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Dynamic AI-Driven Network Slicing with O-RAN 
for Continuous Connectivity in Connected Vehicles 

and Onboard Consumer Electronics
Syed Danial Ali Shah, Ali Kashif Bashir, Senior Member, IEEE, Yasser D. Al-Otaibi, Maryam M. Al Dabel, and

Farman Ali

Abstract—The rise of connected and autonomous vehicles
signifies an era of intelligent transportation systems, where
robust and continued network connectivity is essential for critical
applications and enhanced in-vehicle Consumer Electronics (CE)
experiences. Slicing at the network’s edge offers tailored and
dedicated logical networks for diverse and low-latency vehicular
demands, including Advanced Driver Assistance Systems (ADAS)
and in-car infotainment. However, seamless migration of network
slices as vehicles traverse coverage areas of different network
operators presents formidable challenges, such as ensuring con-
tinuous connectivity and uninterrupted service for both safety-
critical systems and consumer-oriented services. In this paper, we
introduced dynamic network slicing for continuous connectivity
in connected vehicles and onboard CE using the Open Radio
Access Network (O-RAN) framework in a highly dynamic and
mobile environment. We implemented an xAPP within O-RAN
that enables Deep Reinforcement Learning (DRL) agent to learn
optimal policies through interaction with the network, guiding
intelligent decisions on slice migration, resource allocation, and
handover optimization. We conducted simulations and evalua-
tions to demonstrate the effectiveness of the proposed xAPP in
maintaining optimal Quality of Service (QoS), ensuring efficient
RAN resource utilization, minimizing service interruptions, and
prioritizing safety-critical slices, all while supporting seamless
operation of CE within vehicles during mobility.

Index Terms—Edge computing, consumer electronics, deep
reinforcement learning, O-RAN, xAPP, in-car infotainment, ve-
hicular networks

I. INTRODUCTION

THE automotive industry is transforming towards con-
nected and autonomous vehicles, driven by advances

in sensing technologies, artificial intelligence, and next-
generation wireless communication networks [1]. These intel-
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ligent transportation systems have the potential to revolutionize
road safety, traffic management, and the overall driving ex-
perience by enabling a wide range of vehicular applications,
such as remote driving assistance, real-time traffic monitor-
ing, infotainment services, and enhanced in-vehicle Consumer
Electronics (CE) [2].

However, the successful deployment and availability of
these vehicular applications hinges on the availability of reli-
able and low-latency network connectivity. The traditional cel-
lular networks need enhancements to support these emerging
vehicular applications due to vehicular environments’ highly
dynamic and mobile nature. Radio Access Network (RAN)
slicing is a key feature of 5G and beyond networks that
allows for the creation of multiple virtual and isolated network
resources at the edge of the network, e.g., at the Multi-
Access Edge Computing (MEC) server connected to the RAN
[3]. Network slice can be tailored to meet the specific QoS
requirements of different applications or services, such as low
latency, high bandwidth, or enhanced reliability. For example,
assistance applications require ultra-low latency and high
reliability to enable real-time vehicle control and decision-
making. Traffic monitoring applications, on the other hand,
may prioritize high bandwidth and consistent connectivity
to support the transmission of high-resolution video streams,
whereas consumer electronics may emphasize bandwidth and
throughput to deliver a seamless multimedia experience to
passengers.

However, as vehicles move between different coverage
areas of RANs and their respective MEC servers, seamlessly
migrating the dedicated network slices while maintaining the
required QoS levels, efficiently utilizing network resources,
and minimizing service interruptions becomes an exacting
challenge. Traditional mobility management techniques fall
short of addressing the complexities introduced by network
slicing at the MEC and the highly dynamic nature of vehicular
environments [4]–[6]. These reactive techniques only trigger
network slice mobility actions based on channel conditions,
e.g., distance to neighbouring RANs. They treat all types of
network slices equally irrespective of their QoS requirements
and criticality, resulting in inefficient utilization of RAN and
MEC resources. Moreover, as vehicles frequently relocate and
change their distance from neighbouring RANs, the traditional
schemes that rely solely on proximity to RANs result in
frequent migration of network slices and handovers [5]–[7].
This can lead to a ping-pong handover scenario resulting in



significant wastage of network resources.
To address these challenges, we proposed a novel approach

that leverages Deep Reinforcement Learning (DRL) within the
Open Radio Access Network (O-RAN) framework. We formu-
lated the network slice mobility problem as a Markov Decision
Process (MDP), where we define a comprehensive state space
that captures different patterns of the vehicular users, e.g.,
signal strength, network conditions, resource availability, and
the current state of the network slices. Our proposed approach
incorporates a reward function that dynamically adjusts its
weights based on the vehicle type, network slice type, and
mobility pattern, enabling the DRL agent to adapt to the highly
dynamic vehicular environment and prioritize objectives such
as QoS, resource efficiency, service continuity, and slice pri-
oritization accordingly.

The DRL agent is implemented as an xAPP in the Near-
Real-Time Radio Intelligent Controller (NRT-RIC) within the
O-RAN framework, which learns an optimal policy through
interactions with the network environment. The learned policy
facilitates the NRT-RIC in making intelligent decisions on
network slice migration, resource allocation, and handover
optimization for vehicular network slices by leveraging pre-
dictive analytics and real-time network state information. We
conducted extensive simulations and evaluations in a highly
dynamic and mobile environment, where we demonstrated the
effectiveness of our proposed approach in maintaining QoS
for critical vehicular applications, efficient resource utiliza-
tion, minimizing service interruptions, and prioritizing safety-
critical network slices during vehicle mobility. Additionally,
our framework supports the seamless operation of in-vehicle
consumer electronics by ensuring reliable and low-latency
connectivity for infotainment and other multimedia services.
The proposed framework paves the way for intelligent and
adaptive network slice management in vehicular networks,
enabling reliable and low-latency connectivity for connected
and autonomous vehicles.

A. Contributions
The main contributions of this research are summarized as

follows:
• We introduced dynamic network slicing for the highly

dynamic and mobile environment using the O-RAN
framework. To the best of the author’s knowledge, this
is one of the first works exploring the applications of O-
RAN in addressing challenges specific to network slice
mobility management in highly mobile environments,
e.g., vehicular networks, for continuous connectivity of
safety-critical and Automotive Consumer Electronics Ap-
plications (CEA), e.g., in-vehicle infotainment.

• We formulated network slice migration across the RANs
and their respective MEC servers as an MDP, which
considers various factors, including mobility patterns,
network conditions, resource availability, and slice state,
providing a comprehensive framework for optimizing
slice migration decisions. We develop a novel approach
using DRL to optimize network slice migration, re-
source allocation, and handover optimization in a highly

dynamic and mobile environment, leveraging real-time
network state information as enabled by the proposed
NRT-RIC in the O-RAN framework.

• We implemented the proposed solution as a custom-
developed xAPP communicating with the centralized
NRT-RIC within the O-RAN framework. The implemen-
tation facilitates seamless integration with existing RAN
components and enables adaptive and intelligent network
slice management.

• We conducted extensive simulations and evaluations to
demonstrate the efficacy of our proposed approach in
maintaining QoS requirements for various vehicular ap-
plications and consumer electronics, optimizing RAN
resource utilization, minimizing service interruptions, and
prioritizing safety-critical network slices during vehicle
mobility.

B. Related Works and Research Gaps

The provision of methods and techniques to enable slicing
at the RAN and its associated MEC server, i.e., slicing at
the network edge, is essential to facilitate novel services such
as Ultra-Reliable Low-Latency Communications (URLLC) for
vehicular applications, e.g., automotive CE applications such
as Advanced Driver Assist Systems (ADAS), and in-vehicle
infotainment. However, this integration is limited, and enabling
MEC support for network slicing introduces challenges in
coordinating various network entities and functions [15], [21]–
[23]. While various studies have addressed the integration of
network slicing at the network’s edge, focusing on addressing
issues such as resource management, slice selection, admission
control, and network slice mobility, there remains a need
for further exploration, particularly in terms of the network
slice mobility challenges in highly dynamic and mobile wire-
less network environments, e.g., vehicular networks. Effective
management of network slice mobility is essential to main-
tain uninterrupted and continuous connectivity for automotive
consumer electronics and safety-critical vehicular applications,
particularly during the transition of vehicles between coverage
areas of different network operators.

In their respective studies, [8], [17], authors proposed
Software-Defined Networking (SDN) and Kubernetes-based
methodologies for the simultaneous migration of container-
ized services within a network slice from one edge network
to another. However, they did not consider network slice
mobility challenges in dynamic environments like vehicular
networking. The authors in [14], [15] introduced innovative
frameworks emphasizing the necessity of new control func-
tions to advance the current edge networks supporting network
slicing. However, these approaches did not consider network
slice mobility challenges. In [13], the authors presented a
reinforcement learning technique for optimizing slice mobility
decisions and managing network slice resources, while [24]
proposes a deep reinforcement learning-based solution to
address resource allocation issues in MEC-enabled vehicular
networks. Similarly, [16] introduces an intelligent network
slicing architecture integrating edge computing and employing
deep learning for application-specific packet routing towards
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TABLE I
PROPOSAL COMPARED TO THE LITERATURE
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Dynamics
of Vehicular

Networks

PoC
Experiments

O-RAN (xAPP)
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Used
Approach

[8] " " " SDN-based centralized control plane
[9] " " " " Deep reinforcement learning framework
[10] " " " Network application (xAPP) for network slicing in O-RAN
[11] " " " Deep reinforcement learning framework
[12] " " " " O-RAN based architectural framework
[13] " " " Reinforcement learning
[14] " Modules implementing slice control
[15] " " Network slicing at the MEC integration framework
[16] " " Deep learning
[17] " " " Velero tool in Kubernetes
[18] " " Architectural framework for MEC slicing
[19] " " " Centralized control plane
[20] " Architectural Framework
Our

Proposed " " " " " DRL-based xAPP implementation in O-RAN framework

MEC servers. However, their mobility solutions did not con-
sider aspects such as network slice mobility based on available
network resources, slice types and their QoS requirements and
priority levels.

In [19], the authors proposed a centralized control plane
algorithm and virtualized infrastructure to fairly distribute and
balance the workload among various network slices across one
or multiple edge networks. The authors in [20] introduced a
comprehensive end-to-end slicing architecture spanning mul-
tiple domains, including RAN, core, and MEC. In [25], an
edge computing network is envisioned under network slicing,
enabling dynamic allocation of low-latency computational
tasks from wireless devices to network slices at MEC servers
associated with their respective RANs. The authors in [26]
proposed a two-level RAN slicing approach, implementing
deep reinforcement learning to optimize RAN’s communica-
tion and computation resources to meet network applications’
stringent latency requirements. However, the above-mentioned
research works [19], [20], [25], [26] overlook the challenges
posed by network slice mobility arising from enabling slicing
at the RAN, i.e., edge of the network. In contrast, our proposed
method is the first implementation of network slice mobility
management using the O-RAN framework in a highly dynamic
and mobile environment such as vehicular networks. Our pro-
posed approach builds on a DRL-based xAPP that seamlessly
interacts with the NRT-RIC and effectively manages the RAN
control parameters to optimize the network slicing at the RAN
and tackle the network slice mobility challenges.

There have been some recent efforts in enabling network
slicing in 5G O-RAN [9]–[12]. The authors in [9] proposed
a DRL approach that incorporates deep deterministic policy
gradient techniques for optimizing resource allocation and
inter-slice operations in vehicular networks. In [10], authors
proposed a custom network application (xAPP) for network
slicing in 5G O-RAN that enables emerging IoT services
to co-exist and meet the required service-level agreements.
In [11], the authors proposed a DRL-based algorithm to
optimize the resource allocation problem for effective resource

management, enabling slicing at the RAN level. The authors
in [12] demonstrated the effectiveness of the O-RAN control
capabilities in supporting efficient management of the Vehicle-
to-Everything (V2X) system. However, none of these works
considers the network slice mobility challenges arising from
the mobility of the vehicles from the coverage area of one
RAN to another. A comparative summary of the most relevant
and selected works from the literature is detailed in Table I
and compared with our proposal.

II. THE O-RAN ARCHITECTURE

O-RAN is an industry initiative to create open, virtualized,
and intelligent Radio Access Networks (RANs) by providing
open interfaces and software solutions. O-RAN promote open-
ness and intelligence in next-generation RAN architectures,
enabling greater flexibility, innovation, and cost-efficiency for
mobile network operators. The following are the key compo-
nents and interfaces involved in the O-RAN framework.

A. Key Components and Interfaces

The O-RAN architecture consists of several key components
and interfaces that coordinate to enable the desired openness
and intelligence at the radio level:

1) O-Cloud: The O-Cloud is the cloud-native infrastructure
hosting the virtualized and containerized network functions,
including the O-RAN Software Components, e.g., O-RAN
Distributed Units (O-DU), O-RAN Radio Units (O-RU), and
O-RAN Central Units (O-CU), as shown in Fig. 1.

2) O-RAN Software Components: The O-RAN software
components include the O-DU that handles real-time baseband
processing and is responsible for functions such as encod-
ing/decoding and MIMO processing; the O-CU that performs
non-real-time functions like radio resource control, mobility
management, and scheduling; and O-RU that comprises the
radio components, including antennas, amplifiers, and digital
front-end processing.



3) Open Interfaces: O-RAN defines several open interfaces
to enable interoperability and multi-vendor ecosystems. These
interfaces include open fronthaul, which is the interface be-
tween the O-DU and O-RU, enabling the fronthaul network
connectivity, and open mid-haul, which is an F1 interface
connecting an O-CU to an O-DU. The F1 control plane (F1-C)
allows signalling between the O-CU and O-DU, while the F1
user plane (F1-U) is used for transferring the application data.
E2 Interface which is an open interface between two endpoints,
i.e., the NRT-RIC and the E2 nodes, i.e., DUs and CUs in 5G.
Open Southbound Interfaces, which is the interface between
the O-RAN Software Components and the RIC.

4) RAN Intelligent Controllers: The RICs are a key com-
ponent of the O-RAN architecture, enabling AI/ML-based
intelligent control and optimization of the RAN. There are
two types of RICs used in the RAN architecture that include
Non-Real-Time RIC (Non-RT-RIC) and Near-Real-Time RIC
(NRT-RIC). Non-RT-RIC is used for handling non-real-time
operations, e.g., offline model training, policy generation, and
enrichment information delivery, whereas NRT-RIC is used
for handling near-real-time operations like policy execution,
traffic steering, and resource allocation. In this research, we
used NRT-RIC for the effective and real-time implementation
of RAN control policies.

5) xApps and rApps: The RICs host and execute various ap-
plications known as "xApps" and "rApps". xAPPs are AI/ML-
based applications that run on the NRT-RIC and provide
intelligent functions like prediction, optimization, and policy
generation. The xAPPs work in real-time that can handle those
events requiring action from 10 milliseconds (ms) to 1 second.
As our proposed scenario, i.e., intelligent network slicing in
highly dynamic and mobile network environments, demands a
real-time response, we developed our custom xAPP based on
DRL that is deployed along with other xAPPs in the NRT-RIC,
as shown in Fig. 1. On the other hand, rApps are applications
that run on the Non-RT-RIC and are used for non-real-time
network automation.

III. PROPOSED SYSTEM MODEL

Our scenario considers vehicular networks as the environ-
ment for our proposed architecture. A vehicular network pro-
vides a dynamic and complex environment with strict perfor-
mance requirements. The scenario consists of sets of O-RAN-
compliant O-DUs, O-RUs, and O-CUs, represented as gNodeB
� ∈ � , where each gNodeB m is equipped with its MEC
server. We considered a centralized intelligent architecture
where all the gNodeBs are controlled and managed by a single
centralized NRT-RIC and a custom-developed and proposed
xAPP, as shown in Fig. 1. MEC servers provide multiple
service-specific dedicated slices denoted as � ∈ �. Within this
system, � users exist, specifically, vehicles (� ∈ �), each
seeking access to a service-specific dedicated slice operating
at the nearest RAN and its associated MEC server. Time is
segmented into � discrete slots. During each of these time
slots (� ∈ �), the mobile user (� ∈ �) requests the service-
specific dedicated slice from a RAN (� ∈ �). The high-
level architecture for the proposed approach and system model

Fig. 1. O-RAN architecture with the proposed xAPP deployment in NRT-RIC

is shown in Fig. 1, where the proposed DRL approach is
implemented as an xAPP in the NRT-RIC. Furthermore, the
detailed architecture, including all the components involved, is
provided in Fig. 2, whereas all the components of the proposed
solution are discussed in the following sections.

A. Computation Model

We assume that each mobile user demands access to a
dedicated slice from the RAN and its associated MEC server
to fulfil its QoS requirements. The computational model could
be divided into three major steps. Initially, mobile users (inter-
changeably referred to as vehicles in this manuscript) initiate
a request for the service-specific dedicated slice by offloading
data of a specific size to be processed by the MEC server
through the RAN [27]. Subsequently, the RAN forwards the
data for processing to the corresponding MEC server. Lastly,
the processed results from the MEC server are returned to the
mobile user. Based on the steps outlined, the computational
model can be characterized by the processing delay resulting
from all these steps, including MEC communication delay,
processing delay or MEC slice computation delay, and the
downloading delay of the processed result [4].

1) MEC Communication Delay: When a mobile user u
requests a dedicated slice l from RAN and its associated MEC
server m, the communication delay is contingent upon the
attained data rate, wireless channel quality, and the magnitude
of the requested service [4]. The channel gain between user u
and RAN m at time t is represented by ����, and the signal-
to-noise ratio can be formulated as:

���� =
���

�
��

�
′
�
+�2 , (1)

Where �� denotes the transmit power of the RAN m, �2

signifies the noise power, and �
′
�

represents the accumulated
interference from neighboring RANs. The achieved data rate
can be defined as:

��
�� = �� log2 (1+����), (2)
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Fig. 2. Proposed O-RAN architecture and its working principles for network slice management in dynamic and mobile network environments

Here, �� denotes the bandwidth allocated by the RAN m.
The delay in communication between the RAN m and the
mobile user u, who requests a service-specific dedicated slice
at time t, can be characterized as follows.

���� =
���

��
��

, (3)

Here, ��� denotes the magnitude of the service requested
by the mobile user u. Additionally, the duration taken to
download the processed service requests is mainly dependent
on both the size of the processed outcomes and the download
data rate of the mobile user u.

2) Slice Computation Delay: This delay is dependent On
the resources assigned to the dedicated slice tailored for a
specific service within a MEC server by the NRT-RIC, along
with the computational demands of the mobile user u at time
t. The slice computation delay for a particular slice l at RAN
m and its associated MEC server at time slot t can be defined
as:

��
���

=
�
��
���

��

�����
��

, (4)

Here, �
��

denotes the requested computation capacity, mea-
sured as RAN time frame rates per second, for MEC slice

l by vehicle u at time t. �����
��

represents the maximum
computation capacity allocated to slice l within RAN m, e.g.,
maximum time frame rates (maximum weight of a network
slice in time frame rates). Additionally, ���

��
represents the

current computational load on slice l within RAN m, indicating
the number of mobile users utilizing the same service-specific
dedicated slice l at time t.

B. Slice Migration Delay (Service Interruption Delay)

The slice migration delay indicates the period of service
unavailability when slice mobility is required among different
RANs. This delay is defined as the duration required to
complete the network slice mobility procedure, which involves
initiating a new slice at the target RAN. Here, the target
RAN is defined as the potential candidate for network slice
migration as the mobile user migrates from the coverage area
of one RAN to another. The slice migration delay can be
articulated as:

�� =

{
0, if ��
���� = ��
���� ,

��� , if ��
���� ≠ ��
���� .
(5)

In the case when the mobile user is not handed over towards
the candidate RAN, the slice migration delay is returned as 0.
There could be several reasons for this scenario to occur, such



as the dedicated slice required by the mobile user does not
have any strict latency or service continuity requirements, or
the candidate RAN does not have ample resources available to
complete the network slice mobility as it needs to prioritize the
safety-critical slices and emergency vehicle types, as defined in
Table II. Here, 𝑠𝑚𝑑 represents the slice migration delay when
the dedicated slice is migrated from the current RAN towards
the target RAN, e.g., for network slices with strict latency
requirements and high priority. The slice migration delay 𝑠𝑚𝑑

is defined as:

𝑆𝑚𝑑 =
𝑀𝑆𝑙

𝐶𝑃𝑎
𝑚𝑐

, (6)

where 𝑀𝑆𝑙 represents the size of a MEC slice l, e.g., docker
container images, configuration files, that require mobility, and
𝐶𝑃𝑎

𝑚𝑐
denotes the availability of the resources at the candi-

date RAN 𝑚𝑐, i.e., available bandwidth and computational
resources.

C. RAN Resources Availability and Slice Utilization

The RAN(s) and their respective MEC servers offer finite
network resources, which may be insufficient to handle a surge
in traffic stemming from the emergence of IoT services and
escalating demands for low-latency dedicated network slices.
Thus, optimizing the resource capacity of RAN is essential
to facilitate mobile users with their requested slice type and
ensure the QoS requirements of each mobile user are met
sufficiently. The function for RAN resources availability and
slice utilization could be expressed as:

𝑓𝑚𝐴
= 1−

∑𝐿
𝑙=1 𝑅𝑆

𝑡
𝑙𝑚

𝑅𝑆𝑚𝑎𝑥
𝑚

, (7)

where,
∑𝐿

𝑙=1 𝑅𝑆
𝑡
𝑙𝑚

represents the total system resources
utilized by all slices L within RAN m at time t, and 𝑅𝑆𝑚𝑎𝑥

𝑚

denotes the maximum system resources, indicating the system
capacity of RAN m.

IV. NETWORK SLICE TYPES AND PRIORITY
OPTIMIZATION

In the context of vehicular networks, different types of
network slices are required, e.g., traffic monitoring, infotain-
ment, and safety-critical, each having varying priority levels,
depending on their specific QoS requirements and criticality.
We assume three types of vehicles, e.g., personal, passen-
ger vehicles (CE), and emergency vehicles, each demanding
different slice types, e.g., massive IoT, infotainment, and
safety-critical, respectively. Each of the vehicle types exhibits
different priorities and QoS requirements, and therefore tuning
the reward function so that the DRL agent can learn to adapt
to the varying needs of network slices is essential. There we
formulated a multi-objective reward function that took into
account these parameters of vehicles and adjusted its weight
parameters in the reward function to ensure that several types
of network slices co-exist in a network while their QoS and
priorities are met in a highly dynamic and complex network
scenario including the mobility scenarios. The different types

of network slices considered in the paper are presented in
Table II, where the sample weights are given for different
objectives and demands of vehicles. For example, in the case
of vehicular mobility from the coverage area of one RAN
to another, it is critical to provide real-time handover of
the dedicated safety-critical network slice being used by the
emergency vehicle, and therefore, it is given a higher priority
reward and high penalty for service interruption as compared
to the passenger vehicles (CE) and commercial vehicle types,
as shown in Table II. These weights are dynamically adjusted
by the proposed DRL agent as it learns to adapt optimal
decisions meeting the QoS and priority levels of each vehicle
type. Different slice types are considered in the paper, and
their priorities are defined in the following subsections.

1) Emergency Vehicles (Safety-Critical Slice): For network
slices supporting safety-critical applications and deadline-
sensitive tasks [28], e.g., remote driving assistance or real-
time traffic monitoring, maintaining QoS and minimizing
service interruptions and service failures is essential [29].
The DRL agent assigns higher priorities to the QoS reward
and interruption penalty, ensuring that the learned policies
prioritize QoS adherence and seamless handovers to maintain
the reliability and integrity of safety-critical services.

2) Passenger Vehicles with Consumer Electronics (Infotain-
ment/Multimedia Slice): For network slices supporting high-
bandwidth applications, e.g., infotainment services or multi-
media streaming, efficient resource utilization is important. In
these cases, the DRL agent assigns a higher priority to the
resource reward component, encouraging the agent to learn
policies that optimize resource allocation and minimize over-
provisioning or under-utilization. For these types of passenger
vehicles (CE) network slices, which involve consumer elec-
tronics with less critical and sensitive requirements, the DRL
agent may assign lower priorities to the interruption penalty
and priority reward components while focusing on the resource
reward component.

3) Personal Vehicles (Massive IoT Slice): For personal
vehicles like cars, SUVs, and light trucks, connectivity needs
are essential and driven by IoT applications, e.g., location
tracking, software updates, and vehicle telemetry data report-
ing. These use cases involve a massive number of low data
rate device connections rather than high bandwidth demands.
As such, in this case, the DRL agent prioritizes support for
an extremely large number of simultaneous IoT device con-
nections while emphasizing less on relatively lower data rates.
The QoS reward component is weighted to ensure sufficient
data rates for transferring sensor data and firmware updates.
Similarly, the resource reward aims to efficiently multiplex the
massive number of IoT connections onto the available network
resources. On the other hand, service interruptions are assigned
a low penalty weight, as temporary disconnections can be
tolerated for passenger vehicles (CE) and IoT services like
video streaming and location tracking.

V. INTELLIGENT XAPP FOR NETWORK SLICING
MANAGEMENT IN O-RAN-FRAMEWORK

We deployed an intelligent xAPP implementation that can
subscribe to RAN functions and UE measurement reports



through its interaction with NRT-RIC and based on these indi-
cators, the xAPP acts as an autonomous agent responsible for 
orchestrating network slice migration and management deci-
sions in real-time. In this section, we present a comprehensive 
framework for our intelligent xAPP, focusing on its state space 
representation, action space definition, reward function design, 
and dynamic weight adjustment mechanism. In addition, we 
discussed the key components of the DRL approach, which 
includes the state transition probability, discount factor, policy, 
and Q-function. At last, we defined the primary objective of the 
xAPP, i.e., to learn an optimal policy to maximize cumulative 
rewards over time.

A. State Space (S)

The state space is represented as the current condition of
the vehicular network environment and is defined as:

𝑆 = (𝑀,𝑄,𝑁, 𝑅, 𝐿) (8)

where M represents the vehicle mobility patterns and pre-
dicted trajectories, Q is the signal strength measurements, e.g.,
RSRP/RSRQ for the current and neighbouring RANs, N is
the network congestion levels, e.g., PRB utilization, buffer
occupancy, number of mobile users being served by a RAN
in a specific cell, R is the available computing and network
resources at the current and target RANs, and L is the current
state of the user’s network slice, e.g., QoS parameters and slice
type requested.

B. Action Space (A)

The action space includes the set of possible actions the
DRL agent (xAPP) can take. The actions are represented as:

𝐴 = {𝑎ℎ, 𝑎𝑟 , 𝑎𝑠} (9)

where 𝑎ℎ represents the handover actions that include
initiating a handover or delaying a handover, 𝑎𝑟 is the resource
allocation action that includes allocating resources or adjusting
resources assigned to a network slice, and 𝑎𝑠 is the network
slice management action that includes instantiating a network
slice or terminating a network slice.

C. Reward Function (R)

We designed a reward function so that it can balance
the trade-offs between QoS maintenance, resource efficiency,
service continuity, and slice prioritization. The reward function
consists of the following major components:

1) QoS Reward: This component represents the reward for
maintaining the QoS requirements of the network slice, e.g.,
computational delay/latency and throughput. The QoS reward
function is calculated as a function of the QoS parameters
before and after a specific action is taken in a given state. A
higher QoS reward is obtained when the actual QoS achieved
by the mobile user after the action is taken in a given state
is closer to the desired QoS target. This component ensures
that the DRL agent learns policies that prioritize maintaining

TABLE II
WEIGHT FACTORS OF REWARD FUNCTION FOR DIFFERENT TYPES OF

NETWORK SLICES

Vehicle Type Slice Type Mobility Factor and Weight
Pattern

Personal
Vehicles Massive IoT low QoS Reward: xx

Resource Reward: xx
Interruption Penalty: xx

Priority Reward: xx
Passenger

Vehicles (CE)
Multimedia/
Infotainment Moderate QoS Reward: xxxx

Resource Reward: xx
Interruption Penalty: xx

Priority Reward: xx
Emergency

Vehicles Safety-critical High QoS Reward: xx

Resource Reward: xx
Interruption Penalty: xx

Priority Reward: xx

the required QoS levels for different network slices. The QoS
reward is given by:

QoS_reward(𝑠, 𝑎) = 𝛼 ·
©«1−

���𝜌𝑙𝑡𝑔𝑡 − 𝜌𝑙
𝑎 𝑓 𝑡

(𝑠, 𝑎)
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𝜌𝑙𝑡𝑔𝑡

ª®®¬ (10)

where 𝜌𝑙𝑡𝑔𝑡 represents the desired QoS requirements of a
mobile user requesting a particular slice l, and 𝜌𝑙

𝑎 𝑓 𝑡
(𝑠, 𝑎) is

the actual QoS achieved by the mobile user associated with a
particular slice l after the action a is taken in a given state s.
Here, 𝛼 is the scaling factor.

2) Resource Reward: The Resource Reward (RSRC) com-
ponent aims to minimize resource over-provisioning or under-
utilization, resulting in efficient utilization of scarce network
resources. It is determined based on the resource availability
metrics of the RAN before and after an action is taken in
a given state. A higher resource reward is obtained when
the resource utility after a certain action is taken is close
to the optimal resource utilization level but less than the
maximum resource availability. This component encourages
the DRL agent to learn policies that optimize resource usage
and minimize the wastage of scarce network resources.

RSRC_reward(𝑠, 𝑎) = 𝛽 ·
©«1−

���𝜁𝑚𝑜𝑝𝑡 − 𝜁𝑚
𝑎 𝑓 𝑡

(𝑠, 𝑎)
���

𝜁𝑚𝑜𝑝𝑡

ª®®¬ (11)

where 𝜁𝑚𝑜𝑝𝑡 represents the optimal resource utilization level
of a RAN m, and 𝜁𝑚

𝑎 𝑓 𝑡
(𝑠, 𝑎) is the resource utility of a RAN m

when the mobile user is associated with that particular RAN
after the action a is taken in a given state s. Here, 𝛽 is the
scaling factor.

3) Interruption Penalty: The Interruption Penalty (ITP)
component aims to reduce service interruptions, particularly
for the slice types that are safety-critical. This component of
the reward function penalizes service interruptions or handover



failures, which should be minimized. It is calculated based
on the handover success rate or service interruption duration.
A higher penalty is imposed when a vehicle type requiring
safety-critical slice types is not handed over towards the next
optimal candidate RAN to maintain reliable communication
and reduce the service interruption duration. This component
encourages the DRL agent to learn policies that minimize
service disruptions and ensure seamless handovers during
network slice migration. The ITP is given as:

ITP_𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑠, 𝑎) = −𝜄 ·
(
1− 𝜒𝑙𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑠, 𝑎)

)
(12)

where 𝜄 is the scaling factor, and 𝜒𝑙𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑠, 𝑎) is the
handover success rate for a particular slice type l when an
action a is taken in any given state s. The handover success
rate 𝜒 can be defined as:

𝜒𝑙𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑠, 𝑎) =
{

0, if 𝑅𝐴𝑁𝑐𝑢𝑟𝑟 = 𝑅𝐴𝑁𝑐𝑎𝑛𝑑 ,

1, if 𝑅𝐴𝑁𝑐𝑢𝑟𝑟 ≠ 𝑅𝐴𝑁𝑐𝑎𝑛𝑑 .
(13)

4) Priority Reward: The priority reward component re-
wards certain types of network slices or vehicles based on
their respective priority levels. A higher reward is obtained
for prioritizing critical network slices or high-priority vehicles.
This component allows the DRL agent to learn policies that
prioritize the migration of essential network slices or user
groups with stringent QoS requirements. The priority reward
component is defined as:

Priority_reward(𝑠, 𝑎) = 𝛿 · 𝜈𝑙 (14)

where 𝛿 is the scaling factor, and 𝜈𝑙 is the slice priority
level as determined through the slice type l and its associated
requirements.

The overall reward function can be written as:

𝑅(𝑠, 𝑎) =𝑤1 ·QoS_reward(𝑠, 𝑎)
+𝑤2 ·RSRC_reward(𝑠, 𝑎)
+𝑤3 · ITP_penalty(𝑠, 𝑎)
+𝑤4 ·Priority_reward(𝑠, 𝑎)

(15)

Where, 𝑤1,𝑤2,𝑤3,𝑤4 are weights in the reward function
assigned to each individual reward components that are dy-
namically adjusted based on the vehicle type, network slice
type, and mobility pattern. The DRL agent learns an optimal
policy dynamically assigning weights to different components
of the reward function based on the following function:

𝑤𝑖 = 𝑓𝑖 (vehicle_type, slice_type,mobility_pattern) (16)

Here, mobility pattern function 𝑀 (𝑡) can be defined as a
function that captures the vehicle’s movement characteristics,
e.g., the vehicle’s position, channel conditions, speed, and
distance from neighbouring RANs. The relationship is defined
as:

𝑀 (𝑡) = 𝑔(𝑃𝑢 (𝑡), 𝑣𝑢 (𝑡), 𝑑𝑢,RAN (𝑡)) (17)

where 𝑀 (𝑡) represents the mobility pattern at time 𝑡, 𝑃𝑢 (𝑡)
is the vehicle’s position, 𝑣𝑢 (𝑡) is the vehicle’s speed, and

𝑑𝑢,RAN (𝑡) is the distance from the vehicle to neighbouring
RANs. This mobility pattern is captured by the centralized
NRT-RIC within the O-RAN framework, enabling it to analyze
the mobility patterns across the network. The NRT-RIC uses
this information to optimize decision-making, ensuring com-
munication strategies and resource allocation adapt to varying
mobility scenarios and QoS requirements of different network
slices and applications.

D. DRL Components

Our DRL framework includes several components that play
an important role in the training process. These components
are defined as follows:

1) State Transition Probability: The probability of transi-
tioning from one state 𝑠 to another state 𝑠′ after an action 𝑎

is taken. It is denoted as 𝑃(𝑠′ |𝑠, 𝑎).
2) Discount Factor: It determines the importance of future

rewards in comparison to immediate rewards. The discount
factor ensures that the agent focuses on valuing the immediate
rewards more than the future rewards. The discount factor
typically ranges between 0 and 1, inclusively (𝛾 ∈ [0,1]).

3) Policy: The policy, denoted as 𝜋(𝑎 |𝑠), defines the strat-
egy that the agent, i.e., xAPP implemented in NRT-RIC,
follows to select actions in different states.

4) Q-function: The Q-function, denoted as 𝑄(𝑠, 𝑎), is used
for estimation of the expected cumulative discounted reward
for taking action 𝑎 in the state 𝑠 and following the optimal
policy thereafter.

E. Objective

The primary objective of the DRL agent, i.e., xAPP imple-
mented in the NRT-RIC, is to learn an optimal policy, denoted
as 𝜋∗ (𝑠), that maximizes the expected cumulative discounted
reward over time. It can be expressed as:

𝜋∗ (𝑠) = argmax
𝜋

E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
����𝑠0 = 𝑠, 𝑎 ∼ 𝜋(𝑎 |𝑠)

]
(18)

Here, 𝜋∗ (𝑠) represents the optimal policy that maximizes the
expected cumulative reward, 𝛾 is the discount factor, 𝑅(𝑠𝑡 , 𝑎𝑡 )
is the reward obtained at time 𝑡, 𝑠0 is the initial state 𝑠, and 𝜋

is the policy followed by the agent. The pseudocode for the
proposed approach and its working principles is provided in
Algorithm 1.

VI. PERFORMANCE EVALUATION

We used the Open Networking Foundation (ONF) SD-
RAN Platform [30] as our simulation environment, which
aligns with the O-RAN architecture principles. The SD-
RAN Platform provides a comprehensive implementation of
the disaggregated RAN components, which includes O-RU,
O-DU, O-CU, and the NRT-RIC; each of the components
aligns closely with the specifications outlined by the O-RAN
Alliance. Additionally, the platform incorporates virtual nodes
hosted within an edge cloud that facilitate the emulation of
real-world deployment scenarios.



Algorithm 1 xAPP Implementation in NRT-RIC (O-RAN) for
Network Slice Management

procedure INITIALIZE
Initialize state space 𝑆, action space 𝐴, reward function 𝑅,

and discount factor 𝛾

Initialize initial policy 𝜋

end procedure
for episode in episodes do

Initialize state 𝑠

while not terminated do
Select action 𝑎 from policy 𝜋(𝑠)
Execute action 𝑎 in the network environment
Observe next state 𝑠′, reward 𝑟 = 𝑅(𝑠, 𝑎)
Update Q-function or policy parameters using DRL al-

gorithm (e.g., Q-learning, Policy Gradient)
𝑠 = 𝑠′

end while
end for
procedure OPTIMIZEREWARDFUNCTION(𝑠, 𝑎)

procedure OVERALLREWARD(𝑠, 𝑎)
return using Eq. (15)

end procedure
procedure ADJUSTWEIGHTS

return using Eq. (16)
end procedure

end procedure
procedure UPDATEPOLICY

Use DRL algorithm to learn optimal policy 𝜋∗ (𝑠)
end procedure
procedure EXECUTEPOLICY

Within the O-RAN framework, the xAPP implementing the
DRL agent interacts with the NRT-RIC to:

1. Obtain the current network state information (user
mobility, signal strength, resource availability) through the E2
interface

2. Execute the chosen actions (initiate handover, delay
handover, allocate resources, instantiate/terminate slices) through
the E2 interface and control mechanisms
end procedure

TABLE III
SUMMARY OF SIMULATION PARAMETERS USED IN THE PERFORMANCE

EVALUATION SCENARIO

Parameter Value
Types of network slices 3

Vehicle’s speed 36 km/h
Number of RANs/MECs 3

Controller implementation Centralized
Number of NRT-RICs 1

Maximum weight of a MEC slice 80-time frame rates
Slice types Uplink and downlink

Slice scheduler type Proportional fair
Transmit power of each RAN 40dBm

Vehicles mobility model Waypoint and direct route
Propagation model Log distance

DNN training interval 8 batches
DNN training batch size 32

DNN learning rate 0.01
DNN training optimizer Adam

A. Simulation Scenario

We simulated complex and dynamic scenarios where ve-
hicles move across coverage areas of different RANs, incor-
porating a small-scale fading model, i.e., the Rayleigh fading
model. We designed a setup with three separate RANs, each
equipped with disaggregated RAN components. We imple-

mented a centralized control architecture where all the RANs
are managed by a centralized NRT-RIC, collectively forming
the infrastructure supporting wireless connectivity and service
continuity. The vehicles are simulated as mobile entities transi-
tioning between the coverage areas of RANs. For emulating a
more realistic mobility patterns, we modelled vehicles moving
between RAN coverage areas every 50 seconds. We tested
our trained model on 1000 such samples, where we analyzed
handover efficiency across various network slices and vehicle
types.

The simulation scenarios are designed to evaluate the effec-
tiveness of handover policies tailored to different network slice
types. We employed a DRL-based xAPP that communicates
with NRT-RIC, managing the RAN components and enabling
dynamic adjustment of handover probabilities depending on
real-time network conditions and traffic priorities. This dy-
namic and adaptive approach ensures that optimal handover
decisions are made at each time slot to maintain the spe-
cific QoS requirements of each network slice in the mobile
environment. The DRL agent interacts with the simulation
environment in real-time, generating training data dynamically
rather than relying on a pre-collected static dataset. The
training data consists of real-time Received Signal Strength
Indicator (RSSI) values of mobile users collected by the
proposed centralized NRT-RIC, which are used as state inputs
to the DRL agent, i.e., DRL-based xAPP. The state inputs,
the agent’s actions, and the corresponding rewards form the
state-action-reward-next-state tuples, which are then stored in
a replay buffer. The agent observes around 1000 unique RSSI
samples while interacting with the environment and stores
them in a replay buffer. The samples are reused over multiple
episodes, enabling the agent to refine its decision-making
process efficiently. The dynamic nature of our environment
allows the agent to continuously explore and adapt, creating
new trajectories that evolve with its policy, providing diverse
training experiences.

We evaluated a fully connected Deep Neural Network
(DNN) consisting of one input layer, two hidden layers, and
one output layer. The first hidden layer is comprised of 256
neurons, and the second hidden layer contains 512 neurons.
We have summarized other DNN configurations, hyperparam-
eters, and the simulation parameters used in this research
in Table III. The DRL architecture was determined based
on preliminary experiments that aimed to provide adequate
model capacity while minimizing the risk of overfitting. We
used ReLU activation functions and performed hyperparameter
tuning to optimize stability and improve learning efficiency.

B. Performance Metrics: Evaluation and Comparison

We compared our proposal with other approaches in the
literature that use programmable and centralized architec-
tural solutions for network slice mobility management. The
approaches proposed in [8], [31] use SDN-based migration
modules to trigger slice mobility across MEC servers. The
approach presented in [8] proposed migration of network slices
from the source towards the target MEC server upon vehicle
relocation based on resource availability on the MEC servers.



In [31], the authors introduced a mechanism to identify the
specific network slice resources that need to be migrated,
where network slices are deployed as independently deploy-
able, stateless microservices. In the event of vehicle mobility,
only the identified microservices are migrated to the target
MEC server, depending upon its resource availability, to com-
plete the network slice mobility procedure. These approaches
only consider network slice mobility management based on
MEC resource availability and don’t consider any mechanism
to identify the network slice type and their QoS requirements.
Therefore, network slice mobility is managed uniformly, with
all types of network slices treated equally, triggering handovers
to MEC servers based on the mobile user’s proximity or the
resource availability on the MEC servers. In this paper, we
refer to these approaches as the SDN-based Network Slice
Mobility (SDN-NSM) approach.

We also compared our proposed approach to the conven-
tional network slice mobility management scheme. In this
approach, upon relocation, the SDN controller triggers the
handover of the vehicle and its associated network slice to
the next available RAN and their corresponding MEC server
based on the channel conditions and signal strength, i.e., RSSI.
The conventional approach also does not consider the network
slice type, its QoS requirements, or the resource availability
of the target MEC in the network slice mobility management
decisions. We refer to the SDN-based Conventional Network
Slice Mobility approach as (SDN-CON).

We have selected several performance metrics to assess the
viability of the proposed approach for effective network slice
mobility management using the O-RAN Framework. We eval-
uated our proposed approach for the following performance
metrics:

1) Handover Probability of Different Slices: This perfor-
mance metric is used to determine the likelihood of initiating
and completing handovers for various network slice types. A
high handover probability indicates a greater propensity for
handover events in case the vehicles move from the coverage
area of one RAN to another, resulting in service continu-
ity and efficient network resource utilization. The handover
probability convergence graph, as shown in Fig. 3, illustrates
the dynamic adjustment of handover policies for different
network slice types during the training of a DRL agent.
More specifically, as seen in Fig. 3, as the training goes
on and the agent learns to adapt dynamic handover policies
based on the slice type and vehicular requirements. As seen,
the safety-critical slice’s handover probability reaches close
to 1, indicating a high likelihood of handover initiation to
maintain service quality for critical applications in the case
of vehicular mobility. This convergence ensures the reliability,
availability, and responsiveness of critical services within the
5G networks. In other words, our proposed NRT-RIC priori-
tises and guarantees uninterrupted connectivity for mission-
critical applications, e.g., emergency communication systems,
healthcare services, and public safety operations. We simulated
congested environments in this simulation scenario, where we
distributed load on RANs so that the RANs are highly loaded
and can not accommodate all types of network slice handover
requests. In such congested scenarios, our proposed NRT-RIC

Fig. 3. Handover probability for different network slices with training

consistently prefers handovers of safety-critical network slices
to stronger network cells or RANs, ensuring minimal disrup-
tion and latency-sensitive transmissions, as seen in Fig. 3.

In contrast, the handover probabilities of passenger vehicles
(CE) slices, e.g., infotainment and massive IoT slice, converge
to a moderate or lower value, exhibiting a more balanced
approach to handover decisions based on traffic priorities, QoS
requirements, and resource availability on the neighbouring
RANs, as shown in Fig. 3. In addition, as shown in Fig. 3, the
proposed approach converges fast, achieving optimal solution
in 1200 episodes. This convergence shows the efficiency of
the approach in terms of complexity, as it requires only 1200
episodes to find an optimal solution. Once the model is trained,
it can effectively provide real-time network slice mobility de-
cisions with response times ranging from 5 to 10 ms, meeting
the latency requirements for vehicular communications.

2) Service Continuity for Different Network Slice Types:
The performance metric is used to evaluate the potential of
the proposed approach in enabling a seamless transition of
network slices from one RAN to another during handover
events. The metrics evaluate the system’s ability to maintain
uninterrupted connectivity and QoS requirements across dif-
ferent types of network slices. The graph, as shown in Fig.
4, demonstrates the service continuity for different network
slice types, e.g., safety-critical, infotainment, and massive IoT,
during handover events. We considered a specific scenario
where, at � = 60 sec, the vehicle requiring a safety-critical slice
changes its position by moving from its current serving RAN
to the neighbouring candidate RANs. We simulated a highly
congested environment where the resources at the candidate
RANs are being fully utilized, and there is not enough space
to accommodate new slice requests or slice migration requests
from the incoming vehicle requesting safety-critical slices. The
proposed NRT-RIC xAPP assessing the situation dynamically
switches the two other vehicles using less-critical network
slices, e.g., infotainment and massive IoT, to the neighbouring
RAN, therefore accepting the slice migration request from the
vehicle requiring the safety-critical slice. Thus, the safety-
critical slice achieves service continuity upon relocation at
� = 60 sec in our proposed case, as seen in Fig. 4a. In
comparison, in the SDN-NSM and SDN-CON cases, the
safety-critical slice faces severe degradation of service quality



(a) Safety-Critical Slice

(b) Infotainment Slice

(c) Massive IoT Slice

Fig. 4. Performance comparison of service continuity in congested scenarios
across network slices

upon relocation at � = 60 sec, as these approaches are unable
to identify the network slice types and their QoS requirements,
treating all types of network slices with same priority levels,
as seen in Fig. 4a.

Consequently, as a result of switching the less-critical
network slices, i.e., infotainment and massive IoT slice, to
the neighbouring RANs to accommodate the safety-critical
slice in our proposed case, the vehicles with less-critical
requirements face a slight degradation in service quality but
remain within acceptable thresholds, as shown in Fig. 4b and
Fig. 4c, respectively. In SDN-NSM and SDN-CON cases, the
vehicles with less-critical requirements continue to achieve
the same performance levels, but at the expense of severe
degradation of the QoS of the safety-critical slice, as shown

in Fig. 4a, Fig. 4b, and Fig. 4c.
This highlights the ability of the proposed NRT-RIC xAPP

to dynamically manage handovers based on slice priorities
and resource availability while ensuring that critical services
receive precedence and, at the same time, maintaining service
continuity for all vehicles. In contrast, the SDN-NSM and
SDN-CON approaches don’t have any mechanisms in place
to dynamically identify different network slice types and their
QoS requirements and don’t utilize the resources efficiently,
e.g., where a network slice requiring fewer resources and high
resources are treated equally.

3) Number of Successful Handovers per Different RANs:
This metric is used to evaluate the effectiveness of handover
procedures within each RAN. The metric measures the fre-
quency of successful handover events, reflecting the ability of
the proposed system to seamlessly transfer network slices and
vehicles associated between different RANs. In this scenario,
the trained model is tested using 1000 samples representing the
transitioning of vehicles between coverage areas of different
RANs approximately every 50 seconds. Fig. 5a offers insight
into the effectiveness of the handover process as different
vehicle types with different priorities and QoS requirements
transition between coverage areas of different RANs. Specifi-
cally in our proposed case, the safety-critical vehicle exhibits
a higher handover success rate upon relocation in congested
scenarios. The proposed NRT-RIC xAPP prioritizes a strategy
that aims to prevent frequent handovers, e.g., ping pong
handovers, by ensuring that vehicles with less stringent QoS
requirements, e.g., massive IoT, remain connected to their
original RAN to avoid unnecessary handovers. This can be
seen in Fig. 5a, where the vehicles with less critical slice
requirements stay connected to their original RAN, i.e., RAN
1, more frequently than the safety-critical network slices. The
safety-critical network slices are frequently handed over to
the neighbouring RANs upon relocation to maintain service
continuity. On the other hand, vehicles with low priority levels
are only handed over towards the candidate RANs when they
have ample resources available and unused resources, as shown
in Fig. 5a. This strategy plays a key role in ensuring the
efficient utilization of scarce RAN resources and simultane-
ously enhances public safety by providing seamless delivery
of critical services.

In contrast, as seen in Fig. 5a, for the SDN-NSM and
SDN-CON cases, all types of network slices are treated
uniformly without taking into account their QoS requirements
and priority levels. These approaches trigger frequent handover
of non-critical slices as compared to the safety-critical slices,
resulting in inefficient utilization of network resources and
service quality degradation for safety-critical network slices.

4) QoS Across Different RANs: This performance metric is
used to assess the data rate achieved by each network slice
across different RANs in case of vehicle mobility events. As
seen in Fig. 5b, the average throughput per slice from the
perspective of vehicles across three distinct RAN environ-
ments shows a trend where vehicles demanding safety-critical
tasks consistently achieved higher throughput compared to
other vehicle types in our proposed case. In contrast, in the
SDN-CON and SDN-NSM cases, the throughput is evenly



(a) Number of successful handovers for different network slice
types

(b) Average throughput achieved by different network slices in
RAN

(c) Average resources allocated to different network slices by
RAN

Fig. 5. Performance evaluation and comparison of network slice mobility management approaches

distributed amongst different types of network slices, as seen
in Fig. 5b. This results in inefficient utilization of network
resources, which could lead to scenarios where the network
slice requiring less throughput is assigned more resources than
needed.

In our proposed case, the safety-critical vehicle achieves
higher throughput regardless of the RAN it is connected to.
The average throughput achieved by different vehicle types
is determined based on the performance observed when the
trained model is tested with our dataset of 1000 samples.
These samples represent the transitioning of vehicles between
coverage areas of different RANs approximately every 50
seconds. This metrics shows the efficacy of our proposed NRT-
RIC xAPP in coordinating the requirements across different
RANs in case of mobility and prioritizing resources to ensure
that critical services receive optimal data transfer rates during
handover events.

5) Resources Allocated per Slice Type: This performance
metric evaluates the distribution of RAN resources (weighted
time frame rates) [30] among different slice types. Fig. 5c
illustrates the number of resources allocated per slice type,
showing the effectiveness of the proposed NRT-RIC xAPP
in efficiently allocating the network resources based on QoS
requirements. As seen in Fig. 5c, the safety-critical slice
receives a higher allocation of RAN resources compared to the

infotainment and massive IoT slice. This allocation strategy
is adapted to reflect the prioritization of critical services to
meet their stringent requirements for reliability and responsive-
ness. In contrast, other slice types, e.g., massive IoT, receive
comparatively fewer RAN resources, as they do not require
real-time processes, are less critical, or have low demanding
QoS requirements. This dynamic resource allocation approach
enabled by the proposed NRT-RIC xAPP optimizes resource
utilization within the RAN, allowing efficient delivery of
critical services while accommodating the diverse needs of
various applications and services.

In comparison, SDN-CON and SDN-NSM approaches lack
mechanisms to differentiate between various network slice
types and their QoS requirements. As a result, these ap-
proaches tend to allocate resources uniformly across all net-
work slice types, often assigning more resources to less critical
slices, as shown in Fig. 5c.

6) Impact of Varying Traffic Density and Congestion Lev-
els: This metric is used to evaluate the performance of our
proposed approach in terms of varying traffic densities and
congestion levels. We also compared our proposed approach
with SDN-NSM and SDN-CON approaches regarding han-
dover latency across varying vehicle densities, i.e., 10 to 100
vehicles per cell. Handover latency is the delay in transferring
a network slice from one RAN and its associated MEC server



Fig. 6. Handover latency with varying vehicle density per cell

to another as a vehicle moves between coverage areas. As
the vehicle density increases, radio access and MEC resources
become more congested, resulting in longer delays.

The SDN-CON approach, which uses signal strength and
channel conditions for handovers, experienced a significant
latency increase, reaching more than 5 seconds at maximum
traffic density, as shown in Fig. 6. The SDN-NSM method,
which considers resource availability in handover decisions,
performed slightly better but faced considerable delays. The
higher latency is observed because these conventional ap-
proaches only act reactively, i.e., triggering handover only
when signal strength drops below a certain level. These
approaches are slow to react and identify the need to perform
handover, resulting in higher handover latency because of
resource contention and queuing delays as the vehicle density
increases. In addition, both approaches fail to prioritize net-
work slices based on their QoS requirements and, hence, treat
all types of network slices uniformly, e.g., safety-critical slices
and less critical ones like infotainment are treated equally,
increasing the chances of bottlenecks for safety-critical appli-
cations during peak demand, because of their static resource
allocation approach.

In contrast, our proposed approach shows superior per-
formance as the proposed NRT-RIC consistently tracks and
captures the network topology, i.e., network load and vehicle’s
position, and proactively performs handover of network slices
based on their QoS requirements and priorities; it keeps
handover latency within the acceptable range for handovers in
5G and beyond, i.e., less than 1 second, even in high-density
scenarios, as shown in Fig. 6.

It is important to note here that the use of mobility models,
e.g., waypoint or direct routes, does not impact network slice
mobility decisions because the vehicle movement patterns or
positions are consistently being captured and analyzed by
the centralized NRT-RIC in the proposed O-RAN framework.
The NRT-RIC continuously monitors the mobility parameters,
e.g., vehicle’s position, speed, and distance to neighbouring
RAN, and uses this information to make timely handover
and resource allocation decisions. As the proposed NRT-
RIC dynamically tracks the mobility parameters, the specific
movement model, e.g., waypoint or direct route, has minimal
effect on the overall network slice mobility management.

VII. CONCLUSION, LIMITATION, AND FUTURE WORK

In conclusion, our study introduces a novel approach to
network slicing for highly dynamic and complex networking
environments such as vehicular networks using the O-RAN
framework. We implemented a DRL-based xAPP within the
O-RAN framework that seamlessly interacts with the NRT-
RIC to automate intelligent decision-making in optimizing
slice migration, resource allocation, and handover processes.
Our simulations and performance evaluation demonstrate the
significance of the proposed approach in maintaining QoS for
different types of network slices, optimizing RAN resource
utilization, minimizing service disruptions, and prioritizing
safety-critical slices during vehicle mobility. This research
opens directions for enhancing future vehicular communica-
tion networks’ reliability, efficiency, and safety for intelligent
and smart transportation systems.

A. Limitation

The proposed approach is an effective network slice mo-
bility approach that efficiently differentiates between network
slice types and considers their QoS requirements and priorities
in mobility decisions. However, the proposed approach is cur-
rently limited in terms of its reliance on capturing the vehicle’s
current position in real-time and using that information to trig-
ger network slice mobility handovers. The proposed approach
currently doesn’t have any mechanism to predict the vehicle’s
movement over upcoming time intervals that could assist in
finding the optimal RAN and its associated MEC server and
initiating network slice mobility handovers in advance, further
reducing the handover latency and ensuring service continuity,
in highly dynamic mobile network environments.

B. Future Works

1) Integrating Federated Learning for RAN: Integrating
federated learning techniques holds promise for enhancing
intelligence at the RAN and enabling collaborative decision-
making in vehicular communication networks [32]. Future
works include exploring the development of a federated learn-
ing framework that would enable distributed architecture for
NRT-RIC and AI model training across different RANs. This
approach could further optimize the decision-making response
time of NRT-RICs, thus, facilitating rapid decision-making and
enhancing network performance in real-time scenarios.

2) Advancing Self-Optimizing Network Capabilities: The
machine-to-machine communication between IoT devices, ve-
hicular networks, and retail applications forms the principles of
self-organizing networks [33]. In the O-RAN initiative, further
research is essential to enhance the collaboration between
xAPPs and the NRT-RIC, as this synergy could significantly
elevate self-optimizing network capabilities in vehicular net-
work environments. Innovative applications and services of
the O-RAN framework can be unlocked for proactive network
management and predictive optimization of network resources
by integrating technologies such as edge computing and pre-
dictive analytics with the NRT-RIC and its hosted apps. By
continuously enhancing the interactions and communications



between the xAPPS, NRT-RIC, and the disaggregated RAN
components, we could enable more efficient, reliable, and
responsive vehicular communication networks for intelligent
and smart transportation systems.
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