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Abstract
1.	 Smartphones	are	handheld	computers	and	multichannel	communication	devices	

that carry an array of sensors and can link with specialist external devices. These 
powerful tools have an established role in biological recording and ecological 
surveying. The ability to geolocate accurately is frequently essential to ecological 
fieldwork. This field study aimed to test the performance of a compact/handheld 
surveyor-	grade	 GNSS	 receiver,	 functioning	 as	 an	 external	 sensor,	 compared	
to	 smartphones'	 inbuilt	 GNSS	 receivers	 and	 a	 standard-	grade	 external	 GNSS	
receiver.

2.	 We	devised	a	series	of	survey	protocols	to	test	the	horizontal	accuracy	of	GNSS	
receivers in static and dynamic scenarios typical of ecology fieldwork, estimating 
the	horizontal	distance	of	GNSS	measurements	under	‘open	sky’	conditions	from	
a base station geolocated with centimetre accuracy. Protocols were designed 
to	 test	 the	 capabilities	 of	 GNSS	 receivers;	 the	 absolute	 horizontal	 accuracy	
and precision in static surveys and performance in dynamic surveys, walking a 
transect with frequent changes of direction, or roaming across the survey area, 
requiring	the	GNSS	to	rapidly	re-	establish	a	position	fix.

3.	 In	all	survey	protocols,	the	surveyor-	grade	GNSS	performed	significantly	better	
with	lower	horizontal	distance	estimates	at	the	50th	centile	and	more	consistent	
performance	at	 the	95th	centile	 than	 the	other	GNSS	receivers,	giving	median	
distance	estimates	of	0.5–1.1 m.	The	median	horizontal	accuracy	of	inbuilt	GNSS	
receivers	in	this	trial	was	0.9–3.4 m	under	‘open	sky’	conditions.

4. Practical implication:	 The	 smartphone	 GNSS	 receivers	 that	 we	 tested	 were	
accurate to within a few meters. Linking the smartphone with a moderately priced 
compact/handheld	external	GNSS	receiver	significantly	improved	performance.
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1  |  INTRODUC TION

Ecologists	 require	 mobile	 computing	 for	 21-	century	 biological	 re-
cording (August et al., 2015); the widespread adoption of smartphone 
apps	for	navigation	and	mapping	(Google,	2024;	What3Words,	2024), 
and species recording (iNaturalist, LLC, 2014) has presented unique 
opportunities	 by	 allowing	 data	 entry	 whilst	 in	 the	 field	 (Gibson	
et al., 2024),	with	built-	in	GNSS	(Global	Navigation	Position	Systems)	
receivers providing accurate location metadata attached to record-
ings	from	cameras	and	microphones.	External	devices	can	be	linked	
to smartphones producing powerful research tools; examples include 
high-	frequency	microphones	(Blackburn	&	Unger,	2019) and thermal 
imaging cameras (Unger et al., 2019) for bat detection, and a fisheye 
lens adapter on a smartphone camera yielding hemispherical photo-
graphs of tree canopy structure (Cameron et al., 2021).

Smartphones	 are	 widely	 available	 for	 use	 by	 researchers	 and	
citizen	scientists;	over	80%	of	 the	population	across	China,	Europe	
and North America were using smartphones and mobile internet by 
2022	 (GSMA,	2023). The smartphone has been widely adopted by 
volunteers and staff members as a data logging tool during a peat-
land	 restoration	 programme	 on	 Chat	 Moss,	 Greater	 Manchester,	
UK	(Lancashire	Wildlife	Trust,	n.d.),	the	inbuilt	GNSS	being	used	for	
capturing geo- tagged photographic time series, mapping and site 
monitoring (Osborne et al., 2021). Plant species translocations are re-
corded	digitally	via	the	versatile	Epicollect5	data-	gathering	platform	
(Aanensen et al., 2009;	 CGNS	Team,	2019–2022), which facilitates 
efficient data logging and improves workflow with secure data trans-
fer for desk- based processing. Increasing use has driven the require-
ment for high accuracy geolocation to log translocations of individual 
plants for subsequent follow- up (Hartley, 2023). During the post- 
release monitoring of a large heath butterfly (Coenoympha tullia) spe-
cies reintroduction programme (Osborne, 2022; Osborne et al., 2024; 
Osborne	&	Coulthard,	2022) the flights of individual butterflies were 
accurately	 tracked	using	GNSS,	 to	establish	 the	 fine-	scale	 relation-
ship between point occupancy and environmental data obtained from 
geolocated survey quadrats and habitat island perimeters geolocated 
from walked transects. These studies necessitated meter- scale abso-
lute	horizontal	accuracy	of	geolocation,	together	with	the	rapid	rees-
tablishment of position- fix whilst roaming across the nature reserve 
and tracking butterflies in flight. During these studies mapping appli-
cations were used extensively to plan the site surveys. More broadly, 
the	use	of	geographical	information	systems	(GIS)	has	been	advocated	
for the selection of random survey points for ecological field work 
(Kermorvant et al., 2019),	 in	preference	to	commonly	used	‘haphaz-
ard’	 sampling	protocols,	 such	 as	 random	walks	 (Smith	 et	 al.,	2017). 
Clearly defining the study area (based on a site map) prior to the site 
visit, results in good sample- coverage across the study area and the 
randomization	 process	 yields	 a	 spatially	 balanced,	 statistically	 valid	
sample. However, the spatial scale of the survey is constrained by the 
resolution of the geolocation data, potentially limiting the use of this 
method	for	fine-	scale	habitats—having	a	clear	picture	of	the	horizon-
tal	accuracy	and	precision	of	the	GNSS	device	employed	to	geolocate	
survey points is therefore essential.

Previous	 studies	 have	 determined	 the	 average	 horizontal	 ac-
curacy	 of	 various	 GNSS	 receivers	 during	 static	 surveys	 in	 mixed	
environments;	 for	 smartphone	 GNSS	 receivers—6.50 m	 (Garnett	
&	Stewart,	2015),	6.55 m	 (Senanayake	et	al.,	2018),	7–13 m	 (Merry	
&	 Bettinger,	 2019)—and	 for	 compact/handheld	 GNSS	 receiv-
ers—1.4–19.6 m	 (Wing	 et	 al.,	 2005),	 4–26 m	 (Abdi	 et	 al.,	 2014), 
3.65–4.77 m	 (Garnett	 &	 Stewart,	 2015),	 2.07 m	 (Senanayake	
et al., 2018)—and in dynamic testing, median distance from the true 
line	 approximately	2 m	 (Ucar	 et	 al.,	2014). However, these studies 
of	 the	 accuracy	 of	 consumer-	grade	GNSS	 are	 now	 5–10 years	 old	
and	 GNSS	 technology	 has	 evolved	 significantly	 during	 this	 time	
(Yasyukevich et al., 2021), potentially offering useful improvements 
in performance. To have full confidence in the reliability of common-
place	consumer-	grade	GNSS	 technology	 for	use	 in	professional	or	
research settings it is necessary to gain an objective assessment of 
the	horizontal	 accuracy	of	 the	most	exact	position	measurements	
and additionally the precision (distribution or spread) of inexact po-
sition measurements (Menditto et al., 2007).	Smartphones	are	now	
widely available to ecologists; these versatile tools offer numerous 
advantages for increased efficiency and innovative working prac-
tices in ecological fieldwork.

In order to gain improvement on the performance of consumer- 
grade	GNSS	technology,	for	fine-	scale	work,	we	identified	an	eco-
nomically	priced	compact/handheld	surveyor-	grade	GNSS	receiver;	
the	device	links	via	Bluetooth	(Figure 1a) and replaces the function 
of	 the	smartphone's	 internal	GNSS	receiver,	hence	conserving	 the	
phone's battery life, an additional benefit during prolonged field use. 
This field study aimed to

1.	 validate	 the	 horizontal	 accuracy	 and	 precision	 of	 the	 surveyor-	
grade	 GNSS	 receiver	 and	 to	 test	 the	 hypothesis	 that	 its	 per-
formance is significantly better than commonly used control 
devices—smartphones'	 inbuilt	 GNSS	 receivers	 and	 a	 standard-	
grade	 external	 GNSS	 receiver;

2.	 determine	the	performance	of	the	GNSS	receivers	 in	static	sur-
veys and additionally assess performance in dynamic situations, 
replicating common working practices in ecological fieldwork, 
whilst	challenging	the	capability	of	the	GNSS	receivers;	and

3. provide an updated appraisal of the reliability of representative 
models	of	compact	consumer-	grade	GNSS	receivers.

2  |  METHODS

Survey	 protocols	 were	 devised	 to	 test	 four	 GNSS	 receivers,	 two	
newer	 models	 and	 two	 devices	 approximately	 10 years	 old;	 com-
pact/handheld	 GNSS	 receivers	 compatible	 with	 iPhones,	 the	 Bad	
Elf	Surveyor	BE-	GNSS-	3300	GNSS	receiver	(‘BES’)	(~£720,	Bad	Elf	
LLC,	 CT	 06107–2401)	 (released	 2018)	 and	 Bad	 Elf	 for	 Lightening	
Connector	BE-	GNSS-	1008	(‘BELC’)	(~£150, released 2013), also the 
inbuilt	GNSS	receivers	of	two	commonly	used	smartphones,	iPhone	
12	Pro	(‘iP12’)	(Apple	Inc.,	CA	95014)	(released	2020)	and	iPhone	6	
Plus	(‘iP6’)	(released	2014).
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Devices were placed in a close array on a light mesh plastic 
tray (Figure 1a),	mounted	horizontally,	facing	upwards	and	on	the	
same level so as not to block signals from available satellites to 
adjacent	receivers.	GNSS	receivers	were	located	within	a	10 cm	ra-
dius of the tray's centroid and the arrangement and orientation of 
the array varied between protocol repetitions to mitigate any pos-
sible local interference from adjacent devices and the operator. 
Devices were carefully isolated from the internet and each other 
by	switching	off	Wi-	Fi,	mobile	and	Bluetooth,	apart	from	an	extra	
device	used	to	record	data	received	from	the	BES	via	Bluetooth.	
All four receivers were tested at the same time (in preference to 
performing a series of individual tests) to ensure closely identical 
atmospheric	conditions,	satellite	constellations	(the	GNSS	receiv-
ers having differing ability to lock onto multiple satellites across 

the various satellite networks) and movement patterns during dy-
namic	 tests.	 GNSS	 point	 data	were	 recorded	 using	 the	myTacks	
app.	 (Stichling,	 2021- 2023) and .gpx files were exported when 
there	was	an	available	Wi-	Fi	connection.

All	measurements	were	taken	on	Little	Woolden	Moss	peatland	
restoration	site	(53.45,	−2.47).	This	provided	‘open	sky’	GNSS	recep-
tion,	being	flat,	without	buildings	or	tree	canopy	cover.	A	central	‘base	
station’	was	marked	with	a	ground	peg	at	the	intersection	of	two	low	
peat dams (bunds), with low scrub approximately five meters to the 
west and north (Figure 1b). A transect running approximately east-
ward	along	one	bund	was	established	by	measuring	12 m	and	mark-
ing	the	end	station	with	a	ground	peg	(‘point	ew’).	A	second	transect	
running approximately southward along the perpendicular bund was 
established	by	measuring	12 m	and	marking	the	end	station	(‘point	
sn’)	with	a	ground	peg.	The	position	of	 the	 three	reference	points	
were accurately geolocated using a tripod- mounted Trimble R10, a 
mapping-	grade	GNSS	receiver	 (Trimble	 Inc.	CO	80021;	Figure 1b), 
centered on the base station ground peg with a second R10, in rover 
configuration, at the transect end stations. A 5- h static survey was 
conducted	taking	one	GNSS	measurement	per	second—after	post-	
processing	this	yielded	an	absolute	horizontal	geolocation	for	each	
of these datum points with centimetre accuracy.

Three separate surveys were undertaken with each survey pro-
tocol repeated on five occasions, on separate days: (A) Fixed base 
station	 survey	 to	 test	 the	 absolute	horizontal	 accuracy	 and	preci-
sion (Menditto et al., 2007)	of	the	GNSS	receivers	during	static	use;	
the	receiver	array	was	placed	on	a	60 cm	high	horizontal	table,	with	
the array centroid vertically above the base station ground peg and 
GNSS	measurements	recorded	for	15 min—approximately	900	GNSS	
measurements.	(B)	Walked	transect	survey	to	test	the	horizontal	ac-
curacy and precision of line recording by repeatedly walking a short 
transect (Figures 1b and 4),	also	the	ability	of	the	GNSS	receivers	to	
rapidly adjust to changes in direction and orientation; the receiver 
array	was	held	at	head	height	and	the	‘ew’	transect	walked	10	times,	
following the narrow top of the bund, at a medium pace, between 
the base station and ew ground pregs, rotating the array through 
180 degrees with every turn at the end of each walk of the transect. 
This	transect	protocol	was	repeated	for	the	 ‘sn’	 transect—approxi-
mately	300	GNSS	measurements	in	total.	(C)	Roaming	point	survey	
to	test	the	ability	of	GNSS	receivers	to	accurately	reestablish	geolo-
cation	within	a	timeframe	of	10–40 s	whilst	recording	points	during	
surveying	or	work	activity;	the	receiver	array	was	placed	on	a	60 cm	
high	 horizontal	 table	 with	 the	 array	 centroid	 vertically	 above	 the	
base	station	ground	peg,	then,	with	recording	paused,	the	GNSS	fix	
disrupted	by	moving	10 m	away	from	the	base	station	(watching	the	
position marker on- screen move away from the base station), before 
returning	to	the	base	station;	after	10 s	of	equilibration	30 seconds	of	
GNSS	measurements	were	recorded.	This	process	was	repeated	10	
times, moving away from the base station in rotation, north, south, 
east,	west—approximately	300	GNSS	measurements	in	total.	Before	
each survey repetition, each receiver was checked to ensure that it 
had	established	a	stable	position	fix.	GNSS	measurements	were	re-
corded at a rate of one per second throughout. Measurements were 

F I G U R E  1 (a)	Mobile	GNSS	receivers,	iPhone,	Bad	Elf	for	
Lightening	Connector	(BELC)	(black)	and	Bad	Elf	Surveyor	(BES)	
(yellow).	The	app	shows	data	transmitted	from	the	BES	via	
Bluetooth—the	available	satellite	constellation	(grey)	and	the	
strongest satellite signals (light blue) used for trilateration and 
estimated	horizontal	accuracy.	(b)	Tripod	mounted	Trimble	R10	
located vertically above the base station ground peg (red arrow), 
the R10 Rover and the narrow east–west running bund—the south–
north running bund is visible left off the ground peg.
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conducted in good weather conditions (no precipitation and low 
windspeed)	on	separate	days	between	October	2023	and	January	
2024	to	assess	the	performance	of	GNSS	receivers	under	a	variety	
of satellite constellation configurations and conditions in the upper 
atmosphere (ionosphere and troposphere), which interfere with the 
GNSS	radio	signal	(Klobuchar	&	Kunches,	2003).

Coordinate	 reference	 system	 (CRS)	 transformations	 were	
conducted	 using	 a	 high-	accuracy	 (2 cm)	 conversion	 tool	 (Wilton-	
Jones,	2021). Data processing was performed in R (v.4.0.4) (R Core 
Team, 2021)	using	Rstudio	(v.1.4.1106)	(R	Studio	Team,	2021).	GPX	
tracks	were	 imported	 into	R	using	 the	 ‘htmlTreeParse’	 function	 in	
package	 ‘XML’	 (Lang	 and	 CRAN	 Team,	 2013) and then the longi-
tude and latitude coordinates of position measurements extracted 
using	the	‘xpathSApply’	function.	For	each	GNSS	position	measure-
ment, the distance from the fixed datum was estimated; in the fixed 
base	station	trial	and	roaming	point	trial,	Euclidean	distances	from	
the	base	 station	were	calculated	using	 the	 ‘spDistsN1’	 function	 in	
package	‘sp’	(Pebesma	&	Bivand,	2012). In the transect survey, the 
perpendicular distance from the transect line was calculated using 
geometry and trigonometry functions in base R.

A similar statistical analysis was repeated for each survey proto-
col	to	compare	the	distance	estimates	from	the	four	GNSS	receivers	
within each survey protocol. As an initial exploration of the data, 
density	plots	were	generated,	with	the	‘bin-	width’	set	to	0.1 m.	To	
concisely describe the median accuracy of distance estimates the 
50th	centile	of	the	Euclidean/radial	distance	(RD50)	was	reported.	
To describe the precision of distance estimates (excluding outliers) 
the	 95th	 centile	 of	 the	 Euclidean/radial	 distance	 (RD95)	 was	 re-
ported; comparable 50th centiles and 95th centiles were adopted 
for the perpendicular distance from the transects in the walked 
transect survey. Maximum distance estimates were also reported 
to quantify the extent of outlier distance estimates. Distance es-
timates at the 50th centile and 95th centile were determined for 
each	repetition	and,	based	on	the	number	of	GNSS	measurements	
in each group, the weighted mean and weighted standard deviation 
of	these	grouped	centile	estimates	calculated	using	the	‘wtd.mean’	
function	 and	 the	 ‘wtd.var’	 functions	 in	 package	 ‘Hmisc’	 (Harrell	
Jr,	2019).

For each survey, the difference between the distributions of 
distance	 estimates	 from	 the	 four	 GNSS	 receivers	 across	 all	 five	

F I G U R E  2 Boxplots	of	grouped	results	showing	distance	estimates	from	the	datum	at	the	50th	and	95th	centiles;	(a	and	b)	fixed	base	
station survey, (c and d) walked transect survey, (e and f) roaming point survey. Maximum individual distance estimates are shown as 
diamonds	in	(b,	d,	f).	BELC	indicates	Bad	Elf	for	Lightening	Connector,	BES	indicates	Bad	Elf	Surveyor,	iP12	indicates	iPhone	12	Plus	and	iP6	
indicates	iPhone	6	Plus.	BES	has	the	lowest	distance	estimates	overall.
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repeat measurements, and the interaction of receiver*repeat were 
compared	using	permutational	analysis	of	variance	(PERMANOVA)	
(Anderson, 2014)	 using	 the	 ‘adonis2’	 function	 in	 package	 ‘vegan’	
(Oksanen et al., 2020)	with	a	Euclidean	dissimilarity	distance	matrix.	
The difference in the distribution of distance estimates between 
pairs of receivers across all five repeat measurements was analysed 
using	 the	 ‘pairwise.adonis2’	 function	 in	 package	 ‘pairwiseAdonis’	
(Martinez	Arbizu,	2017)	with	the	strata	set	to	‘receiver’.

The distribution of longitude and latitude measurements in the 
fixed base station survey were tested for normality using the shap-
iro.test function in base R and tested for difference from the base 
station	datum	using	the	one-	sample	Wilcoxon	rank	sum	test	in	base	
R. The directional bias of each receiver was estimated using trigo-
nometry functions in base R.

3  |  RESULTS

The distribution of grouped 50th and 95th centile distance esti-
mates, and the maximum individual distance estimates are shown in 
Figure 2.	The	BES	demonstrates	the	most	consistent	horizontal	ac-
curacy and precision in all three surveys—in the static survey, RD50 
1.1 ± 0.6 m,	RD95	1.8 ± 0.6 m,	with	the	iP12	performing	better	than	
the older receivers (Supporting Information S1). Density plots dem-
onstrating the overall distribution of distance estimates are shown in 
Supporting Information S2.

The	 horizontal	 accuracy	 and	 precision	 of	 GNSS	 measure-
ments	 for	 BES	 are	 demonstrated	 in	 Figures 3–5 and plots com-
paring	 all	 four	 GNSS	 receivers	 are	 demonstrated	 in	 Supporting	
Information S3–S5.

F I G U R E  3 GNSS	position	measurements	recorded	by	the	Bad	Elf	Surveyor	GNSS	receiver	(BES)	during	the	fixed	base	station	survey	and	
1	and	2 m	radii	(red)	around	the	base	station.
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The	 PERMANOVA	 analysis	 demonstrates	 significant	 differ-
ences	in	GNSS	receiver	accuracy	(p = 0.001)	in	all	three	survey	pro-
tocols	and	significant	differences	 in	GNSS	performance	between	
repeat measurements in all three survey protocols (p = 0.004;	
Supporting Information S6).	 The	 pairwise	 PERMANOVA	
(Supporting Information S7) confirms significant differences be-
tween	all	pairs	of	GNSS	receivers	 (p = 0.001),	confirming	 the	sig-
nificance of the variations in performance observed between 
receivers (Figure 2).

In the fixed base station survey, the distributions of latitude and 
longitude	measurements	 for	 all	 four	 GNSS	 receivers	were	 signifi-
cantly different from normal (p < 0.001)	and	the	mean	position	was	
significantly different from the datum (p < 0.001).	Directional	bias;	
BELC	1.36 m	at	12	degrees,	BES	0.36 m	at	276	degrees,	iP12	1.00 m	
at	72	degrees,	iP6	1.81 m	at	113	degrees	(Supporting Information S3 
and S8).

4  |  DISCUSSION

In	this	study,	the	specialist	surveyor	grade	GNSS	receiver	performed	
significantly	 better	 than	 the	 control	 devices	 with	 lower	 horizonal	
distance estimates at the 50th centile and more consistent results at 
the 95th centile and maximum outlier, across all three survey proto-
cols (Figure 2	and	Supporting	Information	S1–S8). The newer smart-
phone performed more consistently (Figure 2) than the older devices 
which	were	10 years	old	at	the	time	of	the	study.	All	four	receivers	
showed small, but statistically significant directional bias, which was 
least	for	the	BES	at	0.36 m	(Supporting Information S3 and S8), with 
no overall clustering in cardinal direction, similar to previous stud-
ies	 (Merry	&	Bettinger,	2019). A significant part of the variation in 
our testing (Supporting Information S6) occurred between repeat 
measurements,	illustrating	the	variability	in	GNSS	performance	as	a	
potential source of error in geospatial work.

F I G U R E  4 GNSS	position	measurements	recorded	by	the	Bad	Elf	Surveyor	GNSS	receiver	(BES)	during	the	transect	survey	and	the	ew	
and sn transect lines (red).
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The	 horizontal	 accuracy	 and	 precision	 of	 the	 older	 GNSS	 re-
ceivers	was	better	 than	 anticipated	 from	previous	 studies	 (Merry	&	
Bettinger,	 2019), although our study was conducted under optimal 
‘open	sky’	conditions.	There	is	an	ongoing	evolution	in	GNSS	technol-
ogy, with increasing numbers of satellites available for trilateration as 
well as an improved carrier signal, which (within the constraints im-
posed	by	the	GNSS	receiver's	outdated	hardware)	enhances	the	per-
formance	of	the	older	GNSS	receivers	(Yasyukevich	et	al.,	2021). The 
directional bias that we measured may result from the characteristics 
of	the	individual	GNSS	receivers,	which	are	being	tested	at	the	oper-
ational limits for compact/handheld devices, but could be related to 
the	GNSS	network,	interference	from	local	conditions	on	the	ground,	
or neighbouring devices in the array. Our current experiments were 
designed primarily to quantify and compare distance estimates from 
the datum—by testing the receivers in parallel our experimental design 
prioritised controlling measurement conditions (potentially introduc-
ing	meter	range	errors	as	the	position-	fix	‘drifts’	from	minute	to	min-
ute). However, testing all the receivers together within an array, with 
devices	displaced	horizontally	by	up	to	10	centimetres,	constrained	the	
absolute	horizontal	accuracy	of	distance	estimates	to	0.1 m.

There were several variables which had to be managed during 
data gathering, the importance of which could be investigated in fu-
ture	work.	 Smartphone	mobile	 data	were	 turned	off,	 deactivating	

‘Assisted	GPS’	which	uses	cellular	data	to	 improve	GNSS	function.	
Additionally,	 we	 deactivated	 the	 ‘point	 averaging	 function’	 in	 the	
recording app which potentially improves the precision of transect 
measurements.	Whilst	operating	the	array	of	GNSS	receivers	during	
the	trial	we	attempted	to	minimise	potential	interference	with	GNSS	
reception caused by the operator shadowing devices from the sky, 
reducing	the	number	of	available	satellites	and	hence	GNSS	perfor-
mance—this effect appeared to be minimal but would be interesting 
to quantify.

With	 the	 continued	 to	 evolution	 of	 solid-	state	 technology	
during	the	first	quarter	of	the	21st	century	(Shalf,	2020), a range 
of devices has superseded the compact/handheld surveyor- grade 
GNSS	 receiver	 tested	 in	 this	 study—the	more	 expensive	models	
offering centimetre accuracy and the basic model having similar 
performance	 but	 costing	 approximately	 25%	 less.	 Additionally,	
other manufacturers are now marketing similar quality devices. 
We	appraised	the	performance	of	the	inbuilt	GNSS	receiver	in	two	
models of one of the most widely used smartphones, as well as an 
older	 standard	 grade	GNSS	 receiver;	 it	was	 not	 possible	 to	 test	
all	off	the	large	and	evolving	range	of	makes	and	models	of	GNSS	
devices, however it would easily be possible for teams to set up 
datum points on campus or field sites to appraise their devices as 
we have outlined.

F I G U R E  5 GNSS	position	measurements	recorded	by	the	Bad	Elf	Surveyor	GNSS	receiver	(BES)	during	the	roaming	point	survey	and	the	
1	and	2 m	radii	(red)	around	the	base	station.
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5  |  CONCLUSIONS

The smartphones that we tested are powerful data- logging tools and 
the	 remarkable	 horizontal	 accuracy	 and	 precision	 of	 these	widely	
available	handheld	GNSS	devices	encourages	their	use	in	ecological	
practice	and	research.	Inbuilt	GNSS	receivers	are	currently	accurate	
to within a few meters, which is sufficiently accurate for biological 
recording and routine navigation. For fine- scale geospatial work 
‘Pairing’	 the	smartphone	with	a	moderately	priced	compact/hand-
held	 external	 GNSS	 receiver	 significantly	 improves	 performance,	
when	one-	meter	absolute	horizontal	accuracy	is	required.
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