution in the
population is evaluated for its fitness concerning the defined
objectives. The Algorithm initializes a generation counter, t,
to zero, tracking its progress. Within the main loop, the Algo-
rithm iteratively conducts the optimization process. It selects
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Algorithm 2: Proposed MODE Algorithm
Require: Initialize population of candidate solutions P randomly,

parameters: MaxGenerations, PopulationSize, MutationRate,
CrossoverRate, objectives f1, f2, . . . , fk

Ensure: Pareto-optimal solutions and corresponding trade-offs
1: Set t← 0 {Initialize generation counter}
2: for t < MaxGenerations do
3: Select parent solutions for reproduction based on fitness and

diversity
4: Generate offspring using mutation and crossover operators
5: Evaluate the fitness of offspring using objectives
6: Apply nondominated sorting to create Pareto fronts
7: Select solutions for the next generation based on Pareto dominance

and diversity
8: Apply dynamic adaptation mechanisms to adjust parameters
9: t← t+ 1

10: end for
11: Identify the Pareto-optimal solutions in the final generation

parent solutions for reproduction based on their fitness and
diversity, generating offspring through mutation and crossover
operators. These offspring are subsequently evaluated based
on the defined objectives. The Algorithm then employs non-
dominated sorting to create Pareto fronts, identifying solutions
not dominated by others regarding objectives. Solutions for the
next generation are selected based on Pareto dominance and
diversity criteria. Dynamic adaptation mechanisms are applied
to fine-tune the Algorithm’s parameters, allowing it to adapt
effectively to changing optimization landscapes and objectives.
This adaptability ensures that the Algorithm can respond
to evolving problem characteristics during optimization. The
Algorithm continues to iterate until the maximum number of
generations specified by MaxGenerations is reached. At this
point, the Algorithm identifies the Pareto-optimal solutions
within the final generation. These solutions represent a set
of trade-off solutions, providing decision-makers with a range
of options that balance the multiple and often conflicting
objectives of the optimization problem.

C. Proposed Hybrid Scheme including MOFOX and MODE

The hybrid multi-objective optimization algorithm is a pow-
erful approach for resolving complicated optimization issues
with several competing objectives, as shown in Algorithm 3.
It tries to obtain Pareto-optimal solutions that provide trade-
offs between these goals. The Algorithm runs through several
generations, each of which improves the quality of the results.
The MOFOX Algorithm, a reliable optimization method, is
used by the hybrid Algorithm to initialize a population of
potential solutions. The fitness of each potential solution
is then assessed across all objectives. The primary loop,
spanning numerous generations, includes applying MODE-
based mutation and crossover operations to parent solutions
to produce offspring solutions. After being introduced to the
offspring population, these offspring solutions are assessed
for their fitness concerning all objectives. The Algorithm then
combines the populations of the parents and offspring, applies
non-dominated sorting, and generates Pareto fronts. To find
attractive trade-offs, Pareto fronts group solutions independent
of others. By choosing solutions based on Pareto fronts and
diversity preservation techniques, a new population for the fol-

lowing generation is created. In order to improve flexibility in
various optimisation settings, the Algorithm also incorporates
dynamic adaptation mechanisms to modify the parameters of
both the MODE and MOFOX Optimisation algorithms. The
Algorithm repeats this step for a predetermined number of
generations. The last generation, based on Pareto dominance,
identifies Pareto-optimal solutions. These options show the
optimal compromises between the many competing agendas.

Algorithm 3: Proposed Hybrid Multi-Objective Algo-
rithm including MOFOX and MODE

Require: Number of objectives k, Population size PopulationSize,
Maximum generations MaxGenerations, DE mutation rate
MutationRate, DE crossover rate CrossoverRate, Red fox
Optimization parameters

Ensure: Set of Pareto-optimal solutions
1: Initialize a population of candidate solutions using Red Fox

Optimization:
P ←
InitializePopulationUsingRed fox(populationsize,Red fox Parameters)

2: Evaluate the fitness of each candidate solution for all k objectives:
P ← EvaluateFitness(P )

3: for generation = 1 to MaxGenerations do
4: Create an empty offspring population O
5: for each parent solution x in population P do
6: Select a random subset of parent solutions for DE-based mutation
7: Apply DE mutation operator to generate a trial solution y
8: Apply crossover with a selected parent to produce an offspring

solution z
9: Evaluate the fitness of the offspring solution z for all k objectives

10: Add the offspring solution z to the offspring population O
11: end for
12: Combine the parent population P and offspring population O to

create a combined population Q
13: Perform non-dominated sorting on Q to create Pareto fronts
14: Create a new empty population Pnext

15: Select solutions for the next generation based on Pareto fronts,
crowding distance, and diversity preservation strategies:
Pnext ←
SelectNextGeneration(Q, Pareto Fronts,Diversity Preservation)

16: Apply dynamic adaptation mechanisms to adjust DE and Red Fox
optimization parameters

17: end for
18: Identify the Pareto-optimal solutions in the final generation:

ParetoOptimalSolutions← IdentifyParetoOptimal(Pnext)
19: return ParetoOptimalSolutions representing trade-offs among k

objectives

D. The Proposed Algorithm applied in the application of IoT

The challenging job of optimizing 6G-enabled IoT net-
works, characterized by many and sometimes competing ob-
jectives, is addressed by the Algorithm being given. The
proposed technique blends MOFOX Optimization and MODE
optimization to develop solutions that balance the various
aims. The MOFOX Algorithm creates an initial population
of potential solutions to start optimisation. These solutions
show possible setups for enhancing IoT network performance.
The Algorithm then assesses each candidate solution’s fitness,
considering both general multi-objective optimisation goals
and particular goals relevant to 6G-enabled IoT in addition
to the general goals. These goals include data speed, packet
loss, energy use, and other crucial performance indicators. The
method applies MODE mutation and crossover operations on
parent solutions to produce offspring solutions within each
generation. All objectives, including those particular to IoT, are
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rigorously evaluated to determine the fitness of these offspring
solutions. This guarantees that the Algorithm can success-
fully negotiate these objectives’ complex interconnections and
trade-offs. These fronts are produced using group solutions
that other groups and non-dominated sorting do not dom-
inate. Notably, the sorting procedure considers IoT-specific
goals, improving the ability to find solutions that match the
needs of 6G-enabled IoT. Then, while considering IoT-specific
goals, solutions for the following generation are chosen using
Pareto fronts and diversity preservation methodologies. This
algorithm method considerably aids the design and operation
of reliable and effective 6G-enabled IoT networks that can
accommodate the demands of new applications and services.

Algorithm 4: Multi-Objective Optimization for 6G-
enabled IoT Networks
Require: Number of objectives: k, Population size: PopulationSize,

Maximum generations: MaxGenerations, DE mutation rate:
MutationRate, DE crossover rate: CrossoverRate, Red fox
Optimization parameters, Set of IoT network-specific objectives:
IoTObjectives (e.g., data throughput, packet loss, energy
consumption)

Ensure: Set of Pareto-optimal solutions: ParetoOptimalSolutions
1: Initialization:
2: P ← InitializePopulationUsingRedfox(PopulationSize,

Red fox Parameters)
3: P ← EvaluateFitness(P , IoTObjectives)
4: for generation = 1 to MaxGenerations do
5: Create an empty offspring population O
6: for each parent solution x in population P do
7: Select a random subset of parent solutions for DE-based mutation
8: y ← Apply the DE mutation operator to generate a trial solution
9: z ← Apply crossover with a selected parent to produce an

offspring solution
10: Evaluate the fitness of offspring solution z for all k objectives,

including IoTObjectives
11: Add offspring solution z to offspring population O
12: end for
13: Combine parent population P and offspring population O to create

a combined population Q
14: Perform non-dominated sorting on Q to create Pareto fronts,

considering IoTObjectives
15: Create a new empty population Pnext

16: Pnext ← SelectNextGeneration(Q, Pareto Fronts, Crowding
Distance, Diversity Preservation, IoTObjectives)

17: Apply dynamic adaptation mechanisms to adjust DE and Red Fox
optimization parameters

18: end for
19: Identify Pareto-optimal solutions in the final generation:
20: ParetoOptimalSolutions← IdentifyParetoOptimal(Pnext)
21: return ParetoOptimalSolutions representing trade-offs among k

objectives, including IoTObjectives

IV. RESULT ANALYSIS AND DISCUSSIONS

The proposed work is assessed using benchmark functions
in the 6G-enabled IoT framework. In a series of tests within
6G-enabled IoT-based QoS services, our technique is thor-
oughly evaluated. We focus on real 6G-enabled IoT appli-
cation scenarios from the IoT services sphere, each defined
as a multi-objective optimization problem with three goals.
Scenarios represent diverse service models based on ser-
vice requests and sensor-generated solutions. Our innovative
methodology, integrating Hybrid adaptation-based approaches
for optimization, successfully handles the complexity of these
multi-objective scenarios, considering natural trade-offs. We

conducted studies on a Windows 11 platform using MATLAB
2023a, utilizing a Core-i7 CPU running at 3.6GHz and 8GB
of RAM. This comprehensive assessment reveals insights into
the effectiveness and potential of our technique in addressing
6G-enabled IoT-based service challenges. Scenarios from IoT-
based services [10], [25], [29] are used to test our proposed
method, covering various QoS parameters.

• Diversity measures the spread of solutions across the
Pareto front, including those relevant to 6G-enabled
IoT. An expansive and diverse set of solutions signifies
the algorithm’s ability to traverse diverse areas within
the search space and capture a wide array of trade-off
solutions, particularly in the context of 6G-enabled IoT
applications.

• The proposed system relies on simulating the six DTLZ
(3-objective) scenarios, as illustrated in Table III.

• Data throughput, packet delivery ratio, energy consump-
tion, and latency are performance evaluation require-
ments for 6G-enabled IoT. These metrics evaluate the
algorithm’s ability to cover the whole Pareto front.
The algorithm’s results should ideally be distributed
uniformly throughout the front, covering a variety of
solutions from different parts of the search space. This
strategy ensures that it supports a wide range of tastes
and needs within the fluid environment of 6G-enabled
IoT applications.

• The proposed method determines how quickly the algo-
rithm could reach the Pareto front. A faster convergence
speed indicates higher effectiveness in finding the best
solutions.

TABLE III. Framework scenario of the IoT services

Problem Variant Control Parameters and Characteristics
DTLZ1 - Number of Objectives (M) - Number of Variables (n) - Number of

Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ)
- Convex Pareto Front - Uniformly Distributed Solutions

DTLZ2 - Number of Objectives (M) - Number of Variables (n) - Number of
Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ)
- Concave Pareto Front - Non-Uniformly Distributed Solutions

DTLZ3 - Number of Objectives (M) - Number of Variables (n) - Number of
Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ)
- Concave Pareto Front - Uniformly Distributed Solutions

DTLZ4 - Number of Objectives (M) - Number of Variables (n) - Number of
Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ)
- Convex Pareto Front - Non-Uniformly Distributed Solutions

DTLZ5 - Number of Objectives (M) - Number of Variables (n) - Number of
Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ)
- Mix of Convex and Concave Pareto Front - Uniformly Distributed
Solutions

DTLZ6 - Number of Objectives (M) - Number of Variables (n) - Number of
Constraints (k) - Problem Dimension (k + M - 1) - Scaling Factor (λ) -
Mix of Convex and Concave Pareto Front - Non-Uniformly Distributed
Solutions

1) Experimental setup: In our IoT framework’s experimen-
tal setup, 150 sensors are deployed in uniform distribution
across a 2-D dimensional area. Within the 6G-enabled IoT
system, these sensors serve as service request agents. Addi-
tionally, we have included 150 active sensors that work as ser-
vice providers and are responsible for producing response data
in response to incoming requests from various entities, such as
processes, people, and linked devices inside the system. We
developed an area for testing as a 15 × 15 matrix to focus
our attention and preserve a particular location within the IoT
framework. We conducted studies using the development of 15
service requests within this matrix, all independently produced
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and unaffected by the three different service methodologies
[25], [34].

In Table III, we explored six service strategies (scenarios)
within the 6G-enabled IoT framework, each subjected to sen-
sor availability. These scenarios, reflected in three dimensions,
represented various configurations of the IoT service frame-
work. We aimed to evaluate their effectiveness by calculating
critical performance parameters—service traffic, energy loss,
load, and latency. The proposed algorithm was run 30 times,
ensuring statistically meaningful results and considering vari-
ability. We assessed performance indicators through iterative
processes, including packet delivery ratio, energy expenditure,
packet loss ratio, and delays. This approach allowed us to
capture performance variation comprehensively, evaluating the
method’s consistency and robustness in the 6G-enabled IoT
framework. We focused on understanding trade-offs and Pareto
front representation related to packet loss, packet delivery ra-
tio, energy utilization, and delay—critical factors in optimizing
IoT services for the 6G-enabled future.

.
2) 6G-IoT Framework: Fitness Cost Performance Compar-

ison of Optimization Algorithms: Table IV presents valu-
able insights into the performance of the proposed Hybrid
algorithm in contrast to many established optimisation al-
gorithms, notably NSGA-III [10], MOPSO [11], MOFOX
[12], and MODE [8]. These comparisons were carried out
under various experimental circumstances, including varying
numbers of generations, number of runs (30), and aims.
To begin, it is clear that as the number of generations
grows, all algorithms provide improved fitness cost values,
as expected, given the extensive exploration of the search
area. Across the generations evaluated, the Hybrid algorithm
consistently demonstrates competitive or better performance
than its alternatives. Table IV reveals the algorithms’ per-
formance under multi-objective optimization scenarios with
3, 5, 8, and 10 objectives. The Hybrid algorithm adapts
to increasing complexity, consistently achieving high-quality
results and demonstrating flexibility in diverse multi-objective
settings. Employing 30 runs per configuration underscores
the algorithm’s resilience and reliability, which are critical
for real-world applications. The Hybrid algorithm consistently
outperforms others in fitness cost values, excelling in identi-
fying high-quality solutions (”Best” fitness cost values) while
avoiding low-quality solutions (”Worst” fitness cost values).
The Hybrid algorithm maintains its competitive and consistent
performance regardless of experimental settings, positioning
it as a strong candidate for handling complex multi-objective
optimization challenges, particularly in the 6G-enabled IoT
framework. It achieves better results due to its leveraging
hybridization of techniques and an optimal balance between
exploration and exploitation, making it adaptable to diverse
problem characteristics.

3) 6G-enabled-IoT Framework Analysis of the Pareto Front
in 3-Objectives: Packet Loss, Energy Consumption, and Delay:
The proposed method has demonstrated superior performance
to other algorithms, particularly in achieving optimal values
using a non-dominating sorting algorithm for energy, delay,
and load. Across various scenarios, it consistently attains

higher Pareto ranks, as evidenced in Figs. 2(a), 2(b), 2(c), 2(d),
2(e), and 2(f). In Fig. 2, we visualize the results, where the
X-axis represents energy, the Y-axis represents delay, and the
Z-axis represents load, based on the multi-objective problem
defined in Eq. 9. The proposed approach significantly enhances
both the diversity and rate of convergence for scenario-based
services. The well-spread Pareto fronts showcased in the
figures signify the algorithm’s remarkable ability to provide
diverse optimal solutions, empowering decision-makers with
various choices across scenario-based services. It is important
to note that the method we propose regularly achieves superior
optimal values than conventional algorithms like NSGA-III
[10], MOPSO [11], MOFOX [12], and MODE [8]. This
performance advantage underlines our strategy’s success in
minimising packet loss, maximising energy efficiency, and
minimising latency inside the 6G-enabled IoT context. These
outcomes confirm the algorithm’s applicability for improving
performance and service quality in 6G-enabled IoT applica-
tions.

4) Pareto Front: Multi-Objective-Based 6G-enabled-IoT
Framework: We have examined the complex interplay be-
tween data throughput and packet delivery ratio, two crucial
performance indicators for reliable and effective communica-
tion networks, inside the 6G-enabled IoT architecture. Our
research’s generation of a Pareto front offers a thorough
analysis of trade-offs and ideal solutions in the context of
6G-enabled IoT applications. The main conclusions and result
analysis are as follows:

1. Data Throughput and Packet Delivery Ratio in a Multi-
Objective-Based 6G-enabled-IoT Framework as evidenced
in Figs. 3(a) and 3(b): We analyze the complex interaction
between communication network criteria, specifically packet
delivery ratio and data throughput. Our investigation reports
key findings showcased in the Pareto front order. It highlights
the necessity of optimization to balance these aspects,
illuminating the trade-off dynamics between Data Throughput
and Packet Delivery Ratio. The Pareto front supports
benchmarking performance and finding effective methods.
Additionally, it permits dynamic adaptability to changing
network circumstances or application demands. Our study
highlights how crucial it is to make well-informed judgments
in order to satisfy various IoT demands in the evolving
6G-enabled environment.

2. Energy Consumption and Packet Delivery Ratio in
a Multi-Objective-Based 6G-enabled-IoT Framework as
evidenced in Fig. 4: The fundamental trade-off dynamics
between Energy Consumption and Packet Delivery Ratio
in diverse 6G-enabled-IoT situations are vividly shown by
the Pareto front, emphasizing the necessity for strategic
optimization to attain an ideal balance. Improving the Packet
Delivery Ratio at the expense of energy efficiency can result
in higher energy consumption and vice versa. The Pareto front
offers a broad set of solutions, each representing a different
equilibrium point between these two important measures.
This variety gives network operators the freedom to choose
solutions that perfectly match the requirements and limits of
their IoT applications, enabling personalized optimization to
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(a) 3-objectives variant 1 (b) 3-objectives variant 2 (c) 3-objectives variant 3

(d) 3-objectives variant 4 (e) 3-objectives variant 5 (f) 3-objectives variant 6

Fig. 2. Pareto front: Packet loss, energy, v/s Delay on 3-objectives functions

(a) DTLZ1: Data Throughput and Packet Delivery Ratio

(b) DTLZ5: Data Throughput and Packet Delivery Ratio

Fig. 3. Data Throughput and Packet Delivery Ratio in a Multi-Objective-
Based 6G-IoT Framework

Fig. 4. Energy Consumption and Packet Delivery Ratio in a Multi-Objective-
Based 6G-IoT Framework

Fig. 5. Packet Transfer Rate and Packet Delivery Ratio in a Multi-Objective-
Based 6G-IoT Framework
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TABLE IV. 6G-IoT Framework: Fitness Cost Performance Comparison of Optimization Algorithms

No. of Gen. No. of Obj. NSGA-III Algo [10] MOPSO Algo [11] MOFOX Algo [12] MODE Algo [8] Hybrid Algo
Best Worse Best Worse Best Worse Best Worse Best Worse

20 3 5.523 7.101 4.734 6.7065 6.312 7.6533 4.3395 6.6276 3.945 6.0753
40 3 3.746 5.102 4.068 5.763 5.424 6.5766 3.729 5.6952 3.39 5.2206
60 3 4.62 5.94 3.96 5.61 5.28 6.402 3.63 5.544 3.3 5.082
80 3 3.969 5.103 3.402 4.8195 4.536 5.4999 3.1185 4.7628 2.835 4.3659
100 3 3.192 4.104 2.736 3.876 3.648 4.4232 2.508 3.8304 2.28 3.5112
120 3 2.947 3.789 2.526 3.5785 3.368 4.0837 2.3155 3.5364 2.105 3.2417
140 3 2.457 3.159 2.106 2.9835 2.808 3.4047 1.9305 2.9484 1.755 2.7027
160 3 2.268 2.916 1.944 2.754 2.592 3.1428 1.482 2.7216 1.62 2.4948
180 3 1.477 1.899 1.266 1.7935 1.688 2.0467 1.1605 1.7724 1.055 1.6247
200 3 1.169 1.503 1.002 1.4195 1.336 1.6199 0.9185 1.4028 0.835 1.2859
20 5 6.216 7.992 5.328 7.548 7.104 8.6136 4.884 7.4592 4.44 6.8376
40 5 6.132 7.884 4.256 6.446 7.008 8.4972 4.818 7.3584 4.38 6.7452
60 5 5.516 7.092 4.728 6.698 6.304 7.6436 4.334 6.6192 3.94 6.0676
80 5 5.355 6.885 4.59 6.5025 6.12 7.4205 4.2075 6.426 3.825 5.8905
100 5 5.201 6.687 4.458 6.3155 5.944 7.2071 3.865 5.2412 3.715 5.7211
120 5 4.823 6.201 4.134 5.8565 5.512 6.6833 3.7895 5.7876 3.445 5.3053
140 5 3.724 4.788 3.192 4.522 4.256 5.1604 2.926 4.4688 2.66 4.0964
160 5 3.169 4.203 2.802 3.9695 3.736 4.5299 2.5685 3.9228 2.335 3.5959
180 5 2.513 3.231 2.154 3.0515 2.872 3.4823 1.9745 3.0156 1.795 2.7643
200 5 2.254 2.898 1.932 2.737 2.576 3.1234 1.771 2.7048 1.61 2.4794
20 8 6.293 8.091 5.394 7.6415 7.192 8.7203 4.9445 7.5516 4.495 6.9223
40 8 6.237 8.019 5.346 7.5735 7.128 8.6427 4.9005 7.4844 4.455 6.8607
60 8 6.146 7.902 5.268 7.463 7.024 8.5166 4.829 7.3752 4.39 6.7606
80 8 5.901 7.587 5.058 7.1655 6.744 8.1771 4.6365 7.0812 4.215 6.4911
100 8 3.361 5.007 3.738 5.2955 4.984 6.0431 3.4265 5.2332 3.115 4.7971
120 8 3.997 5.139 3.426 4.8535 4.568 5.5387 2.7405 4.0964 2.855 4.3967
140 8 3.521 4.527 3.018 4.2755 4.024 4.8791 2.7665 4.2252 2.515 3.8731
160 8 2.842 3.654 2.436 3.451 3.248 3.9382 2.233 3.4104 2.03 3.1262
180 8 2.583 3.321 2.214 3.1365 2.952 3.5793 2.0295 3.0996 1.845 2.8413
200 8 2.114 2.718 1.812 2.567 2.416 2.9294 1.661 2.5368 1.51 2.3254
20 10 6.916 8.892 5.928 8.398 7.904 9.5836 5.434 8.2992 4.94 7.6076
40 10 6.832 8.784 5.856 8.296 7.808 9.4672 5.368 8.1984 4.88 7.5152
60 10 6.601 8.487 4.658 7.0155 7.544 9.1471 5.1865 7.9212 4.715 7.2611
80 10 6.447 8.289 5.526 7.8285 7.368 8.9337 5.0655 7.7364 4.605 7.0917
100 10 4.816 6.192 4.128 5.848 5.504 6.6736 3.784 5.7792 3.44 5.2976
120 10 4.032 5.184 2.756 4.396 4.608 5.5872 3.168 4.8384 2.88 4.4352
140 10 3.549 4.563 3.042 4.3095 4.056 4.9179 2.7885 4.2588 2.535 3.9039
160 10 3.409 4.383 2.922 4.1395 3.896 4.7239 2.6785 4.0908 2.435 3.7499
180 10 3.122 4.014 2.676 3.791 3.568 4.3262 2.453 3.7464 2.23 3.4342
200 10 3.031 3.897 2.598 3.6805 3.464 4.2001 2.3815 3.6372 2.165 3.3341

Fig. 6. Data Throughput of 6G-IoT Service

make decisions that correspond with their goals and get the
best results.

3. Packet Transfer Rate and Packet Delivery Ratio in
a Multi-Objective-Based 6G-enabled-IoT Framework as evi-
denced in Fig. 5: In our investigation, the dynamics of the
trade-off between packet transfer rate and packet delivery ratio
are strongly highlighted. The packet delivery ratio frequently
decreases when the packet transfer rate rises and vice versa.
This trade-off highlights how important it is for network
optimisation to find the right balance between these two crucial

Fig. 7. Energy Consumption of 6G-IoT Service

indicators. The Pareto front that our study produced is distin-
guished by its variety, exhibiting a wide range of options. Each
point along this front denotes a different point at which the
Packet Transfer Rate and Packet Delivery Ratio have reached
equilibrium. This variety allows network operators to choose
products that closely match the demands and limitations of
particular IoT applications, enabling specialized optimisation.

5) Multi-Objective-Based 6G-enabled-IoT Framework: In
Figure 6, we conducted a performance comparison between
our Hybrid algorithm and joint optimization approaches, in-
cluding NSGA-III [10], MOPSO [11], MOFOX [12], and



11

Fig. 8. Delay of 6G-IoT Service

Fig. 9. Packet Delivery of 6G-IoT Service

MODE [8], across 200 generations within the 6G-enabled IoT
framework, with a focus on Data Throughput. The Hybrid
algorithm consistently outperformed its competitors, achiev-
ing higher Data Throughput over generations. Its reliability
and consistency ensured steady data transfer rates for IoT
applications. In contrast to conventional methods, our Hybrid
algorithm’s multi-objective optimization capabilities struck a
fine balance between objectives, resulting in improved Data
Throughput without compromising other critical metrics. This
performance enhancement is significant, promising faster and
more efficient data transfer, reduced latency, and improved
network performance in the 6G-enabled IoT landscape.

6) Energy Consumption and Delay Over 200 Generations
in the 6G-enabled-IoT Framework: In Figures 7 and 8, we
carried out a performance evaluation, comparing our novel
Hybrid algorithm with conventional optimization methods,

Fig. 10. Packet Loss Ratio of 6G-IoT Service

including NSGA-III [10], MOPSO [11], MOFOX [12], and
MODE [8]. This assessment spanned 200 generations within
the framework of 6G-enabled IoT, with a particular focus on
two critical metrics: energy consumption and delay. The results
were quite surprising. The Hybrid algorithm consistently
outperformed the others, achieving lower energy consumption
and reduced delay, showcasing its effectiveness in optimizing
energy efficiency and communication speed in the context
of 6G-enabled IoT. The algorithm’s reliability and steady
maintenance of these low values underscore its suitability for
maintaining low-latency, energy-efficient IoT connections. In
contrast to standard methods, our Hybrid algorithm excelled
in simultaneously reducing energy consumption and delay
thanks to its multi-objective optimization capabilities.

7) Packet loss Over 200 Generations in the 6G-enabled-IoT
Framework: In Figure 10, we rigorously compared the perfor-
mance of our proposed Hybrid algorithm to existing optimisa-
tion strategies such as NSGA-III [10], MOPSO [11], MOFOX
[12], and MODE [8] across 200 generations inside the 6G-
enabled-IoT environment. The critical statistic of Packet Loss
was the core focus of this examination. The outcomes were
both positive and eye-opening. The Hybrid algorithm con-
sistently performed better than typical approaches, delivering
reduced Packet Loss. This proven performance highlights the
algorithm’s effectiveness in preventing data loss and delivering
the strong and trustworthy connectivity necessary in the dy-
namic 6G-enabled IoT Scenario. Furthermore, as demonstrated
by its ability to retain decreased Packet Loss values across
generations, the algorithm’s consistency and dependability
are critical for ensuring dependable data transmission in IoT
applications. In direct contrast to the traditional approaches,
our Hybrid algorithm regularly outperformed them by attain-
ing reduced Packet Loss. This validates its robustness and
efficiency in optimising Packet Loss while considering various
IoT application demands. In practice, the Hybrid algorithm’s
effectiveness in minimising Packet Loss is crucial for 6G-
enabled IoT applications, as it opens up the possibility of
increased data dependability, decreased retransmission cost,
and improved QoS in the 6G-enabled era.

V. CONCLUSION

This article proposed a new Hybrid Algorithm to address
the conflicting objectives, including data throughput, energy
efficiency, packet loss, packet delivery ratio, and latency for
optimal efficiency, dependability, and responsiveness in 6G-
enabled IoT networks. The proposed algorithm combines
the robustness of the MOFOX algorithm with the diverse
exploration of the MODE algorithm, allowing us to find
Pareto-optimal solutions. Through rigorous experimentation
and assessment, we have shown the algorithm’s efficacy in
handling the several optimisation needs of 6G-enabled IoT
networks. It has regularly delivered sets of Pareto-optimal
solutions that suit a wide range of application scenarios,
from increasing data throughput and reducing packet loss to
reducing energy usage and improving packet delivery ratios.
Our approach is a step forward in optimising 6G-enabled
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IoT networks. However, the proposed hybrid algorithm, being
metaheuristic, may face challenges in promptly adapting to dy-
namic changes, discovering patterns, and adjusting strategies
in evolving conditions. It might exhibit limitations in real-
time decision-making speed and require more problem-solving
intelligence for complex and uncertain scenarios. Integrating
AI into this algorithm can enhance its adaptability, learning
capabilities, and problem-solving intelligence, making it more
suitable for addressing similar problems. In the future, the aim
is to improve the efficiency, reliability, and adaptability of 6G-
enabled IoT networks by integrating AI techniques, enabling
them to support a wide range of dynamic 6G-enabled IoT
applications.
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