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Knowledge-Driven Lane Change Prediction for
Secure and Reliable Internet of Vehicles

Yuhuan Lu, Zhen Zhang, Wei Wang, Member, IEEE, Yiting Zhu, Tiantian Chen, Member, IEEE, Yasser 
D. Al-Otaibi, Senior Member, IEEE, Ali Kashif Bashir, Senior Member, IEEE, and Xiping Hu

Abstract— Ensuring the smooth operation of road traffic i s a 
momentous target in Intelligent Transportation Systems, which 
can be expedited by a secure and reliable Internet of Vehicles 
(IoV). As prominent carriers of the IoV, intelligent vehicles (IVs), 
that bear the promising potential for alleviating traffic congestion, 
have become the core road traffic p articipants. H owever, the 
mixed-traffic e nvironment e scalates t he r isk o f I Vs, a s the 
discretionary lane change behaviors of nearby human-driven 
vehicles may result in collisions with IVs, compromising the 
robust performance of the IoV. Recent studies have utilized 
advanced deep learning techniques to achieve proactive lane 
change intention prediction, including Recurrent Neural Net-
works and Transformer. Although attaining reasonable prediction 
performance, they adopt the data-driven paradigm, which exces-
sively focuses on learning from data while neglecting the domain 
knowledge. Against this background, we propose to employ 
the knowledge-driven paradigm and design KLEP, a knowledge-
driven lane change prediction framework. KLEP incorporates 
driving knowledge into lane change modeling, presenting the 
top-down hierarchical cognitive process of drivers when perform-
ing lane change maneuvers. Extensive experiments conducted
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on two real-world natural driving datasets demonstrate the
effectiveness of KLEP. Compared to state-of-the-art lane change
prediction baselines, KLEP consistently outperforms them and
achieves average improvements of 6.2-7.1% and 53.0-67.2%
on intention classification and intention forecast tasks across
different datasets, respectively. We also validate that KLEP has
strong interpretability that aligns with real-world physical laws
in lane change scenarios and is lightweight enough to fulfill online
prediction.

Index Terms— Lane change prediction, knowledge-driven, het-
erogeneous graph, Internet of Vehicles, driving safety.

I. INTRODUCTION

IN THE new era of Intelligent Transportation Systems
(ITS), enhancing the capacity of road traffic is a pressing

imperative as it directly concerns the efficiency, productivity,
comfort, and safety of society [1]. The Internet of Vehicles
(IoV) is considered promising for warranting the smooth
operation of road traffic, however, its security and reliability
are intertwined with the driving safety of its carriers, intelligent
vehicles (IVs). Benefiting from the rapid development of artifi-
cial intelligence and information communication technologies,
intelligent vehicles (IVs) have been progressively advancing
and are on the verge of becoming the key component in road
traffic [2], [3]. Therefore, there will be an extended period
where human-driven vehicles (HDVs) and IVs coexist on
roads, constituting a mixed-autonomy traffic landscape [4], [5].
To ensure driving safety and social compliance, IVs necessitate
the capability to timely detect surrounding traffic environments
so that they can proactively make sensible decisions. In par-
ticular, the ability to predict the driving behaviors of HDVs in
their vicinity is remarkably essential for the smooth and safe
operation of IVs. Among various driving behaviors, the lane
change maneuver is a much frequent and safe-critical behavior
for both IVs and HDVs. Recent studies have shown that over
50,000 traffic accidents in the U.S. each year result from
discretionary lane change maneuvers [6], [7]. Accordingly,
accurately predicting the lane change intention of surrounding
HDVs is crucial for the establishment of IVs.

IVs are capable of collecting the driving states of nearby
HDVs in real time, generating large quantities of driving
features. The advent of deep learning techniques furnishes the
prospect of achieving lane change prediction by leveraging
the potential of such big data. Recurrent Neural Network
(RNN) and its variants, such as Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU), have been

https://orcid.org/0000-0001-5332-3389
https://orcid.org/0009-0007-9955-0916
https://orcid.org/0000-0002-1717-5785
https://orcid.org/0000-0003-1113-7507
https://orcid.org/0000-0002-8954-1430
https://orcid.org/0000-0002-1464-8401
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0002-4952-699X


2

employed to accommodate the temporal variation in driving
features and yield favorable lane change intention prediction
performance [8], [9], [10]. To further elevate the ability of
RNNs to capture lane change patterns, hierarchical learning
is introduced to complement prediction information presented
in different lane change scenarios [11], [12]. Transformer is a
groundbreaking architecture for natural language processing
that has extended its applications to computer vision and
autonomous driving [13]. It exhibits strong competence in
capturing the correlations among input elements with the
attention mechanism. Inspired by this regard, Transformer
is also applied in lane change prediction, resulting in better
performance than the RNN family [14].

Although the methods mentioned above realize satisfac-
tory lane change prediction performance to some extent,
they focus on modeling the relationships between driving
features and thus cause the dependency-dominant embedding
space. This study refers to these methods as the data-driven
paradigm, meaning they only adapt to the plain representation
of driving data. Recently, knowledge-driven paradigm has been
increasingly prevailing in behavior prediction literature [15],
[16], [17]. Unlike the bottom-up information flow in the
data-driven paradigm, the knowledge-driven paradigm main-
tains top-down message propagation, in conformity with the
hierarchical cognitive process of drivers in lane change sce-
narios, thereby facilitating the interpretability of lane change
prediction. Simultaneously, the knowledge-driven paradigm
can mitigate data biases by directly modeling lane change
semantics, an issue inevitably encountered by the data-driven
paradigm.

Against this background, we propose a Knowledge-Driven
Lane Change Prediction (KLEP) framework, complying with
the philosophy of the knowledge-driven paradigm. KLEP
is designed to incorporate driving knowledge into the lane
change prediction process. Specifically, the raw driving data
is first transformed and categorized into two types of driving
features at the data preparation stage. Then a knowledge-driven
lane change prediction model is devised, containing: 1) a
heterogeneous driving graph is constructed to represent the
hierarchical driving knowledge, referring to the logic of sym-
bolism [18] and the cognitive process of the perceived safety
under lane change circumstances [19]; 2) a temporal informa-
tion extractor is conceived to refine the time series features and
avert the data noise; 3) a heterogeneous graph Transformer
is developed to capture correlations between nodes in the
hierarchical driving graph, enabling the lane change prediction
with the driving knowledge. Finally, we implement KLEP in
the manners of offline training and online prediction.

The main contributions of this study are summarized as
follows:

1) We revisit the problem of lane change intention prediction
and point out the drawbacks of current methods that are
limited to the data-driven paradigm. Therefore, we pro-
pose to accomplish the knowledge-driven paradigm in
lane change prediction.

2) We propose KLEP, a knowledge-driven lane change pre-
diction framework, designed to incorporate the driving
knowledge into the lane change prediction process. It not
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only boosts the intention prediction performance but also 
improves the interpretability of lane change maneuvers.

3) We conduct a thorough evaluation of KLEP, comparing
it with a sizeable collection of state-of-the-art baselines
on two real-world natural driving datasets. The exper-
imental results demonstrate the superiority of KLEP
in lane change prediction. For the intention classifi-
cation task, KLEP achieves average improvements of
6.2-7.1% over the best-performing baseline across dif-
ferent datasets. Furthermore, on the intention forecast
task, KLEP still outperforms the best-performing base-
line, yielding average improvements of 53.0-67.2% across
different datasets. In addition, KLEP exhibits forceful
interpretability and is lightweight enough to execute
online prediction.

The rest of this article is organized as follows. Section II
reviews some relevant works. Section III elaborates on the pro-
posed framework. Section IV presents detailed experimental
results. Finally, Section V concludes the research and provides
some future works.

II. RELATED WORK

In this section, we systematically review the evolutionary
process of lane change intention prediction and trace the
trajectory of efforts aimed at accurate prediction.

At first, researchers holistically analyzed the details of lane
change maneuvers and proposed to precisely model the behav-
iors of vehicles before executing lane change. Reference [20]
employed the steering wheel angle as a crucial signal for
predicting the lane change intention of drivers. It discovered
the common disengagement behavior of drivers before straying
away from the original lane and associated such behavior with
the steering wheel angle. Reference [21] further utilized more
kinds of vehicle dynamic features collected by a wealth of
vehicle sensors. The combination of rich sensor information
facilitates lane change prediction. Reference [22] considered
the temporal variation of driving features and characterized
the lane change behavior with a potential field that adapts
to temporal fluctuations in feature distributions. However,
these maneuver-based methods only focus on the individual
dynamics of vehicles and neglect the influence of surrounding
vehicles, resulting in poor prediction performance.

Afterward, researchers proposed to model interactions
between vehicles, incorporating inter-vehicle correlation fea-
tures. Reference [23] constructed Bayesian Networks to
describe the causal effect between driving features. It also
captured the traffic scenes about lane change with occupancy
grids and merged the scene characteristics with Bayesian Net-
works to better accommodate the interactions. Reference [24]
applied a Support Vector Machine to classify the lane change
intention. The speed and position of vehicles were adopted as
two important indicators for identifying the boundary. Refer-
ence [25] exerted the Hidden Markov Model to distinguish
left and right lane change intention from the mixed lane
change and lane keeping behaviors. In addition to the steering
wheel angle, it also considered the lateral acceleration to
obtain the optimal model structure. Although these methods
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capture the interactions to some extent, they lean toward the
interpretability of lane change behaviors and grapple with the
generalization to large-scale driving data.

With the emergence of advanced artificial intelligence tech-
niques such as deep learning approaches, researchers put
forward diverse methods to achieve lane change prediction
on big data. Reference [26] referred to Random Forest (RF),
setting a new high watermark to account for a large amount of
spatial and temporal driving features. Reference [8] followed
the RNN architecture for time series and employed LSTM
to capture the temporal dynamics hidden in lane change
maneuvers. Reference [9] extended [8] by using Bidirectional
LSTM (Bi-LSTM) to enhance the extraction of temporal
features and improve the lane change pattern representations.
Reference [27] chose Temporal Convolutional Network to
capture temporal variation in lane change-related features,
realizing the same utility as [8] and [9]. Reference [10]
combined different RNN-based methods and only drew out
their essences with the help of ensemble learning. Refer-
ences [11] and [12] considered the hierarchical structure of
lane change behaviors and modified the vanilla LSTM into
the double-level classifier. Reference [14] used Transformer to
capture correlations among inter-vehicle interaction features.
The powerful capability of multi-head attention in extracting
lane change context renders it to achieve better prediction
performance than RNN-based methods.

Although the above data-driven methods achieve fabulous
lane change prediction performance, the knowledge-driven
philosophy has become increasingly prevalent as it aligns
with the cognitive process of drivers in lane change scenar-
ios and holds great promise for more accurate prediction.
Reference [15] first proposed to consider the driving knowl-
edge when predicting lane change intention. Nevertheless,
it failed to model the intricate relationships between driving
features and was restricted by superficial prior knowledge.
Therefore, we propose KLEP to comprehensively model lane
change-related driving knowledge.

III. KNOWLEDGE-DRIVEN LANE CHANGE
PREDICTION FRAMEWORK

This section depicts KLEP, a knowledge-driven lane change
prediction framework. In Section III-A, we present the
problem formulation and the overall architecture of KLEP.
Section III-B outlines the data preparation process for lane
change behavior modeling. Subsequently, we elaborate on the
approach to lane change intention inference in Section III-C.
Finally, the training and prediction paradigm is exhibited in
Section III-D.

A. Problem Formulation and Framework Overview

In this study, we focus on predicting lane change inten-
tions. Within the context of the IoVs, the driving states
of surrounding vehicles–such as positions, velocities, and
accelerations–can be obtained for a target vehicle. Based
on the historical states of these vehicles, the objective of
lane change intention prediction is to forecast future lane
change maneuvers of the target vehicle, including left lane

Fig. 1. The architecture of the proposed KLEP framework.

changes, right lane changes, and lane keeping. Fig. 1 illus-
trates the flowchart of KLEP. Firstly, data preprocessing is
implemented to forge appropriate input features for the fol-
lowing lane change prediction model. Meanwhile, the curated
dataset is partitioned into historical data for model training
and real-time data for model testing (prediction). Afterward,
a novel knowledge-driven graph Transformer method for lane
change prediction is developed. Lastly, the proposed lane
change prediction model is optimized in the offline training
phase and then is employed to achieve real-time forecasting
in the online prediction phase. The details of KLEP are
elucidated in the following sections.

B. Data Preparation

The intention of a vehicle to change lanes is influenced by
its current driving state [5], [28] and the perceived safety of its
driving environments [29], [30], [31]. For example, a vehicle
tends to switch from the slow lane to the fast lane when it
wants to increase the driving speed on freeways. However, the
decision to change lanes will only be made after a deliberate
inspection of the surrounding environment to ensure driving
safety. Therefore, we convert the driving data into two types of
lane change-related features, namely self-features and safety
features.

For self-features, the velocity and acceleration of vehi-
cles are recognized as indicators reflecting their individual
driving states. As for safety features, we employ the Time-To-
Collision (TTC) metric to represent the perceived safety of a
vehicle in dynamic driving environments. TTC is a commonly
used traffic safety metric to measure the remaining time before
two vehicles collide if they maintain their original driving
states. Given the velocity of a target vehicle vtarget , the TTC
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TABLE I
ILLUSTRATION OF INPUT FEATURES AND THEIR RESPECTIVE FEATURE CODES

between the target vehicle and its front vehicle is calculated
by:

TTC f =
d f

vtarget − v f
(1)

where v f denotes the velocity of the front vehicle and d f is
the distance between the target vehicle and its front vehicle.
Also, the TTC between the target vehicle and its rear vehicle
is computed by:

TTCr =
dr

vr − vtarget
(2)

where vr refers to the velocity of the rear vehicle and dr
denotes the distance between the target vehicle and its rear
vehicle. The complete input features are presented in Table I.
Referring to some advanced lane change prediction meth-
ods [12], [14], [28], [32], surrounding vehicles in five positions
(shown in Table I) are selected to compute safety features
since they have direct impacts on the lane change intention
of the target vehicle. Our lane change prediction model also
accommodates the scenario where the number of surrounding
vehicles is less than five, which will be further discussed in
the following section.

To mitigate the repercussions of numerical differences
for lane change prediction performance, we apply min-max
normalization to the obtained input features. The minimum
and maximum values of a certain feature are determined by
reviewing historical data. When making on-the-fly predictions,
values smaller than the minimum are mapped to 0 while
values larger than the maximum are mapped to 1. Notably,
the calculation of TTC may yield negative values indicating
the zero collision risk, and thus these negative TTC values are
mapped to 1 accordingly.

C. Lane Change Prediction Model

This section illuminates the developed knowledge-driven
graph Transformer method for lane change prediction. We first
present the construction of the heterogeneous driving graph,
which explicitly models driving knowledge. Then we introduce
a temporal information extractor that accounts for the temporal
dynamics in input features. Finally, we showcase a novel
heterogeneous graph Transformer, which captures correlations
in the heterogeneous driving graph.

1) Heterogeneous Driving Graph Construction: From the
viewpoint of Symbolism, knowledge originates from the
connections between symbols and then evolves into a cog-
nitive graph (or network) to interpret the real world [18].

Fig. 2. Illustration of the heterogeneous driving graph, which symbolizes the
hierarchical structure of lane change-related driving knowledge. Orange nodes
correspond to the feature code in Table I. Edges do not have a direction.

Inspired by this, we resort to the heterogeneous graph to
embody the driving knowledge under the circumstances of
lane change. Furthermore, we refer to the cognitive process
of perceived safety [19] and incorporate the hierarchy into
the heterogeneous driving graph. Specifically, the undirected
heterogeneous driving graph G = {V, E} is shown in Fig. 2,
wherein V denotes the node set and E refers to the edge set.
There are three edge types: Feature category represents the
vehicle-feature type connection that anchors the hierarchical
structure in driving knowledge, maintaining the hierarchical
cognitive process toward lane change; Self-feature and Safety
feature represent the respective feature type-feature connec-
tions that depict the elementary knowledge in the lane change
scenario. This hierarchical structure can well represent the
top-down cognitive process of drivers in lane change scenarios,
concretizing the lane change-related driving knowledge.

2) Temporal Information Extraction: Each input feature is
typically expressed in the form of a time series vector:

ht0
i =

(
ht0−T+1

i , ht0−T+2
i , . . . , ht0

i

)
(3)

where ht0
i denotes the time series vector of the i-th feature

at timestamp t0. T refers to the traceback time window.
ht0

i denotes the value of the i-th feature at timestamp t0.
The long-range time series vector inclines to instill irrelevant
information into the downstream model and thus impair the
model performance. In this context, we consider extracting
the refined temporal information from the time series vector
in advance to avert model degradation while reducing the
dimension of the vector to promote model efficiency. Here,
we use 1D-CNN [33] as the temporal information extractor:

ht0
i = 1D-CNN

(
hi , Wi,c

)
(4)
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where ht0
i is the updated feature vector of the i-th feature at

timestamp t0. Wi,c is learnable parameters of the convolutional
filters for the i-th feature. Compared to the RNN family
(including RNN, LSTM, GRU, etc.) and attention-based meth-
ods (such as Transformer), 1D-CNN bears the merits of
the global receptive field over RNNs and the lightweight
configuration against attention mechanisms, rendering it more
suitable for the real-time temporal information extraction.

3) Heterogeneous Graph Transformer: To enable the driv-
ing knowledge to inform the lane change prediction, it is
requisite to capture correlations between nodes in the het-
erogeneous driving graph. This process allows these intricate
relationships to be encoded so that the updated node features
can be exploited to generate future lane change intentions.
Transformer has proven to achieve commendable performance
in eliciting correlations between lane change-related features
and accomplish superb intention prediction performance [10],
[14], [28], [34], [35]. Nevertheless, the essence of global
information exchange in multi-head attention enlarges the
computational overhead, resulting in the strain on timely lane
change prediction. Simultaneously, such global multi-head
attention fails to account for the structure of the heterogeneous
driving graph and thus leads to cumbersome information in
correlations. To surmount the above issues, we propose a
heterogeneous graph Transformer (HGT) to fulfill efficient and
exact multi-head attention on the heterogeneous driving graph.

Following the philosophy of GNNs, message passing on
the heterogeneous driving graph is realized by aggregation
function and update function [36]. Specifically, the aggregation
function merges a set of feature vectors and compresses them
into a single vector, which is expressive of aggregated features.
It is required to allow for an arbitrary number of input
vectors and ensure independence of their permutations. Next,
the update function transforms each feature vector derived
from the aggregation function into the required size for the
subsequent lane change prediction.

In HGT, we apply multi-head attention to the aggregation
function. However, the vanilla multi-head attention is designed
for homogeneous elements (such as words in a sentence),
which is unsuitable for the heterogeneous driving graph since
the connections (edge types) between nodes vary. Hence,
we adopt a type-aware strategy to implement multi-head
attention. For a node v ∈ V in the heterogeneous driving graph
G, the input feature vector of v to the l-th layer is vl−1 obtained
from the last layer. Notably, the input feature vectors to the
first layer originate from the feature vectors obtained through
temporal information extraction. We denote the neighboring
nodes of v that connect to v with the edge type j by N j

v and
their feature vectors to l-th layer by N j,l−1

v . The attention score
of the edge type j for the node v is calculated by:

a j = σ

(
q j K j
√

d

)
(5)

where q j = vl−1WQ j , K j = N j,l−1
v WK j . WQ j and WK j are

the query and key linear transformation matrices for the edge
type j , respectively. σ(·) denotes the Softmax function and d
refers to the stable factor used in multi-head attention. In doing
so, the attention score is type-aware and conforms with the

Fig. 3. Overview of the proposed heterogeneous graph Transformer.

heterogeneity in the driving graph. Moreover, the aggregated
feature vector of the edge type j for the node v is obtained:

ṽl−1
j = aT

j V j (6)

where V j = N j,l−1
v WV j . WV j denotes the value linear

transformation matrix for the edge type j . In this way, the
number of heads in multi-head attention equals the number
of edge types in the driving graph, capturing more precise
correlations between nodes while hastening the robustness of
node representations. Finally, the obtained aggregated feature
vectors are concatenated and processed by the update function:

v̂l−1
= FFN

([̃
vl−1

1 ||̃v
l−1
2 || · · · ||̃v

l−1
ne

])
(7)

where FFN(·) is the feed-forward network inherited from
the vanilla multi-head attention, where the residual connec-
tion [37] and layer normalization [38] are both tapped into for
stable training. || denotes the concatenation operator and ne is
the number of edge types. More specifically, the pseudo-code
for HGT is presented in Algorithm 1.

To sum up, HGT harnesses the advantages of both GNNs
and Transformer: 1) adheres to the aggregation and update
functions in GNNs, exquisitely accommodating the hier-
archical structure of driving knowledge and capturing the
heterogeneous information innate in the driving graph; 2)
utilizes multi-head attention in Transformer to bolster node
representations while alleviating the computational burden
with type-aware aggregation strategy. Fig. 3 presents the
workflow of HGT. Notably, the message passing of HGT
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Algorithm 1 The Pseudo-Code for Heterogeneous Graph
Transformer
Input: The node feature v0 (v ∈ V) obtained from

temporal information extraction
Output: The updated node feature v̂L

1 Initialize query, key, and value linear transformation
matrices WQ j |

ne
j=1, WK j |

ne
j=1, and WV j |

ne
j=1

2 for l = 1, 2, . . . , L do
3 for j = 1, 2, . . . , ne do
4 N j,l−1

v ← concatenate features of neighboring
nodes of v that connect to v with the edge type j

5 q j ← vl−1WQ j

6 K j ← N j,l−1
v WK j

7 V j ← N j,l−1
v WV j

8 Calculate the attention score of the edge type j
by Eq. (5)

9 Calculate the aggregated feature vector of the
edge type j by Eq. (6)

10 Calculate the updated feature vector v̂l−1 by Eq.
(7)

11 end
12 end

is only imposed on nodes since we focus on obtaining the
informative and knowledgeable node embeddings for lane
change prediction. Through confining message updates to
nodes, we effectively prevent information spillovers to edges,
thereby maintaining the integrity and relevance of the node
features [14], [15].

D. Offline Training and Online Prediction

After building the lane change prediction model, we design
offline training and online prediction procedures for the prac-
tical application of KLEP. Since we focus on the lane change
intention of the target vehicle, only the feature vector of the
vehicle node in the heterogeneous driving graph is read out to
make the prediction. Assume that the node v corresponds to
the target vehicle. The final feature vector of v learned by HGT
is denoted by v̂L . Wherein, L refers to the number of layers in
HGT. A fully connected layer with Softmax activation function
is applied to acquire the likelihood of driving maneuver:

ω = σ
(

FC
(̂

vL
))

(8)

The dimension of ω corresponds to the number of driving
maneuver categories. In this study, the maneuver categories
are defined as lane keeping, left lane change, and right lane
change. Therefore, the lane change prediction problem here is
formulated as a classification problem, and the cross entropy
loss is employed for offline training:

L = −
C∑

i=1

yi log ωi (9)

where C is the number of maneuver categories. yi is the
ground-truth label for the i-th category and ωi denotes the
predicted maneuver likelihood of the i-th category.

Fig. 4. The example of lane change scenarios.

TABLE II
DETAILS OF THE DATASETS. THE COLUMNS RESPECTIVELY DENOTE THE

NUMBER OF TRAINING SEQUENCES, TEST SEQUENCES, THE PREDE-
FINED LANE CHANGE PREPARATION TIME, AND THE

COLLECTION FREQUENCY

When making online predictions, the category with the
highest value in ω indicates the most likely maneuver the target
vehicle will perform shortly.

IV. EXPERIMENTS

In this section, we evaluate the proposed universal frame-
work KLEP on two real-world datasets. We first introduce the
experimental setup and then exhibit experimental results and
analyses, including overall performance comparison, model
ablation study, computational efficiency comparison, and inter-
pretability verification.

A. Experimental Setup

1) Datasets: To validate the intention prediction per-
formance of KLEP, two large-scale real-world datasets,
NGSIM [39] and HighD [40], are used for offline training
and online testing. NGSIM stems from the simulation program
inaugurated by the U.S. Federal Highway Administration.
It collects data on the I-80 freeway with a sampling frequency
of 10 Hz including vehicle coordinates, velocities, acceler-
ations, types, and lane information. HighD garners natural
driving data on German highways with a sampling frequency
of 25 Hz. This dataset records the trajectories of 110,000
vehicles on 6 highway segments spanning 16.5 hours. To label
the datasets, we first investigate the realistic lane change
process. Fig. 4 shows an example of lane change scenarios,
consisting of three momentous time spans: 1) before tc the
target vehicle maintains the lane keeping process; 2) from tc
to ts , the target vehicle observes surrounding environments
and prepares to execute the lane change maneuver; 3) from ts
to te, the target vehicle executes the lane change process and
finishes the lane change at timestamp te. As only ts and te are
presented in datasets while tc is undefined, we need to identify
the tc for the labeling of the lane change process. Referring
to previous works [41], [42] on the temporal analyses of the
lane change procedure, we assume that the period between tc
and ts is 2 seconds and label the time frame (tc, te) as lane
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TABLE III
OVERALL DRIVING INTENTION PREDICTION PERFORMANCE. COMPARISON OF LANE CHANGE AND LANE KEEPING PREDICTION

RESULTS OF VARIOUS METHODS ON NGSIM AND HIGHD DATASETS

TABLE IV
OVERALL LANE CHANGE INTENTION PREDICTION PERFORMANCE. COMPARISON OF LEFT LANE CHANGE AND RIGHT LANE CHANGE

PREDICTION RESULTS OF VARIOUS METHODS ON NGSIM AND HIGHD DATASETS

change sequence while the same length of time frame before
tc as lane keeping sequence.

At last, we obtain 7,143 lane change/lane keeping sequences
for the NGSIM dataset and 10,278 lane change/lane keeping
sequences for the HighD dataset. Among them, 80% is used
for offline training whereas 20% is utilized for online testing.
For clarity, the details of the statistics are shown in Table II.

2) Baselines: We compare KLEP with a sizeable collection
of state-of-the-art baselines:

1) RF [26]. Random Forest is a rudimentary model for
lane change prediction. It incorporates various spatial and
temporal driving-related features to classify diverse lane
change decisions.

2) LSTM [8]. Long Short-Term Memory is employed to
accommodate the temporal variation of driving features
and further extract the hidden embeddings at different
timestamps for lane change prediction.

3) Bi-LSTM [9]. Bidirectional LSTM is an updated version
of LSTM, which models bidirectional information flow
to facilitate the representation of dynamic behavioral
patterns of lane change.

4) TMMOE [27]. Temporal Multi-task Mixture Of Experts
applies Temporal Convolutional Networks to capture
temporal dynamics among lane change-related features,
enlarging the perception field toward driving interactions.

5) MMAE [10]. Multiple Model-Based Adaptive Estima-
tor integrates multiple time series extractors to achieve

strengthened lane change pattern recognition and outputs
the mixed likelihood of lane change behaviors.

6) VWC [15]. Variable Weight Combination introduces the
concept of driving knowledge and selects the perceived
speed and comfort as indicators to quantify the impact of
driving features on lane change intention.

7) H-LSTM [11]. Hierarchical LSTM learns from driving
data with a hierarchical structure, seamlessly accounting
for the interactions between lane change maneuvers and
vehicle trajectories.

8) PRNN-GHMM [12]. Parallel Recurrent Neural Net-
works are used as the upper module to model lane change
behaviors and Gaussian Hidden Markov Model in the
lower module absorbs the learned behavioral patterns to
generate intention likelihood.

9) Transformer [14]. Transformer is used to model correla-
tions between varied driving features and the multi-head
attention mechanism enhances its capability of extracting
lane change-related context.

Notably, these baselines are all fine-tuned on the datasets,
and their best prediction results are reported in the experi-
ments.

3) Evaluation Metrics: Some widely adopted evaluation
metrics are presented below.

a) Classification: To thoroughly measure the prediction
ability, we exert precision and recall metrics to characterize
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Fig. 5. Visualization of the lane change forecast ability for disparate methods.

the classification performance of lane change intention:

Precision =
T P

T P + F P
(10)

Recall =
T P

T P + F N
(11)

where T P denotes the number of correctly predicted samples
with positive labels, F P denotes the number of wrongly
predicted samples with negative labels, and F N denotes the
number of wrongly predicted samples with positive labels.

b) Forecast: Despite classification metrics effectively
reckoning the lane change intention prediction performance,
we also aim to measure the forecast ability of the models,
specifically, how early the model can detect the lane change
intention of target vehicles. According to [43], the high-level
correct forecast RHC F is defined:

RHCF =
1

NLC

NLC∑
i=1

δHCF (Ri )

δHCF (Ri ) =

{
1, if Ri ≥ 80%
0, else

(12)

where Ri is the recognition rate. For a lane change sequence
in (tc, te) (as shown in Fig. 4), Ri is the ratio of the period
from the first correctly predicted timestamp to ts to the time
frame (tc, ts).

4) Implementation Details: There are two key hyperparam-
eters in KLEP: the traceback time window T for temporal
information extraction is set to 50 and 125 for NGSIM and
HighD, respectively; the hidden dimension of HGT is set
to 128 for both datasets. The offline training of KLEP is
implemented by Adam optimizer [44] with the batch size
BS = 256 and the learning rate lr = 0.0001 on both datasets.
KLEP is instantiated by PyTorch and both offline training
and online prediction are carried out on benchmark hardware
(Intel Xeon5320@2.20GHz, 512GB RAM@4800Hz, NVIDIA
GeForce RTX 4090 24GB, Ubuntu 21.04).

B. Overall Performance

In this experiment, we compare the intention prediction
performance of KLEP against all state-of-the-art baselines on
both NGSIM and HighD datasets. Table III presents the overall

driving intention prediction results and Table IV exhibits the
breakdown of lane change intention prediction results. The
best prediction result on each task and for each dataset is
highlighted in bold, while the best baselines are underlined.

We observe that RF achieves suboptimal performance, due
in large part to its limited capability of only capturing corre-
lations among static driving features. By contrast, LSTM and
Bi-LSTM can adapt to more intricate temporal-varied features,
resulting in better prediction performance across all cases,
including left lane change, right lane change, and lane keeping.
MMAE combines the benefits of LSTM and TMMOE, gen-
erating an ensemble model that consistently performs better
than the single LSTM or TMMOE. VWC accounts for the
lane change-related driving knowledge and reinforces the pre-
diction ability of vanilla LSTM with the knowledge semantics,
thereby yielding better performance than MMAE on all tasks.
This indicates that driving knowledge avails the modeling of
lane change behaviors and thus enhances driving intention
prediction performance. H-LSTM and PRNN-GHMM are two
hierarchical learning methods that stratify the process of lane
change, achieving on-par prediction performance with VWC.
Aligning with the above two discoveries, KLEP incorporates
the driving knowledge while retaining its hierarchical struc-
ture. Transformer is the best-performing baseline, profiting
from the vigorous ability of multi-head attention in capturing
correlations between dynamic driving features. In general,
KLEP consistently outperforms all baselines, achieving aver-
age improvements of 6.2% and 7.1% over Transformer on
NGSIM and HighD datasets, respectively, highlighting the
superiority of the knowledge-driven paradigm over the data-
driven paradigm. Additionally, KLEP is extremely robust to
diverse lane change scenarios, which can be corroborated by
the tiny variance between prediction results on NGSIM and
HighD datasets.

Apart from the gauge of classification ability mentioned
above, we also investigate the forecast ability of KLEP over
baselines and show their performance in Fig. 5. We dis-
cover that KLEP still consistently outperforms all baselines,
yielding average improvements of 53.0% and 67.2% over the
best-performing baseline (i.e., Transformer) on NGSIM and
HighD datasets, respectively. Likewise, KLEP accomplishes
stable performance whether predicting the left or right lane
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TABLE V
ABLATION STUDY ON OVERALL INTENTION PREDICTION. COMPARISON OF LANE CHANGE AND LANE KEEPING PREDICTION RESULTS

OF DIFFERENT KLEP VARIANTS ON NGSIM AND HIGHD DATASETS

TABLE VI
ABLATION STUDY ON LANE CHANGE INTENTION PREDICTION. COMPARISON OF LEFT LANE CHANGE AND RIGHT LANE CHANGE PREDICTION

RESULTS OF DIFFERENT KLEP VARIANTS ON NGSIM AND HIGHD DATASETS

change maneuver. The tremendous prominence of KLEP is
attributed to the inventive design of the whole framework,
especially the philosophy of knowledge-driven lane change
prediction. The incorporation of driving knowledge extends
beyond the perceptual capabilities of the data-driven paradigm
in lane change forecasting.

C. Ablation Study

In this experiment, we further dissect the lane change
prediction model in KLEP to delve into the effectiveness of its
components. We design four variants to quantify the impact of
the temporal information extractor, the hierarchical structure of
the driving graph, the type-aware multi-head attention, and the
TTC normalization, on lane change prediction. Each variant
is individually fine-tuned and the best prediction results are
presented in Table V-VI.

w/o temporal variant is devised by removing the whole
temporal information extractor from KLEP. We observe that
the w/o temporal variant is slightly inferior to the complete
KLEP. This means the temporal information extractor dampens
the raw data noise induced by long-range time series fea-
tures, resulting in better prediction performance. w/o hierarchy
variant is designed through eliminating the hierarchical struc-
ture of the heterogeneous driving graph, directly connecting
specific feature nodes to the vehicle node. It can be found
that the lane change prediction performance of w/o hierarchy
dramatically declines compared to the complete KLEP. This
implies that the hierarchical structure of driving knowledge
is essential for boosting lane change prediction, which is
reasonably modeled in KLEP. Also, we develop w/o type
variant by replacing the type-aware strategy with vanilla multi-
head attention. We also notice the distinct plunge in lane
change prediction performance of the w/o type variant, which
substantiates the efficacy of type-aware multi-head attention
in distilling the message passing on the heterogeneous driving
graph. Finally, we derive the w/o normalization variant by

Fig. 6. Time consumption comparison of different methods in online
prediction on NGSIM and HighD datasets.

removing the mix-max normalization on TTC. The results
show that normalizing TTC elevates model performance across
all cases on both datasets, largely due to the reduction of
numerical variations.

D. Computational Efficiency

Prediction time is critical to the practical application of
KLEP, as online prediction requires responsive outputs. Thus,
we compare the prediction time consumption of KLEP with
several baselines, and the results are presented in Fig. 6.
Notably, the benchmark hardware used in this experiment
is elaborated on in Section IV-A.4, the computing power
of which is much weaker than the industry, such as Tesla’s
Full Self-Driving (FSD) computational platform. In Fig. 6,
we observe that the prediction time of KLEP is less than the
best-performing baseline Transformer, even comparable to the
prediction time of PRNN-GHMM, which means the proposed
KLEP is a lightweight framework that can achieve real-time
lane change prediction. The lightweight architecture is realized
by the type-aware strategy in HGT, which releases redundant
computations thereby raising the potential of computational
ability.
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Fig. 7. Interpretability analyses in lane change scenarios.

E. Interpretability

Finally, we decipher the attention weights acquired by
HGT to favor the comprehension of realistic lane change
characteristics. We plot the attention weights pertaining to
left and right lane change scenarios in Fig. 7a-7b. Whether
left or right lane change, the self features have a larger effect
than safety features, which is plausible since the lane change
intention is first generated from the dissatisfaction with the
current driving state. For left lane change, the ttcLeftRe feature
influences driving safety the most while the ttcRighRe feature
has the largest impact among safety features. This indicates
that the degree of the perceived safety of the target vehicle
mainly hinges on the driving state of its rear vehicles, which
is also verified in lane change safety literature [30], [45], [46].

To further analyze the effect of ttcLeftRe and ttcRighRe,
we visualize the variation trends of their attention weights
in Fig. 7c. Both attention weights strictly decrease with the
increase of TTC, which is in accord with real-world physical
laws. This attests to the strong interpretability of KLEP.
We also discover that the change in both attention weights
is not smooth but rather presents a sharp drop around TTC =
0.5. This threshold quantitatively characterizes the trade-off
in driving safety, providing insight for downstream IV tasks,
such as decision-making and trajectory planning.

We further investigate the significance of safety features in
safety-critical scenarios. Specifically, we examine several lane
change cases for overtaking and plot the variation in attention
weights of both self and safety features throughout the lane
change preparation process, as illustrated in Fig. 7d. Our
observations indicate that as the lane change decision-making
process progresses, the attention weight of safety features
gradually increases. This trend is logical, as ensuring driving

TABLE VII
THE OPTIMAL HYPERPARAMETER SETTINGS FOR

KLEP AND ITS VARIANTS

safety during overtaking necessitates careful monitoring of the
surrounding environment. This manifests that safety features
indeed reflect the cognitive aspects of driving safety during
lane change maneuvers.

F. Hyperparameter Settings

Two key hyperparameters of KLEP are the traceback
time window T for temporal information extraction and the
hidden dimension of heterogeneous graph Transformer dH .
We employ the grid search strategy to identify the optimal
hyperparameter settings. The range of candidate values for
hyperparameters T and dH are {25, 50, 75, 100, 125, 150}
and {32, 64, 128, 256}, respectively. Afterward, the optimal
hyperparameter setting of a model is identified by comparing
the lane change prediction performance under different hyper-
parameter combinations. The final hyperparameter settings for
KLEP and its variants are shown in Table VII.

V. CONCLUSION

In this study, we propose KLEP, a knowledge-driven lane
change prediction framework. KLEP constructs the hetero-
geneous driving graph to represent the hierarchical driving
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knowledge following the top-down cognitive process of
drivers when performing lane change maneuvers. Also, a het-
erogeneous graph Transformer is devised to accommodate
the correlations between nodes in the heterogeneous driv-
ing graph, where a type-aware strategy is developed and
enforced on the vanilla multi-head attention to achieve efficient
and exact information propagation, resulting in the coher-
ent representation of lane change behaviors. Experimental
results demonstrate the superiority of KLEP, achieving average
improvements of 6.2-7.1% and 53.0-67.2% on intention clas-
sification and intention forecast tasks across different datasets,
respectively. Furthermore, the interpretability is substantiated
by analyzing the attention weights that reflect the physical laws
in the lane change process. Also, the KLEP is lightweight
enough to achieve online prediction, whose prediction time
consumption is even less than the best-performing baseline.

In the future, we plan to further investigate the problem
of lane change trajectory prediction and design an integrated
approach that simultaneously generates accurate intention and
trajectory predictions.
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