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Development of a Machine-Learning Algorithm to Identify Cauda Equina Compression on
Magnetic Resonance Imaging Scans

Sayan Biswas1, Ved Sarkar2, Joshua Ian MacArthur3, Li Guo4, Xutao Deng5, Ella Snowdon1, Hamza Ahmed6,

Callum Tetlow7, K. Joshi George8

-OBJECTIVE: Cauda equina syndrome (CES) poses signif-
icant neurological risks if untreated. Diagnosis relies on
clinical and radiological features. As the symptoms are
often nonspecific and common, the diagnosis is usually
made after a magnetic resonance imaging (MRI) scan. A
huge number of MRI scans are done to exclude CES but
nearly 80% of them will not have CES. This study aimed to
develop and validate a machine-learning model for auto-
mated CES detection from MRI scans to enable faster triage
of patients presenting with CES like clinical features.

-METHODS: MRI scans from suspected CES patients
(2017e2022) were collected and categorized into normal
scans/disc protrusion (0%e50% canal stenosis) and cauda
equina compression (>50% canal stenosis). A convolutional
neural network was developed and tested on a total of 715
images (80:20 split). Gradient descent heatmaps were
generated to highlight regions crucial for classification.

-RESULTS: The model achieved an accuracy of 0.950
(0.921e0.971), a sensitivity of 0.969 (0.941e0.987), a speci-
ficity of 0.859 (0.742e0.937), a positive predictive value of
0.969 (0.944e0.984), and an area under the curve of 0.915
(0.865e0.958). Gradient descent heatmaps demonstrated

accurate identification of any clinically relevant disc her-
niation into the spinal canal.

-CONCLUSIONS: This study pilots a deep learning
approach for predicting cauda equina compression pres-
ence, promising improved healthcare quality and timely
CES management. As referrals rise, this tool can act as a
fast triage system which can lead to prompt management
of CES in environments where resources for radiological
interpretation of MRI scans are limited.

INTRODUCTION

Cauda equina syndrome (CES) is a rare but potentially
devastating condition that, when left untreated, can result
in permanent paralysis, bowel and bladder dysfunction,

loss of sexual sensation, and chronic pain. CES is most commonly
caused by intervertebral disc herniation resulting in compression
of the nerve roots of the cauda equina. In the United Kingdom, the
incidence of the condition is estimated between 0.3 and 1.9 cases
per 100,000 persons.1,2
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CES does not have a definitive clinical definition and presenting
symptomology. Clinical features of CES do not always correlate to
radiological findings on magnetic resonance imaging (MRI), with
less than 20% of these cases having radiological features sug-
gestive of CES. True CES is defined as the presence of cauda
equina compression (CEC) on radiology with associated clinical
signs and symptoms of CES.2,3 Current UK guidelines recommend
urgent referral for emergency assessment with MRI for any case of
suspected CES presenting within 2 weeks of symptom onset. This
results in w8000 scans for suspected CES each year, placing a
huge burden on tertiary spinal units which are already
overburdened with referrals.4 Moreover, the Receipt Royal
Society Report estimates a shortage of w2000 radiologists
across the United Kingdom.5 The huge number of scans done
nationwide every day for suspected CES cases coupled with the
shortage of radiologists nationally leads to further delays in the
diagnosis of this time critical condition.
From a litigation perspective, delay in the provision of care for

CES is associated with huge medicolegal costs in addition to
disease morbidity. Machin et al. identified CES as the most
common cause of litigation for acute spinal presentations and
damage pay-outs.6 Delays in the definitive diagnosis and
subsequent surgical treatment result in patients suffering with
long-term morbidity with disabling sphincter and lower limb
deficits as well as severe pain. It has been estimated that litigation
from improper management of CES costs the National Health
Service (NHS) 68 million pounds per year.7 The NHS Litigation
Authority report average damage pay-outs of £211,758 per case.8

The Healthcare Safety Investigation Branch’s investigation on
the timely detection and treatment of CES concluded that there
exist major flaws in the provision of care and so there is an
imminent national need for clinical decision-making tools to
enhance and improve the CES patient pathway.9

The automated detection of potential CEC from MRI scans
using a computer vision model may help to delay identification of
CES, improve time to treatment, and decrease morbidity, with
recent studies confirming the utility of such techniques in the field
of spine surgery.10,11 Thus, the aim of this project was to develop
and validate a computer vision model that uses MRI sequences to
facilitate rapid yet reliable CEC detection, for triaging suspected
CES scans.

METHODS

Data Source
This project was a single-center retrospective computer vision
analysis of all CES patients at a tertiary neurosurgical center in
Manchester from 2017e2022. The trust’s database was examined
and all patients who had undergone emergency lumbar dis-
cectomy over this time period were extracted. The International
Classification of Diseases, 10th Revision code for CES is G38.4.
This code was then used to filter out the CES patients from the
total cohort. The hospital’s online picture archiving and commu-
nication system (Sectra UniView) was then queried to blind-
download, anonymize, and store the corresponding mid-sagittal
T2 MRI scans for these patients. Following the Get It Right First
Time (GIRFT) guidance in the United Kingdom, only mid-sagittal
scans were used for developing the model.12 Patients with chronic
canal stenosis were not included in this study as per the GIRFT
guidance and neither were patients who had difficult to visualize
levels (e.g., those who had metalwork in the spine). Next, the
remaining patients from the total cohort were analyzed to
determine the number of patients with an underlying diagnosis
of lumbar disc prolapse (DP) and their corresponding scans
were respectively downloaded. Finally, a cohort of normal MRI
lumbar spine scans was collected from patients with no lumbar
spine pathology under the senior author’s care. Patient consent
was not required as the study was conducted in an anonymized
and retrospective manner. The study was approved as a health
improvement project by the North West Research and
Innovation board, reference number: 22HIP32. NHS Health
Research Authority review and approval was deemed
unnecessary for this project. All subsequent methods were
performed in accordance with the relevant local guidelines and
regulations.
These scans were then analyzed and a binary outcome variable

of CEC and non-CEC was created. The scans were binarized at a
prolapse to canal ratio (PCR) of 50%, with all CEC scans having a
PCR of more than 50%, to maximize sensitivity and reduce false
negatives. The less than 50% PCR class included both normal and
DP scans. The goal was to create a model able to differentiate the
key differences between a CEC scan and a non-CEC scan. The
presence of CEC, DP, and normal scans were all confirmed by a

Figure 1. VGG19 model architecture.
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senior consultant neurosurgeon and the associated radiology
reports.

Deep Learning Algorithm: Model Architecture
For this study, we employed the Visual Geometry Group (VGG) 19
convolutional neural network architecture13 due to its robustness
and proven efficacy in image classification tasks. It is a deep
neural network consisting of 19 layers, including 16
convolutional layers and 3 fully connected layers (Figure 1).
The network’s design emphasizes simplicity and depth, which

are crucial for extracting intricate features from medical images. In
addition to VGG19, we experimented with other deep learning
architectures, including ResNet,14 DenseNet,15 and Vision
Transformers.16 While these architectures are known for their
high performance in various image classification tasks, VGG19
demonstrated superior performance in our specific application
of detecting CEC in MRI scans. We believe this was attributed
to the simplicity and depth of VGG19, which effectively captured
the relevant features in the medical images.

Model Training
The training of the network underwent a 2-phase training process,
crucial due to the rarity of CEC cases, which challenges traditional
supervised learning methods due to limited labeled examples.
Initially, the VGG19, pretrained on a large dataset for generic
objects,17 was further fine-tuned using a self-supervised learning
method. This first phase involved a public lumbar spine MRI
dataset,18 which includes MRI studies of 515 patients with
symptomatic back pain, only 11 of whom were diagnosed with
CEC. This approach allowed the model to learn detailed spinal
features without relying on extensive labeled MRI data, thus
optimizing its ability to identify subtle patterns associated with

CEC. Self-supervised learning, as described by He et al.,19

leverages unlabeled data, making it a powerful tool in scenarios
where annotated examples are scarce. To use the public dataset
and for the ease of processing and compatibility with the VGG19
model, we converted the dataset from the DICOM format to
PNG format. This conversion focused on the mid-sagittal view
images, crucial for analyzing the lumbar spine and detecting CEC.
We further fine-tuned the model using the dataset collected from
the Northern Care Alliance. This dataset, comprising mid-sagittal
T2 MRI scans from patients at a tertiary neurosurgical center,
provided a more focused and relevant set of images. It contains
100 CEC cases and 100 disc-protrusion cases. These 200 cases
were combined with the 515 cases from the public dataset and
formed our final dataset (N ¼ 715). The final dataset was then split
with an 80%e20% training-testing split for the final tuning pro-
cess. The fine-tuning process involved retraining the last few
layers of the model on this specialized dataset while keeping the
earlier layers frozen to retain the pretrained weights for feature
extraction. The final network outputs a 2-class classification.

Model Explainability
To enhance the model’s interpretability, Gradient-weighted Class
Activation Mapping (Grad-CAM)20 was used, which provides
visual explanations for the decisions made by the trained
network. Grad-CAM uses the gradients of any target concept
flowing into the final convolutional layer to produce a coarse
localization map highlighting the important regions in the image
for predicting the concept. This technique was particularly useful
in our study to verify that the model’s predictions were based on
the correct anatomical features of the spine relevant to CEC and
disc protrusion. It not only helped in validating the model’s
diagnostic reasoning but also in building trust with clinicians by
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Figure 2. Decision curve analysis comparing the model’s decision-making
to that of the default strategies.
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Figure 3. Calibration curve of the model demonstrating the model’s
approach toward overpredicting the presence of cauda equina
compression.

WORLD NEUROSURGERY 195: 123669, MARCH 2025 www.journals.elsevier.com/world-neurosurgery 3

ORIGINAL ARTICLE

SAYAN BISWAS ET AL. AUTOMATED CES MRI DETECTION

www.journals.elsevier.com/world-neurosurgery


showing that the model focuses on plausible areas when diag-
nosing conditions. This visualization is essential for clinical pre-
sentations and further development of the model, ensuring that its
decisions can be audited for accuracy and reliability.

Statistical Analysis
For each fold, the model’s performance was evaluated via analysis
of the accuracy, positive predictive value, negative predictive value,
specificity, sensitivity, area under the receiver operating curve/
discrimination, and the brier score loss. All metrics were boot-
strapped to derive the associated 95% confidence intervals. Each
model was then calibrated on the testing set. Additionally, deci-
sion curve analysis was used to evaluate and plot the clinical
benefit of using the computer vision algorithms to predict the
presence of CEC over a wide range of predicted threshold prob-
abilities. This illustrates the net benefit defined as the number of
true positives detected for each outcome class when using the
computer vision algorithm.

RESULTS

The average age of the cohort was 50.10 � 15.11 years and 53.65%
of patients were female. Detailed cohort demographic data were
not collected for this study with a focus on the collection and
anonymization of the lumbar MRI scans, and model development.

Model Performance
The optimally trained model was evaluated on the test set. On the
holdout set, the model achieved an accuracy of 0.950 (0.921e
0.971), a sensitivity of 0.969 (0.941e0.987), a specificity of 0.859
(0.742e0.937), a positive predictive value of 0.969 (0.944e0.984),
a negative predictive value of 0.856 (0.754e0.924), and an area
under the curve of 0.915 (0.865e0.958). Decision curve analysis

demonstrated that the machine-learning (ML) model provided
greater clinical net benefit in correctly identifying radiological CEC
at all predicted probabilities relative to the default strategies of
identifying of all or no patients, except between the threshold
probability of 55% and 72%. This demonstrates that the model’s
predictions for scans falling within that threshold range may not
be better than the default strategies (Figure 2).

Model Decision-Making
The calibration curve of this model demonstrates the model’s
liberal approach of predicting the presence of CEC after a 40%
threshold is reached (Figure 3). The curve has an intercept of 1.54
(1.18e1.89), a slope of 1.56 (1.16e1.97), and the model has a Brier
score loss of 0.049 (0.027e0.075). Density plot of the model’s
decision-making further highlights that the 2 output categories
have significant overlap in terms of the thresholds for predicting
either outcome class. There is a significant overlap between the 2
classes within the 0.4e0.65 range. This demonstrates that a
higher threshold of suspicion could be used to identify only CEC
as demonstrated by the red dashed line in Figure 4. However,
there might be a chance of missing CEC when using these
thresholds due to lower threshold cases being present, but this
may cause normal or DP patients to be misclassified as CEC or
vice versa.
This tradeoff is evident by the model’s high sensitivity

compared to its sensitivity. The model has a propensity to predict
a patient as having CEC from low probability values, thereby
increasing false positive rates compared to false negative rates.
This probability threshold can be adjusted by changing the
threshold used during model training, which in this study was
50% canal stenosis.

Figure 4. Density plot of the model’s predicted
thresholds across the 2 outcome classes. Green
dashed line ¼ Low threshold for outcome prediction.

Red dashed line ¼ High threshold for identifying cauda
equina compression.
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Figure 5. Gradient descent heatmaps demonstrating
the most important regions upon which the
classification decisions were made. The true outcome

is above the original image and the predicted outcome
is in the parentheses.
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Gradient Descent Heatmaps
Grad-CAM heatmaps demonstrate accurate identification of the
clinically relevant disc(s) and any associated herniation into the
spinal canal (Figure 5). The model is able to look for any disc
herniation particularly at the lumbar spine region when
differentiating between true positives and true negatives.
However, the false positive and false negative heatmaps
demonstrate that the model is not only attentive to those
regions but also has a propensity to analyze nonsignificant and
potentially irrelevant areas for identifying CEC: 1) distant regions
of the spine such as the thoracic spine for the false negative
scan and 2) the abdominal viscera and vasculature anterior to
the spinal column for false positive scan.

DISCUSSION

To our knowledge, this is the first ever study that has performed
reliable and automated radiological CEC detection via a computer
vision algorithm. Given the large burden of scans done for pa-
tients with suspected CES and the low number of scan positive
CEC, automated systems that could rapidly triage such scans from
most urgent to least and can take place in real time, make this
topic area an ideal candidate for ML modeling. This tool would
result in a shorter time to reporting by our radiologists and an
overall shorter time to surgery for the necessary patients. Thus, in
line with the GIRFT guidance that a sagittal T2 sequence is all that
is required to screen for and detect CEC, our model has the ability
to alert physicians about patients who may need urgent scan
reporting and subsequent surgical intervention. A prompt analysis
of the mid-sagittal section if flagged as CEC could enable the
patient continuing on to a full MRI scan. Similar use of automated
detection tools is already being used in clinical practice for triage
in other time-critical pathology like stroke, thereby showing the
usefulness of such tools in clinical practice.
Our model was successfully able to predict the presence of CEC

with good accuracy and visualize the clinically relevant areas to
make said prediction. Our model’s ability to perform fast yet
reliable triage for CES patients is further underscored by the fact
that delayed-intervention groups have been shown to have
significantly increased rates of inpatient mortality, total compli-
cations and nonroutine discharge, compared to prompt inter-
vention groups.21 In support of this, our model was able to learn
the key differences between normal and non-normal scans and
even develop a propensity to overpredict the presence of CEC, to
minimize the risk of false negatives.
CES is a complex clinical syndrome resulting in a variety of

neurological signs and symptoms. Clinically, patients may report
saddle sensory changes, bladder, bowel, or sexual dysfunction,
bilateral radicular pain, back pain, lower limb pain, and lower
limb neurological deficits. The presence of these red flag symp-
toms raise suspicion of suspected CES and these patients are thus
immediately referred to tertiary neurosurgery spine centers for
prompt investigation and management. Radiological confirmation
of the etiology of these symptoms is required in each of these
patients, with only the presence of both radiological CEC and the
aforementioned clinical symptoms confirming the diagnosis of
CES.22

Previous evidence investigating the correlation among history,
physical examination, and MRI scan result has interestingly
established that the mean prevalence of patients having both
clinical and radiological evidence of CES is 14%e48% with no
single individual sign or symptom being helpful in diagnosing
CES.2,12 Additionally, only 13% to 22% of patients with suspected
CES symptoms have scan-positive CEC.12,22 Balasubramaniam
et al. further this sentiment by reporting that even an
appropriately trained clinician cannot reliably predict which
patient has a CES.23

This lack of a definite clinical-radiological correlation results in
a number of borderline cases such as patients with acute CES like
clinical features but no CEC on MRI, that is, scan-negative CES
like presentation and those patients with radiological CEC but no
clinical symptoms.
In clinical practice, this complex interplay between clinical and

radiological findings results in a large number of scans being
performed and unsurprisingly being reported as normal, non-CEC
scans. Each of these scans has to be meticulously interpreted and
reported by a consultant neuroradiologist, causing a back log and
delay in the reporting of the most urgent scans. Over the years, the
number of MRI scans done for patients with suspected CES has
been rapidly increasing, not only due to the uncertainty of a true
clinical diagnosis of CES but also due to the clinical and medi-
colegal repercussions of missing CES.4 Thus, an automated triage
tool for prioritizing scans to be subsequently reported and verified
by a neuroradiologist will greatly benefit our CES patients and
improve our quality of care provision.
The PCR is the ratio of the largest width of the disc herniation at

the affected spinal level by the total of width of the spinal canal at
the level of the herniation. Previous research has stipulated that a
herniated disc compressing 75% or more of the spinal canal with
associated compression of the cauda equina nerves is CEC. This
definition was coined by McCarthy et al. in a study from 2005
measuring the mean PCR in only 12 patients.24

Since then, studies have reported that only a minority of pa-
tients fall in this category. Qureshi and Sell found that only 45% of
their 33 patients operated for CES and had DPs of this size, while a
case series by Kaiser et al. on 55 CES patients observed a mean
PCR of 0.6, with a PCR of �0.5 in 20 patients (38.5%) and �0.75
in only 12 patients (23%).25 Similarly, our analysis has
demonstrated a large distribution of PCR causing CEC despite
our lower predefined cutoff of 50%. As a result, there is a lack
of interstudy agreement in terms of what counts as a PCR cutoff
for a herniated disc capable of causing CES. Furthermore, these
aforementioned studies have all reported no significant
correlation between radiological PCR and postsurgical clinical
outcome. Additionally, studies have demonstrated a poor
correlation between PCR and the evolution and severity of
neurological deficits.25

As such, these results question the underlying pathophysio-
logical mechanisms of CES, especially as a consequence of lumbar
DPs of varying PCR. The traditional view of disc-mediated pres-
sure causing compression of the cauda equina nerve roots is un-
able to explain the varied radiological findings in this patient
cohort. Alternative supplementary hypotheses including differ-
ences in microvascular spinal anatomy, postherniation inflam-
matory responses, and time to symptom onset (acute vs. chronic)
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are required to explain the discrepancy between clinical and
radiological findings.25

This challenges the previously defined cutoffs of radiological
CEC and reiterates the need for future multimodal models capable
of analyzing both structured clinical variables and radiological
MRI scans to holistically predict the presence of true CES with
CEC.
Nevertheless, in current clinical practice in most institutions,

when seeing 2 patients with the exact same clinical features,
surgeons are generally able to decide who needs urgent surgery,
based on the amount of CEC on the MRI scan. Hence, studies like
these are very relevant despite the controversy of whether the
degree of CEC alone can predict who has CES or not. This study
shows that models can be developed which can pick out scans
with a certain degree of canal compromise.
Despite these results however, our study has a few limitations.

First, the size of the dataset used for the training and testing of the
model was relatively small. This may limit the ability of the model
to generalize to larger and more heterogeneous patient pop-
ulations. For example, cases of patients with prior hardware were
excluded because of metal artifact blocking out thecal sac. Such
cases would need to be included in further iterations of the model
to account for real-world heterogeneity. Second, the model was
developed on a single institution’s dataset using mid-sagittal T2
magnetic resonance images, which may limit the ability to
extrapolate the results to other institutions or different imaging
protocols. In the United Kingdom, the GIRFT guidance recom-
mends that a sagittal magnetic resonance sequence is all that is
required to screen for and detect CEC. Nevertheless, analysis of
the axial sequences is done by all radiolgists and surgeons and the
value of this in decision-making would need to be analyzed in the
future fine-tuning of the model. Third, while Grad-CAM visuali-
zations can identify potential regions containing distinctive in-
formation from MRI images, it may not entirely appreciate and
discriminate between subtle details across individual patients.
Finally, there exists a gray zone of overlap between the 2 outcomes
groups and thus differentiating and identifying these cases may
not be done reliably by our model. This suggests that further

prospective training and enhancement is required before this tool
can be used in clinical practice.

CONCLUSIONS

In conclusion, this is the first study to evaluate the use of and
develop computer vision ML algorithms for the automated
detection and identification of CEC on MRI scans. We demon-
strate that such models can be accurate and reliable in their pre-
dictions and can act as triage tools for CES referrals and facilitate
neuroradiologist decision-making. Additionally, through our
explainability techniques, we have demonstrated how the models’
predictions can be transparent and verifiable when implemented
in clinical practice. These promising results demonstrate that this
technology can improve healthcare quality and care provision,
with the timely diagnosis of CEC and management of CES. As
referrals rise, this tool can potentially mitigate patient harm and
legal risks.

CRediT AUTHORSHIP CONTRIBUTION STATEMENT

Sayan Biswas:Writing e review & editing, Writing e original draft,
Investigation, Formal analysis, Data curation. Ved Sarkar:Writinge
original draft, Software,Methodology,Conceptualization. Joshua Ian
MacArthur: Writing e review & editing, Writing e original draft,
Methodology. Li Guo: Writing e review & editing, Software, Meth-
odology, Formal analysis. Xutao Deng: Writing e review & editing,
Software, Formal analysis. Ella Snowdon: Writing e original draft,
Data curation. Hamza Ahmed: Writing e review & editing,
Investigation, Data curation. Callum Tetlow: Writing e review &
editing, Methodology, Investigation, Data curation. K. Joshi
George: Writing e review & editing, Supervision, Investigation,
Conceptualization.

ACKNOWLEDGMENTS

The authors wish to thank the Department of Neurosurgery at
Salford Royal Hospital for providing the data.

REFERENCES

1. Woodfield J, Hoeritzauer I, Jamjoom AAB, et al.
Understanding cauda equina syndrome: protocol
for a UK multicentre prospective observational
cohort study. BMJ Open. 2018;8:e025230.

2. Woodfield J, Hoeritzauer I, Jamjoom AAB, et al.
Presentation, management, and outcomes of
cauda equina syndrome up to one year after sur-
gery, using clinician and participant reporting: a
multi-centre prospective cohort study. Lancet Reg
Health Europe. 2023;24:100545.

3. Fraser S, Roberts L, Murphy E. Cauda equina
syndrome: a literature review of its definition and
clinical presentation. Arch Phys Med Rehabil. 2009;
90:1964-1968.

4. Fountain DM, Davies SCL, Woodfield J, et al.
Evaluation of nationwide referral pathways,
investigation and treatment of suspected cauda
equina syndrome in the United Kingdom. Br J
Neurosurg. 2019;33:624-634.

5. Lourenco J, Clark O. Clinical radiology census report
2021. United Kingdom: The Royal College of Ra-
diologists; 2021:3-26.

6. Machin JT, Hardman J, Harrison W, Briggs TWR,
Hutton M. Can spinal surgery in England be saved
from litigation: a review of 978 clinical negligence
claims against the NHS. Eur Spine J. 2018;27:
2693-2699.

7. Hutton M. Spinal Services. United Kingdom: GIRFT
Programme National Specialty Report; 2009:
5-100.

8. Gardner A, Gardner E, Morley T. Cauda equina
syndrome: a review of the current clinical and
medico-legal position. Eur Spine J. 2011;20:
690-697.

9. Investigation report: Timely detection and treatment of
cauda equina syndrome. Healthcare Safety Inves-
tigation Branch; 2022. Available at: https://
www.hssib.org.uk/patient-safety-investigations/
timely-detection-and-treatment-of-spinal-nerve-
compression-cauda-equina-syndrome-in-patients-
with-back-pain/investigation-report/. Accessed
February 12, 2025.

10. Altun S, Alkan A. LSS-net: 3-dimensional seg-
mentation of the spinal canal for the diagnosis of
lumbar spinal stenosis. Int J Imaging Syst Tech.
2023;33:378-388.

WORLD NEUROSURGERY 195: 123669, MARCH 2025 www.journals.elsevier.com/world-neurosurgery 7

ORIGINAL ARTICLE

SAYAN BISWAS ET AL. AUTOMATED CES MRI DETECTION

http://refhub.elsevier.com/S1878-8750(25)00015-4/sref1
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref1
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref1
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref1
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref3
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref3
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref3
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref3
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref4
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref4
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref4
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref4
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref4
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref5
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref5
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref5
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref6
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref6
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref6
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref6
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref6
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref7
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref7
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref7
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref8
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref8
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref8
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref8
https://www.hssib.org.uk/patient-safety-investigations/timely-detection-and-treatment-of-spinal-nerve-compression-cauda-equina-syndrome-in-patients-with-back-pain/investigation-report/
https://www.hssib.org.uk/patient-safety-investigations/timely-detection-and-treatment-of-spinal-nerve-compression-cauda-equina-syndrome-in-patients-with-back-pain/investigation-report/
https://www.hssib.org.uk/patient-safety-investigations/timely-detection-and-treatment-of-spinal-nerve-compression-cauda-equina-syndrome-in-patients-with-back-pain/investigation-report/
https://www.hssib.org.uk/patient-safety-investigations/timely-detection-and-treatment-of-spinal-nerve-compression-cauda-equina-syndrome-in-patients-with-back-pain/investigation-report/
https://www.hssib.org.uk/patient-safety-investigations/timely-detection-and-treatment-of-spinal-nerve-compression-cauda-equina-syndrome-in-patients-with-back-pain/investigation-report/
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref10
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref10
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref10
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref10
www.journals.elsevier.com/world-neurosurgery


11. Altun S, Alkan A. Lumbar spinal stenosis analysis
with deep learning based decision support sys-
tems. Gazi University J Sci. 2023;36:1200-1215.

12. Fairbank J, Hashimoto R, Dailey A, Patel AA,
Dettori JR. Does patient history and physical ex-
amination predict MRI proven cauda equina syn-
drome? Evid Based Spine Care J. 2011;2:27-33.

13. Simonyan K, Zisserman A. Very deep convolu-
tional networks for large-scale image recognition.
arXiv.org; 2025. Available at: https://arxiv.org/abs/
1409.1556. Accessed February 12, 2025.

14. He K, Zhang X, Ren S, Sun J. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); 2016:770-778.
Available at: https://doi.org/10.1109/cvpr.2016.90.
Accessed February 12, 2025.

15. Huang G, Liu Z, Van Der Maaten L,
Weinberger KQ. Densely connected convolutional net-
works. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR); 2017:2261-2269. Avail-
able at: https://doi.org/10.1109/cvpr.2017.243.
Accessed February 12, 2025.

16. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An
Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. arXiv:201011929 [cs];
2020. Available at: https://arxiv.org/abs/2010.
11929. Accessed February 12, 2025.

17. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L.
ImageNet: A large-scale hierarchical image data-
base. 2009 IEEE Conference on Computer Vision

and Pattern Recognition; 2009. Available at:
https://doi.org/10.1109/cvpr.2009.5206848.
Accessed February 12, 2025.

18. Sudirman S, Al Kafri A, Natalia F, et al. Lumbar
spine MRI dataset. datamendeleycom; 2019.
https://doi.org/10.17632/k57fr854j2.2. Accessed
February 12, 2025.

19. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R.
Masked autoencoders are scalable vision learners. ICLR
2021 Conference; 2021.

20. Selvaraju RR, Cogswell M, Das A, Vedantam R,
Parikh D, Batra D. Grad-CAM: visual explanations
from deep networks via gradient-based localiza-
tion. Int J Comput Vis. 2020;128:336-359.

21. Hogan WB, Kuris EO, Durand WM, Eltorai AEM,
Daniels AH. Timing of surgical decompression for
cauda equina syndrome. World Neurosurg. 2019;132:
e732-e738.

22. Bell DA, Collie D, Statham PF. Cauda equina
syndrome e what is the correlation between
clinical assessment and MRI scanning? British.
J Neurosurg. 2007;21:201-203.

23. Balasubramanian K, Kalsi P, Greenough CG,
Kuskoor Seetharam MP. Reliability of clinical
assessment in diagnosing cauda equina syn-
drome. Br J Neurosurg. 2010;24:383-386.

24. McCarthy M, Brodie A, Aylott C, Annesley-
Williams D, Jones A, Grevitt M. MRI measure-
ments in Cauda Equina Syndrome: reproducibility

and prediction of clinical outcome. Orthop Procs.
2006;88-B:147-148.

25. Kaiser R, Nasto LA, Venkatesan M, et al. Time
factor and disc herniation size: are they really
predictive for outcome of urinary dysfunction in
patients with cauda equina syndrome? Neurosur-
gery. 2018;83:1193-1200.

Conflict of interest statement: The authors declare that the
article content was composed in the absence of any
commercial or financial relationships that could be construed
as a potential conflict of interest.

Previous presentation: Oral presentation at the Society of
British Neurological Surgeons (SBNS) 2024 Conference,
Edinburgh.

Received 21 November 2024; accepted 8 January 2025

Citation: World Neurosurg. (2025) 195:123669.
https://doi.org/10.1016/j.wneu.2025.123669

Journal homepage: www.journals.elsevier.com/world-
neurosurgery

Available online: www.sciencedirect.com

1878-8750/ª 2025 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

8 www.SCIENCEDIRECT.com WORLD NEUROSURGERY, https://doi.org/10.1016/j.wneu.2025.123669

ORIGINAL ARTICLE

SAYAN BISWAS ET AL. AUTOMATED CES MRI DETECTION

http://refhub.elsevier.com/S1878-8750(25)00015-4/sref11
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref11
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref11
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref12
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref12
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref12
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref12
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2017.243
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.17632/k57fr854j2.2
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref19
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref19
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref19
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref20
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref20
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref20
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref20
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref21
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref21
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref21
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref21
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref22
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref22
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref22
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref22
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref22
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref23
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref23
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref23
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref23
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref24
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref24
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref24
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref24
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref24
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref25
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref25
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref25
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref25
http://refhub.elsevier.com/S1878-8750(25)00015-4/sref25
https://doi.org/10.1016/j.wneu.2025.123669
www.journals.elsevier.com/world-neurosurgery
www.journals.elsevier.com/world-neurosurgery
www.sciencedirect.com/science/journal/18788750
http://creativecommons.org/licenses/by/4.0/
www.sciencedirect.com/science/journal/18788750
https://doi.org/10.1016/j.wneu.2025.123669

	Development of a Machine-Learning Algorithm to Identify Cauda Equina Compression on Magnetic Resonance Imaging Scans
	Introduction
	Methods
	Data Source
	Deep Learning Algorithm: Model Architecture
	Model Training
	Model Explainability
	Statistical Analysis

	Results
	Model Performance
	Model Decision-Making
	Gradient Descent Heatmaps

	Discussion
	Conclusions
	flink6
	References


