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Abstract—The rapid and widespread adoption of unmanned
aerial vehicles (UAVs) poses significant threats to public safety
and security in sensitive areas and subsequently underscores
the urgent need for effective UAV surveillance solutions, where
UAV classification emerges as a vital technology. Deep learning
(DL) methods can autonomously extract implicit features from
UAV signals and subsequently infer their types, provided that
sufficient signal samples are available. Due to the high mobility
of UAVs, it is challenging to ensure continuous monitoring
between UAVs and the surveillance system to obtain sufficient
samples. Moreover, DL models developed from sufficient but
environment-specific datasets tend to be less generalized. This
paper proposes a novel federated semantic regularization for
learning an UAV classification model and further classifying UAVs
across diverse environmental conditions. The approach enhances
model generalization by regularizing semantic features during the
local model training process on each participant. Subsequently,
these local models are aggregated into a robust global model.
Extensive testing across multiple environments demonstrates the
superior classification performance of our approach compared
to existing non-federated and federated approaches. The average
classification accuracy of the proposed method in the three
environments is 95.68%, which is improved by 13.39% compared
to the non-federated methods and by 2.75% compared to the
federated methods.

Index Terms—UAV classification, federated learning, prototype
learning.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) play an important role in
various services such as goods delivery, disaster monitoring or
military and have been regard as a key technology in 5G/6G
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wireless networks due to its high flexibility and seamless
connectivity [1], [2]. Nevertheless, the rapid and widespread
usage of UAV technology poses substantial threats to public
safety and the potential compromise of security in sensitive
zones. Regulations do not allow UAVs to fly over all areas,
in addition to typical altitude limitations, but these regulations
are easy to crack, resulting in lifting the limits of height and
no-fly zone. As a result, there is an urgent need for UAV
surveillance solutions.

Radio frequency (RF) sensing is one of the key technologies
used in surveillance solutions to classify UAV. The relevant
research on RF-based UAV classification mainly falls into
two categories, namely handcrafted feature-based and deep
learning (DL)-based approaches. Handcrafted features [3],
[4] are typically derived from observations or calculations
based on captured signals and generally depend on expert
knowledge. In contrast, DL methods can autonomously
extract implicit features from UAV signals and subsequently
infer their types, provided that sufficient signal samples are
available. This autonomous feature extraction by DL models
not only reduces the reliance on specialized expertise but also
enhances the adaptability and accuracy of the classification
processes [5]–[7]. However, due to the high mobility of
UAVs, it is challenging to ensure the continuous listening
between UAVs and a surveillance system. In such cases,
signal samples captured by the surveillance system are not
sufficient to drive the training process of the DL model.
Even if the surveillance system can capture sufficient samples,
the DL model developed from sufficient but environment-
specific samples tends to be less generalized. Integrating the
samples from multiple surveillance systems through wireless
transmission could address this challenge, but it is infeasible
or impractical due to limited communication resources, data
privacy concerns, or country regulations [8].

Federated learning (FL) [9] can offer various important
benefits such as data privacy enhancement, low-latency
network communication and enhanced learning quality for
DL applications [2]. With the help of FL, UAV surveillance
systems can obtain a much better level of classification by
coordinating multiple systems to perform training process
while keeping data safe. Due to the high mobility of UAVs
and the different locations of surveillance systems, there are
significant distribution differences between the signal samples
of UAVs captured by multiple surveillance systems. Such
distribution differences make surveillance systems suffer from
learning-drift, resulting in unstable and slow convergence.



In this paper, a collaborative and cross-environment UAV 
classification m ethod ( termed F edUAV) b ased o n federated 
semantic regularization (FedSR) is proposed. FL is used to 
obtain a UAV classification m odel w ith g ood classification 
performance and strong environment adaptability. In addition, 
semantic regularization is introduced into the FL process, 
making the learning process more stable and faster. The main 
contributions are summarized as follows:

• We proposed a novel method for classifying UAVs
across various environmental conditions, employing the
principles of federated learning to enhance both accuracy
and privacy. The proposed approach allows multiple UAV
surveillance systems to collaboratively learn a shared
classification model without exchanging raw data. This
is particularly important for operations requiring high
confidentiality and data security.

• We proposed federated semantic regularization, where
each participating surveillance system adjusts its lo-
cal model by emphasizing the consistency between
local features and global semantic prototypes. This
regularization helps in mitigating the overfitting of
models to local noise, generalizing well across more
diverse environments. Our federated learning framework
facilitates the aggregation of these semantically enriched
local models into a robust global model.

• We conducted extensive experiments which demonstrate
the efficacy of the method in consistently classi-
fying UAVs under varying environmental conditions,
significantly outperforming existing non-federated and
federated models. These findings not only validate
the robustness and adaptability of our approach but
also illustrate its potential in surveillance applications
where UAVs must operate effectively across diverse and
challenging environments.

The remainder of this paper is organized as follows: Section
II presents the related works. Section III describes the system
model, the problem formulation, and the dataset. Section
IV introduces our collaborative and cross-environment UAV
classification approach. Section V presents the numerical
results and discussions for a set of 6 UAVs in a cross-
environment scenario. Finally, Section VI offers concluding
remarks and outlines future research directions.

II. RELATED WORKS

A. RF-based UAV Detection and/or Classification

The paired controller and UAV form an entire com-
munication system, and there are two way communication
composed of uplink and downlink communication. By the
uplink communication, the commands are sent to the UAV
via controller; by the downlink communication, the UAV
telemetry (flight data) and the video images from the payload
are sent to the controller [11]. Both uplink signals and
downlink signals can be utilized to detect and/or classify the
UAVs.

Experimentally, it was observed that it is much more
effective to detect the signal from the UAV controller as
against the transmission from the UAV itself because the

former has higher energy than the latter [12]. Therefore,
there are some works [12], [13] that focus exclusively on the
detection/classification of the RF signals from the controller.
Ezuma et al. [12] split raw RF signals into frames and
transformed them into the wavelet domain to remove the bias
in signals and reduce the size of data to be processed; a naive
Bayes approach is used to check for the presence of a UAV
in each frame. In addition, a set of statistical features (i.e.,
skewness, variance, energy spectral entropy, and kurtosis) of
energy transient signals is extracted and significant features
are selected by performing neighborhood component analysis
and subsequently are fed to several machine learning (ML)
algorithms for classification. Ezuma et al. [13], [14] extended
their work for identifying UAV controllers in the presence
of wireless interference, i.e., Wi-Fi and Bluetooth devices.
Not only is the scene more complex, but the number of
statistical features is expanded from 4 to 15; the number of
ML algorithms has been expanded from 4 to 5; the number of
controllers has been expanded from 14 to 17; the confusion
that results when attempting to classify UAV controllers of
the same make and model is analyzed. For the same dataset
[14], Bremnes et al. [15] decomposed RF signals into 16
fixed boundary empirical wavelet sub-band signals, and fed
them into a lightweight deep convolutional neural network to
classify various types of UAVs.

The passive UAV surveillance system listens for the RF
signals in the monitored area. Affected by building occlusion,
the surveillance system receives downlink video signals
transmitted from the UAV with a higher probability than
uplink control signals [16]. In addition, malicious users
can conduct criminal activities through remote control to
avoid detection, which means that the controller is far
away from the surveillance system. This makes capturing
the uplink signals for analysis potentially infeasible [17].
Therefore, there are some works that focus exclusively on the
detection/classification of the RF signals from the UAV. Al-
Sa’d et al. [18] captured a dataset [19] of 3 UAVs functioning
in different modes, including off, on and connected, hovering,
flying, and video recording. Subsequently, they computed the
discrete Fourier transform (DFT) of each recorded segment,
and then used three deep neural networks to detect the
presence of a UAV, the presence of a UAV and its type, and
lastly, the presence of a UAV, its type, and flight mode. After
that, some neural networks that could further improve the
classification performance on the dataset [19] were proposed,
such as one dimensional convolutional neural network
[20], multi-channel one-dimensional convolutional neural
network [21], frequency-isolated multi-channel deep neural
network [22], and time-frequency multiscale convolutional
neural network [23]. Xue et al. [17] made a performance
improvement of the UAV classification system from the
aspects of signal preprocess, signal representation, signal
augmentation and deep neural networks.

With more numerous UAVs, more complex electromagnetic
environments, and more demanding surveillance requirements,
some delicate works have been proposed. Multi-classifier
[24], stacked denoising autoencoder [25], [26] and multi-
scale convolutional architecture [27] have been presented



for a more detailed UAV detection or classification. Model-
agnostic meta-learning [28], tri-residual semantic network 
[29] have been used to deal with UAV classification i n a 
scenario where limited training samples are available. The ISM 
bands are generally populated by several homogeneous and 
heterogeneous RF transmissions and the received RF signals 
are composed of multiple transmissions. According to this, 
YOLO-lite architecture that performs the UAV detection and 
classification o n t he s pectrogram i mage a nd a  spectrogram 
segmentation method that directly splits the entire spectrum 
into several subspectrograms to separate the interference 
signals working outside of the UAV bandwidth were presented 
in [30] and [16], respectively. For a noise-robust UAV 
classification, Chen et al. [31] proposed a threshold calculation 
algorithm based on global context information, reducing the 
influence of the noise on the UAV classification. For a reliable 
UAV classification, C hen e t a l. [ 32] p roposed a  generalized 
Pareto distribution model-based uncertainty scoring function, 
enabling an ability to detect both out-of-distribution and 
misclassified samples.

B. Federated Learning with RF Signal Processing
Most of current RF signal processing methods such as

modulation classification [33]–[36], RF fingerprinting [37],
jamming recognition [38], [39] introduced the FedAvg [9]
to enable distributed schemes, and then paid attention to
signal representation, lightweight network design and privacy
protection. Wang et al. [33] proposed a distributed modulation
classification scheme based on FedAvg and convolutional
neural network and they extended an approach [34] based on
balanced cross entropy for the condition of class imbalance
and noisy varying. Liu et al. [35] designed a feature fusion
network and signal representation composed of generalized
envelope square spectrum and fractional lower order cyclic
spectrum for a distributed modulation classification scheme.
Liu et al. [37] designed a deformable convolutional network
for distributed RF fingerprinting identification. Liu et al.
[38] used a densely connected convolutional network and
signal representation composed of Wegener-willie distribution,
fractional Fourier transform and constellation diagram for
a distributed few-shot jamming recognition. Meftah et al.
[39] presented spectral correlation function and convolutional
neural network-based distributed jamming recognition. For
privacy protection, differential privacy federated learning [36]
and blockchain [40], [41] have been introduced into the
distributed modulation classification method.

These works have high communication overhead due to
frequent communication between servers and clients, whereas
these neural networks have high space complexity. Increasing
communication interval [9] and network lightweight design
[42]–[44] have been suggested as the solutions. Fu et al.
[42] designed a lightweight network based on separable
convolution for distributed modulation classification. Dong
et al. [43] designed a lightweight network composed of a
phase estimator and transformer, spatial feature extractor,
and temporal feature extractor for distributed modulation
classification. Shi et al. [44] modified a residual network for
distributed RF fingerprinting.

In addition, these methods are at risk of declining classifica-
tion performance in a scenario with data heterogeneity because
FedAvg is quite challenging to deal with data heterogeneity,
which introduces a drift in the updates of each client, resulting
in slow and unstable convergence [45]. Data sharing and the
dispersion regularization between global and local models
have been suggested as the solutions. Reus-Muns et al. [10]
leveraged the data-sharing approach in [46] to relax the data
heterogeneity in distributed UAV classification. Qi et al. [47]
designed a conditional variational autoencoder to generate a
synthetic modulation dataset, which is stored in the server and
available for each client with uploading a portion of its private
data, mitigating the data heterogeneity significantly. Qi et al.
[48] regarded the private classes of a particular local device as
incremental classes and incremental learning was adopted to
learn the classification knowledge of private classes, avoiding
excessive dispersion between the global model parameters and
local model parameters. Zhang et al. [49] used the proximal
term [50] to ensure that the local model maintains a finite
distance from the global model during learning.

C. Discussion and Motivation

Current UAV classification typically assumes that sufficient
samples are available at a central location for training. Yet,
the resulting models are generally only applicable within
their training environments, making them difficult to apply
to location-flexible UAVs. Federated learning provides an
effective solution to obtain a generalized UAV classification
model across environments by combining samples from
multiple environments. However, few studies have focused on
federated UAV classification schemes. Furthermore, to the best
of our knowledge, no existing literature has analyzed feature
drift in heterogeneous RF signals collected from different
environments in UAV classification. We have conducted a
detailed analysis of this phenomenon and proposed a solution:
federated semantic regularization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The system, composed of multiple UAV surveillance
systems and a parameter server, is shown in Fig. 1. These
systems are located in multiple geo-locations, and UAV RF
signals are collected and stored on each system. The parameter
server schedules each surveillance system to perform local
learning and enables federated optimization. Due to the
cooperation between the systems and the parameter server,
each local dataset is fully utilized to obtain a global model
that generalizes for UAV classification.

B. Problem Formulation

1) DL-based UAV classification method: In the DL-based
UAV classification method, the goal is to produce a model
F with a mapping function from RF signal space to
category space. The collected dataset D is drawn from the
distribution P(x, y), where x and y denote the RF signals and
corresponding label, respectively. This model is parameterized



UAV surveillance systems parameter serverUAV wireless 
communication

local dataset local model global model model average 
and weight

𝛼𝑚

𝛼𝑚

𝛼𝑚

𝛼𝑚

Fig. 1. The system model of proposed federated semantic regularization-based UAV classification method. The parameter server schedules each surveillance
system to perform local learning and enables federated optimization. Due to the cooperation between the systems and the parameter server, each local dataset
is fully utilized to obtain a global model that generalizes for UAV classification.

by learnable weights w and RF signals x ∈ D. The objective
function is

argmin
w

Lw(F(w;x), y), (1)

where Lw is a general definition of any supervised learning
task (e.g., a cross-entropy loss).

2) FL-based UAV classification method: In the FL-based
UAV classification method, each surveillance system owns
a local dataset Dm drawn from the distribution Pm(x, y).
Usually, these systems share a model F with the same
architecture and hyperparameters. This model is parameterized
by learnable weights ω and RF signals x ∈ Dm. The objective
function is

argmin
w

M−1∑
m=0

|Dm| (Lw(F(w;x), y) + λRw(F(w;x), T ))∑M−1
m=0 |Dm|

,

(2)
where M denotes the number of surveillance systems, |Dm|
is the number of RF signals in the local dataset, Rw is a
general definition of any regularization term, and λ represents
the weight scalar to balance the two terms.

However, in a real-world FL environment, each system is
deployed in a particular location, leading to a statistically
heterogeneous environment. In the statistical heterogeneous
settings, Pm varies across systems, indicating heterogeneous
input/output space for x and y. Therefore, a federated
semantic regularization-based UAV classification method is
proposed, which can utilize these heterogeneous data to build
a generalized model for UAV classification.

C. Dataset Description

DroneRFa [51] is a large-scale dataset of UAV RF signals. A
software-defined radio device, USRP-2955, is used to monitor

signals between UAVs and their controllers, including 9 types
of flying UAV signals in an outdoor environment, 15 types
of UAV signals in an indoor environment, and 1 type of
background signal as reference. We select 6 types of flying
UAV signals in an outdoor environment to build the distributed
data scenario, that are Phantom 3, Phantom 4 Pro, MATRICE
200, MATRICE 100, Air 2S, and Mini 2. The RF signals
of each UAV are collected when the distance between the
UAV and its controller is 20-40 m (i.e, environment 0), 40-
80 m (i.e., environment 1), and 80-150 m (i.e., environment
2), respectively. The sampling rate is 100 MS/s, the center
frequency is 2,440 MHz, the receive gain is 50 dB. For each
type of UAV at each distance, 8 signal segments with no less
than 100 million sampling points are temporally collected.
Therefore, we select the first 6 signal segments to build the
distributed data scenario, using the remaining 2 segments as
the testing dataset. These segments are split into multiple
samples containing 1 million sampling points, and there is
no overlap between any two samples. Finally, the details of
distributed data scenario are shown in Fig. 2.

IV. FEDSR-BASED UAV CLASSIFICATION METHOD

In the FedSR-based UAV classification method, the
parameter server filters out a valid subset M̂ from all the
surveillance systems M as participants in this round of FL.
After the participants are selected, all the systems in the
participant subset will receive the model with global weights
w from the server, and perform local learning (see the details
in Section IV-A) driven by the local dataset to update the
weights. ShuffleNetV2 [52], a lightweight neural network, is
an example of the model. After obtaining the model with
updated weights wi, the parameters are sent to the server
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Fig. 2. The sample distribution of local datasets of UAV surveillance systems. Specifically, the RF signals from UAVs, collected in various environments,
are divided into 24 subsets to simulate 24 UAV surveillance systems and their local datasets.

through the communication network. The server performs
federated optimization (see the details in Section IV-B),
aggregating the received weights to obtain the global weights
w, then returns the global weights to each system for the next
round of FL. A generalized global model is obtained after such
rounds are performed sufficiently often.

The statistical heterogeneity of UAV RF signals shows
feature drift in a low-dimensional manifold. Therefore, we
design FedSR to alleviate feature drift. A semantic prototype
of each UAV is learned from local learning on each system and
aggregated from federated optimization on the server. Each
system can improve the generalization ability of the local
model through weight interactions and semantic prototype
interactions. More details are described below.

A. Local Learning

1) RF signal preprocessing: The received RF signals are
transformed by short time Fourier transform (STFT), which
can be formulated as

Xk,m =
N−1∑
n=0

x[n]ω[n−mR]e−j 2π
N kn

for k = 1, 2, . . . , N and m = 1, 2, . . . ,M,

(3)

where ω[n − mR] is a Hamming window function that
splits the signal into multiple segments, mR is the center of
Hamming window, and X denotes a two-dimensional complex
matrix with each column representing the Fourier-transformed
sequence of each signal segment, Xk,m is the element of the
matrix X, M is number of columns of X, N is the number
of rows of X. The width of Hamming window is 1,024, and
the R is 1,024. The spectrum in dB scale, X̃ is given as

X̃ = 10 log10
(
|X|2

)
, (4)

where |X| is the amplitude of X. The dimension of the
spectrum is 1024× 976. To facilitate the neural network with
a larger batch size, the spectrum is downsampled to 1/4 of the
original spectrum and cut to 244× 244. The final spectrum of
RF signal of each UAV is shown in Fig. 3

2) Local optimizer: The classification performance of the
current local model on the local dataset is measured by the
cross-entropy loss, which can be formulated as

Lwm
=

1

|Dm|

|Dm|−1∑
d=0

− log
exp (qd,yd

)∑C−1
c=0 exp (qd,c)

, (5)

where qd,c is an element of the vector qd produced by
F(wt

m; X̃d), C is the number of categories of UAV. For each
local dataset, the local semantic prototypes P

t

m = {pt
m,c|c =

0, 1, ..., C − 1} can be calculated by

pt
m,c =

∑|Dm|−1
d=0 {yd == c} zd∑|Dm|−1
d=0 {yd == c}

, c = 0, 1, . . . , C − 1, (6)

where zd is a feature vector produced by the submodule
of F(wt

m; X̃d). The feature drift of the RF signal across
environments is measured by the mean square error between
the feature vectors and the global semantic prototypes P

t
=

{pt
c|c = 0, 1, ..., C − 1}, which can be formulated as

Rwm
=

1

|Dm|

|Dm|−1∑
d=0

(
zd − pt

yd

)2
, (7)

where pt
yd

is the global semantic prototype of category yd
and is updated during federated optimization. Therefore, we
can obtain a local model with better classification performance
and avoid feature drift by minimizing these two losses, which
can be formulated as

minLwm + λRwm , (8)

where λ represents the weight scalar to balance the two losses.
The illustration of effectiveness of FedSR is shown in Fig. 4.

Stochastic gradient descent (SGD) with momentum is
adopted to solve the optimization problem. The gradient of
losses with respect to each weight is computed and the weights
are modified along the downhill direction of the gradient in
order to reduce the losses. That is, the modification of the
weight vector at the current time step depends on both the
current gradient and gradient change of the previous step as

gt+1
m ← ∇wm (Lwm

+ λRwm
) , (9a)

vt+1
m ← αvt

m − εgt+1
m , (9b)



Fig. 3. The spectrum of RF signal from each UAV in various environments. Since the color bars of these spectrums are the same, only three color bars are
showed for a better layout. Furthermore, the color bar indicates the amplitude of the spectrum, which is formulated in Equation (4).
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Fig. 4. The illustration of effectiveness of FedSR.

wt+1
m ← wt

m + vt+1
m , (9c)

where α is the momentum parameter, ϵ is the learning rate.
After iterating the local optimizer multiple times, the weights
of the local model and the local semantic prototypes are
uploaded to the server to perform a federated optimization.

B. Federated Optimization

Local learning establishes the mapping relationship between
the features of the RF signal of the UAV, collected in
different environments, and their categories. The mapping
relationship is constructed by the weights of each local
model. By aggregating the weights of each local model to
get global weights, federated optimization has the potential
to further construct the mapping relationship between the
environment-independent features of the RF signal of the UAV
and its categories. In addition, the federated optimization by
aggregating the local semantic prototypes to get the global
semantic prototypes, which provide a reference in the process
of learning the features of the RF signal of the UAV in each
local model, prompts the features of the RF signal of the same

UAV collected in different environments close to the reference.
The details of weight aggregation and prototype aggregation
are as follows.

• Weight aggregation: The server takes the average of
weights of the resulting local models, that is

wt+1 ← 1

M̂

M̂−1∑
m=0

wt+1
m . (10)

• Semantic prototype aggregation: The local semantic
prototypes belonging to various local dataset are averaged
on the server to obtain the global semantic prototypes
P

t+1
= {pt+1

c |c = 0, 1, ..., C − 1}, that is

pt+1
c ← 1

M̂

M̂−1∑
m=0

pt+1
m,c, c = 0, 1, ..., C − 1. (11)

In Algorithm 1, we summarize the process of FedSR-based
UAV classification method.

V. NUMERICAL RESULT AND DISCUSSION

A. Simulation Parameters

We implemented our approach in PyTorch [53] (v1.10.2
with Python 3.6.13). The learning rate ϵ is 0.01 and the
momentum parameter α is 0.9. The weight scalar λ is 0.2
and the aggregated weight scalar αm is 1

M̂
. The number of

local epoch Tl is 5. The value of fraction of clients Cf is 0.1.
We train the model for 300 communication rounds and the
batch size is 16. Experiments are performed using NVIDIA
GeForce RTX 3090 GPU.



Algorithm 1: FedSR-based UAV classification method
B is the local minibatch size; Tl is the number of
local epochs; T is the number of communication
round; Cf is the fraction of systems that perform
local learning on each round.

[Server executes]
initialize w0, P

0

for each round t = 0 to T − 1 do
M̂ ← max(Cf ·M, 1)
St ← random set of M̂ systems
for each system m ∈ St in parallel to do

wt+1
m ,P t+1

m ← SystemUpdate(m,wt,P
t
)

end
Weight aggregation as Equation (10)
Semantic prototype aggregation as Equation (11)

end
SystemUpdate(m,wt,P

t
)

wt
m ← wt

for each local epoch tl = 0 to Tl − 1 do
B ← Split Dm into batches of size B
for batch b ∈ B do

Calculate cross-entropy loss as Equation (5)
Calculate feature drift as Equation (7)
Update local model as Equation (9)

end
end
Compute local semantic prototypes P

t+1

m as Equation (6)
return wt+1

m and P
t+1

m to the server

B. Benchmarks

The proposed method is compared with multiple bench-
marks. To ensure the fairness of the comparison, without
special explanation, the model, loss function, optimizer, and
learning rate used by each benchmark is ShuffleNetV2, cross-
entropy loss, SGD with momentum, and 0.01, respectively.

• CentUAV: Multiple suveillance systems transmit their
local dataset to the server. The server uses the integrated
dataset to perform the training process for obtaining an
UAV classification model.

• LocalUAV: The surveillance system uses its own local
dataset to perform the training process for obtaining an
UAV classification model.

• LocalUAV+ (ResNet18) [24], [51]: The surveillance
system uses its own local dataset to perform the training
process for obtaining an UAV classification model.
Specifically, the model used here is ResNet18, which is
more complex than ShuffleNetV2.

• LocalUAV+ (Triplet Loss) [29]: The surveillance system
uses its own local dataset to perform the training process
for obtaining an UAV classification model. Specifically,
the loss function used here is the combination of cross-
entropy loss and triplet loss.

• FedAvg [9]: Multiple surveillance systems perform local
training and the server performs federated optimization.
FedAvg differs from FedSR in that the local training of

FedAvg is supervised by cross-entropy loss, and federated
optimization of FedAvg consists of weight aggregation.

• FedSGD [33]: Multiple surveillance systems perform
local training and the server performs federated optimiza-
tion. FedSGD differs from FedSR in that all surveillance
systems of FedSGD participate in local training and
federated optimization at each communication round, the
local training is supervised by cross-entropy loss, and
federated optimization consists of weight aggregation.

• FedProx [49]: Multiple surveillance systems perform
local training and the server performs federated opti-
mization. FedProx differs from FedSR in that the local
training of FedProx is supervised by cross-entropy loss
and proximal term, and federated optimization of FedProx
consists of weight aggregation.

C. Classification Accuracy (ACC)

1) FedUAV vs. LocalUAV: The ACCs across three different
environments are shown in Table I. LocalUAVs exhibit
varied ACC across the three environments, with each
LocalUAV achieving its highest ACC within the environment
it was presumably optimized for. However, there is a
noticeable drop in ACC when these LocalUAVs are tested
in environments other than their primary one, indicating a
specialization that comes at cost of generalization. Across all
the environments, the ACC of FedUAV significantly surpasses
most of LocalUAVs, with ACC exceeding 92%. This suggests
that FedUAV has superior generalization capabilities and
adaptability to different environments.

The confusion matrices of LocalUAV-5 from environment
0, LocalUAV-5 from environment 1, LocalUAV-7 from
environment 2, and FedUAV are shown in Fig. 5, where
these LocalUAVs demonstrate superior performance in their
respective environments, compared to the other LocalUAVs
in the same environments. We also observed that there is
a noticeable drop in performance when these LocalUAVs
are tested in environments other than their designated ones.
The FedUAV can correctly classify the UAVs across all
the environments. Notably, the ACC of confusion matrix of
FedUAV is inconsistent with that in Table I because the ACC
in Table I is the average ACC of 5 experiments, while the
confusion matrix is one of the 5 experiments.

2) FedUAV vs. Existing UAV classification methods: Some
advanced neural networks and loss functions have been
employed to enhance UAV classification (termed LocalUAV+
in this paper), such as the ResNet18 [24], [51] and triplet loss
[29]. As shown in TABLE II, LocalUAV+ achieves higher
ACC than LocalUAV. However, ACC still drop significantly
when LocalUAV+ is tested in environments other than it des-
ignated ones. The superiority of FedUAV over LocalUAV has
been shown in TABLE I, and TABLE II further demonstrates
its advantages over the existing FL algorithms, such as FedAvg
[9], FedSGD [33] and FedProx [49]. FedSR shows better
robustness to environments. CentUAV has the highest ACC
in this scenario. It achieves superior classification performance
with substantial communication overhead and potential privacy
risks. The proposed FedSR-enabled FedUAV approaches



(a) LocalUAV-5: Env 0 → Env 0 (b) LocalUAV-5: Env 1 → Env 0 (c) LocalUAV-7: Env 2 → Env 0 (d) FedUAV: Env * → Env 0

(e) LocalUAV-5: Env 0 → Env 1 (f) LocalUAV-5: Env 1 → Env 1 (g) LocalUAV-7: Env 2 → Env 1 (h) FedUAV: Env * → Env 1

(i) LocalUAV-5: Env 0 → Env 2 (j) LocalUAV-5: Env 1 → Env 2 (k) LocalUAV-7: Env 2 → Env 2 (l) FedUAV: Env * → Env 2

Fig. 5. The confusion matrices of LocalUAV-5 from environment 0, LocalUAV-5 from environment 1, LocalUAV-7 from environment 2, and FedUAV. ”Env
number1 → Env number2” means that the UAV classification model is trained using the dataset collected from the environment number1 but tested using
the dataset collected from the environment number2. ”Env * → Env number” means that the UAV classification model is trained using the distributed
dataset but tested using the dataset collected from the environment number.

CentUAV’s performance, offering a viable alternative with
fewer privacy risks and communication overhead.

3) FedSR vs. FedAvg: We further analyzed the ACC of
FedAvg and FedSR across various regularization intensities,
represented by the value of λ in Equation (8). As demonstrated
in Fig. 6, FedSR consistently outperforms FedAvg across many
intensities. Proper regularization effectively guides the local
training of FedSR, enhancing the classification performance
of local models on local datasets without significant deviation
from the global model. This improves the model’s robustness
across different environments. However, the local training of
FedAvg puts more emphasis on the classification performance
of local models on local datasets, so it deviates from the
global model, resulting in the model being less robust to
the environment than FedSR. When the proposed FedSR is
compared to the benchmarks, the λ used in FedSR is 0.2.

In addition to the performance advantages, FedSR has a
more stable and faster convergence process than FedAvg. The
loss convergences of several difficult systems are shown in Fig.
7, that are system 2 in environment 0, system 3 in environment

Fig. 6. The ACC of proposed FedSR and FedAvg. The left, middle and right
figures show the ACC of the models in environment 0, 1 and 2, respectively.

1, and system 4 in environment 2. These systems have limited
samples, and the number of samples of each category varies
greatly, showing a long-tail distribution.

D. Effectiveness Analysis of Semantic Regularization

We attempted to explain the misclassification of LocalUAVs
and the classification of FedUAV by analyzing the feature
drift of testing samples. We also chose LocalUAV-5 from
environment 0, LocalUAV-5 from environment 1, and



TABLE I
THE ACC OF FEDUAV AND LOCALUAV

Env 0 Env 1 Env 2

Environment 0

LocalUAV-0 82.42 53.61 32.34
LocalUAV-1 75.62 38.56 38.64
LocalUAV-2 90.67 41.83 34.84
LocalUAV-3 95.28 68.83 30.11
LocalUAV-4 97.92 51.00 31.20
LocalUAV-5 99.94 57.50 37.34
LocalUAV-6 99.55 46.33 30.60
LocalUAV-7 99.21 58.83 39.67

LocalUAV (mean) 92.58 52.06 34.34

Environment 1

LocalUAV-0 66.01 78.89 56.63
LocalUAV-1 65.96 78.50 57.39
LocalUAV-2 67.64 73.83 53.04
LocalUAV-3 73.88 67.56 63.26
LocalUAV-4 66.18 84.11 59.24
LocalUAV-5 58.20 85.17 65.87
LocalUAV-6 43.99 84.17 53.21
LocalUAV-7 40.45 81.22 39.67

LocalUAV (mean) 60.29 79.18 56.04

Environment 2

LocalUAV-0 76.57 67.44 72.66
LocalUAV-1 61.52 65.83 76.52
LocalUAV-2 75.34 54.61 75.71
LocalUAV-3 59.38 65.33 73.97
LocalUAV-4 62.42 54.56 67.23
LocalUAV-5 64.78 47.17 72.93
LocalUAV-6 60.56 66.17 78.48
LocalUAV-7 48.48 60.50 83.64

LocalUAV (mean) 63.63 60.20 75.14

/ FedUAV (Proposed) 98.02 96.41 92.63

Note: Number represents the top-1 ACC; number represents the top-2
ACC.

TABLE II
THE ACC OF FEDUAV AND EXISTING UAV CLASSIFICATION METHODS

Env 0 Env 1 Env 2

LocalUAV 92.58 79.18 75.14

LocalUAV+ ResNet18 [24], [51] 97.51 85.86 81.98
Triplet Loss [29] 97.54 85.95 81.87

FedUAV

FedAvg [9] 92.72 95.73 90.37
FedSGD [33] 92.10 95.37 88.30
FedProx [49] 93.50 95.61 91.92

FedSR (Proposed) 98.02 96.41 92.63

CentUAV 99.94 99.00 97.72

Note: Number represents the top-1 ACC; number represents the top-2
ACC.

Fig. 7. The loss convergences of local models in the FedUAV. The left, middle
and right figures show the loss convergences of the local models of system
2 in environment 0, the local models of system 3 in environment 1, and the
local models of system 4 in environment 2, respectively.

LocalUAV-7 from environment 2 as representatives. These
optimal local models and the optimal global model conduct
tests on the RF signals from UAVs located across three
different environments. These RF signals are transformed
into features by the local models or global models, and
subsequently reduced using T-distributed stochastic neighbor
embedding (t-SNE) [54], which are then visualized in Fig. 8.
The figures in the first row are colored according to the UAV
from which the signal originates, the figures in the second
row are colored according to the environment from which the
signal originates, and the figures in the third row show the
statistical results of the drift between these features and the
corresponding prototype.

As shown in Fig. 8(a) to Fig. 8(c) and Fig. 8(e) to
Fig. 8(g), for the same UAV signal encountered in different
environments, the LocalUAV fails to extract consistent
features. This indicates that the features of the same UAV
signal in varying environments do not cluster together and
instead overlap significantly with those of other UAV signals
in the feature space. Notably, in addition to the visualization,
we also quantified this inconsistency as shown in Fig. 8(i) to
Fig. 8(k). Specifically, from the statistical analysis of the MSE
between the features and its corresponding prototype, it can be
seen that the kernel density curves of LocalUAV are flat, that
is, the drift between the features and the prototype is large.

Conversely, as shown in Fig. 8(d) and Fig. 8(h), the FedUAV
is capable of extracting consistent features, demonstrating that
the features of the same UAV signal in various environments
tend to converge and infrequently overlap with those of other
UAVs in the feature space. Notably, we circled these consistent
features with dashed lines in Fig. 8(h). From Fig. 8(l), it can be
seen that the kernel density curves of FedUAV are steep, that
is, the drift between the features and the prototype is small.

These visualization and statistical analyses effectively
elucidate the classification performance of LocalUAV and
FedUAV, and also confirm the presence of feature drift in
LocalUAV, while the proposed method effectively mitigates
this drift and enhances the generalization capabilities of the
classification model.

E. Explanation Analysis of Classification Performance Across
Environments

Further, we explored which areas of the input are em-
phasized by the FedUAV model during classification process
and whether this focus remains consistent across different
environments. We employed class activation mapping, as
introduced by Zhou et al. [55], to visualize the regions of
RF signals that the neural network targets to distinguish
between different UAV types. As depicted in Fig. 9, FedUAV
primarily targets the jump frequency blocks of RF signals
for classification. This visualization confirms that FedUAV
consistently focuses on these specific signal blocks when
analyzing RF signals from the same UAV, regardless of the
environmental context.

VI. CONCLUSION

This paper proposes a federated semantic regularization-
based UAV classification method, showcasing significant



(a) LocalUAV-5 from Env 0 (b) LocalUAV-5 from Env 1 (c) LocalUAV-7 from Env 2 (d) FedUAV

(e) LocalUAV-5 from Env 0 (f) LocalUAV-5 from Env 1 (g) LocalUAV-7 from Env 2 (h) FedUAV

(i) LocalUAV-5 from Env 0 (j) LocalUAV-5 from Env 1 (k) LocalUAV-7 from Env 2 (l) FedUAV

Fig. 8. The feature of the testing dataset across various environments, as extracted by LocalUAV and FedUAV. (c), (f), (i) and (l) are the statistical results
of the drift between the features and the corresponding prototypes, where std is an abbreviation for the standard deviation.

improvements in model generalization across diverse envi-
ronments. By emphasizing semantic consistency and utilizing
a federated learning framework, the proposed method not
only maintains high classification accuracy but also adapts
seamlessly to new and changing environments. In addition, we
carefully analyzed the feature drift in models that are trained
in a specific environment but tested across environments.
By using feature visualization and class activation mapping,
we elucidated the mechanisms behind the generalization of
the proposed method across different environments. In the
future, models with the ability to generalize to unknown
environments, which are unseen during the training process,
will be explored.
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