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Enhancing Quality of Service in IoT-WSN through
Edge-Enabled Multi-Objective Optimization

Shailendra Pratap Singh, Naween Kumar, Gyanendra Kumar, Balamurugan Balusamy, Ali Kashif Bashir, Maryam
M. Al Dabel

Abstract—The demand for real-time, high-quality services
(QoS) is increasing with the proliferation of the resource-
constrained nature of edge devices that facilitate the Internet of
Things (IoT) and wireless sensor network (WSN) applications.
Several existing multi-objective algorithms, such as MOPSO,
Elitism MOGA, MODE, and others, are capable of balancing
exploration and exploitation; they assist in efficient QoS manage-
ment for WSN-IoT applications, address resource limitations, and
align with the objectives of the applications. However, they suffer
from showing robustness in the solution and efficient convergence
rates on benchmark functions impacting overall QoS. This pa-
per proposes a multi-objective optimization and edge-intelligent
adaptation-based strategy to address QoS management issues,
jointly optimize several competing objectives, like energy and
latency, and maximize localization and coverage rates while con-
sidering the limitations of edge devices. The proposed work uses a
novel Grey-wolf optimizer (GWO) Algorithm with an innovative
bird-edge-computing adaptation approach to analyze the complex
connections between input parameters, edge resources, and QoS
indicators to generate Pareto-optimal solutions. The evaluation
of the proposed edge intelligence technique with IoT applications
demonstrates its effectiveness compared to conventional heuristic-
based approaches. This approach enhances the QoS in IoT
applications and improves resource utilization and scalability in
edge computing environments.

Index Terms—Grey Wolf Optimization, Evolutionary Algo-
rithms, Edge Computing, Internet of Things, Quality of Service.

I. INTRODUCTION

Effective resource allocation and decision-making in WSN-
IoT applications are challenging due to the rapid evolution
of heterogeneous sensors, consumer/industry /edge devices,
varying QoS requirements, and the growing demand for high-
quality services [1]–[3]. To address these challenges, edge
computing has emerged as a promising methodology, lever-
aging processing capabilities at the network edges [4], [5].
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Recent attention has turned to multi-objective optimization
algorithms as robust solutions for handling complex optimiza-
tion issues with competing objectives in IoT/WSN/IoT-WSN
[6]–[8]. These algorithms determine solutions that demonstrate
trade-offs between goals, offering a way to achieve QoS ob-
jectives, say increasing throughput, increasing energy savings,
maximizing packet success-delivery ratio, and minimizing
data gathering delay for network efficiency, dependability,
and others [9]. By increasing throughput, data collection
efficiency is maximized, resource usage is optimized, and user
experience can be seamless for high-bandwidth networks. The
network lifespan is extended by saving energy expenditure.
Efficient data communication is also achieved by enhancing
the packet success-delivery ratio and reducing delays. To fully
exploit the network’s potential, it is necessary to balance
these objectives. The dynamic IoT ecosystem requires adaptive
optimization strategies to meet changing user demands and
network dynamics.

When faced with the complexity of various conflict chal-
lenges involving the multi-objective optimization of diverse
network parameters, existing multi-objective optimization al-
gorithms may encounter limitations. Although there have been
attempts to balance such parameters [10], these methods often
fail to achieve a significant balance between exploitation
and exploration. Notably, existing multi-objective optimiza-
tion techniques such as multi-objective-based Integer linear
programming [11], MOPSO [7], [8], elitism-based MOGA
[12], MOWOA [13], NSGA-III (derived from [14]), MOFOX
(derived from [15]), and MOEA-D [16] succeeded in striking
a balance between exploration and exploitation, but lack the
robustness required for managing complex and multi-modal
optimization problems, similar to those posed in our study.
These strategies could significantly contribute to efficient QoS
management in IoT, effectively addressing resource limitations
and aligning with the diverse objectives shared with WSNs;
however, they suffered from convergence rates on benchmark
functions to ensure overall QoS.

So, there is a pressing need to optimize multiple network
parameters efficiently and strike a balance between exploration
and exploitation to identify diverse trade-offs in an intelligent
way. This improvement is crucial, mainly when focusing on
various conflict objectives. Furthermore, there is a challenge
in designing an algorithm that can efficiently search for
Pareto optimal solutions in high-dimensional solution spaces,
considering the conflicting objectives and resource constraints.
Furthermore, incorporating edge intelligence requires devel-
oping models to capture complex relationships between input
parameters, edge resources, and QoS metrics, enabling adap-
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tive and data-driven decision-making. The key contributions
of the proposed article are as follows:

• To propose a new method that integrates GWO with
multi-objective optimization, drawing inspiration from
grey wolves’ hunting behavior to explore and exploit
high-dimensional spaces efficiently.

• To enhance diversity and accelerate convergence in multi-
objective benchmark functions, the approach employs
a bird-hunting strategy along with GWO. Its enhanced
social behavior in a multi-objective scenario facilitates
improved diversity, exploration, adaptability, and effective
handling of Pareto dominance.

• To optimize the balance between energy efficiency
and network connectivity in IoT systems, the proposed
method integrates edge computing seamlessly with GWO.

• To validate the practicality and effectiveness of the pro-
posed approach, two comprehensive tests are conducted:
one application based on smart IoT and another focusing
on QoS optimization. The performance is compared with
the state-of-the-art approaches NSGA-III [14], MOPSO
[8], MOWOA [13], and MOEA-D (MODE) [16] algo-
rithms and results show that proposed method performed
better in achieving QoS.

The article is structured to provide a comprehensive explo-
ration of the topic. Section II reviews related work, Section
III explores IoT’s service model, Section IV presents the
proposed multi-objective technique, and Section V evaluates
its performance. Finally, Section VI concludes the study and
outlines future research directions.

II. LITERATURE REVIEW

In this section, we briefly survey a few existing multi-
objective optimisation methods relevant to this work.

Zhang et al. [6] proposed a Penalty-based evolutionary algo-
rithm to solve a QoS-based multi-objective problem, however
the solution has higher time complexity. Chaudhry et al. [7]
developed a MOPSO algorithm with better running-time com-
plexity to address multicast routing, involving performance
metrics like energy expenditure, delay, and data loss. Salimian
et al. [8] optimize IoT service placement issues by developing
an improved MOPSO algorithm. This work aimed to improve
fog resource utilization and the QoS in IoT. However, MOPSO
has less ability to effectively balance exploration and exploita-
tion than MOGWO during optimization process.

Natesha et al. [12] presented a two-level resource provi-
sioning fog framework using a containerization approach and
formulated the service placement problem in a fog computing
environment as a multi-objective optimization problem for
minimizing the cost, energy depletion, and service time and
thus ensuring the QoS of IoT applications by developing
elitism-based MOGA algorithm. But, in their algorithm, opti-
mizing the interplay among diversity, speed, and convergence
to achieve an efficient solution was difficult. Huang et al.
[13] presented MOWOA algorithm based on delay-time and
energy expenditure to address the optimal computation of-
floading mechanism in the context of mobile-edge-computing
ecosystems, however it was unable to provide better degree of

diversity of the solution set. Shailendra et al. [16] developed
a multi-objective differential evolution (MOE-D) algorithm
encompassing a rapid mutation operator. The method enhances
diversity and convergence rate, with evaluations in IoT ecosys-
tems reporting performance efficacy in optimizing service
cost, delay, and network lifetime, however it is a bit slower
algorithm. Shrestha et al. [17] proved the dynamism of high-
bandwidth networks to enhance the Industrial IoT devices’
coverage, but did not consider delay metric. Bairagi et al. [11]
addressed the simultaneous optimization of energy consump-
tion minimization and coverage maximization by developing a
multi-objective integer-linear-programming method. However,
their solution suffers from intractability issues for large-sized
networking ecosystems. This is because of the problem’s non-
deterministic polynomial time-hard complexity.

Wei et al. [18] tried to optimize resource allocation in the
vehicular cloud computing ecosystem by exploiting a modified
form of NSGA-II using matching factors, dynamic crossover,
and mutation probability factors per the provider’s and users’
viewpoints. Their algorithm showed increased population di-
versity; however, runtime execution might have been more
prolonged. Li et al. [19] exploited the Deep Reinforcement
Learning mechanism to address task offloading issues for con-
nected vehicles in UAV-Aided mobile edge computing (MEC)
networks. However, the proposed algorithm is complex. Wang
et al. [20] devised a microservice-oriented Service Placement
technique for MEC-enabled Internet of Vehicle networks to
reduce service latency, minimize excessive resource expendi-
ture and ensure perpetual sustainability. This contributed work
is for mobile internet vehicles.

Qi et al. [21] devised joint beamforming methods based
on multi-objective scenarios for maximizing the network-
performance at the cost of minimizing total transmit power.
Sheena et al. [22] proposed an energy-efficient seagull-based
multi-objective-optimization algorithm to cluster and balance
the traffic load for Disastrous Management scenarios by mini-
mizing overhead while achieving superior convergence. Khos-
roabadi et al. [23] presented the SCATTER scheme for delay-
sensitive network applications operating in integrated fog-
cloud environments. They tried to solve the service placement
problem by prioritizing improving QoS.

Despite extensive research on WSN-IoT networks, there
is a need for deeper exploration of conflicting goals, such
as data throughput and energy-saving improvement, requiring
further refinement of multi-objective optimization techniques
in dynamic network environments. Meeting these gaps is
crucial for advancing the field and deploying efficient WSN-
IoT ecosystems.

The limitations mentioned above emphasize the need for
a comprehensive, efficient, multi-objective solution with the
following features: (1) exploiting a multi-objective Algorithm
to balance multiple IoT parameters simultaneously, (2) an effi-
cient computational algorithm that works effectively in multi-
dimensional space, (3) combining various network attributes
to ensure reliable data communication and responsiveness,
(4) exploiting a hybrid multi-objective variant of grey wolf
optimization where the algorithm is having exceptional mathe-
matical ability to balance exploration and exploitation, controls
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TABLE I. Comparative analysis of relevant related works

Authors Multiple Network Parameters
Energy Delay Localization rate Coverage rate

Chaudhry (2019) ✓ ✓ × ×
Huang (2021) ✓ ✓ × ×

Shailendra
(2022)

✓ ✓ × ×

Sheena (2023) × ✓ × ×
Shrestha (2023) ✓ × × ✓
Zaborski (2022) ✓ ✓ × ×
Natesha (2021) ✓ × × ×

Khosroabadi
(2021)

✓ × × ×

Salimian (2022) × ✓ × ×
Bairagi (2022) ✓ ✓ × ✓
Our Scheme ✓ ✓ ✓ ✓

population optimization and adaptation and robustness are con-
trolled by Bird-edge-computing adaption strategy for finding a
real-time optimal solution to enhance the network performance
in adaptable WSN-IoT ecosystem. Table I compares existing
and proposed work across four essential parameters: energy,
delay, throughput, and packet loss ratio. In this Table I, a cross
mark (×) indicates the parameter’s absence, and a tick mark
(✓) signifies its presence in a specific research study.

A. Problem Statement

In the context of a WSN-IoT ecosystem, the
goal is to optimise the QoS for a given set
SN of WSN-IoT devices (S1, S2, . . . , SN ) along
with their respective data-availability set DAA =
{InitialData(S1), InitialData(S2), . . . , InitialData(Sn)}
and initial remaining energy distribution set
RE = {RE(S1), RE(S2), . . . , RE(Sn)} across a random
2-D plane. The objective is to jointly optimise various
conflicting objectives expressed as: (i) Localization Rate
Improvement: Enhancing localization rate is essential for
accurately determining the spatial position of IoT devices.
(ii) Energy Efficiency Improvement: The optimization
framework aims to enhance energy efficiency, maximizing
the utilization of available energy resources. (iii) Coverage
Rate Optimization: Optimizing coverage rate is crucial to
ensure adequate sensor coverage across the IoT ecosystem.
(iV) Low Latency Achievement: Achieving low latency is a
key objective, ensuring swift response times in the dynamic
environment.

III. APPLICATION OF IOT-BASED WIRELESS SENSORS
NETWORK

An IoT-based WSN amalgamates two integral technological
components: wireless sensor nodes and the IoT. These nodes
gather diverse data in varied settings, leveraging IoT for
sophisticated data analysis and smarter decision-making. The
versatility and adaptability of IoT-based WSNs make them a
transformative technology with the potential to revolutionize
a wide range of industries and improve the quality of life
for individuals and communities. Figure 1 depicts the layered
architecture of IoT-based WSNs [24]. The Figure shown
encapsulates a multi-layered framework for IoT-based WSNs,

encompassing Gateway connectivity, communication network
orchestration, application insights, security, scalability, power
management, and standardization.
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Fig. 1. IoT-WSN framework

Figure 2 representing an IoT-based WSN scenario can be
interpreted as a connected undirected graph. Consider a WSN
comprised of N wireless sensors strategically deployed within
an application. These sensors sense pivotal environmental
parameters like temperature, humidity, air quality, etc. The
main goal revolves around gathering data from these sensors
and effectively transmitting it to a central base station or
gateway facilitated by IoT technology.

This article aims to solve an MOP, encapsulating many
significant factors to ensure an optimal QoS. The following
subsection describes the IoT application services model’s
Objectives function [9]. The following is the formulation of
our proposed MOP, which includes all objectives:

(I) Localization rate (LT ): We include LT (the success
rate at which the individual sensors are accurately localized) as

Gateway/BS

IoT

Edge

WSN-IoT cloud

Fig. 2. An instance of an un-directed WSN-IoT network
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our first objective (IoT1). However, there isn’t a single formula
to determine LT, as it depends on the methodology, algorithms,
and metrics used for localization. So, we consider a general
concept to evaluate this metric in our proposed problem.
The goal is to maximize the IoT1 value, as formulated in
Equation 1. The ALScount value is computed according to
the methodology used in [25].

LT = (ALScount/N) ∗ 100, (1)

Where, N is a total count of sensors used in our network and
ALScount denotes a number of accurately localised sensors.

(II) Energy consumption (Etotal): We include Etotal (sum-
total energy consumption across all sensors) as our second
objective (IoT2). The goal is to minimize IoT2 value, as
formulated in Equation 2. Here the representation of different
symbols are: Si: A sensor node with ID i, where i =
1, 2, . . . , N , RE(Si): Remaining energy level of the Si before
data gathering cycle begins, dij : Distance between sensors
Si and Sj , Ei: Energy consumed by Si, D(Si): D(Si) =

min
{

InitialData(Si),
RE(Si)

ETi
(li,dij)

}
= Maximum amount of data

that the node Si can transmit based on its remaining energy
RE(Si) [26], where InitialData is initial sensed data avail-
ability of sensor Si. However, the actual data transmitted by
the sensor Si also depends upon the routing method used from
[27]. Eelec is the quantity of energy consumed by an electronic
circuit of a sensor node. The radio energy concept from [28]
is considered to determine total network energy expenditure
at the time of data communication.

Minimize: Etotal =

N∑
i=1

Ei

Subject to: Ei ≤ RE(Si)

ERi(li(Si)) = li(Si) · Eelec

ETi(li, d) =

{
li(Si)Eelec + li(Si)fsd

2 if d < Cr

li(Si)Eelec + li(Si)mpd
4 if d ≥ Cr,

(2)

Where fs and mp are the energies required to
transmit data in the free-space channel and multi-
path channel, respectively. Cr is a threshold value
for the transmission distance. The term ETi

(li, d)
specifies the energy depleted by Si to transmit a
data packet of length li-bit over the distance d. The
term ERi(li(Si)) denotes the energy consumption
for receiving li bits of data.

(III) Coverage rate (CRrate): The fourth objective (IoT4)
of our proposed problem addresses the CRrate, which rep-
resents the proportion of the deployment area covered by
sensors. In order to calculate CRrate, a circular sensing model
is considered. The mathematical representation of CRrate is
provided in Equation (3), outlined as follows:

CRrate = (CoveredArea/TotalArea)× 100, (3)

where TotalArea denotes the total area of the closed region
being monitored and CoveredArea =

∑N
i=1 π ∗ (Cr)2. The

Cr denotes the sensors’ communication range.

(IV) Delay Time (DT ): DT is the duration to forward the
sensed data of a node Si to the base-station (BS) using TDMA
approach [27] for further processing. As, TDMA allows for the
efficient allocation of time slots to each sensor node, thereby
facilitating orderly data transmission to the BS. The TDMA
has reduced complexity against simultaneous transmissions, as
would be the case in models like WCDMA [29] or OFDMA
[30]. The Delay Time metric is defined in terms of the fifth
objective (IoT5), which aims to minimize its value to ensure
real-time data delivery, and is expressed as in Eq.4:

DT =
N∑
i=1

Ti, (4)

where Ti denotes the time duration required for sensor node
Si data to be transmitted to the BS.

Proposed Fitness Function This fitness functions of smart
IoT application calculated in Eq. 5, all of the objectives
(IoT1, IoT2, IoT3,&IoT4) are turned into a single objective
function.

Fitness = fun1 × IoT1 + fun2 × IoT2
+fun3 × IoT3 + fun4 × IoT4

(5)

Where values of fun1, fun2, fun3, & fun4 are the
weights assigned to each of the objective functions.

Fitness function of Multi objectives of the IoT Service
Framework: The four objective-based IoT-based services cal-
culated by equations 1, 2, 3, and 4 are non-contradictory. As
demonstrated in Eq. 6, all objectives are turned into Multi-
objective functions utilizing IoT-based service parameters.

obj1(max) = function in Eq.1, obj2(min) = function in Eq.2
obj3(max) = function in Eq.3, obj4(min) = function in Eq.4

(6)
The minimization problem for objectives obj2 and obj4,

which represent the estimation of the total energy expenditure
across all sensors and the average delay time. The localization
rate and coverage rate for Internet of Things services derived
from data transmission from sensor nodes are calculated by
solving the maximisation problem of objectives obj1 and obj3,
respectively.

IV. PROPOSED METHODOLOGY

In the era of IoT and 5G/6G networks, edge computing has
emerged as an upcoming approach to satisfy the growing needs
of computation-intensive applications requiring low latency
and effective quality assurance. Considering these issues, the
next section explains the proposed GWO methodology-based
solution to address the proposed problem.

A. Proposed GWO Algorithm

The Grey wolf hunting mechanism used in the GWO
algorithm [31] is inspired by nature. In order to create the
best hierarchy, the Grey Wolf, a leader, captures the foods
of his challenging character. The four components of this
system are alpha, beta, delta, and omega. Grey wolves use
tracking, surrounding, and attacking techniques as a hunting
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Fig. 3. Proposed architecture of edge computing-based GWO algorithm

strategy. Hunting involves three steps: looking for prey, sur-
rounding, and attacking prey. The proposed algorithm outlined
in Algorithm 1 and its architectural representation in Figure
3 demonstrate the methodology for selecting the optimal
solution within the GWO algorithm. This selection process is
guided by the hunting feature adaptation strategy, representing
a natural process of birds in edge computing, similar to
selecting the best food source during their attacks. Further
insights into this process of feature selection within the context
of edge computing are discussed thereafter.

B. Proposed Bird-edge-computing adaption strategy

The bird-edge-computing feature selection plays a crucial
role in the exploration and exploitation strategy of our algo-
rithm. This approach effectively mitigates early convergence
and local optima issues, thereby enhancing exploration and
exploitation capabilities. The proposed GWO Algorithm em-
ploys this strategy as a mutation mechanism, inspired by the
adaptive behavior of eagles. The updated position of the object
is determined by incorporating the best solutions identified
throughout the entire search area. Specifically, this strategy
involves:

1. **Exploration of Objects**: The algorithm examines var-
ious objects within the search space, adjusting their positions
based on relative distances to optimize target values efficiently.

2. **Mathematical Formulation**: The adaptation process
is mathematically expressed in Eqs. 7 and 8, which detail how
the position update is influenced by the best objects:

P⃗ (itr+1) = α⃗best,G + δ1 × (P⃗1ri1,G − P⃗2ri2,G)× rand(0, 1)
(7)

In this equation, P⃗ (itr + 1) represents the updated posi-
tion of the object, where α⃗best,G denotes the best object in
the entire search area. The vectors P⃗1ri1,G and P⃗2ri2,G are
ranking-based vectors, and δ1 signifies the exploration range,
defined by rand(0, 1.7).

3. **Distance Optimization**: The term (P⃗1ri1,G−P⃗2ri2,G)
signifies the distance between the hunter (our algorithm) and
the target (the optimal solutions). This mechanism addresses

Algorithm 1: Proposed GWO Algorithm
Input:
(a) δ1 = r/3, where random (r) value (0 to 2)
(b) Cr = 0.1 to 0.9
(c) Set the Population Size = 100*D
(d) Iteration (itr) = 1, where itr denotes the current iteration number
Result: Achieve the approximated solution

1 Step 1: Set the fitness function according to initialization of
population

2 Step 2: Calculate the fitness function of candidate solutions
3 Step 3: Ranki helps generate high-ranking best vectors
4 Step 4: P⃗α = the best search agent
5 Step 5: P⃗β = the second-best search agent
6 Step 6: P⃗δ = the third-best search agent
7 while (t ̸= MaxT ) do
8 Step 7: GWO algorithm
9 7.1 For each search vector or agent:

10 7.2 Calculate the fitness of all search agents
11 7.3 Update the position of the current search agent:

12 P⃗ (itr + 1) =
D⃗ist(P1ti,P2tj)+D⃗ist(P2ti,P3tj)+D⃗ist(P1ti,P3tj)

3

13 7.4 Update P⃗α, P⃗β , and P⃗δ

14 7.5 Update the best optimum value of GWO algorithm
15 Step 8: Apply the new bird adaptation-based mutation strategy
16 8.1 Apply mutation operator and select donor vector
17 if P⃗ (itr + 1) < P⃗T (itr + 1) then
18 P⃗ (itr + 1) =

α⃗best,G + δ1 × (P⃗1ri1,G
− P⃗2ri2,G

)× rand(0, 1)

19 else
20 P⃗ T (itr + 1) =

α⃗rand,G + δ2 × (P⃗2ri1,G
− P⃗3ri2,G

)× rand(0, 1)

21 end
22 Note: If P⃗ (itr+1) does not find a better solution (i.e., optimal

value), then P⃗ T (itr + 1) will be used for Pareto
ranking-based mutation strategy

23 8.2 Apply the Pareto ranking-based solutions in the selection
strategy

24 t = t+ 1
25 end
26 Step 9: Near-optimal Solution with high Convergence Rate

the key challenge of optimizing distance in the search area by
focusing on the nearest distance between the hunter and the
targets.

4. **Exploitation Strategy**: Additionally, the process is
refined in Eq. 8 to ensure effective exploitation of the search
space:

P⃗ (itr+1) = α⃗rand,G + δ2 × (P⃗2ri1,G − P⃗3ri2,G)× rand(0, 2)
(8)

Here, α⃗rand,G represents a randomly selected best object
across the search area, while δ2 indicates the exploitation
range, defined by rand(0, 2). This structured approach en-
sures that both exploration and exploitation are dynamically
balanced, leading to continual improvements in fitness and
overall optimization performance.

C. Proposed Hybrid Algorithm

The proposed Hybrid Algorithm is summarized in Algo-
rithm 2. This Algorithm starts by randomly initializing the po-
sitions of a population of grey wolves within the search space.
Each position represents a potential solution: a configuration
of tasks and resources for edge computing. The alpha, beta,
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Algorithm 2: Proposed Hybrid Algorithm
Input : Objective function obj function, Lower bounds lb,

Upper bounds ub, Dimensionality dim, Population size
population size, Maximum iterations max iterations

Output: Best solution found (alpha wolf)

1 Initialize positions randomly within the search space (denoted as
positions[i] for the ith agent);

2 Initialize alpha position αpos, beta position βpos, delta position
δpos;

3 Initialize alpha score αscore, beta score βscore, delta score δscore;

4 for iteration = 1 to max iterations do
5 for i = 1 to population size do
6 Evaluate fitness fitness of the current position

positions[i];
7 if fitness < αscore then
8 αscore = fitness;
9 αpos = positions[i];

10 end
11 if αscore < fitness < βscore then
12 βscore = fitness;
13 βpos = positions[i];
14 end
15 if αscore < fitness < βscore < δscore then
16 δscore = fitness;
17 δpos = positions[i];
18 end
19 Update position positions[i] using the proposed GWO

algorithm;
20 Apply boundary constraints to positions[i];
21 end
22 end
23 return αpos (Best solution found)

and delta positions are initialized as empty vectors, and their
corresponding scores are set to infinity. This algorithm iterates
for a predefined number of maximum iterations. The fitness
is evaluated using an objective function for each grey wolf in
the population. The objective function measures the solution’s
performance in terms of edge computing, considering factors
such as latency, resource utilization, energy efficiency, or other
relevant metrics. Based on the fitness values, the grey wolves
with better fitness values than the current alpha, beta, and
delta positions are updated. If a grey wolf has better fitness
than the alpha position, it becomes the new one. Similarly,
if a grey wolf has a fitness value between the alpha and
beta positions, it becomes the new beta position. Likewise,
if a grey wolf has a fitness value between the alpha, beta,
and delta positions, it becomes the new delta position. The
position of each grey wolf is updated using the GWO equation.
This equation considers the distances to the alpha and beta
positions and random coefficients to determine the direction
and magnitude of the update. The position update equation
aims to imitate the grey wolves’ leadership hierarchy and guide
the search space exploration. Apply Boundary Constraints:
After updating the position, boundary constraints are applied
to ensure the new position remains within the defined search
space. This step is essential to maintain valid configurations for
edge computing environments. After the termination criterion
is met (maximum iterations reached), the algorithm returns the
best solution found, which corresponds to the alpha position.
This solution represents an optimized configuration of tasks
and resources for edge computing, considering the objective

function and the constraints of the problem. The grey wolves’
social behavior and hunting mechanisms inspire the GWO
algorithm. It imitates the hierarchy and coordination among
alpha, beta, and delta wolves for efficient exploration and
exploitation of the search space. Finding the optimal value
is archived when applying this technique to edge computing
optimization, as seen in the procedure in Fig. 3.

As observed above, the proposed fitness function is for-
mulated for the IOT-WSN environments, which includes the
four objective fitness function constraints such as obj1, obj2,
obj3, and obj4. These constraints are implemented once the
position is updated to make sure the new position stays inside
the specified search space. Based on the stated objectives
and considering the effects of edge computing, the solution’s
effectiveness is rated. Boundary constraints are enforced once
the position is updated to make sure the new position stays
inside the specified search space. This step is essential to
keep the IoT-based WSN with Edge Computing configured
correctly and prevent parameter values from exceeding prede-
termined limits. The main loop runs for the chosen number
of iterations, giving the grey wolves time to investigate and
fine-tune their places. The method delivers the best solu-
tion discovered, corresponding to the alpha position when
the termination requirement is satisfied (maximum iterations
attained). Considering the stated aims and restrictions, this
solution represents an optimized setup of parameters for the
IoT-based WSN with Edge Computing. This method aims to
discover the best configurations that improve the system’s
performance, energy efficiency, network coverage, and edge
computing resource utilization by using the GWO algorithm
for IoT-based WSN optimization with Edge Computing. By
combining edge computing, the IoT-based WSN application
may process data effectively closer to the data source, cutting
latency and improving overall efficiency.

1) Time Complexity Analysis of Proposed Hybrid Algo-
rithm: The run-time complexity analysis in the stepwise
sequence is as follows:

Initialization:
• Position Initialization: Initializing positions within the

search space takes O(population size).
• Alpha, Beta, and Delta Initialization: Setting initial

values for αpos, βpos, δpos, αscore, βscore, and δscore
takes O(1).

Main Loop: The algorithm iterates for a maximum of
max iterations:

• Fitness Evaluation: Evaluating fitness for each position,
which depends on the number of objectives B, takes
O(max iterations× population size×B).

• Update Scores: Updating αscore, βscore, and δscore
requires constant time, contributing O(max iterations).

• Position Update: Updating each position involves
O(population size).

• Apply Boundary Constraints: Applying boundary con-
straints also takes O(population size).

The overall time complexity can be summarized as:
O (max iterations× population size×B). This complex-
ity demonstrates that the introduced hybrid algorithm is
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TABLE II. Control Parameters of Evolutionary Algorithms

Sr No. Algorithm Parameter Characteristics of Algorithm

1 NSGA-III [14]
Selection strategy Survival of the fittest
Crossover probability (Cr) Cr (0,1)
Mutation probability (Mp) Mp (0,1)

2 MOPSO [8]
Inertia weight 1.3
Acceleration constants (c1, c2) c1 (1.35), c2 (2.4)
Swarm size 100-500

3 MOWOA Algo [13]
Moving convergence rate 0.12
Local convergence rate 0.35
Global convergence rate rand(0,1)

4 MOAE-D Algo [16]
Population size 100
Scalarization function According to given algorithm
Penalty parameter Random selection

5 Proposed Algorithm

Number of grey wolves 100
Range of dimensions 3 and 20
Alpha, Beta, Gamma Wolf positions
Number of iterations 1000

suitable for solving the multi-objective problem in the dy-
namic environment. This indicates that our proposed al-
gorithm has comparable performance characteristics to the
other types of multi-objective optimization algorithms namely
MOPSO,PAES,SPEA2 and NSGA-II.

V. RESULTS

This section presents the result analysis obtained from the
evaluation of the proposed method and comparison of its
efficacy to other evolutionary methods such as NSGA-III [14],
MOPSO [8], MOWOA [13], and MOEA-D [16]. Considering
our novel proposed problem, the proposed method is applied
to evaluate the QoS performance of IoT applications.

A. Experimental setup

For the evaluation, we create a setup of an IoT-enabled WSN
framework (150 × 150)m2, where 100 sensors for service
requests/responses have been distributed equally. The sensors
have initial data availability (0 - 16) Mb [26], remaining
energy levels (500 - 1000) mJ [26], data transmission rate
20 kbps [26], and communication range Cr = 20 m [24].
Additionally, we used 75 active sensors that respond to re-
quests from processes, people, and objects. The term ”service
providers” refers to these 100 sensors. We have chosen the
experimental area in a grid of 15 by 15. The 30 randomly
generated service requests for the experiment have been cho-
sen to be related to the MATLAB network simulator used to
construct the simulation environment, giving exact control over
communication models and topology. A true data set derived
from actual sensor deployments was used for the experiment,
and necessary pre-processing procedures were carried out to
guarantee data quality. Multiple repetitions were used in the
experimental design to guarantee statistical robustness. Each
optimization run was given the ability to reach convergence
after a specific number of generations. In order to terminate
the optimization process once a good Pareto front (set on non-
dominated solutions) was attained, convergence criteria were
created. The sensor parametric Table is listed in Table III.

By employing the proposed technique, we estimated and
fine-tuned all parameters outlined in Table II. The approach
was tested using IoT scenarios involving services. Specifically,
the proposed method was evaluated on IoT-based services
to compare the resulting Pareto fronts within a 4-objective
series. This method was applied to analyze IoT services,
encompassing computations related to localization rate, total
energy consumption, coverage rate, and delay time.

TABLE III. Sensor-network Parameters

Parameter Value
IoT-enabled WSN framework 150 m × 150 m

Initial data availability (0 MB - 16 MB)
Remaining energy levels (500 mJ - 1000 mJ)
Data transmission rate 20 kbps

Data packet size 4000 bits
Data aggregation ratio 10%

Eelec 50 nJ/bit
fs 10 pJ/bit/m2

mp 0.001 pJ/bit/m4

EDA (Energy for data aggregation) 5 nJ//bit
Communication range Cr 20 m

B. Analysis & Discussion

The proposed approach is subjected to comparison against
other state-of-the-art methods to assess its robustness and
versatility in identifying both maximized and minimized solu-
tions. The comparative analysis is described as follows:

1) Pareto Front Analysis: The four-objective-based analysis
is conducted to demonstrate that the proposed hybrid method
achieves better solutions in the context of smart IoT appli-
cations. When addressing the multiple conflicting objectives
in Equation 6, the proposed method yields a Pareto rank. The
values shown in Table IV showcase each algorithm’s ability to
provide diverse solutions, enabling decision-makers to choose
solutions based on their specific priorities and requirements.
This comprehensive analysis underscores the trade-offs inher-
ent in multi-objective optimization, and the presented values
contribute to the characterization of the Pareto front for each
algorithm. From Table IV, it is observed that the proposed
hybrid method yields superior performance by obtaining better
quality, diversity, and convergence of Pareto front solutions, as
evidenced by outperforming NSGA-III, MOEA-D, MOPSO,
and MOWOA methods.

2) Localization Rate of IoT-based WSN Framework: We
analyze and report localization rate metrics for all algorithms,
utilizing the novel fitness function of this metric defined in
Eq. 1. The proposed method aims to optimize this metric
value for smart IoT applications, ensuring that the population
sizes of 50, 100, 150, and 200 align with the optimal number.
In a series of 100 trials, the proposed method consistently
outperforms the respective values of the four referenced Multi-
objective algorithms. This is due to the proposed method’s
improved capability for exploration and exploitation. The
proposed method can more precisely and accurately find
optimal solutions by balancing the search process due to the
incorporation of the bird-edge adaptation mechanism. Better
localization performance is attained due to a tighter clustering
of non-dominated solutions and a more accurate convergence
towards the true Pareto front.

3) Energy consumption of IoT-based WSN Framework: The
proposed hybrid and other evolutionary algorithms report the
total energy consumption cost metric values. The comparison
shows that the proposed algorithm delivers optimal energy
utilization values for IoT applications across population sizes
ranging from 50 to 200. Across 100 or more trials, the en-
ergy consumption values of the proposed method consistently
outperform others. Moreover, our proposed algorithm exhibits
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TABLE IV. Fitness Cost: The proposed algorithm compared with Evolutionary algorithms on Smart IoT Application

No. of Gen. No. of Runs NSGA-III [15] MOEA-D [17] MOPSO Algo [8] MOWOA Algo [14] Proposed Hybrid Algo
Best Fit Worst Fit Best Fit Worst Fit Best Fit Worst Fit Best Fit Worst Fit Best Fit Worst Fit

10 30 0.491062 0.417736 0.486618 0.395516 0.495506 0.424402 0.504394 0.43329 0.508838 0.437734
20 30 0.542555 0.46154 0.537645 0.43699 0.547465 0.468905 0.557285 0.478725 0.562195 0.483635
30 30 0.594048 0.505344 0.588672 0.478464 0.599424 0.513408 0.610176 0.52416 0.615552 0.529536
40 30 0.645541 0.549148 0.639699 0.519938 0.651383 0.557911 0.663067 0.569595 0.668909 0.575437
50 30 0.697034 0.592952 0.690726 0.561412 0.703342 0.602414 0.715958 0.61503 0.722266 0.621338
60 30 0.748527 0.636756 0.741753 0.602886 0.755301 0.646917 0.768849 0.660465 0.775623 0.667239
70 30 0.80002 0.68056 0.79278 0.64436 0.80726 0.69142 0.82174 0.7059 0.82898 0.71314
80 30 0.851513 0.724364 0.843807 0.685834 0.859219 0.735923 0.874631 0.751335 0.882337 0.759041
90 30 0.903006 0.768168 0.894834 0.727308 0.911178 0.780426 0.927522 0.79677 0.935694 0.804942
100 30 0.932399 0.793172 0.923961 0.750982 0.940837 0.805829 0.957713 0.822705 0.966151 0.831143

TABLE V. Energy Consumption and Delay: The proposed algorithm compared with Evolutionary algorithms on Smart IoT Application

Objectives No. of Gen. NSGA-III [15] MOEA-D [17] MOPSO Algo [8] MOWOA Algo [14] Proposed Hybrid Algo
Worse Fit Best Fit Worse Fit Best Fit Worse Fit Best Fit Worse Fit Best Fit Worse Fit Best Fit

Energy Consumption

10 5.183776 4.409728 5.136864 4.175168 5.230688 4.480096 5.324512 4.57392 5.089952 4.151712
20 4.179331 3.555268 4.141509 3.366158 4.217153 3.612001 4.292797 3.687645 4.103687 3.347247
30 2.965599 2.522772 2.938761 2.388582 2.992437 2.563029 3.046113 2.616705 2.911923 2.375163
40 1.988779 1.691812 1.970781 1.601822 2.006777 1.718809 2.042773 1.754805 1.952783 1.592823
50 0.952731 0.810468 0.944109 0.767358 0.961353 0.823401 0.978597 0.840645 0.935487 0.763047
60 0.756041 0.643148 0.749199 0.608938 0.762883 0.653411 0.776567 0.667095 0.742357 0.605517
70 0.687531 0.584868 0.681309 0.553758 0.693753 0.594201 0.706197 0.606645 0.675087 0.550647
80 0.643331 0.547268 0.637509 0.518158 0.649153 0.556001 0.660797 0.567645 0.631687 0.515247
90 0.554931 0.472068 0.549909 0.446958 0.559953 0.479601 0.569997 0.489645 0.544887 0.444447
100 0.333931 0.284068 0.330909 0.268958 0.336953 0.288601 0.342997 0.294645 0.327887 0.267447

Delay

10 3.928717 3.342076 3.893163 3.164306 3.964271 3.395407 4.035379 3.466515 3.857609 3.146529
20 3.125161 2.658508 3.096879 2.517098 3.153443 2.700931 3.210007 2.757495 3.068597 2.502957
30 2.455531 2.088868 2.433309 1.977758 2.477753 2.122201 2.522197 2.166645 2.411087 1.966647
40 2.209779 1.879812 2.189781 1.779822 2.229777 1.909809 2.269773 1.949805 2.169783 1.769823
50 1.132183 0.963124 1.121937 0.911894 1.142429 0.978493 1.162921 0.998985 1.111691 0.906771
60 0.660127 0.561556 0.654153 0.531686 0.666101 0.570517 0.678049 0.582465 0.648179 0.528699
70 0.546091 0.464548 0.541149 0.439838 0.551033 0.471961 0.560917 0.481845 0.536207 0.437367
80 0.426972 0.363216 0.423108 0.343896 0.430836 0.369012 0.438564 0.37674 0.419244 0.341964
90 0.338351 0.287828 0.335289 0.272518 0.341413 0.292421 0.347537 0.298545 0.332227 0.270987
100 0.291941 0.248348 0.289299 0.235138 0.294583 0.252311 0.299867 0.257595 0.286657 0.233817

(a) Population Size 50 (b) Population Size 100 (c) Population Size 150 (d) Population Size 200

Fig. 4. Fitness Function of Evolutionary Algorithms: Number of generations v/s Energy Consumption

(a) Population Size 50 (b) Population Size 100 (c) Population Size 150 (d) Population Size 200

Fig. 5. Fitness Function of Evolutionary Algorithms: Number of generations v/s Delay
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TABLE VI. Coverage Rate: The proposed algorithm compared with Evolutionary algorithms on Smart IoT Application

No. of Gen. No. of Runs NSGA-III [15] MOEA-D [17] MOPSO Algo [8] MOWOA Algo [14] Proposed Hybrid Algo
Best Fit Worse Fit Best Fit Worse Fit Best Fit Worse Fit Best Fit Worse Fit Best Fit Worse Fit

10 30 0.466531 0.396868 0.462309 0.375758 0.470753 0.403201 0.479197 0.411645 0.483419 0.415867
20 30 0.510731 0.434468 0.506109 0.411358 0.515353 0.441401 0.524597 0.450645 0.529219 0.455267
30 30 0.554931 0.472068 0.549909 0.446958 0.559953 0.479601 0.569997 0.489645 0.575019 0.494667
40 30 0.599131 0.509668 0.593709 0.482558 0.604553 0.517801 0.615397 0.528645 0.620819 0.534067
50 30 0.643331 0.547268 0.637509 0.518158 0.649153 0.556001 0.660797 0.567645 0.666619 0.573467
60 30 0.687531 0.584868 0.681309 0.553758 0.693753 0.594201 0.706197 0.606645 0.712419 0.612867
70 30 0.731731 0.622468 0.725109 0.589358 0.738353 0.632401 0.751597 0.645645 0.758219 0.652267
80 30 0.775931 0.660068 0.768909 0.624958 0.782953 0.670601 0.796997 0.684645 0.804019 0.691667
90 30 0.820131 0.697668 0.812709 0.660558 0.827553 0.708801 0.842397 0.723645 0.849819 0.731067
100 30 0.908531 0.772868 0.900309 0.731758 0.916753 0.785201 0.933197 0.801645 0.941419 0.809867

(a) Population Size 50 (b) Population Size 100 (c) Population Size 150 (d) Population Size 200

Fig. 6. Fitness Function of Evolutionary Algorithms: Number of generations v/s Coverage Rate

minimal variances in the results across succeeding generations
(for the number of runs more than 100). Each algorithm
underwent 30 runs to generate average outcomes. Table V
compiles the results over 100 generations, revealing a notable
reduction in energy usage within the IoT application frame-
work. The proposed technique achieves remarkable energy
efficiency by optimizing resource utilization more effectively
based on edge computing selection. Its advanced adaptation
mechanism improves searching efficiency, leading to better
solutions that require less computational effort and energy, as
reported in Figure 4: 4(a), 4(b), 4(c), and 4(d). Each Figure
illustrates the X-axis representing the number of generations
and the Y-axis depicting the total energy consumption metric
values (in Joule).

4) Delay time of IoT-based WSN Framework: The proposed
method evaluates delay times for IoT-WSN applications across
various population sizes (50, 100, 150, and 200), as depicted
in Figure 5. It is evident from the figure that our proposed
method consistently yields superior results compared to tra-
ditional evolutionary techniques. Notably, the conventional
optimization methods require larger populations to achieve
similar results. A more comprehensive assessment based on
100 generations is also available in Table V. These statistics
reinforce that our proposed technique consistently outperforms
other evolutionary methods, resulting in shorter delay times.
This advantage can be attributed to incorporating an edge
computing selection strategy within the GWO algorithm.
Remarkably, across 100 trials, the delay time achieved by
our proposed method consistently remains lower than that of
the referenced four Multi-objective algorithms by optimizing
resource allocation more effectively. Its improved adaptation
mechanism ensures quicker convergence to optimal solutions,
thereby minimizing latency and improving overall network
performance. Furthermore, among these four methods, the

proposed algorithm excels in diversity and convergence. These
qualities are illustrated through graphical representations in
Figure 5(a), 5(b), 5(c), and 5(d), where the X-axis represents
the number of generations and the Y-axis represents delay time
in seconds.

5) Coverage Rate of IoT-based WSN Framework: This sub-
section presents the coverage rate metric results the proposed
algorithm achieves, comparing them to those of traditional
evolutionary algorithms using the novel fitness function de-
scribed in Eq. 4. The proposed method aims to maximize
this metric value for smart IoT applications, aligning with
ideal population sizes of 50, 100, 150, and 200. Through a
series of 100 trials, the proposed method consistently out-
performs the corresponding values of the referenced methods
by effectively optimizing resource distribution. Its advanced
adaptation mechanism ensures a more comprehensive and
effective coverage, thereby enhancing the overall network
performance and reliability. Notably, among these methods,
the proposed algorithm excels in both diversity and conver-
gence, as illustrated in Figure 6: 6(a), 6(b), 6(c), and 6(d).The
proposed algorithm demonstrates a better coverage rate among
the four traditional algorithms, as outlined in Table VI.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTION

This article introduces a state-of-the-art method, which aims
to enhance QoS in IoT applications by integrating Multi-
objective Optimization and Edge Intelligence. The method
leverages bird-edge-computing with GWO to balance global
and local optimal solutions and optimise feature combinations.
A novel edge computing feature selection concept is presented
to address potential convergence issues during the iterative
process. The algorithm’s efficiency is heightened by incorpo-
rating unique attributes, and the bird-edge-computing adapta-
tion continually adjusts to achieve the global optimal solution.
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The approach is evaluated in an IoT-based WSN environ-
ment, focusing on QoS improvement. Various objectives are
considered, and performance evaluation demonstrates better
QoS achievement compared to existing evolutionary methods.
Future research directions involve adapting the algorithm for
diverse domains and exploring its potential for addressing
complex problems. Additionally, investigating scalability and
robustness through validation with larger problem instances
would provide valuable insights for real-world applications.
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