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Federated Learning and Blockchain-Enabled
Framework for Traffic Rerouting and Task
Offloading in the Internet of Vehicles (IoV)

Ganesh Gopal Devarajan, Senior Member, IEEE, Thangam S, Mohammed J F Alenazi, Kumaran U,
Gopalakrishnan Chandran, Ali Kashif Bashir, Senior Member, IEEE,

Abstract—The Internet of Vehicles (IoV) presents significant
opportunities for enhancing traffic management and vehicle coor-
dination, but it also faces challenges related to traffic congestion,
data privacy, and efficient computational resource allocation.
Traffic congestion remains a critical problem, impacting travel
time, fuel consumption, and emissions. Additionally, task offload-
ing in the edge-cloud environment demands efficient strategies
to balance latency, resource usage, and computational load. Our
proposed system, Joint Federated Learning and Blockchain-
Enabled Traffic Rerouting with Efficient Task Offloading of
Consumer IoV in the Edge-Cloud Environment, addresses these
issues by integrating federated learning and blockchain technolo-
gies. Federated learning allows vehicles to collaboratively train a
global model without sharing raw data, preserving privacy and
reducing bandwidth usage. Blockchain ensures the security and
integrity of the model updates, fostering trust among participants.
Efficient task offloading strategies optimize the use of edge and
cloud resources, minimizing latency and energy consumption.
Our approach is validated using a comprehensive dataset, and the
results demonstrate significant improvements in traffic prediction
accuracy, security, and overall system performance, highlighting
the effectiveness of the integrated solution in addressing the
challenges of Consumer Internet of Vehicles (CIoV).

Index Terms—Blockchain Network, Task Offloading, IoV, Traf-
fic Rerouting, Federated Learning.

I. INTRODUCTION

THE rapid advancement of vehicular networks and Internet
of Things (IoT) technologies has led to the emergence

of the Internet of Vehicles (IoV). IoV represents an inter-
connected ecosystem where vehicles communicate with each
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other and with surrounding infrastructure, enhancing traffic
management, safety, and the overall driving experience. This
ecosystem is poised to transform urban mobility by enabling
advanced traffic coordination, real-time communication, and
data-driven decision-making [1], [2]. However, as IoV ex-
pands, it faces several challenges, including traffic congestion,
data privacy concerns, and the need for efficient computational
resource allocation in edge-cloud environments.

Traffic congestion remains a significant issue in urban
areas, negatively affecting travel time, fuel consumption, and
environmental sustainability. The proliferation of connected
vehicles within IoV networks offers new possibilities for
dynamic traffic management and rerouting strategies. How-
ever, the success of these strategies depends on effective data
processing and real-time decision-making capabilities [3], [4].

In this context, efficient task offloading strategies in edge-
cloud environments are critical for managing computational
load, minimizing latency, and optimizing resource usage [5].
Additionally, the integration of IoV introduces privacy and
security challenges due to the vast amounts of sensitive data
generated and exchanged among vehicles and infrastructure.
Traditional centralized data management approaches are in-
sufficient to address these issues, as they increase the risk
of data breaches and latency [6], [7]. Federated learning, a
decentralized machine learning approach, offers a promising
solution by allowing vehicles to collaboratively train global
models without transmitting raw data, preserving privacy and
reducing bandwidth usage [8].

Blockchain’s decentralized ledger further enhances data
integrity and immutability, fostering trust among participants
and strengthening the security of model updates in feder-
ated learning [9], [10]. By integrating federated learning and
blockchain technology with efficient task offloading strategies,
this research proposes a comprehensive solution to the chal-
lenges facing IoV. The objective of this paper is to present
a novel system: Joint Federated Learning and Blockchain-
Enabled Traffic Rerouting with Efficient Task Offloading for
the Internet of Vehicles in Edge-Cloud Environments. This
proposed system aims to improve traffic management, en-
hance data privacy and security, and optimize computational
resources [11].

This paper contributes to the existing body of knowledge
by offering an integrated approach that addresses IoV’s mul-
tifaceted challenges through the convergence of federated
learning, blockchain technology, and efficient task offloading.



The remainder of this paper is organized as follows: Section 2
reviews relevant literature; Section 3 details the methodology;
Section 8 presents the results analysis; and Section 9 discussed
conclusions and future research directions.

II. LITERATURE REVIEW

The Internet of Vehicles (IoV) signifies a transformative
shift in vehicle interactions with their environment and with
each other, leveraging advanced communication technologies
to enhance traffic management and safety. Despite its potential
benefits, IoV faces critical challenges that must be addressed
to fully realize its potential. This literature review examines
current research on federated learning, blockchain technology,
and task offloading in edge-cloud environments, which are
core components of the proposed system.

Traffic congestion is a pervasive issue in urban areas,
impacting economic productivity, environmental sustainability,
and quality of life. Traditional approaches to traffic man-
agement, such as static signal control and fixed routing, are
inadequate for handling growing vehicle numbers and the
pressures of urbanization. Intelligent Transportation Systems
(ITS) aim to address this by using advanced communication
technologies to optimize traffic flow and reduce congestion
[12].

In IoV contexts, dynamic traffic management strategies are
enabled by real-time data exchange between vehicles and
infrastructure, requiring robust data processing and predictive
models to anticipate traffic patterns and optimize routing
decisions. However, this data sharing introduces privacy and
security challenges, as sensitive information, such as vehicle
location and driving behavior, can be vulnerable to data
breaches and unauthorized access [13]. Effective traffic man-
agement in IoV must, therefore, balance the need for data
sharing with privacy and security protections.

Federated learning offers a promising approach to address
data privacy concerns in distributed machine learning applica-
tions. Unlike traditional centralized learning models, federated
learning allows multiple devices to collaboratively train a
global model without transmitting raw data to a central server.
This decentralized approach is particularly suitable for IoV,
where data privacy is paramount.

Recent studies have explored federated learning in vehicular
networks. For instance, researchers have proposed a federated
learning framework for traffic prediction in IoV, showing
its effectiveness in preserving privacy while achieving high
prediction accuracy. Another study applied federated learn-
ing to distributed vehicle routing, reducing communication
overhead and improving model performance [14]. However,
federated learning in IoV still faces challenges related to
data heterogeneity, model convergence, and communication
efficiency. Data generated by vehicles in IoV networks varies
widely in terms of volume, quality, and distribution, which can
impact model convergence and performance. To address these
challenges, researchers have proposed various techniques, such
as model aggregation and communication optimization [15].

Blockchain technology provides a decentralized and secure
framework for managing data within IoV networks. By offer-
ing an immutable ledger for recording transactions, blockchain

ensures data integrity and transparency, making it an ideal
solution for enhancing trust and security in federated learning
applications [16]. Recent studies have integrated blockchain
with federated learning in vehicular networks, demonstrating
its potential to prevent data tampering and unauthorized access
to model updates [17].

In addition to enhancing security, blockchain can facil-
itate efficient task offloading in edge-cloud environments.
Blockchain’s transparent resource allocation mechanism en-
ables dynamic and fair distribution of computational resources,
improving IoV systems’ overall efficiency [18]. However, the
computational overhead associated with blockchain operations
remains a challenge, especially in resource-constrained envi-
ronments like IoV [19]. Researchers are exploring solutions
such as lightweight consensus algorithms and off-chain ap-
proaches to mitigate this overhead [20].

Task offloading is crucial in IoV systems to efficiently
manage computational resources in edge-cloud environments.
Effective task offloading strategies balance latency, resource
usage, and computational load to ensure system responsiveness
and reliability. Recently, there has been a focus on developing
adaptive task offloading models for edge-cloud environments,
with reinforcement learning emerging as a promising ap-
proach. Reinforcement learning-based models learn optimal
offloading strategies from real-time feedback, dynamically
adjusting to changing system conditions [21]. For example, a
reinforcement learning-based model for vehicular edge com-
puting significantly improved resource utilization and reduced
latency [22].

Some recent works from Yadav et al., [23], [24] were
addressed the challenges lack of resource allocation mecha-
nism for energy efficiency and energy-latency trade-off us-
ing Energy-efficient dynamic Computation Offloading and
resources allocation Scheme (ECOS). Furthermore, in their
second paper, they proposed Computation Offloading using
Reinforcement Learning (CORL) scheme for minimizing en-
ergy consumption and latency. Also, Ling et al., [25] in-
troduced vehicular MEC architecture to analyze the time of
arrival for predicting vehicles driving state and used dynamic
programming algorithm for optimizing response fairness and
QoS for decreasing computation offloading problem.

III. PROPOSED WORK

The rapid expansion of CIoV introduces both opportuni-
ties and challenges in traffic management, data security, and
computational resource optimization. Traditional centralized
systems face significant limitations, such as:

• Scalability challenges in handling large-scale data and
computational loads.

• Data privacy concerns are due to the transmission of
sensitive raw data to centralized servers.

• Inefficiency in task management, resulting in sub-optimal
resource utilization and higher latency.

• Traffic congestion issues, which require advanced routing
mechanisms to adapt to dynamic traffic conditions.
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A. Motivation

Our work is motivated by the need to address the above
challenges. Specifically, we aim to:

• Preserve privacy while leveraging large-scale data for
traffic prediction in the IoV ecosystem.

• Enhance the scalability and security of collaborative
learning processes using blockchain technology.

• Improve the efficiency of computational resource utiliza-
tion through optimized task offloading.

• Dynamically reroute vehicles to reduce congestion and
improve travel times using advanced hybrid algorithms.

B. Contributions

To achieve these goals, we propose a novel system that inte-
grates Federated Learning, Blockchain, Traffic Rerouting, and
Task Offloading strategies within an edge-cloud architecture.
The key contributions of our work are as follows:

1) Federated Learning Module: Enables collaborative train-
ing of a global traffic prediction model without sharing
raw data, ensuring privacy preservation and reducing
network bandwidth usage.

2) Blockchain Module: Secures the federated learning pro-
cess by recording model updates as immutable trans-
actions on a distributed ledger. This ensures integrity,
transparency, and trust among IoV participants.

3) Efficient Task Offloading Module: Optimizes compu-
tational task distribution between edge and cloud re-
sources, achieving a balance among latency, resource
utilization, and energy consumption.

4) Hybrid Traffic Rerouting Algorithm (HTR): Combines
a Modified Ant Colony Optimization (ACO) technique
with Deep Reinforcement Learning (DRL) to dynam-
ically adjust vehicle routes based on real-time traffic
data. This approach minimizes congestion and reduces
travel time by leveraging bio-inspired optimization and
predictive machine learning.

C. System Overview

Figure 1 illustrates the system architecture designed for
traffic management in the CIoV. Vehicles act as data producers
and consumers, generating local data (e.g., location, speed,
traffic density) for federated learning. Local models are ag-
gregated into a global model at edge servers, integrated into
a blockchain to ensure security and transparency. The system
employs hybrid algorithms for traffic rerouting and optimizes
task distribution between edge and cloud resources.

IV. FEDERATED LEARNING FOR TRAFFIC PREDICTION

Federated Learning (FL) enables vehicles to collaboratively
train a global model without sharing raw data, preserving
privacy and reducing bandwidth consumption. The goal is
to create a predictive model for traffic conditions based on
decentralized data.

Let Di the local dataset for vehicle i containing input-
output pairs (xij , yij), where xij represents features as such as
location, speed, and time, and yij is the target traffic condition.

Fig. 1: Proposed CIoV Framework

The local objective function Li(w) to be minimized for vehicle
i is defined as Eqn. 1:

∇Li(w) =
1

Di

∑
(xij ,yij)∈Di

l(yij , f(xij , w)) (1)

Where, w represents the model parameters and
l(yij , f(xij , w)) is a loss function. Here we used mean
square error (MAE). The global objective L(w) across all
vehicles is represented in Eqn. 2:

L(w) =
N∑
i=1

|Di|
|D|
∇Li(w) (2)

Where, N is the number of vehicles and |D| =
∑N

i=1 |Di|
is the total number of data points.

A. Federated Learning Algorithm Parameters

The Federated Learning (FL) process given in algorithm
1 follows an iterative process for model updates, with the
following key parameters:

Global Model Initialization: The global model is initial-
ized with weights w0 at the central server. This is the starting
point for all vehicle-based local updates.

Local Training: Each vehicle performs local training using
its dataset Di. The model update at each vehicle i in round t
is determined by Eqn. 3:



wt+1
i = wt − η∆Li(wt) (3)

Where, η is the learning rate for controlling the step size
in model updates which typically set to 0.001. ∆Li(wt) is
the gradient computation for computing loss function with the
local data.

Global Model Aggregation: After each round, the local
model updates from all vehicles are aggregated based on the
size of each vehicle’s local dataset. This is done using the
following Eqn. 4:

wt+1 =
N∑
i=1

|Di|
|D|

wt+1
i (4)

Where, N is the total number of vehicles and Di is the
dataset of vehicle i. This ensures that the global model benefits
from the largest and most representative datasets. The FL
process runs for T rounds, where T is set to 100 iterations to
allow sufficient convergence of the model.

The learning rate significantly impacts the convergence of
the federated learning process. We experimented with learning
rates of 0.001, 0.01, and 0.1, and found that while a smaller
learning rate (0.001) led to more stable convergence, a larger
rate (0.1) resulted in faster convergence but occasionally
caused instability in highly dynamic traffic environments.

Algorithm 1 Federated Learning for traffic Prediction

Initializeglobalmodelweights w0

for each round t = 1, 2, ..., T do
for each vehicle i = 1, 2, ..., N do

Local model update
Download global model weights wt from central server
Compute gradients ∇Li(wt) on local data Di

∇Li(w) =
1
Di

∑
(xij ,yij)∈Di

l(yij , f(xij , w))
Update local model weights:
w

(t+1)
i = wt − η ∗ ∇Li(wt)

Send updated model weights w
(t+1)
i to central server

end for
Global model aggregation
Aggregate global model weights:
wt+1 =

∑N
i=1(

|Di|
|D| ) ∗ w

(t+1)
i

Broadcast updated global model weights wt+1 to all
vehicles

end for
Return final global model weights wT

V. BLOCKCHAIN FOR SECURE AND VERIFIABLE MODEL
UPDATES

Blockchain technology ensures the integrity and immutabil-
ity of model updates and its process given as,

Transaction and Block Hashing: Each vehicle’s model
update is treated as a blockchain transaction. The hash of the
block Bk containing these transactions is calculated using Eqn.
5:

H(Bk) = H(PreviousHash ∥ H(Tk) ∥ Nonce) (5)

Where, PreviousHash is the hash of previous block.
H(Tk) is the hash of all transactions within block k and
Nonce is the random number used in the mining process to
ensure block uniqueness.

The parameters used in Blockchain are Block-Size for
limiting the amount of data into 2 MB size and transaction
rate with value 100 to scale the simulation.

A. Hybrid ACO-DRL Traffic Rerouting Algorithm Parameters

The Hybrid ACO-DRL algorithm combines Ant Colony
Optimization (ACO) and Deep Reinforcement Learning (DRL)
for dynamic rerouting of vehicles. Parameters for the algorithm
2 includes,

ACO parameters such as PheromoneLevel(τe) which ini-
tialized for all road segments and updated based on vehicle
actions. Next, ExplorationFactor(γ) given as 1.0 which
used for setting influence of pheromones on route selection.
Finally, HeuristicInformation(ηe) set to 1.5 to balance
exploration and exploitation.

The pheromone level on road segment e∗ is updated after
each iteration as per Eqn. 6:

τe∗ ← (1− ρ)τe∗ +
Q

te∗(xe∗)
+ k ×∆τDRL (6)

Where, ρ is the pheromone evaporation rate, typically set
to 0.1. Q is the quality of the solution, and ∆τDRL is the
reinforcement from the DRL feedback.

Furthermore, DRL parameters such as LearningRate(α) is
set to 0.0005 to balance exploration and stable learning, and
DiscountFactorγ value is set to 0.99 to prioritize long-term
rewards. Exploration vs. Exploitation ϵ is set to 1.0, decaying
to 0.1 over 100 episodes to allow sufficient exploration early
in training.

VI. RESULT AND DISCUSSION

This section presents the results of our proposed system
titled ”Joint Federated Learning and Blockchain Enabled Traf-
fic Rerouting with Efficient Task Offloading of Consumer
Internet of Vehicles in Edge-Cloud Environment.” We provide
a detailed comparison of the proposed system with existing
technologies, highlighting its superior performance in terms
of traffic prediction accuracy, data security, task offloading
efficiency, and overall system performance.

A. Dataset Description

The performance evaluation of our proposed system was
performed using a comprehensive real-world traffic dataset
provided by the Los Angeles Transportation Authority. This
dataset, which captures a wide range of traffic scenarios, offers
a robust foundation for assessing the effectiveness of our
system in various conditions. The data collection spanned six
months, from January to June 2023, covering both urban and
suburban areas within Los Angeles, encompassing approxi-
mately 500 square kilometers.



Algorithm 2 Hybrid ACO-DRL Traffic Rerouting Algorithm

Initialize pheromone levels τe for all road segments e in E
Initialize Q-values Q(s, a) for all state-action pairs
for each vehicle v starting at source node s do

Initialize state s = current traffic conditions at s
while vehicle v has not reached destination node d do

for each road segment e in Out(v) do
Calculate probability of selecting road segment e:
pe,v = (τγe ∗ ηδe ∗ (1 + λ ∗
DRLFeedback))/

∑
einOut(v)(τ

γ
e′ ∗ ηγe′ ∗ (1 +

λ ∗DRLFeedback))
end for
Select road segment e∗ based on probabilities pe,v
Move vehicle v to the next node via road segment e∗

Observe new state s′

Calculate reward r = function of travel time reduction
and congestion alleviation
Update Q-value using the Bellman equation:
Q(s, e∗) = Q(s, e∗) + α[r + γmaxe′ ]
Update pheromone level on edge e∗

τe∗ ← (1− ρ)τe∗ +Q/te∗(xe∗ ) + k ∗∆τDRL

Transition to new state s′

end while
Deposit additional pheromone on all edges traversed by
vehicle v

end for

1) Dataset Specifications:

• Duration: The dataset was collected over a six-month
period, from January to June 2023, ensuring a compre-
hensive representation of seasonal variations in traffic
patterns.

• Geographical Coverage: The dataset includes data from
both urban and suburban regions of Los Angeles, with
a total coverage area of approximately 500 square kilo-
meters. This diverse geographical scope ensures that the
dataset captures a wide range of traffic conditions.

• Data Points:

1) Vehicle Trajectories: The dataset includes GPS coor-
dinates collected every second from 5,000 vehicles,
providing detailed insights into vehicle movements
across the city.

2) Traffic Flow Data: Real-time data on traffic density,
speed, and flow rates were collected from 1,000
strategically placed traffic sensors throughout the
city.

3) Environmental Factors: The data set also includes
information on various environmental factors, such
as weather conditions, roadworks, and accident re-
ports, which are critical to understanding the impact
of external variables on traffic flow.

4) Network Conditions: Data on network conditions,
including bandwidth availability, latency metrics,
and edge-cloud server loads, were also captured to
evaluate the performance of the proposed system
under different network scenarios.

Table I summarizing the experimental configuration, includ-
ing the parameters and their associated details.

TABLE I: Experimental Scenario Configuration
Parameter Details
Traffic Density Low: 1000 vehicles/km², Medium: 2000 vehicles/km², High: 3000 vehicles/km²
Simulation Duration 24-hour cycle (representing a typical day)
Vehicles 3000 vehicles with local datasets containing GPS data, traffic density, speed, environmental factors
Environmental Factors Dynamic traffic conditions including roadworks, accidents, and weather events
Hardware CPU: Intel Xeon E5-2650, 2.20 GHz, Memory: 64 GB RAM, GPU: NVIDIA Tesla V100
Software TensorFlow 2.x for FL, Hyperledger Fabric for Blockchain, SUMO for traffic simulation
Iterations 100 iterations for each scenario to ensure statistical significance

VII. EVALUATION METRICS

To comprehensively evaluate the performance of the pro-
posed system, several key metrics were employed. Traffic
Prediction Accuracy was assessed using the Mean Absolute
Error (MAE), which measures the average magnitude of
errors between the predicted and actual traffic conditions. The
formula for MAE is given by:

MAE =
1

n

n∑
i=1

|yi − ŷl| (7)

where yi represents the actual value, ŷi is the predicted
value, and n is the total number of data points. This metric is
crucial for understanding how closely the model’s predictions
align with real-world traffic conditions.

Data Security and Integrity were evaluated using the Tam-
per Detection Rate (TDR), which represents the percentage
of unauthorized modifications successfully detected and pre-
vented by the blockchain system. The TDR is calculated using
the formula:

TDR = Number of detected tampering attempts

+Total tampering attempts/

(Total tampering attempts)× 100%

(8)

This metric highlights the robustness of the blockchain in
maintaining the integrity of the system’s data. Task Offloading
Efficiency was measured using two metrics: Average Latency
(AL), which tracks the time taken to complete tasks from
initiation to completion, and Energy Consumption (EC), which
quantifies the total energy consumed during task processing.
Lower values in both AL and EC indicate faster task comple-
tion, improved user experience, and more efficient resource
utilization.

Network Resource Utilization was evaluated through Band-
width Utilization (BU), which measures the proportion of
network bandwidth effectively used during data transmission.
The formula for BU is:

BU = (Data transmitted)/(Total available bandwidth)

×100%
(9)

This metric assesses how efficiently the network’s capacity is
being used during the system’s operation.

Lastly, Scalability was assessed using Processing Through-
put (PT), which represents the number of tasks successfully
processed per unit time as the number of vehicles scales up.
The formula for PT is:



PT = (Number of tasks processed)/(T ime (seconds))

×100%
(10)

This metric is crucial for understanding how well the system
can handle an increasing load as the network of vehicles
grows.

VIII. RESULT ANALYSIS

In this section, we evaluate the performance of our proposed
system, Joint Federated Learning and Blockchain-Enabled
Traffic Rerouting with Efficient Task Offloading of Consumer
Internet of Vehicles in Edge-Cloud Environment. The evalu-
ation is conducted across several key performance metrics:
traffic prediction accuracy, data security and integrity, task
offloading efficiency, network resource utilization, and scal-
ability. Each metric is compared against baseline approaches,
namely Centralized Learning with Centralized Task Offloading
(CL-CTO) and Decentralized Learning with Decentralized
Task Offloading (DL-DTO), to underscore the advantages of
our proposed approach.

A. Traffic Prediction Accuracy

Table II shows the data for traffic prediction accuracy, where
the Mean Absolute Error (MAE) was measured during both
peak and off-peak hours. The results indicate that our proposed
system significantly outperforms the existing CL-CTO and
DL-DTO technologies.

TABLE II: Traffic Prediction Accuracy (MAE)

Methodology Peak Hours MAE Off-Peak Hours MAE
CL-CTO 12.5 9.8
DL-DTO 15.3 11.2

Proposed System 7.2 5.6

Fig. 2: Traffic Prediction Analysis

Figure 2 represents traffic prediction analysis plot for predic-
tion error compares the performance of three traffic prediction
models: the proposed system, CL-CTO, and DL-DTO. The
x-axis represents the prediction error (for example, MAE),
while the y-axis shows the cumulative probability that the

error is less than or equal to a given value. The curves
represent the proportion of predictions that fall below various
error thresholds for each model. A steeper curve indicates
that the model achieves lower errors more frequently. The
proposed system’s CDF curve is steeper, demonstrating that it
consistently produces more accurate predictions, with a higher
probability of achieving lower errors compared to CL-CTO
and DL-DTO, particularly during peak traffic periods. This
highlights the superior accuracy and robustness of the fed-
erated learning-based approach in handling traffic prediction
tasks.

Table III shows the data for the Tamper Detection Rate
(TDR), where the effectiveness of the blockchain was eval-
uated to detect and prevent unauthorized data modifications.
The proposed system exhibited a detection rate 100%, outper-
forming the other methodologies.

TABLE III: Tamper Detection Rate (TDR)

Methodology Tampering
Attempts

Detected
Attempts TDR (%)

CL-CTO 100 65 65
DL-DTO 100 72 72

Proposed System 100 100 100

Figure 3 provides a comprehensive visualization of traffic
patterns over a six-month period, focusing on daily and hourly
variations in traffic density. The top plot illustrates the density
of daily traffic, showing distinct differences between weekdays
and weekends. Weekends exhibit higher traffic densities, which
is emphasized by the shaded areas representing weekend data
(orange). The bottom plot highlights the typical hourly traffic
density pattern for weekdays and weekends. The weekday
pattern shows a morning rush with a peak around 8 AM, while
the weekend pattern is somewhat more gradual, reflecting a
later start to the day. This visualization effectively captures the
temporal trends and fluctuations in traffic density, providing
valuable insights into daily and weekly traffic behaviors across
Los Angeles.

Fig. 3: Comparative Plot for TDR

Table IV provides the data for task offloading efficiency,
measured by evaluating average latency and energy consump-
tion during task execution. The proposed system demonstrated



Fig. 4: Latency Analysis Comparison

significant improvements in both metrics compared to existing
technologies.

TABLE IV: Task Offloading Efficiency

Methodology Latency (ms) Energy Consumption (J)
CL-CTO 180 2500
DL-DTO 220 2700

Proposed System 110 1800

Figures 4 and 5 present the performance trends in terms
of latency and energy consumption for the various method-
ologies. The results demonstrate that our proposed system
consistently achieves significantly lower latency and energy
consumption compared to both CL-CTO and DL-DTO. Specif-
ically, the latency of the proposed system achieved a 38.9%
reduction compared to CL-CTO and a 23.5% reduction com-
pared to DL-DTO. This improvement is attributed to our
dynamic task offloading strategy, which adaptively allocates
tasks based on real-time network and computational resource
conditions. Furthermore, the energy consumption of the pro-
posed model achieved a 28% reduction in energy consumption
compared to CL-CTO and a 17% reduction compared to DL-
DTO. This is a direct result of the optimized edge-cloud col-
laboration and the efficient use of computational resources. In
our system, we utilize the Proof-of-Authority (PoA) consensus
mechanism for blockchain operations due to its lightweight
design and low computational overhead. The effectiveness of
PoA is reflected in the overall performance of the proposed
system, as shown in Figures 4 and 5.

We provide a complexity analysis of our proposed algo-
rithm in terms of time and space complexity. Compared to
baseline methods such as CL-CTO and DL-DTO, our system
demonstrates a favorable trade-off between computational ef-
ficiency and performance. Specifically, the federated learning
and blockchain components have a time complexity O(N),
where N is the number of vehicles, and the traffic rerouting
algorithm operates in O(V + E), where V and E are the
number of vertices and edges in the traffic network.

To further support this analysis, Figures 4 and 5 illustrate
the scalability of our system with respect to the number of
vehicles, demonstrating how our approach efficiently handles
increasing network size without a significant loss in per-

Fig. 5: Energy Consumption Comparison

formance. Figure 4 highlights the improvements in traffic
rerouting efficiency and bandwidth utilization, while Figure
5 shows processing throughput as the number of vehicles
increases. These plots validate the computational efficiency
and scalability of our proposed system, highlighting its ability
to maintain high performance even in large-scale vehicular
networks.”

B. Loss Function Comparison

To evaluate the impact of different loss functions on traffic
prediction accuracy, we shown comparison plot in Fig. 6 for
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Huber Loss across various traffic scenarios on
different epochs. MAE was selected initially for its robustness
against outliers, as it measures the average absolute differ-
ences between predicted and actual values. However, MAPE,
which normalizes errors as a percentage of actual values, is
particularly useful for datasets with varying scales, although
it can become sensitive to small actual values. Huber loss
combines the strengths of MAE and Mean Squared Error
(MSE), being robust to outliers while penalizing large errors
less aggressively.

The comparative results reveal that MAE provides consis-
tent performance in scenarios with large outliers, while MAPE
achieves better accuracy in scenarios where percentage-based
differences are more significant. Huber loss strikes a balance,
demonstrating reliable performance across both error-heavy
and smooth traffic patterns. The plot illustrates these trends,
highlighting the suitability of each loss function under dif-
ferent traffic conditions and data distributions. This analysis
underscores the importance of selecting an appropriate loss
function based on the specific requirements of the CIoV
environment, such as whether the emphasis is on handling
outliers or normalizing errors across scales.

Table V outlines the data on bandwidth utilization (BU)
during peak and off-peak hours. The proposed system shows
a marked improvement in efficient network resource usage.

Figure 7 provides a visual comparison of bandwidth uti-
lization across different times and methodologies, illustrat-
ing the efficient use of network resources by the proposed
system. The proposed system achieved a 23.5% reduction in



Fig. 6: Loss Function Comparison

TABLE V: Bandwidth Utilization (BU)

Methodology BU during
Peak Hours (%)

BU during
Off-Peak Hours (%)

CL-CTO 85 60
DL-DTO 75 55

Proposed System 65 45

bandwidth utilization during peak hours and a 25% reduction
during off-peak hours compared to CL-CTO. By leveraging
federated learning, which reduces the need to transmit raw
data, and implementing efficient communication protocols, our
system optimizes the use of available network resources. This
is particularly important in high-traffic environments, where
bandwidth efficiency can significantly impact overall system
performance.

Fig. 7: Bandwidth Utilization

Table VI provides the data on processing throughput (PT) as
the number of vehicles in the network increases. The proposed
system’s scalability is demonstrated by its ability to maintain
high throughput despite the growing network load.

Figure 8 depicts the processing throughput as the number
of vehicles increases, showing the superior scalability of the
proposed system. The proposed system maintained higher
throughput across varying scales, with only a 7.7% decrease
in throughput from 1000 to 3000 vehicles, compared to 20%

TABLE VI: Processing Throughput (PT)

Number of
Vehicles

CL-CTO PT
(tasks/sec)

DL-DTO PT
(tasks/sec)

Proposed System PT
(tasks/sec)

1000 500 450 650
2000 450 400 620
3000 400 350 600

Fig. 8: Processing Throughput vs. Number of Vehicles

and 22.2% reductions in CL-CTO and DL-DTO, respectively.
This highlights the scalability of our system, which efficiently
manages increased network loads without significant degrada-
tion in performance. The modular architecture and distributed
processing capabilities enable the system to handle growing
demands effectively, making it well-suited for large-scale IoV
deployments.

Figure 9 illustrates the improvements in traffic rerouting
efficiency provided by the proposed system compared to
existing methodologies. The proposed system achieved a 30%
reduction in average travel time and a 40% alleviation of
congestion, outperforming both the CL-CTO and DL-DTO
methods. These improvements are largely due to the system’s
ability to predict traffic conditions accurately and dynamically
reroute vehicles in real-time. Using federated learning for
precise traffic predictions and blockchain for secure data shar-
ing, the system effectively mitigates congestion and optimizes
travel routes, thus improving overall traffic flow efficiency.
This capability is crucial in urban environments where traffic
congestion is a persistent challenge. These results collectively
demonstrate the superior performance of our proposed system
across multiple key metrics, positioning it as a highly effective
solution for addressing the challenges posed by the Consumer
Internet of Vehicles (IoV) environment.

IX. CONCLUSION

In this study, we introduced a system titled ”Joint Feder-
ated Learning and Blockchain-Enabled Traffic Rerouting with
Efficient Task Offloading for Consumer Internet of Vehicles
in Edge-Cloud Environments.” Our system addresses key
challenges in the Consumer Internet of Vehicles (IoV) by
integrating federated learning for privacy-preserving model
training, blockchain for secure data management, and efficient
task offloading to optimize edge and cloud resources. This



Fig. 9: Traffic Rerouting Efficiency Comparison

integration significantly reduces latency and energy consump-
tion. Performance evaluations demonstrated that our system
outperforms existing centralized (CL-CTO) and decentralized
(DL-DTO) approaches, achieving a Mean Absolute Error
(MAE) of 7.2 during peak hours and 5.6 during off-peak
hours. It also maintained a 100% Tamper Detection Rate
(TDR), reduced latency by 38.9%, and energy consumption
by 28%, while cutting bandwidth usage by 23.5% during
peak hours. The system showed excellent scalability, reducing
travel time by 30% and congestion by 40%. Future work
will explore the integration of advanced machine learning
techniques, expanding privacy mechanisms, and testing the
system in diverse real-world scenarios. Additionally, assessing
the economic and environmental impact will be crucial for its
long-term sustainability.
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