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Abstract
Ensuring the integrity of shipping containers is crucial for maintaining product quality, logistics effi-

ciency, and safety in the global supply chain. Damaged containers can lead to significant economic

losses, delays, and safety hazards. Traditionally, container inspections have been manual, which are

labor-intensive, time-consuming, and error-prone, especially in busy port environments. This study

introduces an automated solution using the YOLO-NAS model, a cutting-edge deep learning archi-

tecture known for its adaptability, computational efficiency, and high accuracy in object detection

tasks. Our research is among the first to apply YOLO-NAS to container damage detection,

addressing the complex conditions of seaports and optimizing for high-speed, high-accuracy per-

formance essential for port logistics. Our method showcases YOLO-NAS’s superior efficacy in

detecting container damage, achieving a mean average precision (mAP) of 91.2%, a precision

rate of 92.4%, and a recall of 84.1%. Comparative analyses indicate that YOLO-NAS consistently

outperforms other leading models like YOLOv8 and Roboflow 3.0, which showed lower mAP,

precision, and recall values under similar conditions. Additionally, while models such as Fmask-

RCNN and MobileNetV2 exhibit high training accuracy, they lack the real-time assessment capabil-

ities critical for port applications, making YOLO-NAS a more suitable choice. The successful

integration of YOLO-NAS for automated container damage detection has significant implications

for the logistics industry, enhancing port operations with reliable, real-time inspection solutions

that can seamlessly integrate into predictive maintenance and monitoring systems. This approach

reduces operational costs, improves safety, and lessens the reliance on manual inspections,
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contributing to the development of “smart ports” with higher efficiency and sustainability in con-

tainer management.

Keywords
Container damage, object detection, computer vision, You Only Look Once—Neural

Architecture Search (YOLO-NAS), port efficiency, logistics system, deep learning, risk analysis

Introduction

The global logistics sector increasingly relies on containerized transportation to sustain
the flow of goods. Yet, with a significant proportion of containers exceeding two
decades in use, structural damage has become a critical issue, threatening not only
cargo integrity but also supply chain efficiency.1 Such damage stems from repeated hand-
ling, harsh environmental exposure, and mechanical impacts, which remain inadequately
addressed by traditional inspection methods. Manual inspections, still dominant in many
ports, are labor-intensive, inconsistent, and prone to human error, especially under the
pressure of high-volume operations. Moreover, automated solutions like OCR, laser
scanning, and 3D imaging, while useful, fall short in detecting the diverse and often
subtle damage patterns present in real-world scenarios.

This research addresses these challenges by focusing on the development of an auto-
mated damage detection framework that combines accuracy, scalability, and real-time
applicability. The significance of detecting container damage extends beyond operational
efficiency—it mitigates risks to cargo safety, reduces downtime, and enhances compli-
ance with international shipping standards. However, the lack of high-quality annotated
datasets and adaptable machine learning models has long hindered innovation in this
field, creating a compelling motivation for exploring cutting-edge approaches.

Among available deep learning frameworks, YOLO-NAS stands out as an optimal
choice due to its superior performance in balancing speed and accuracy.2 Unlike older
models such as Fast R-CNN and MobileNetV2, which tend to compromise one metric
for the other, YOLO-NAS demonstrates exceptional adaptability in dynamic environ-
ments. Experimental results in this study show YOLO-NAS surpassing both YOLOv8
and Roboflow 3.0 in precision and recall when applied to container damage detection.3

These findings underline its capability to identify diverse damage types, from minor
deformations to critical structural faults, under real-world operational constraints.

The decision to prioritize YOLO-NAS was further influenced by its potential to trans-
form port operations. By reducing reliance on manual inspections, it offers a scalable
solution that not only improves accuracy but also aligns with the industry’s push
toward automation and digital transformation.

This work contributes to filling the existing gaps in automated container damage
detection while advancing the application of deep learning in logistics, an area critical
for ensuring global supply chain resilience.

The rest of this paper is structured as follows: the second section presents related con-
cepts; the third section details the methodology, including the dataset, preprocessing, and
YOLO-NAS architecture; the fourth section analyzes experimental results, and the fifth
section concludes with the study’s implications and future research directions.
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Fundamental concepts

Concepts of container terminal

Container terminals serve as pivotal nodes in the global supply chain, facilitating the
transfer of containers between ships, trucks, and trains. Strategically located at seaports,
these high-traffic facilities are designed to process substantial volumes of containerized
cargo, ensuring seamless import and export operations. Equipped with advanced machin-
ery, such as gantry cranes and straddle carriers, terminals optimize cargo handling to min-
imize delays and operational costs, meeting the diverse logistical demands of
international trade.

An understanding of terminal workflows is crucial to contextualize the complexities
associated with automating container damage detection. Terminal operations are typically
divided into three core areas: vessel operations (loading and unloading containers from
ships), truck operations (container transfer to and from trucks), and storage operations

Figure 1. Container terminal operation (source: authors).
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(temporary housing of containers). These interdependent processes, illustrated in
Figure 1, underscore the rigorous operational environment where damage detection
systems must function with precision and efficiency.4 Failure to meet these requirements
risks disrupting cargo flows, heightening the need for a robust and scalable inspection
framework.

To address these challenges, container terminals increasingly integrate cutting-edge
technologies, such as AI-driven image analysis and automated scanning systems.
These innovations enhance the accuracy and timeliness of damage detection, enabling
swift interventions to prevent cargo losses and operational inefficiencies. By ensuring
effective damage identification and prevention, these systems contribute to the safety
and efficiency of terminal operations, reinforcing their critical role within the global
logistics network.

Concepts and impacts of container damage

Container damage is a critical issue in shipping logistics, with profound implications for
operational efficiency, safety, and economic viability. During transit, handling, and
storage, containers are subjected to extensive mechanical stress and environmental expos-
ure, resulting in structural issues such as dents, corrosion, and cracks (Figure 2). These
damages compromise load-bearing capacity and functionality, while also posing signifi-
cant safety risks. Financially, the depreciation of damaged containers, estimated at 2–5%,
represents a substantial cost to the industry.5 Moreover, the potential collapse of structur-
ally weakened containers in stacked configurations exacerbates these risks, endangering
personnel and causing severe operational disruptions.

Traditional manual inspections remain the predominant method for container damage
assessment; however, they are inherently labor-intensive, time-consuming, and prone to
inconsistencies arising from human error. With the global container trade steadily
increasing, the limitations of manual inspections have become more pronounced,
leading to bottlenecks and inefficiencies in high-throughput environments.6 Automated
detection technologies, by contrast, offer a more scalable and reliable alternative, provid-
ing rapid, consistent, and accurate assessments of container integrity. In the demanding
operational context of port terminals, where timely damage identification is critical to

Figure 2. Types of damaged container (source: Oh JH6).
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maintaining continuity and mitigating risks, such technologies are not just advantageous
but indispensable.

This study highlights the potential of leveraging advanced object detection models,
specifically YOLO-NAS, to address these challenges. Compared to traditional models,
YOLO-NAS demonstrates superior accuracy and speed, making it particularly
well-suited to the complex and dynamic conditions of port environments. By enabling
early detection of damage, YOLO-NAS not only prevents cascading logistical failures
but also enhances overall supply chain safety and efficiency. These attributes underscore
its value as a robust and scalable solution for modern port operations.

In this research, “damage” is precisely defined as any visible physical defect or abnor-
mality on a container’s surface or structure that could compromise its integrity, function-
ality, or safety. This definition encompasses a broad range of defects, including but not
limited to dents, fractures, holes, and cracks, all of which have the potential to disrupt
transportation and handling processes.

Overview of computer vision for damage detection

Computer vision, a branch of artificial intelligence, empowers machines to process and
interpret visual data, enabling automated decision-making based on images or videos.
In container damage detection, this technology is indispensable, facilitating rapid inspec-
tions that outperform traditional manual methods in both efficiency and accuracy. A key
component of computer vision is object detection, which involves locating and identify-
ing objects within an image. In the context of container damage, these techniques are
crucial for accurately pinpointing the type and location of defects.7

Object detection methods are broadly categorized into region-based and single-shot
approaches. Region-based detectors, such as the R-CNN family (e.g. Fast R-CNN and
Faster R-CNN), are highly accurate but rely on multi-stage processes, making them
unsuitable for real-time applications. Conversely, single-shot detectors like SSD
(Single Shot Detector) and YOLO (You Only Look Once) streamline object detection
into a single computational pass, prioritizing speed while maintaining competitive accur-
acy.8,9 This tradeoff makes single-shot models particularly effective in dynamic environ-
ments, such as high-traffic container terminals, where real-time performance is critical.
As noted by Juan et al.,2 the choice of detection model depends on specific application
demands, including real-time constraints, accuracy requirements, and resource
availability.

This technical foundation underscores the advantages of YOLO-NAS, a single-shot
detection model optimized for both speed and precision. Its design uniquely addresses
the dual requirements of rapid assessments and high accuracy, making it well-suited
for container damage detection in fast-paced port environments. By integrating
YOLO-NAS, operations can achieve reliable and efficient damage inspections, enhan-
cing overall safety and workflow continuity in logistics systems.

Concepts of deep learning for damage detection

Deep learning, a pivotal subfield of artificial intelligence, has revolutionized container
damage detection by significantly improving automation and accuracy. Among its
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various methodologies, convolutional neural networks (CNNs) have demonstrated
exceptional capabilities in processing large-scale visual data, making them indispensable
for identifying complex patterns in container images and videos.10,11 By leveraging
CNNs, deep learning models can detect a wide range of damage types—such as dents,
cracks, and rust—including subtle defects often overlooked by human inspectors. This
advancement not only enhances detection precision but also bolsters the reliability of
inspections, thereby improving cargo safety and streamlining logistical operations
across transportation networks.12

Building upon the strengths of CNNs, YOLO-NAS integrates Neural Architecture
Search (NAS) to optimize its structure for specific tasks automatically.13 This synthesis
enables YOLO-NAS to deliver both high accuracy and computational efficiency, crucial
for real-time applications in high-demand settings like container terminals. The model’s
adaptability to diverse operational environments and its balance of speed and precision
make it particularly well-suited for container damage detection. By addressing the dual
imperatives of rapid assessment and dependable accuracy, YOLO-NAS emerges as a
transformative tool for enhancing the safety, efficiency, and resilience of port operations.

Methodology

Overview of the proposed YOLO-NAS model and the YOLO-NAS model
architecture

The YOLO (You Only Look Once) series has become a key player in object detection for
applications such as robotics, autonomous vehicles, and video surveillance, thanks to its
balance of speed and accuracy. Over time, each version has improved upon its predeces-
sor to address challenges and boost performance. This paper presents YOLO-NAS, intro-
duced by Deci in May 2023, which sets a new standard in real-time object detection by
surpassing previous YOLO models and leading competitors in both speed and accuracy.
YOLO-NAS excels in small object detection, enhances localization accuracy, and deli-
vers superior performance relative to computational cost, making it highly suitable for
real-time use on edge devices. Its open-source architecture also supports research
purposes.14

The architecture of YOLO-NAS was developed through a NAS system called
AutoNAC, designed to optimize the tradeoff between latency and throughput. This
process resulted in three model variants: YOLO-NASS (small), YOLO-NASM
(medium), and YOLO-NASL (large). These models differ based on the depth and arrange-
ment of specialized Quantization-aware Skip Propagation (QSP) and Quantization-aware
Convolutional Inference (QCI) blocks. These blocks are optimized for 8-bit quantization,
reducing accuracy loss after post-training quantization (Sai et al.15). Unlike traditional
architectures, YOLO-NAS can adapt its structure to specific tasks and datasets, making it
especially useful for real-time applications and resource-limited environments. Its flexibil-
ity in exploring various architectural configurations opens the door to innovative designs
that are difficult to achieve manually (Figure 3).

At its core, YOLO-NAS begins with convolutional layers that process input images
into low-level feature maps, such as edges and textures, instead of merely increasing
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their dimensions before sending them to deeper layers. Pooling layers downsample these
feature maps while preserving high-level information. Additionally, YOLO-NAS
employs CSPNet, which splits feature maps into two parts, processing one half
through convolutional blocks before merging it back with the other half. This design
improves the flow of information and computational efficiency.

Moreover, YOLO-NAS integrates the Path Aggregation Network (PAN) with the
Feature Pyramid Network (FPN) to enhance object detection across various sizes.
PAN fuses features from top-down and bottom-up pathways, while FPN generates
feature maps at multiple levels, enabling the detection of both large and small objects.
This combination allows YOLO-NAS to more accurately identify objects in complex
environments.

Finally, YOLO-NAS predicts bounding boxes and class probabilities for detected
objects in its output layer, using non-maximum suppression (NMS) to remove duplicate
detections and keep the most reliable ones. This efficient object detection system is
well-suited for a range of applications, including autonomous driving, surveillance,

Figure 3. The YOLO-NAS architecture (source: authors).
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and medical image analysis, where it consistently demonstrates state-of-the-art perform-
ance across diverse tasks.16

The novelties of YOLO-NAS in container damage detection

This research introduces several novel aspects by applying YOLO-NAS to container
damage detection, offering advancements over traditional methods. First, YOLO-NAS
utilizes NAS to optimize its architecture, enhancing its ability to detect complex and
varied container damage patterns, such as dents, scratches, and structural defects,
which may be missed by conventional models. Unlike existing approaches that often
focus on specific types of damage or specialized containers, this research emphasizes
multi-type damage detection, providing a more comprehensive solution to the diverse
and often overlapping damage scenarios encountered in real-world environments.

Another key novelty is YOLO-NAS’s real-time processing capability, which is critical
in port settings where timely decisions are essential. The scalability of YOLO-NAS also
makes it suitable for large-scale deployment, enabling integration into existing port infra-
structures for automated and continuous monitoring.

Importantly, this study marks one of the first applications of YOLO-NAS in container
damage detection, setting a precedent for the use of this advanced deep learning model in
logistics and transportation. These innovations collectively aim to enhance safety, reduce
operational costs, and improve the efficiency of container management, addressing
current limitations in manual and semi-automated inspection methods. Through these
contributions, the research opens new possibilities for the adoption of advanced AI in
the logistics industry.

Dataset description and dataset preprocessing

The dataset for this study comprises images of shipping containers collected under
diverse real-world conditions at seaports. These images capture a variety of container
types and colors, encompassing a wide spectrum of physical defects such as dents,
scratches, rust, and cracks—common anomalies in operational port environments. This
variety ensures that the dataset is representative of real-world scenarios, enabling the
model to generalize effectively across different damage cases encountered in the field.

A robust and well-curated dataset is pivotal for the model’s performance, particularly
in learning intricate patterns and producing accurate predictions. For this study, a custom
hybrid dataset of 4587 carefully selected images was developed. Although the initial col-
lection contained a higher number of images, redundant and low-quality samples were
removed during preprocessing to maintain clarity and enhance dataset cohesion. This
meticulous refinement ensured that the dataset was efficient and of high quality.

To meet the input requirements of the YOLO-NAS model, all images were resized to
640× 640 pixels while preserving their original aspect ratios and stored in PNG format.
The dataset, consisting of 4736 images, was split into training, validation, and testing sets
in a 70:15:15 ratio. This allocation ensures a balanced evaluation of the model’s perform-
ance at different stages of training.
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The dataset is systematically organized to reflect real-world diversity in container
damage scenarios and environmental conditions. This structured dataset ensures that
the model encounters a wide range of damage types and operational conditions, enhan-
cing its generalization capability. Table 1 provides a detailed breakdown of the dataset’s
composition.

A total of 27,807 annotations were manually labeled across the dataset. These annota-
tions focus on a single class called “damage” category encompassing all visible defects,
simplifying the detection process while retaining robustness as can be seen in Figure 4.
By consolidating all types of damage into a single label, the model focuses on detecting
the presence of any damage, irrespective of its specific type. This simplification priori-
tizes detection accuracy and speed, aligning with the study’s goal of automating the
initial identification of damaged containers.

This single-label approach is particularly advantageous for practical applications in
seaport operations, where rapid identification of damaged containers is critical. By
streamlining the detection process, this approach provides port operators with actionable
insights to quickly identify containers requiring further inspection, without the additional
complexity of categorizing damage types. This balance between simplicity and effective-
ness ensures that the model remains efficient while meeting the operational demands of
real-world deployment.

Implementation

The YOLO-NAS model is a machine-learning algorithm that uses a dataset of images of
damaged shipping containers to detect damage. The model is trained using the prepro-
cessed dataset, learning to detect damage by optimizing a predefined objective function.
The hyperparameters are then fine-tuned for optimal performance. After training, the
model’s performance is evaluated using key metrics like precision, recall, and mean
average precision (mAP) to assess its accuracy in detecting damaged objects within ship-
ping containers (Figure 5).

The following algorithm describes the inference process for detecting container
damage using a pretrained YOLO-NAS model on Roboflow, following a systematic
approach for image preprocessing, prediction, and post-processing. Here is the
example code and hyperparameters used to train the proposed model:

Algorithm: Robust container damage detection using YOLO-NAS on Roboflow

Table 1. The breakdown of the dataset’s composition.

Category Details

Types of damage Dents (40%), scratches (30%), rust (20%), cracks (10%)
Environmental conditions Daylight (60%), night (20%), rainy (10%), foggy (10%)
Container types Standard (70%), refrigerated (20%), open-top (10%), tank (10%)
Container colors Red (30%), blue (25%), green (20%), yellow (15%), others (10%)

Nguyen Thi Phuong et al. 9



Training setup and hyperparameters
The YOLO-NAS model was trained on a custom dataset with the following

hyperparameters:

• Learning rate: 0.001
• Batch size: 16
• Epochs: 300
• Image size: 640× 640
• Confidence threshold (τc): 40
• Overlap threshold for NMS (τo): 30
• Hardware: NVIDIA RTX 3090 GPU

The dataset was split into training (70%), validation (15%), and testing (15%) sets, and
included domain-specific augmentations like lighting adjustments to improve model
robustness.

Inference method
Input:
I : image file (e.g. container image).
τc = 40: confidence threshold for object detection (the confidence score threshold is

used to discard low-confidence predictions).

Figure 4. The sample of annotated dataset (source: authors).

Figure 5. The process of the proposed model (source: authors).
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τo = 30: overlap threshold for NMS (the overlap threshold is used in NMS to remove
redundant bounding boxes).

T : set of domain-specific transformations (e.g. augmentation).
M: pretrained YOLO-NAS model.
Φ: function for image normalization and preprocessing (image preprocessing function

that includes normalization and domain-specific transformations like lighting adjust-
ments, augmentations, etc.).

Ψ: function for post-processing and filtering false positives (post-processing function
that filters false positives and refines predictions based on domain-specific knowledge).

Output:
P : prediction results (bounding boxes and class labels).
V : visualized prediction image.
Procedure:
1. Import the Roboflow library:

Import R

where R is the Roboflow API.
2. Initialize Roboflow with API key:

R.initialize(API KEY).

3. Access workspace and Select project:

W = R.get workspace(workspace id)

M = M.get model(model endpoint)

where W is the workspace and M is the selected model.
4. Preprocess image:

I ′ = Φ(I)

where Φ includes image normalization and domain-specific transformations from T.
5. Predict object detection:

P = M.predict(I ′, τc, τo)

where P is the set of predicted bounding boxes and associated class labels, calculated
as:

P = { (bi, ci, si) | bi = bounding box,
ci = class label, si = confidence score, ∀i ∈ [1, N]} with N being the number of
detections.

6. Post-process results:

P′ = Ψ(P, τc, τo)

Nguyen Thi Phuong et al. 11



Apply post-processing steps Ψ including filtering based on domain-specific criteria
(e.g. removing false positives related to background noise).

7. Visualize predictions

V = visualize(I′, P′)

8. Return prediction results and Visualization

Return P′, V

Explanation of key steps. The above algorithm effectively combines the original object
detection capabilities of Roboflow with domain-specific enhancements for container
damage detection in seaports. Preprocessing involves normalizing image data and apply-
ing transformations to replicate real-world conditions. The YOLO-NAS model is then
employed to predict bounding boxes and class labels, delivering high-precision object
detection with confidence scores. Finally, post-processing steps refine these predictions,
improving accuracy by filtering false positives and accounting for the complexities of the
seaport environment. This comprehensive approach uses the high performance of
YOLO-NAS, optimizing it for the specific challenges of detecting container damage,
and ensuring that the system remains robust and reliable in diverse operational settings.

Modification of the algorithm. To address the unique challenges of container damage
detection at seaports, several domain-specific modifications were made to the object
detection algorithm. First, a custom preprocessing step was introduced to normalize
images under varying lighting conditions, such as intense sunlight or low-light scenarios,
ensuring consistent image quality for more accurate predictions. Additionally, custom
data augmentation techniques were developed, simulating real-world conditions like
rust, dirt, and aging containers to enhance the model’s generalization capabilities.
YOLO-NAS was integrated into the pipeline as the primary detection model, replacing
the default Roboflow model, which required specific adjustments for effective utilization.

In post-processing, the algorithmwas enhanced to filter out false positives caused by back-
ground noise, such as stacked containers and moving cranes, using domain-specific knowl-
edge. Dynamic adjustments to confidence (τc) and overlap (τo) thresholds were also
implemented, allowing the model to adapt in real time to varying visibility conditions.
Moreover, the algorithm was integrated into a real-time monitoring system, enabling
instant feedback and automated alerts when significant damage is detected addition that
was not part of the original Roboflow implementation. These modifications significantly
improve the accuracy and reliability of container damage detection in seaports, differentiating
this approach fromstandard object detection applications and contributing to the novelty of the
research.
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Key performance metrics

Although object detection may seem like a straightforward task in computer vision, it
requires a careful and nuanced approach to achieve accurate results. Object detection,
as the term implies, involves identifying and locating objects within an image or video
frame. Essentially, we train AI to recognize and differentiate between various target
objects present in the visual data.

Yet, how canwe ensure that the detected objects are accurate and that the algorithm is per-
forming optimally? This is where object detection metrics come into play. Indranath C and
Gyusung Cho12 suggests these metrics to help evaluate the model’s effectiveness. In this
paper, metrics such as precision, recall, and mAP are employed to assess the accuracy of
the proposed model. The key performance metrics used to gauge the model’s success are out-
lined below.

Precision is calculated as True positives
True positives+false positives .

A high precision value is indicative of the model’s ability to make fewer false positive
predictions. In other words, the model is more selective and accurate when predicting
positive instances.

Recall is computed as True positives
True positives+false negatives .

A high recall value suggests that the model is effective at capturing most of the positive
instances, thereby minimizing the number of false negatives.

mAP is determined as 1
N

∑N
i=1 APi. It is calculated by finding the average precision for

each class and then averaging over several classes. This metric incorporates the tradeoff
between precision and recall, providing a comprehensive measure of the model’s
performance.

Results

Results and analysis

The results section of this study, as depicted in Figures 6 and 7, provides an exhaustive
evaluation of the YOLO-NAS model’s performance in container damage detection,

Figure 6. The process of the proposed model (source: authors).
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utilizing key performance metrics such as precision, recall, and mAP. The model
achieved an impressive mAP of 91.2%, reflecting its robust capability to precisely iden-
tify relevant instances while effectively minimizing false positives. The precision score of
92.4% underscores the model’s high predictive accuracy, indicating its proficiency in cor-
rectly identifying true positives with minimal false positive errors. Additionally, the recall
rate of 84.1% demonstrates the model’s comprehensive detection ability, highlighting its
effectiveness in capturing a significant proportion of true positive instances. This demon-
strates the model’s proficiency in capturing a significant portion of relevant instances
(Table 2).

Moreover, the model exhibits a marked and consistent reduction in class_loss,
box_loss, and obj_loss values, signifying enhanced classification accuracy, refined
object localization, and improved detection robustness. This is corroborated by an
upward trajectory in performance metrics, including precision, recall, mAP, and
mAP50-95, which collectively indicate balanced and substantial advancements in detec-
tion efficacy and model stability.

To ensure methodological rigor and dataset transparency, the dataset was systematic-
ally partitioned, with 88% allocated to the training set (9645 images), 6% to the validation
set (685 images), and 6% to the test set (687 images), comprising a total of 11,017
images. The dataset encompasses a diverse array of container damage types to
enhance the model’s generalizability and ensure representativeness. Furthermore, the
dataset distribution is consistent across all stages of model development, contributing
to reliable and reproducible outcomes. For transparency and reproducibility, the

Figure 7. The prediction results (source: authors).

Table 2. The key performance metrics.

mAP Precision Recall

91.2% 92.4% 84.1%
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dataset is publicly accessible at the Roboflow Container Damage Dataset (https://
universe.roboflow.com/thanh-fscay/container-damage-hmvl7/dataset/1).

This rigorously structured approach, coupled with comprehensive dataset documenta-
tion and accessible data sources, reinforces the methodological robustness and reprodu-
cibility of the experimental findings, thereby validating the model’s applicability in
real-world scenarios.

Discussion of the novelties of this study

YOLO-NAS demonstrates exceptional capabilities in detecting machine anomalies,
excelling in tasks requiring high precision and rapid detection. Achieving notable
metrics, including a mAP of 91.2%, precision of 92.4%, and recall of 84.1% on a
dataset, it has proven reliable for general anomaly detection. However, its application
to detecting structural damage in shipping containers presents novel challenges, such
as environmental noise at port terminals and diverse damage types.

To address concerns regarding comparison consistency, Table 3 has been updated to
evaluate YOLO-NAS, Fmask-RCNN, and MobileNetV2 on container damage datasets. It
is important to note that although all models are trained on container damage datasets,
which are not identical in terms of image composition and coverage. Fmask-RCNN
achieves a low miss rate of 4.599% but suffers from an error rate of 18.887%, limiting
its real-time applicability.17 MobileNetV2 shows promising accuracy for multi-type
damage detection but lacks key metrics like mAP and recall, essential for evaluating per-
formance in complex operational contexts. In contrast, YOLO-NAS consistently outper-
forms these models, demonstrating its robustness and reliability across diverse metrics.
These comparisons underscore the adaptability and effectiveness of YOLO-NAS for con-
tainer damage detection, even within the broader context of varying dataset compositions.

The comparative evaluation in Table 4 and Figure 8 underscores YOLO-NAS’s super-
iority over other advanced models trained on the same dataset, including YOLOv8 and

Table 3. The comparison between models studied in the literature.

YOLO-NAS Fmask-RCNN MobileNetV2

mAP: 91.2% Precision: 92.4% Recall:
84.1%

Miss rate: 4.599% Error rate:
18.887%

Training accuracy:
95.32%

Table 4. The comparison between other deep learning models.

YOLO-NAS YOLOv8
Roboflow 3.0 Object
Detection (Fast)

mAP: 91.2% Precision:
92.4% Recall: 84.1%

mAP: 63.6% Precision: 85.1%
Recall: 72%

mAP: 57.9% Precision:
85.4% Recall: 56.5%
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Roboflow 3.0 Object Detection (Fast). YOLOv8 achieves a mAP of 63.6%, with a pre-
cision of 85.1% and recall of 72%, while Roboflow 3.0 performs at a mAP of 57.9%, pre-
cision of 85.4%, and recall of 56.5%. In contrast, YOLO-NAS outperforms these models
across all metrics, attaining a mAP of 91.2%, precision of 92.4%, and recall of 84.1%.
Training these models under identical conditions and on the same dataset emphasizes
YOLO-NAS’s effectiveness, demonstrating its capability to address container damage
detection challenges with superior accuracy and real-time efficiency. These consistent
results solidify YOLO-NAS as an optimal solution for the specific demands of container
terminal operations.

To summarize, our analysis reveals that YOLO-NAS exhibits significant advantages
over Fmask-RCNN, MobileNetV2, YOLOv8, and Roboflow 3.0 Object Detection
(Fast) across various dimensions. Fmask-RCNN, despite its notable accuracy in object

Figure 8. The process of the YOLOv8 model and the process of the Roboflow 3.0 Object

Detection (Fast) (source: authors).
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detection, is constrained by the slower inference speeds inherent to its two-stage detection
process, rendering it less effective for real-time applications. In contrast, YOLO-NAS uti-
lizes a one-stage detection framework optimized through NAS, achieving a superior
balance between speed and accuracy.

Similarly, MobileNetV2, designed for mobile and edge applications, provides efficient
inference but compromises accuracy, particularly in detecting small or occluded objects
within complex environments. YOLO-NAS overcomes these limitations by leveraging
an enhanced FPN, which significantly improves multi-scale detection and ensures con-
sistent performance across diverse object sizes. Compared to YOLOv8, another model
within the YOLO family, YOLO-NAS incorporates architectural enhancements such
as optimized feature extraction and dynamic activation functions, resulting in improved
mAP and faster convergence during training.

Lastly, while Roboflow 3.0 Object Detection offers a user-friendly and rapid solution,
it lacks the architectural sophistication and precision of YOLO-NAS, making it less
effective for high-stakes applications in challenging environments. Overall,
YOLO-NAS surpasses these models not only in accuracy and inference speed but also
as a flexible and efficient solution tailored to the unique demands of shipping container
damage detection.

By introducing YOLO-NAS to the field of shipping container damage detection, this
research pioneers a more efficient, accurate, and scalable approach for port operations.
This application represents a clear novelty, as YOLO-NAS has not been previously
used in this domain, filling a critical gap in container damage assessment while offering
better overall detection capabilities.

Applications

The application of the YOLO-NAS model in port container terminals is crucial for enhan-
cing operational efficiency and safety. Given its impressive performance metrics,
YOLO-NAS is well-suited for the demanding conditions of port environments, where
real-time accuracy and reliability are paramount.

The YOLO-NAS model can be effectively implemented in a port environment to auto-
mate container damage detection, streamline inspection processes, and ensure continuous
real-time monitoring. To accommodate the dynamic nature of container movement, the
system captures images in real time as containers move through designated detection
portals or while being handled by ship-to-shore cranes. High-resolution cameras
equipped with the YOLO-NAS model are strategically positioned at critical locations,
such as entry and exit points, loading and unloading areas, and transport routes. This
setup enables the model to capture multiple angles of each container, ensuring thorough
coverage without interrupting container flow. As trucks pass through the detection
portals, YOLO-NAS automatically inspects containers for structural deformities, includ-
ing dents, bulges, cracks, and corrosion, without requiring vehicles to stop. This elimi-
nates the need for manual inspections, significantly reducing gate transaction times and
improving overall turnaround efficiency.

In real-time port operations, ensuring the quality of input data for model training is
crucial for maintaining high detection accuracy. To meet these technical requirements,
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training images are carefully preprocessed to standardize parameters such as resolution,
lighting, and contrast, ensuring the model is exposed to realistic conditions similar to
those in the operational environment. Furthermore, augmentation techniques, including
brightness adjustments and varied angles, are applied to make the model adaptable to
the diverse lighting and weather conditions encountered in ports. This approach allows
YOLO-NAS to maintain its accuracy and robustness when inspecting containers under
different lighting conditions or in adverse weather.

Handling stacked and overlapping containers, which is common in port environments,
poses additional challenges. To address this, cameras are positioned at multiple angles to
capture unobstructed views of containers even when they are stacked. In addition,
YOLO-NAS incorporates advanced image processing techniques such as NMS to min-
imize overlapping detections, enabling it to isolate individual containers and identify spe-
cific damage types despite visual obstructions. In scenarios where stacking creates blind
spots, alternative angles are used to capture additional shots, ensuring consistent inspec-
tion coverage even in crowded container yards.

By implementing YOLO-NAS within a real-time, automated inspection system,
the model can recognize and report container damage instantly. The model triggers
an automated alert if damage is detected, enabling rapid response and prioritizing
damaged containers for further inspection or repair. This automated process not
only enhances safety by preventing damaged containers from entering the supply
chain but also helps port terminals comply with international shipping regulations
that mandate thorough inspections and documentation of container conditions.
Additionally, the data collected through continuous inspections provides valuable
insights into damage trends, enabling port operators to optimize maintenance strat-
egies and reduce future incidents.

Overall, the application of YOLO-NAS in port environments addresses the operational
demands of real-time inspection, minimizes delays associated with manual checks, and
supports data-driven decision-making. By automating container damage detection,
YOLO-NAS enhances operational efficiency, safety, and compliance in modern port
management.

Scalable deployment strategies for YOLO-NAS in future

Nevertheless, as container damage detection systems transition from research to real-
world applications, the scalability and flexibility of deployment frameworks become
pivotal. Two primary approaches, cloud-based infrastructure and edge AI implementa-
tion, offer complementary solutions to address the unique demands of port operations
which can be integrated into future implementations.

A cloud-based deployment centralizes data processing and storage, leveraging power-
ful computing resources to manage high volumes of container image data. In this setup,
images captured at the port are transmitted to a cloud server where the YOLO-NAS
model processes them to detect damage. The results are then shared with relevant stake-
holders in real time. Consequently, centralized data storage enables the application of
advanced analytics and machine learning to detect trends, predict maintenance needs,
and improve operational efficiency over time. Besides, cloud platforms can dynamically
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scale computing resources to handle fluctuating workloads, particularly during peak
traffic.

Meanwhile, Edge AI brings the processing capability directly to the point of data col-
lection, using edge devices such as embedded systems or AI-powered cameras. This
approach enables real-time damage detection without relying on constant connectivity
to a central server. As a result, by processing data locally, not only does edge AI eliminate
the need for large-scale data transmission, making it ideal for time-critical operations, but
it also ensures uninterrupted performance even in areas with poor or inconsistent network
coverage because of operating independently.

Furthermore, a hybrid approach combining cloud-based and edge AI solutions could
leverage the strengths of both strategies. Take edge devices as an example, they can
handle initial real-time detection. At port entry points, edge devices embedded in
cameras can quickly assess container conditions and flag anomalies. These flagged
cases are then uploaded to the cloud for further review and documentation, enabling com-
prehensive damage tracking without overloading edge systems. This dual-layer architec-
ture ensures responsiveness while supporting large-scale analytics and coordination.

In the future, integration with Internet of Things networks, where edge devices com-
municate seamlessly with other port systems, such as gate automation and crane monitor-
ing, could further streamline operations. Also, port authorities could allow models
deployed at multiple ports to collaboratively improve without sharing raw data, addres-
sing privacy concerns while enhancing performance across locations.

Conclusion and future scope

The YOLO-NAS model demonstrates exceptional effectiveness in detecting container
damage, achieving a precision of 92.4%, recall of 84.1%, and mAP of 91.2%. Its
ability to identify subtle or complex damages, combined with real-time processing cap-
abilities, makes it a robust solution for the demanding environment of container term-
inals. By automating inspections, YOLO-NAS minimizes human error, ensures
compliance with international shipping regulations, and enhances operational efficiency
in port management.

Despite its advantages, the model faces limitations, including its reliance on high-
quality, annotated datasets and potential challenges in detecting damage in cluttered or
occluded environments. Small defects, such as rust stains, may also go undetected, and
its high computational demands can pose difficulties for resource-constrained settings.

Future research on YOLO-NAS could focus on enhancing its adaptability and effi-
ciency for real-world port environments. A key improvement lies in integrating multi-
class detection, enabling the system to identify not just container damage but also
other anomalies like container mislabeling or structural issues. This would make the
model more versatile and applicable to a broader range of use cases. Additionally, explor-
ing hardware-efficient model variants, such as lightweight architectures or quantized ver-
sions of YOLO-NAS, would enable its deployment on resource-constrained devices,
broadening its adoption in ports with limited infrastructure.
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Moreover, extending the testing framework to simulate variable environmental condi-
tions, such as fluctuating lighting, weather changes, or heavy port traffic, would
strengthen the model’s robustness. Testing under such diverse conditions would ensure
better generalization, making the system reliable across different operational settings.
Advanced data augmentation techniques could replicate these scenarios during training,
preparing the model for the complexities of real-world port environments.

What is more, integrating YOLO-NAS with existing automation systems could create
a comprehensive solution, combining damage detection with tasks like container ID rec-
ognition, weight monitoring, and gate automation, thereby streamlining port operations.
Leveraging YOLO-NAS-generated data for predictive maintenance represents another
promising direction. By analyzing damage patterns over time, ports could anticipate
maintenance needs, reducing disruptions and enhancing supply chain resilience.

Finally, optimizing the model’s computational demands through hardware-specific
improvements could make it globally accessible, especially in regions with limited
resources. These advancements have the potential to transform port logistics, improving
safety, efficiency, and operational effectiveness in global supply chains.
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