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Abstract—Resilient federated learning (FL) systems are es-
sential for accurate load forecasting, especially when under
adversarial attacks. Since these systems aggregate decentralized
data from various sources, they are particularly vulnerable to
attacks that can undermine forecast accuracy and reliability. To
enhance robustness in load forecasting, our study investigates
methods for strengthening FL systems by optimizing the balance
between global and local learning processes. This paper explores
the trade-offs between global and local learning in federated
load forecasting under adversarial conditions. We develop a
neural network framework tailored for federated short-term load
forecasting and assess its performance against model poisoning
attacks. Our experiments demonstrate that increasing the num-
ber of local training epochs while reducing global communication
rounds can significantly enhance model robustness. Specifically,
when local epochs are increased from 1 to 10 and global epochs
are decreased from 1000 to 100, the average client Mean Absolute
Percentage Error (MAPE) decreases from 92.3% to 4.3% under
attack conditions. This improvement stems from a reduced attack
surface and the concept of catastrophic forgetting, where local
models gradually mitigate adversarial effects through extended
training on authentic data, providing valuable insights for the
design of secure and efficient distributed energy forecasting
systems.

Index Terms—Distributed learning, Cyber security, Load fore-
casting, Cyber attack

I. INTRODUCTION

Energy is a fundamental driver of modern economies, yet it
is also a significant contributor to global warming, responsible
for approximately two-thirds of greenhouse gas emissions
[1]. Recognizing the urgent need for action, countries and
organizations have established ambitious targets. For instance,
the European Union aims to reduce emissions by 40% and
increase energy efficiency by 27% by 2030 [2]. As energy
demand continues to grow, the importance of effective energy
management cannot be overstated. Short-term load forecasting
(STLF) has emerged as an essential tool, allowing utility
companies to predict demand fluctuations, optimize resource

allocation, and seamlessly integrate renewable energy sources
into the grid [3]. STLF further supports the optimization of
electric vehicle (EV) charging infrastructure by anticipating
household energy demand patterns, thus helping utilities man-
age peak demand and enhance grid reliability. Financially,
STLF proves invaluable for Xcel Energy, for example, saved
2.5 million USD by reducing its forecasting errors from 15.7%
to 12.2%, and G.E. Energy has documented yearly savings of
5 billion USD through enhanced forecasting accuracy, leading
to an operating cost reduction of 12—20 per MWh [4], [5].

Historically, centralized approaches to STLF have been
widely used, requiring that data be transmitted from individual
households or buildings to a central server for analysis. While
effective, these approaches result in significant network traffic
and associated costs [6]. Additionally, centralized machine
learning strategies raise concerns about data security and
privacy. For instance, sharing sensitive energy consumption
data with central servers heightens the risk of exposure
to unauthorized access and breaches, which is increasingly
worrisome under stringent data protection regulations, such
as the GDPR [7]. Beyond regulatory concerns, centralized
systems are also vulnerable to cyber-attacks, which can have
severe consequences for energy infrastructure. In 2022, the
energy sector accounted for 10.7% of all cyber incidents,
placing it among the most targeted industries [8]. High-profile
attacks on centralized systems, such as the 2021 Colonial
Pipeline ransomware attack and cyber intrusions on State
Load Dispatch Centres (SLDCs) in India, have underscored
these vulnerabilities [9], [10]. A decentralized approach could
mitigate some of these risks, dispersing data and reducing the
potential impact of attacks.

Advanced metering infrastructure and the widespread adop-
tion of smart meters have revolutionized data collection capa-
bilities, enabling utilities to gather energy consumption data
at frequent intervals. In the UK, for instance, over 15 million



smart meters are operational across residential and commercial
properties, facilitating granular data collection and allowing
for more accurate predictions [11]. This decentralized data
collection is crucial for monitoring and controlling power
systems, particularly as intermittent renewable energy sources
become more prevalent [12]. Forecasting at the household
level, however, presents challenges due to the stochastic nature
of residential energy use, which can vary widely based on daily
behaviors, habits, and external factors [13]. Moreover, the need
for customized machine learning models for individual meters
has led to a significant increase in computational requirements.
Developing these models in a centralized manner can quickly
become cost-prohibitive and burdensome, highlighting the
need for more scalable, distributed forecasting solutions that
can address these complexities while supporting real-time
energy management.

Federated learning (FL) has emerged as a promising ap-
proach for short-term energy forecasting, addressing the pri-
vacy issues associated with distributed energy sources [14],
[15]. FL, as defined by IEEE Std 3652.1-2020, is a machine
learning framework designed to train models collaboratively
on decentralized data sources, emphasizing privacy and com-
pliance without requiring data centralization [16]. It is cate-
gorized into horizontal and vertical FL, based on data feature
distribution [16]. It enables collaborative model development
by leveraging the collective capabilities of edge devices with-
out the exchange of raw training data. In this setup, each
device trains independently, sending updated model weights
to a central server for aggregation. The server redistributes
these weights for further training iterations, continuing until
the desired model accuracy is achieved [17], [18].

Despite its benefits in aggregating insights from multiple
devices to improve model quality, FL also creates unin-
tended vulnerabilities to adversarial attacks [19]. Following
the foundational work of [20], recent studies have identified
various strategies for conducting adversarial attacks within FL
systems [21]-[24]. FL systems face various attack methods
that threaten their integrity and security. Data poisoning attacks
occur when attackers inject harmful samples into local training
data, causing the global model to adopt undesirable behaviors
and potentially fail [25], [26]. In model poisoning attacks
[27]-[30], the focus shifts to manipulating the updates sent
by clients, skewing the global model’s behavior. Furthermore,
Inference attacks enable adversaries to deduce sensitive infor-
mation from clients’ local data, while targeted model inversion
attacks allow attackers to reconstruct specific clients’ training
data by exploiting model updates [31]. Backdoor attacks
involve compromised clients injecting malicious behaviors into
the global model through manipulated updates [32]. Finally,
Sybil attacks entail creating multiple fake client identities
to flood the system with harmful updates, undermining the
model’s integrity [33].

According to IEEE std EEE Std 3652.1-2020, in B2C IoT
applications, designed FL framework should be able to defend
against data recovery form read-write attacks and channel
monitoring [16]. In a read-write attack, an adversary gains

the ability to both read and modify the model updates being
sent between the participating nodes and the central server.
In light of these threats, various defensive measures have
been proposed to counter attacks [34]-[38]. However, all of
these defense frameworks add complexity to the system. This
highlights the need for a resilient yet simplified FL system.
One way to enhance robustness in an FL system is to reduce
the attack surface. Specifically, in the case of model poisoning
attacks, the attacker typically targets each communication
round. By increasing the number of local epochs, the FL. model
requires fewer global epochs (or communication rounds) to
converge, reducing the attacker’s opportunities to interfere.

Additionally, emphasizing local learning enables the local
models to train on their respective data across multiple epochs,
helping mitigate the effects of attacks due to a phenomenon
known as catastrophic forgetting [39]. In neural networks,
catastrophic forgetting refers to the model’s tendency to
overwrite previous knowledge when exposed to new data.
However, this phenomenon can be leveraged as a defensive
mechanism in FL. As local models continue to train on fresh,
authentic data, they gradually “forget” the harmful patterns
introduced by poisoned updates. By focusing more on local
learning, the model can increasingly ignore or “forget” adver-
sarial influences from previous rounds, essentially erasing the
impact of attacks over time.

This process can be especially useful when combined with
fewer communication rounds. With less frequent synchroniza-
tion, the local models develop independently on non-poisoned
data for extended periods, which helps them reinforce benign
patterns and diminish malicious alterations. Thus, catastrophic
forgetting, often seen as a limitation in machine learning, can
be repurposed to serve as an implicit filtering mechanism,
reducing the lingering impact of adversarial updates and
creating a more robust federated learning framework. In this
paper we examine the effect of local and global epochs for
federated load forecasting in detail under adversarial attack.

Here are the main contributions of this paper:

1) Developed a neural network framework for federated

load forecasting.

2) Investigated the impact of adversarial attacks on feder-

ated load forecasting performance.

3) Examined the role of local and global epochs in miti-

gating adversarial effects.

The remainder of this paper is organized as follows: Section
II outlines the framework for the federated learning training
process. In Section III, we discuss threat modeling. Section
IV presents our experiments and results, and finally, Section
V concludes our work.

II. FEDERATED LOAD FORECASTING

In load forecasting, FL. enables multiple clients to collabo-
ratively train a global neural network model while preserving
the privacy of their local datasets. According to IEEE Std
3652.1-2020, this approach aligns with horizontal FL, where
clients with similar feature spaces cooperate by iteratively
training local models and aggregating their learned parameters



to improve the global model’s accuracy and generalizability
[40]. In this setup, the data owners, such as energy providers or
individual devices retain control over their local datasets and
perform training on their data, sending only model updates
to a coordinator (central server). Server, often managed by
the model owner, aggregates the updates from multiple data
owners to refine the global model and subsequently distributes
it back for further rounds of local training. This setup, as
shown in Figure 1, outlines the systematic process of FL
for load forecasting, ensuring both privacy and collaborative
learning by leveraging neural network architectures.

1) Initialization of Local Models In FL, each client k ini-
tializes its local neural network model M, with random
weights w,io). The initial model can be based on a
predefined architecture suitable for load forecasting. The
goal is to train the local models on the clients’ private
datasets while maintaining data privacy.

M;, = initialize(w ") (1)

2) Local Training Each client %k trains its local neural
network model M, on its own dataset D, for a defined
number of local epochs Ej. The local training process
aims to minimize the loss function L, which measures
the difference between the predicted load and the actual
load. The optimization is performed using techniques
such as stochastic gradient descent (SGD). The updated
weights after local training are denoted as w,(f) for epoch
e.

w,(:) = w](:_l) - nVL(w,(:_l), Dy) 2)

where 7 is the learning rate.

3) Weight Aggregation After completing local training, the
clients send their updated weights w,iEk) to the server.
The server aggregates the received weights to form the
new global model weights w(*) using a weighted average
based on the number of samples in each client’s dataset
ng:

K (Ex)
w® = D1 Wy 3)

K
Dk Mk

where K is the total number of clients. This step ensures
that the global model reflects the contributions of all
clients while maintaining data privacy.

4) Global Model Update The aggregated global neural
network model M is updated with the new weights w(®).
This global model serves as the updated representation
of the collective knowledge from all participating clients.
The global model can then be evaluated on a validation
set to assess its performance and convergence.

M = update(w™®) 4)

5) Iterative Process and Convergence The FL process is
iterative; steps 2 to 4 are known as communication round
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Fig. 1. Overview of a FL system.

or global epoch, repeated for several times. The con-
vergence criterion can be based on the improvement of
the average loss across global evaluations or a specified
number of rounds.

Furthermore, IEEE Std 3652.1-202 state that an economic
incentive mechanism is vital in FL applications. The server
typically manages this, calculating and distributing payments
to data owners and collecting fees from model users. This
structure fosters participation by rewarding data owners, ensur-
ing system sustainability, and supporting a model where both
data and model usage remain privacy-preserving and regulated
under the coordinator’s oversight [16].

III. THREAT MODELING

Threat modeling is a systematic method for identifying
risks and vulnerabilities within a system by examining its
structure and elements [41]. This process entails recognizing
potential adversaries, understanding their goals, investigating
the techniques they might use, and evaluating the potential
consequences of a successful attack on the system’s confi-
dentiality, integrity, or availability [42]. In Federated Learning
(FL), attackers possess varying degrees of system knowledge.
In a white-box attack, the attacker has full access to the
training and test sets, model structures, and updates [43]. A
grey-box attacker has partial knowledge, meaning they are
aware of some aspects of the model or data, but lack complete
information [44]. Lastly, in a black-box attack, the attacker
has no access to model structures or parameters but can still
exploit the training set to craft an attack [45]. This research
assumes a white-box attacker manipulating model parameters
for poisoning. The primary goal of the attacker is to degrade
the performance of both local and global models. By altering
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the layers of a local model, the attacker skews predictions,
disrupting decision-making processes. This manipulation can
corrupt the global model, negatively impacting the perfor-
mance of other clients in the FL system.

In this study, we implement a Model Flipping Attack [46].
This attack involves inverting the actual updates, allowing the
composition of updates that closely resemble the originals but
can undermine the model’s integrity, as the attacker modifies
the weights of specific model layers. The attack is only created
on the first layer of local model of first client [29]. Flipping the
weights of a single layer may have minimal impact, whereas
flipping all layers can lead to significant disruptions. To reduce
the chances of detection and enhance the attack’s longevity,
we adopt a partial poisoning strategy, targeting two layers
at a time. This method allows the attacker to impair system
performance without completely compromising the entire FL
system [26].

IV. EXPERIMENTS AND RESULTS

In this paper all the experiments were conducted on a
desktop with an Intel Core i5-6200U CPU (2.30 GHz), 12 GB
RAM, running Windows 10 Pro (64-bit), using Visual Studio
Code and Python 3.12.2.

A. Dataset for Analysis

In our research, we focus on a substation dataset from PIM
Interconnection LLC, a regional transmission organization
(RTO) in the United States, which is publicly available on
Kaggle [47] and offers critical insights into energy consump-
tion across various substations. Specifically, we utilize the
COMED_hourly Dataset, comprising 66,500 samples with
values ranging from a minimum of 7,263 (MW) to a maximum
of 21,349 (MW). the dataset is graphically represented in
Figure 2. Designed for load forecasting, this dataset includes
five key attributes: readings from the last hour, the last day, the
last week, the 24-hour average, and the weekly average. For
our experiments, we establish ten independent clients, each
contributing distinct data from this dataset, thereby enhancing
the diversity and robustness of our analysis.
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Fig. 3. MPAE of all clients during training process of global model.

B. Model Design

To conduct effective load forecasting, implement a three-
layered Artificial Neural Network (ANN) for load forecasting,
consisting of 100 neurons in the first layer, 50 in the second,
and a single neuron in the output layer, all using Rectified
Linear Unit (ReLU) activation functions. Train the network
with the Adam optimizer and MAPE as the loss function.
Split the dataset into training and testing sets at a 70/30 ratio,
employing FL over 100 communication rounds, with each
client having 2 local epochs and a batch size of 300. We
assessed the global model’s performance by aggregating 10%
of each client’s data to evaluate its accuracy and effectiveness.

C. Evaluation Metric

Evaluated the load forecasting models using the Mean
Absolute Percentage Error (MAPE) metric, which provides
a normalized measure of the average absolute percentage
difference between actual and predicted values.

MAPE is calculated as:

n

MAPE = © Z

n
i=1

A, — P
A;

(&)

where A; represents the actual value, P; denotes the fore-
tasted value, and n is the total number of data points.

D. Baseline results

After running federated learning (FL) for 100 communi-
cation rounds, the average client MAPE achieved was 1.4%.
Baseline results are presented in Figure 3, showing that the
model converged around 53 communication rounds. The FL
system was then tested under a model flip attack, specifi-
cally targeting client one. This attack significantly impacted
forecasting accuracy, increasing the average client MAPE
from 1.4% to 92.2%. The training process of FL under this
adversarial effect is depicted in Figure 4 [27], [28], [48], [49].

E. Effect local and global epochs

In this section, we analyze the relationship between local
and global epochs (communication rounds) under adversarial
attack through comprehensive experimentation. We varied
the number of local and global epochs while keeping the
cumulative epochs fixed at 1000. This means that each client
runs 1000 epochs regardless of the changes in local and
global epochs. An interesting pattern emerges as local epochs
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increase and global epochs decrease. The average client MAPE
decreased from 92.3% to 4.3% when local epochs were
increased from 1 to 10 and global epochs were decreased from
1000 to 100 in the presence of an adversarial attack. This
effect is summarized in Table I and Figure 5.The relationship
between local epochs and Avg MAPE appears to be non-linear,
as the average MAPE decreases rapidly at first and then levels
off. The initial significant drop (from 92.3% to 68.06% and
further to 45.4%) shows that the model benefits most from the
first few local epochs, suggesting diminishing returns as the
number of local epochs increases beyond a certain point.

This reduction can be attributed to two primary reasons.
First, when local epochs increase and global epochs decrease,
the number of attack iterations is limited, as each attacker
can only strike once in each round. This limitation effectively
reduces the attack surface, thereby diminishing the adversarial
influence on the model. Second, as the local epochs increase,
the local models retain more information from the local data.
This retention allows the models to adapt better to the data they
are trained on while gradually forgetting the adversarial impact
due to a phenomenon known as catastrophic forgetting. Catas-
trophic forgetting refers to the tendency of neural networks to
forget previously learned information when trained on new
data. By emphasizing local training over global updates, the
model can prioritize learning from the local dataset, thereby
mitigating the adverse effects of attacks and improving overall
robustness.

F. Computational and communication cost

The communication cost is calculated based on the data
transmitted between the server and devices [49]. In the ex-
periments mentioned above, as the number of global epochs
decreases, the communication cost also decreases. Our de-
signed deep learning model is 38 KB. In each global epoch,
each device transmits the model, and so does the server. When
the communication rounds decreased from 1000 to 100, the
communication cost reduced from 76,000 KB to 7,600 KB.
However, the computational cost remains the same, as the
cumulative epochs are fixed at 1000. Each device will perform
the training 1000 times, regardless of the number of local and
global epochs.

TABLE I
EFFECT OF LOCAL AND GLOBAL EPOCHS ON AVG CLIENT MAPE UNDER
MODEL FLIPPING ATTACK

Local Global Epoch Cumulative Avg. MAPE
Epoch Epoch (%)
1 1000 1000 92.3
2 500 1000 68.06
3 333 999 454
4 250 1000 33.7
5 200 1000 22.5
6 167 1002 13.2
7 143 1001 9.1
8 125 1000 7.3
9 111 999 5.3
10 100 1000 4.3
100
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Fig. 5. Effect of local and global epochs on Avg client MAPE under model
flipping attack.

V. CONCLUSION

FL presents a promising approach for load forecasting in
decentralized environments, offering improved privacy and
scalability by aggregating data from diverse sources. This
research highlights the critical role of optimizing the balance
between global and local learning to enhance the robustness of
FL systems under adversarial conditions. By increasing local
training epochs and reducing global communication rounds,
our experiments reveal a significant reduction in average
client MAPE, dropping from 92.3% to 4.3% in the presence
of model poisoning attacks. This improvement is attributed
to a reduced attack surface and the effects of catastrophic
forgetting, where extended local training enables models to
progressively counteract adversarial influences.
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