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Abstract
We extend the classical binomial model proposed by Cox, Ross, and Rubinstein for
derivative security pricing to encompass both fixed and proportional transaction costs,
portfolio constraints including margin requirements, and dividend-paying assets. Our
focus is on studying option hedging within this enriched framework. Initially, we
establish the existence of a hedging strategy in this context. Subsequently, we deter-
mine the optimal hedging strategy and its associated initial cost by decomposing the
problem into a sequence of hedging problems. To illustrate our approach, we present
a numerical example within a 3-period binomial model.

Keywords Binomial model · Self-financing condition · Transaction costs · Hedging ·
Portfolio constraints · Dividends

JEL Classification G10 · G11 · G12 · G13 · C61 · C65 · C67

1 Introduction

The binomial model, first introduced by Cox et al. (1979), commonly known as the
CRR binomial model, is a widely used approach for modelling financial asset prices
across various market conditions. It simplifies the complex dynamics of financial
markets by assuming that the price of an asset can only take two possible values at
any given time, and these values are determined by the underlying market conditions.

In recent years, there has been significant progress in developing binomial models,
both in terms of theoretical advancements and practical applications. For example,
Shvimer and Herbon (2020) conducted empirical studies on binomial call-option
pricing using S&P 500 data, while Muroi and Suda (2022) introduced a discrete
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cosine transform method to enhance option pricing in models such as jump-diffusion
processes. Kim et al. (2019) extended the classical CRRmodel by incorporating time-
dependent parameters and introduced a trinomial model to improve hedging strategies.
Breton et al. (2023) proposed a q-binomial extension of the CRR model with time-
dependent switching probabilities, and He et al. (2019) developed a nonparametric
predictive inference framework, providing more flexibility in option pricing. Several
studies have also focused on addressing transaction costs. For instance, Belze et al.
(2019) examined fair value adjustments in the presence of transaction costs, while
Ratibenyakool and Neammanee (2019) explored the convergence rates of binomial
models. In addition, binomial models have been applied beyond traditional markets,
such as by Liu and Ronn (2020) for renewable energy investments and Yeh and Lien
(2019) for real estate development.

Transaction costs, which include fees, commissions, bid-ask spreads, and other
trading expenses, can significantly affect asset pricing. These costs complicate the
determination of an asset’s true value, as they erode profits and affect market liquidity.
To address this, various approaches have been developed to incorporate transaction
costs into pricing models. For example, proportional transaction costs, where a fixed
percentage is charged on each trade, have been modelled in both continuous-time
and discrete-time frameworks. For instance, Leland (1985) applied a continuous-time
framework based on the Black-Scholes model (Black and Scholes 1973) to derive an
approximation for option prices that accounts for proportional transaction costs. To
account for transaction costs in the binomial model, various approaches have been
developed. Boyle and Vorst (1992) extended the CRR binomial model allowing for
proportional transaction costs in replicating perfectly a given option. The study showed
that the presence of transaction costs can significantly affect the optimal replication
strategy and the corresponding option prices. Palmer (2001) adjusted the conditions
under which there is a unique replicating strategy in the Boyle-Vorst model for an
arbitrary contingent claim. Bensaid et al. (1992) provided conditions under which
the cost of the replicating portfolio does not exceed the cost of any super replicating
portfolio where the results were extended by Stettner (2000) to the case of asymmetric
transaction costs. They noted that perfect replication might not always be optimal
for hedging options. Melnikov and Petrachenko (2005) developed a binomial option-
pricing model to cover the case of proportional transaction costs for one risky asset
with different interest rates on which they presented an explicit formulas for self-
financing strategies. Roux et al. (2008) developed an algorithm for computing the ask
and bid prices of options with arbitrary payoffs in an arbitrary discrete model under
proportional transaction costs of any magnitude.

The introduction of both fixed and proportional transaction costs adds further com-
plexity to option pricing. Fixed costs are typically a flat fee charged per transaction,
while proportional costs are a percentage of the transaction value. Several studies have
investigated this transaction cost structure, particularly within the binomial model.
Studies such as Bank and Dolinsky (2019) have shown that super-replication prices
in continuous-time markets with fixed transaction costs can be prohibitively high.
Edirisinghe et al. (1993) proposed a framework for minimizing replication costs under
transaction costs and trading constraints. Numerous papers have addressed option
pricing with both fixed and proportional transaction costs within a continuous-time
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framework. For example (Subramanian 2001) explores European Option Pricing in
a market with short-selling constraints and transaction costs, covering proportional
and fixed costs. Using stochastic impulse control theory, it solves two stochastic
impulse control problems for option pricing. Zakamouline (2006) offers a system-
atic approach to utility-based option pricing and hedging in markets with fixed and
proportional transaction costs. They extend the framework developed by Davis et al.
(1993) and propose a numerical procedure for computing option prices and optimal
hedging strategies.

Building on these foundational studies, we adopt the approach used by Bensaid
et al. (1992) and extend it in several key directions. Specifically, our model incor-
porates both random fixed transaction costs and proportional transaction costs, with
different rates for long and short positions. In addition to these transaction costs, we
allow for short selling under certain constraints, including margin requirements, and
we account for assets that pay dividends with potentially different random dividend
rates for long and short positions. These extensions address key gaps in the exist-
ing literature, which often simplifies or omits such practical features. However, this
advancement introduces technical challenges. To navigate these, we impose very gen-
eral assumptions and employ the super-replicating argument, as linear self-financing
conditions are not applicable and perfect replication is not feasible in the presence
of such transaction costs. This adds complexity to pricing methodologies, but it also
reflects more accurately the realities of markets with trading frictions. We present a
three-step numerical example to illustrate our results and algorithms. Although our
example simplifies certain conditions, such as assuming fixed interest rates and stable
transaction costs over time, the limitations of perfect replication are still evident.

Our model is a specific adaptation of the von Neumann-Gale framework, applied in
a setting with two assets-a bank account and a risky asset. Both fixed and proportional
transaction costs are incorporated into this model. The theory of von Neumann-Gale
dynamics, originally introduced by Von Neumann (1937) and Gale (1956), was ini-
tially developed in the context of economic growthmodeling. Over time, these systems
have been extended by various scholars (see, for example, Rockafellar (1967); Dynkin
(1971); Radner (1970)), with more recent contributions by Evstigneev and colleagues
(Evstigneev and Schenk-Hoppé 2006, 2008; Bahsoun et al. 2008). Although originally
designed for modeling economic growth, these dynamics have since been adapted
for financial modeling, leading to new research directions (Dempster et al. 2006;
Evstigneev and Zhitlukhin 2013; Babaei 2024). This interdisciplinary approach draws
parallels with economic growth models but diverges from traditional stochastic analy-
sis by relying on intuition and techniques rooted in growth theory. For instance, Babaei
et al. (2020a, b, 2021) applied von Neumann-Gale dynamics to capital growth theory
under proportional transaction costs, contributing significantly to the advancement of
this field.

While the binomial model has been a staple in option pricing literature for decades,
its classical nature does not detract from its ongoing importance and practical appli-
cability. Despite its simplicity, the binomial model serves as a versatile framework
for understanding and pricing derivative securities, especially when considering real-
world complexities such as transaction costs, portfolio constraints, and dividend
payments. Our extension of the classical CRR binomial model to incorporate these
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factors fills a significant gap in the literature, providing a robust framework for address-
ing practical challenges in option pricing. Additionally, some theoretical and empirical
studies have demonstrated the effectiveness of the binomial model in capturing mar-
ket dynamics and accurately pricing options across various asset classes and market
conditions (see e.g., the work of Kociński (2004), Shvimer and Herbon (2020), Kim
and Park (2006) and others). Furthermore, the binomial model serves as a benchmark
against which more complex models can be compared and validated.

In financial models that incorporate transaction costs, managing the trade-off
between rebalancing frequency and transaction costs is essential. Continuous rebal-
ancing, as assumed in continuous-time models, would lead to infinite costs due to
transaction fees (Palmer 2001). Discrete-timemodels, such as the binomialmodel used
in this paper, offer a more practical alternative by limiting rebalancing frequency. This
paper uses assumptions that constrain transaction costs. This approach aligns with
other works in the field that show how discrete-time models can balance transaction
costs and hedging accuracy, as demonstrated by Koehl et al. (1999) and El Bernoussi
and Rockinger (2023). By carefully structuring transaction costs, this model avoids the
issue of infinite rebalancing costs and ensures practical applicability in real markets.

The rest of the paper is organized as follows. Section2 describes the model. Sec-
tion3 states the general assumptions and provides some basic results about the model.
Section4 describes the hedging strategies and their existence in themarketmodel. Sec-
tion5 defines optimal hedging strategies and introduces an algorithm to find an optimal
hedging strategy. Section6 provides a three-step numerical example to illustrate the
results and algorithms. Section7 concludes this paper.

2 Themodel

In this section we consider a specialized model for a financial market with both fixed
and proportional transaction costs, and portfolio constraints which is a special model
based on von Neumann-Gale dynamical systems.

Let us first define some notations we will use in this paper. For a real number r ,
let r+ = max{r , 0} and r− = max{−r , 0}. Let |·| denote the norm of a vector in a
finite-dimensional space, defined as the sum of the absolute values of its coordinates.
For a finite-dimensional vector x , we will denote by B(x, r) the ball {y : |y− x | ≤ r}.
If x = (α, β), then we define x+ = (α+, β+) and x− = (α−, β−).

We consider a market where 2 assets can be traded at dates t = 0, 1, . . . , T ; asset
1 represents cash deposited with a bank account, and the second asset represents
holdings in shares of a stock. The positions of a portfolio x = (α, β) ∈ R

2 will be
measured in terms of their value; α is the amount invested in a bank account and β is
the amount invested on the stock.

The space of states of the world consists of two elements, u and d ("up" and
"down"). Let at ∈ {u, d} be the state of the world influencing the market at time t .
Sequences ω = ωT = (a1, . . . , aT ) is called the history of the market (may also be
viewed as possible scenarios of the market development over the time period). For
each t = 1, . . . , T − 1, the sequence ωt = (a1, . . . , at ) is called the partial history or
partial scenario (up to time t). There are 2T histories and 2t partial histories for each
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t ≤ T − 1. Let P be the "real-world" probability measure;

P(a1) =
{
p a1 = u

1 − p a1 = d

where we assume that p > 0. Let us define a basis probability space (�,F ,F,P)

in the following way. Let � = {u, d}T be the space of outcomes of ω, F be the
filtration F0 ⊆ F1 ⊆ . . . ⊆ FT , where F0 = {∅,�}, Ft is the σ -Algebra generated
by ωt , t = 1, . . . , T , and FT = F . We will omit ωt in the notation where it does not
lead to ambiguity.

The following random variables are given:

• Ft−1-measurable random variables 0 < r+
t ≤ r−

t , t = 1, . . . , T , representing
risk-free interest rates for lending and borrowing money, respectively.

• F0-measurable random variable S0 representing the price of the stock at t = 0.
The price St (ωt ) of the stock at time t has the following structure

St = S0Z(a1)Z(a2) . . . Z(at ),

where the values of the function Z(a) on {u, d} are two numbers 0 < Z(d) <

1 < Z(u), and for each t and ωt , Z(u) > 1 + r−
t (ωt ). Thus St = St−1Z(at ) are

Ft -measurable and

St =
{
St−1Z(u) at = u

St−1Z(d) at = d

Therefore, the price can either "jump up" or "jump down".
• Ft -measurable randomvariables 0 ≤ λ+

t < 1, λ−
t ≥ 0, t = 0, . . . , T , representing

transaction cost rates for selling and buying the stock, respectively.
• Ft -measurable random variables 0 ≤ D+

t ≤ D−
t , t = 1, . . . , T , representing

dividends for long and short positions on the stock, respectively.
• Ft -measurable random variable Ct ≥ 0, t = 1, . . . , T − 1, representing fixed
transaction costs.

The possibility to have different dividend rates for long and short positions may be
used due to the presence of taxes on dividends, e.g. when the stock pays dividends in
a currency different from asset 1 and there is a bid–ask spread in the exchange rates.
Let Rt = St/St−1 denote the return on the stock on the time period of [t −1, t). Thus,

Rt =
{
Z(u) at = u

Z(d) at = d
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Portfolio constraints in the model are specified by the cones1

Xt (ω
t ) =

{
x = (α, β) ∈ R

2 : χt (x) ≥ 0
}

, (1)

where

χt (x) = α+ + (1 − λ+
t )β+ − μt

(
α− + (1 + λ−

t )β−
)
, (2)

μt > 1 is constant which can be interpreted as a margin requirement coefficient.
According to (1), a trader must be able to liquidate the long positions of her portfolio
to cover the short positions with excess determined by μt .

Trading in the model at hand goes on as follows. At each date t , t = 1, . . . , T − 1,
a trader pays Ct as fixed transaction costs. We assume that C0 = CT = 0. Then she
receives the interest and the dividend on her portfolio xt−1(ω

t−1) = (αt−1, β t−1) that
she purchased at the previous date. The amount of interest and dividend is specified
by δt (xt−1) = rt (αt−1) + dt (β t−1), where

rt (α
t−1) = r+

t αt−1+ − r−
t αt−1−

dt (β
t−1) = D+

t β t−1+ − D−
t β t−1− .

Here D±
t specify the amount of dividend received or returned2 for amount of money

invested in asset 2. The amount of dividend received or returned for 1 physical unit of
the stock will be D±

t St−1.
After that, the trader rearranges her portfolio xt−1(ω

t−1) = (αt−1, β t−1) with
added dividend and interest to a portfolio xt (ωt ) = (αt , β t ) subject to the self-
financing constraint. The possibility of rearrangement is specified by the following
inequality

(αt−1 − αt )+ + (1 − λ+
t )(Rtβ

t−1 − β t )+ + δt (xt−1) ≥
(αt−1 − αt )− + (1 + λ−

t )(Rtβ
t−1 − β t )− + Ct . (3)

The left hand-side of (3) is the amount of money the trader receives for selling assets
and for the dividends and interests, the right hand-side is the amount ofmoney she pays
for buying assets, including fixed and proportional transaction costs. This inequality
means that the trader does not use external funds to rearrange her portfolio, so it can
be regarded as a self-financing condition.

For any portfolio x = (α, β) ∈ Xt , we use φt (x) defined below as a liquidation
value function

φt (x) = α + ϕt (β), (4)

1 A set X in a linear space is called a cone if it contains with any its elements x, y any non-negative linear
combination λx + μy (λ, μ ≥ 0) of these elements. The cone X is called pointed if the inclusions x ∈ X
and −x ∈ X imply x = 0.
2 We assume that dividend on short positions must be returned.
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where

ϕt (β) = (1 − λ+
t )β+ − (1 + λ−

t )β−, (5)

for any β ∈ R.
Let xt−1 = (αt−1, β t−1) ∈ Xt−1, xt = (αt , β t ) ∈ Xt and

ψt (xt−1, xt ) = (αt−1 − αt ) + ϕt (Rtβ
t−1 − β t ) + δt (xt−1). (6)

Then inequality (3) can be described as ψt (ω
t , xt−1, xt ) ≥ Ct . The above description

of the model corresponds to the sets

Zt (ω
t ) :=

{
(xt−1, xt ) ∈ Xt−1(ω

t−1) × Xt (ω
t ) : ψt (xt−1, xt ) ≥ Ct

}
,

t = 1, . . . , T − 1. (7)

Observe that Zt is a convex set but not a cone: it is convex, since the function
ψt (x, y) is concave as follows from the representation

ψt (xt−1, xt ) = [(αt−1 − αt ) + r+
t αt−1 + (1 − λ+

t )(Rtβ
t−1 − β t ) + D+

t β t ]
− [(λ−

t + λ+
t )(Rtβ

t−1 − β t )− + (r−
t − r+

t )αt−1− + (D−
t − D+

t )β t−1− ],

where the first sum is a linear function of xt−1, xt and the second sum is a convex
function of xt−1, xt . However, it does not contain with any vector (xt−1, xt ) all vectors
λ(xt−1, xt ), where λ ≥ 0.

The sets Xt (ω
t ) and Zt (ω

t ) described above generates a stochastic dynamical
system over the time interval t = 0, 1, · · · , T − 1. Let Lm

t (t = 0, 1, ...) be a linear
space of Ft -measurable vector functions x(ωt ), with values in R

m . We say that a
vector function x(ωt ) is a random state of the system and write x ∈ Xt if x ∈ L2

t and
x(ωt ) ∈ Xt (ω

t ). A sequence of random states xt ∈ Xt , t = 0, 1, . . . , T − 1 is called
a feasible trading strategy if

(xt−1(ω
t−1), xt (ω

t )) ∈ Zt (ω
t ), t = 1, . . . , T − 1.

Note that a feasible trading strategy in the model is nothing but a path of the dynamical
system under consideration. The above model is specified by random sets Xt and Zt

describing portfolio constraints and trading rules. In this model described above, sets
Xt are closed cones, while Zt are closed convex sets. This model is a version of the
original von Neumann-Gale models in which both sets Xt and Zt are closed cones,
meaning that these models take into account proportional transaction costs in the most
general way. Babaei (2024) establishes the asset pricing and hedging principle in a
financial market model with both fixed and proportional transaction costs and trading
constraints in a very general setting– not necessarily binomialmodels. Themain results
are hedging criteria stated in terms of consistent valuation systems, generalizing the
notion of an equivalent martingale measure.
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3 Some basic results

Let us introduce two basic assumptions that will be assumed to hold throughout the
paper. Define +

t = 1 − λ+
t and −

t = 1 + λ−
t . Then we require the following to

hold.

(B1) There exist constants,, D, andC such that 0 <  ≤ +
t (ωt ),−

t (ωt ) ≤ ,
D−
t (ωt ) ≤ D, and Ct (ω

t ) ≤ C for all t and ωt .
(B2) For each t , we have μt > ν where

ν := max{(Z(u) + D)/Z(d);/}.

These assumptions are not restrictive, and in fact, (B1) is always satisfied as the
probability space is finite. In what follows, all equalities/inequalities between random
vectors are understood coordinate-wise.

In the next proposition,we prove that the sets Zt defining the self-finance constraints
have non-empty interior.

Proposition 1 For each t = 1, 2, . . . , T − 1, there exists a bounded Ft -measurable
vector function z̊t = (x̊t , ẙt ) such that for all ωt , we have

B(z̊t , εt ) ⊆ Zt (ω
t ), (8)

where εt > 0 is some constant.

We will need the following auxiliary result to prove Proposition 1.

Lemma 1 (a) There exists a constant τt > 0 such that if x ∈ Xt (ω
t ) then |x+| −

ν|x−| ≥ τt |x |.
(b) There exist positive constants κt,1 and κt,2 such that if x ∈ Xt−1(ω

t−1), y ∈ Xt (ω
t )

and |y| ≤ κt,1|x | − κt,2, then (x, y) ∈ Zt (ω
t ).

Proof (a) Observe that Xt (ω
t ) ⊆ X̃t , where X̃t = {x ∈ R

2 : μt |x−| ≤ |x+|}. Then for
each x ∈ Xt (ω

t ), we have |x+|−ν|x−| ≥ (μt−ν)|x−|, and |x+|−ν|x−| ≥ (μt−ν)
μt

|x+|.
Then

2(|x+| − ν|x−|) ≥ (μt − ν)

μt
|x+| + (μt − ν)|x−| ≥ (μt − ν)

μt
|x |.

This implies (a) with τt = (μt − ν)/2μt .
(b) Let y = (α2, β2) ∈ Xt (ω

t ). It is straightforward to check that for any numbers
r , s we have (r − s)+ ≥ r+ − s+ and (r − s)− ≤ r− + s+. Using this and conditions
(B1) and (B2), we obtain for any x = (α1, β1) ∈ Xt−1(ω

t−1)

ψt (x, y) = α1+(1 + r+
t ) − α1−(1 + r−

t ) + +
t (Rtβ

1 − β2)+
− −

t (Rtβ
1 − β2)− + (D+

t β1+ − D−
t β1−) − α2

≥ α1+Z(d) − α1−Z(u) + (Z(d)β1+ − β2+) − (Z(u)β1− + β2+) − Dβ1− − α2+
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≥ Z(d)|x+| − (Z(u) + D)|x−| − 2|y|
≥ Z(d)(|x+| − ν|x−|) − 2|y|
≥ τt−1Z(d)|x | − 2|y|,

where the third inequality follows from (B2). Then statement (b) can be fulfilled with
the constant κt,1 = τt−1Z(d)/2 and κt,2 = C/2, since in that case ψt (x, y) ≥
Ct , implying (x, y) ∈ Zt . ��
Proof of Proposition 1 Let x̊t = κt,2

κt,1
(1, 1) ∈ R

2. Put z̊t = (x̊t , ẙt )with ẙt = (κt,1/4)x̊t .

Note that |x̊t | = 2κt,2/κt,1, and |ẙt | < κt,1|x̊t | − κt,2, thus statement (b) of Lemma 1
implies z̊t ∈ Zt . Observe that there exists εt > 0 such that B(z̊t , εt ) ⊂ R

4+ and
therefore B(z̊t , εt ) ⊂ Xt−1 × Xt . Since |ẙt | < κt,1|x̊t | − κt,2, then one can find
0 < εt ≤ εt such that |y| ≤ κt,1|x | − κt,2 for any (x, y) ∈ B(z̊t , εt ). Indeed, we have

|y| ≤ |y − ẙt | + |ẙt | ≤ εt + κt,2/2 = εt + 2κt,2 − 3κt,2/2

≤ εt + κt,1|x | + κt,1εt − 3κt,2/2 ≤ κt,1|x | − κt,2.

The third inequality holds because |x | ≥ |x̊t | − εt , and the last inequality holds as
long as εt ≤ κt,2/2(1 + κt,1). Hence, z̊t and εt satisfy conditions of proposition. ��
Proposition 2 For any x = (α, β) ∈ Xt , we have φt (x) ≥ 0, and φt (−x) ≤ 0. In
particular, if x 
= 0, φt (x) > 0, and φt (−x) < 0.

Proof This follows from conditions (B1), (B2) and Lemma 1. Indeed,

φt (x) = α+ − α− + +
t β+ − −

t β−
≥ |x+| − |x−| ≥ (|x+| − ν|x−|) ≥ τt |x |.

In this chain, the first inequality follows from (B1), the second follows from (B2), and
the last one follows from Lemma 1. We also have

−φt (−x) = α + −
t β+ − +

t β− ≥ α + +
t β+ − −

t β− = φt (x).

This proves Proposition 2. ��
Note that −φt (−x) is the minimum amount that one needs to construct portfolio x

at time t , and this amount is more than the liquidation value of x .

4 Hedging in themarket

Let us define the following sets describing possibilities of constructing initial portfolios
and liquidating terminal ones.

V0 = {(v, x) ∈ L1
0 × X0 : v ≥ −ψ0(0, x)}, (9)
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and

VT (ω) = {(x, v) ∈ XT−1(ω
T−1) × L1

T : ψT (x, 0) ≥ v}, (10)

where ψt (·) is the function defined by (6). In order to construct a portfolio x at time
0, one needs at least an amount of −ψ0(0, x) = −φ0(−x), and when liquidating a
portfolio x ∈ XT−1 at time T , one should receiveψT (x, 0) exceeding v. Thismotivates
the definitions of the sets V0 and VT in (9) and (10).

As a consequence of Proposition 2, for each x ∈ X0 we have −ψ0(0, x) ≥ 0 and
if x 
= 0, −ψ0(0, x) > 0. We also have for each x = (α, β) ∈ XT−1

ψT (x, 0) = α + rT (α) + dT (β) + ϕT (RTβ)

≥ Z(d)|x+| − (Z(u) + D)|x−|
≥ Z(d)(|x+| − ν|x−|) ≥ τT−1Z(d)|x |,

where the second inequality follows from (B2) and the last one from Lemma 1. Thus,
for each x ∈ XT−1, we have ψT (x, 0) ≥ 0, and if x 
= 0 then ψT (x, 0) > 0. We,
therefore, notice that for constructing a non zero portfolio at time zero one needs to
have positive endowment, and when liquidating a non zero portfolio at the expiry date,
one gets a positive amount.

A sequence (v0, x0, x1, . . . , xT−1, vT ) is called a hedging strategy if

(a) (x0, x1, . . . , xT−1) is a feasible trading strategy,
(b) v0 ∈ L1

0, and (v0, x0) ∈ V0,
(c) vT ∈ L1

T , and (xT−1, vT ) ∈ VT .

Let us say that an initial endowment v0 ∈ L1
0 allows the hedging of a

contingent claim vT ∈ L1
T if there exists a hedging strategy of the form

(v0, x0, x1, · · · , xT−1, vT ). The main question is constructing hedging strategies for
a given contingent claim vT ∈ L1

T . Let H(vT ) be the set of

{v0 : v0 allows the hedging of a contingent claim vT }.

Suppose the setH(vT ) is non-empty and contains a smallest element. Then this element
is called the hedging price of the contingent claim vT and we denote it by ρ(vT ). Let
us first construct a hedging strategy for a given contingent claim vT ∈ L1

T .

Theorem 1 For any contingent claim vT ≥ 0, the setH(vT ) is non-empty.

Proof Let 0 ≤ vT ∈ L1
T . We construct a hedging strategy starting from the end and

moving backwards, in the form of (v0, x0, x1, ..., xT−1, vT ). Define

xmax
T (ωT−1) = max{vT (ωT−1, u), vT (ωT−1, d)},

and

xT−1 =
(

xmax
T

1 + r+
T

, 0

)
.
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Note that xT−1 ≥ 0, r+
T is FT−1-measurable, then xT−1 ∈ XT−1. Thus, for any

ω = (ωT−1, aT ) ∈ �

ψT (xT−1(ω
T−1), 0) = xmax

T

1 + r+
T

× (1 + r+
T ) ≥ vT (ω),

showing that (xT−1, vT ) ∈ VT . Let us now construct xT−2 ∈ XT−2. Define

xmax
T−1(ω

T−2) = max{xmax
T (ωT−2, u), xmax

T (ωT−2, d)},

and

xT−2 =
(

xmax
T−1

κT−1,1
,
κT−1,2

κT−1,1

)
,

where κT−1,1 and κT−1,2 are constants introduced in Lemma 1. Note that 0 ≤ xT−2 ∈
XT−2. Thus, for any ωT−1 = (ωT−2, aT−1),

|xT−2| = |xmax
T−1| + κT−1,2

κT−1,1
≥ |xT−1| + κT−1,2

κT−1,1
,

showing that |xT−1| ≤ κT−1,1|xT−2|−κT−1,2, then by applyingLemma1we conclude
that (xT−2, xT−1) ∈ ZT−1. This procedure leads to the construction of a feasible
strategy (x0, x1, . . . , xT−1). By defining v0 = −ψ(0, x0), we have constructed a
hedging strategy of the form (v0, x0, x1, · · · , xT−1, vT ). ��

5 Optimal hedging

In Theorem 1 we constructed a hedging strategy (v0, x0, · · · , xT−1, vT+1) for a given
contingent claim vT ∈ L1

T . Indeed v0 is not the hedging price and ρ(vT ) < v0.We call
a hedging strategy (v0, x0, · · · , xT−1, vT ) is optimal if ρ(vT ) = v0. In this section, we
propose an algorithm to construct an optimal hedging strategy based on the approach
developed by Bensaid et al. (1992).

For each t , consider xt = (αt , β t ) ∈ Xt . We rewrite the self-financing condition
defined by (6) in the following form

(1 + rt )α
t−1 ≥ Ct + αt − ϕt (Rtβ

t−1 − β t ) − dt (β
t−1). (11)

Let vT ∈ L1
T . We use the following algorithm which computes a sequential strategy

by evaluating the sequential problem Qt , t = 0, 1, . . . , T .
We start with problem QT to construct xT−1 = (αT−1, βT−1) as

QT (ωT−1; vT ) = min
xT−1

−φT−1(−xT−1),

s.t. ψT (xT−1, 0) ≥ vmax
T (ωT−1), (12)

123



E. Babaei

χT (xT−1) ≥ 0,

where vmax
T (ωT−1) = max{vT (ωT−1, u), vT (ωT−1, d)}. The sequential problemsQt ,

t = 1, . . . , T − 2 are defined as

Qt (β
t−1, ωt ; vT ) = min

xt=(αt ,β t )
Ct + αt − ϕt (Rtβ

t−1 − β t ) − dt (β
t−1),

s.t. (1 + rt+1)α
t ≥ Qmax

t+1 (β
t , ωt ; vT ),

χt (xt ) ≥ 0, (13)

whereQmax
t+1 (β

t , ωt ; vT ) = max{Qt+1(β
t , (ωt , u); vT ),Qt+1(β

t , (ωt , d); vT )}, with

QT−1(β
T−2, ωT−1; vT ) = CT−1 + αT−1 − ϕT−1(RT−1β

T−2 − βT−1) − dT−1(β
T−2).

The problem at t = 0 is defined as

Q0(vT ) = min
x0=(α0,β0)

−φ(−x0),

s.t. (1 + r1)α
0 ≥ max{Q1(β

0, u),Q1(β
0, d)},

χ0(x0) ≥ 0. (14)

We call a hedging strategy (Q0(vT ), x0, . . . , xT−1, vT ) sequentially optimal if

• xT−1(ω
T−1) solves program QT (ωT−1; vT ) for all ωT−1,

• for each t = 1, . . . , T − 2, xt (ωt ) solves program Qt (β
t−1, ωt ; vT ) for all ωt ,

• x0 solves program Q0(vT ).

We will omit vT inQt (β
t−1, ωt ; vT ) where it does not lead to ambiguity. The relation

between the ρ(vT ) and Q0(vT ) is given by the following result.

Theorem 2 Let vT ∈ L1
T . Then ρ(vT ) = Q0(vT ).

Proof Let (Q0(vT ), x0, · · · , xT−1, vT ) be a sequentially optimal hedging strategy,
where xt = (αt , β t ), t = 0, . . . , T − 1. We observe that xT−1 ∈ XT−1 and
(xT−1, vT ) ∈ VT . For each t = 1, . . . , T − 2, we have

(1 + rt+1)α
t ≥ Qt+1(β

t , (ωt , at+1))

= Ct+1 + αt+1 − ϕt+1(Rt+1β
t − β t+1) − dt+1(β

t ).

By using self-financing condition (11), we observe that (xt , xt+1) ∈ Zt+1. Hence,
(Q0(vT ), x0, . . . , xT−1, vT ) is a feasible hedging strategy,which ensures thatρ(vT ) ≤
Q0(vT ).

Conversely, let (v0, x0, . . . , xT−1, vT ) be a feasible hedging strategy, where xt =
(αt , β t ), t = 0, . . . , T −1. We observe that χt (xt ) ≥ 0 and−φ(−xT−1) ≥ QT (ωT ).
By induction we show that for each t = 1, . . . , T − 1

Ct + αt − ϕt (Rtβ
t−1 − β t ) − dt (β

t−1) ≥ Qt (β
t−1, ωt ). (15)
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This is true with equality for t = T − 1, by the definition of QT−1. Now suppose
it is true at t + 1. As (v0, x0, · · · , xT−1, vT ) is a feasible hedging strategy, by using
self-financing condition (11), we have

(1 + rt+1)α
t ≥ Ct+1 + αt+1 − ϕt+1(Rt+1β

t − β t+1) − dt+1(β
t ),

and so (1 + rt+1)α
t ≥ Qt+1(β

t , ωt+1). This implies that xt = (αt , β t ) is
Qt -admissible, and hence (15) holds. By induction, the equation also prevails at
t = 1. A similar reasoning shows then that (1 + r1)α0 ≥ Q1(β

0, ω1), and so
Q0(vT ) ≤ −φ0(−x0) ≤ v0, for all admissible hedging strategies. Therefore, nec-
essarily, Q0(vT ) ≤ ρ(vT ). This completes the proof. ��

According to Theorem 2, any sequentially optimal strategy is optimal. This
describes a recursive algorithm for computing such a sequential strategy, starting from
t = T − 1 up to date t = 0. The following lemma will ensure the convexity of Qt .

Lemma 2 For all t = 1, . . . , T − 1, Qt (β
t−1, ωt ) is convex with respect to β t−1.

Proof We prove the result by induction. First, we note that

QT−1(β
T−2, ωT−1) = CT−1 + αT−1 − ϕT−1(RT−1β

T−2 − βT−1) − dT−1(β
T−2)

is convex as functions ϕt and dt are concave.
SupposeQt+1(β

t , ωt+1) is convex with respect to β t . ThenQmax
t+1 (β

t , ωt ) is convex
with respect to β t , being the maximum of two convex functions. Therefore, the set
of admissible points for the problem Qt (β

t−1, ωt ) (which does not depend on β t−1)
is also convex. Let β

′t−1, β t−1 ∈ L1
t−1, (αt , β t ), (α

′t , β
′t ) be Qt -admissible, and

λ ∈ [0, 1]. Define �t−1
λ = λβ t−1 + (1 − λ)β

′t−1, �t
λ = λβ t + (1 − λ)β

′t , and
�t

λ = λαt + (1 − λ)α
′t . Then we have

Qt (�
t−1
λ , ωt ) ≤ Ct + �t

λ − dt (�
t−1
λ ) − ϕt

(
Rt�

t−1
λ − �t

λ

)
≤ λ

(
Ct + αt − ϕt (Rtβ

t−1 − β t ) − dt (β
t−1)

)
+ (1 − λ)

(
Ct + α

′t − ϕt (Rtβ
′t−1 − β

′t ) − dt (β
′t−1)

)
.

The first inequality holds as (�t
λ, �

t
λ) isQt -admissible, and the second inequality fol-

lows from the concavity of ϕt and dt . Since this is true for allQt -admissible (�t
λ, �

t
λ),

this leads to

Qt (�
t−1
λ , ωt ) ≤ λQt (β

t−1, ωt ) + (1 − λ)Qt (β
′t−1, ωt ).

��
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Fig. 1 Stock prices at different times

6 A three-step example

In this section, a numerical example will illustrate the theoretical results of our paper.
Let us consider the following three-step model.

• There are three periods; T = 3.
• Interest rates for lending and borrowingmoney are constants; r+

t = 5%, r−
t = 6%

for each t = 1, 2, 3 and ωt .
• The price of the stock at t = 0 is S0 = 100, and Z(u) = 1.1, Z(d) = 0.9. The
prices of the stock at t = 1, 2, 3 are represented in the Fig. 1.

• Transaction cost rates for long and short positions on the stock are constant; λ+
t =

λ−
t = 1%.

• Dividend rates for long and short positions on the stock are constant; D+
t = D−

t =
2%.

• Fixed transaction costs at t = 1, 2 are constant; C1 = C2 = 1.
• The marginal coefficients are fixed; μt = 1.5.
• The contingent claim v3 is a European call option with strike price K = 105 and
maturity three years. The value of the option at t = 3 is given in Table 1.

v3(u
3) v3(u

2d) v3(ud
2) v3(d

3)

28.1 3.9 0 0

By using this information, we calculate the constants introduced in conditions (B1),
(B2) and Lemma 1, in Table 2.

Let us now construct an optimal hedging strategy (v0, x0, x1, x2, v3) by using the
algorithm defined by programs (12), (13), and (14).
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  D C ν τt κt,1 κt,2

1.01 0.99 2% 1 1.269 0.077 0.034 0.495

We begin with constructing x2(ω2) = (α2, β2) by solving the following problem,
where ω2 is either u2, ud or d2.

Q3(ω
2; v3) = min

x2
−φ2(−x2),

s.t. ψ3(x2(ω
2), 0) ≥ v3(ω

2, u),

ψ3(x2(ω
2), 0) ≥ v3(ω

2, d),

χ2(x2) ≥ 0.

At ω2 = u2, the problem will be

Q3(u
2; v3) = min

(α2,β2)
α2 + β2+ − β2−,

s.t. (1 + r+)α2+ − (1 + r−)α2− + Dβ2 + Z(u)β2+ − Z(u)β2− ≥ v(u3),

(1 + r+)α2+ − (1 + r−)α2− + Dβ2 + Z(d)β2+ − Z(d)β2− ≥ v(u2d),

α2+ + β2+ − μt (α
2− + β2−) ≥ 0.

We will split this non-linear program to a linear one by considering the following
cases.

Case 1: α2, β2 ≥ 0; we have the following linear program

Q3(u
2; v3) = min

(α2,β2)
α2 + 1.01β2,

s.t. 1.05α2 + 0.02β2 + 1.089β2 ≥ 28.1,

1.05α2 + 0.02β2 + 0.891β2 ≥ 3.9,

α2 + 0.99β2 ≥ 0.

Solving this, we have (α2, β2) = (0, 25.338) and −φ2(−x2) = 25.592.
Case 2: α2 ≥ 0, β2 ≤ 0; we have the following linear program

Q3(u
2; v3) = min

(α2,β2)
α2 + 0.99β2,

s.t. 1.05α2 + 0.02β2 + 1.111β2 ≥ 28.1,

1.05α2 + 0.02β2 + 0.909β2 ≥ 3.9,

α2 + 1.515β2 ≥ 0.

Solving this, we get (α2, β2) = (26.762, 0) and −φ2(−x2) = 26.762.
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Case 3: α2 ≤ 0, β2 ≥ 0; we have the following linear program

Q3(u
2; v3) = min

(α2,β2)
α2 + 1.01β2,

s.t. 1.06α2 + 0.02β2 + 1.089β2 ≥ 28.1,

1.06α2 + 0.02β2 + 0.891β2 ≥ 3.9,

1.5α2 + 0.99β2 ≥ 0.

Solving this, we get (α2, β2) = (−45.3, 68.637) and −φ2(−x2) = 24.023. Note that
both α2, β2 can not be negative. Therefore, for ω2 = u2, the optimal portfolio is
(α2, β2) = (−45.3, 68.637).

At ω2 = ud, the problem will be

Q3(ud; v3) = min
(α2,β2)

α2 + β2+ − β2−,

s.t. (1 + r+)α2+ − (1 + r−)α2− + Dβ2 + Z(u)β2+ − Z(u)β2− ≥ v(u2d),

(1 + r+)α2+ − (1 + r−)α2− + Dβ2 + Z(d)β2+ − Z(d)β2− ≥ v(ud2),

α2+ + β2+ − μt (α
2− + β2−) ≥ 0.

Using the same method, we find the optimal portfolio as (α2, β2) = (−6.287, 9.526).
Obviously, at ω2 = d2, the optimal portfolio is (α2, β2) = (0, 0).

From the definition, we have

Q2(β
1, ω2; v3) = C2 + α2(ω2) − ϕ2(R2β

1 − β2(ω2)) − d2(β
1).

Recall that ϕ2(R2β
1−β2) = (R2β

1−β2)+−(R2β
1−β2)−. Let us now construct

x1 = (α1, β1). We start with problem Q1(β
0, u).

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(d)β0 − β1) − d1(β

0),

s.t. (1 + r2)α
1 ≥ Q2(β

1, u2),

(1 + r2)α
1 ≥ Q2(β

1, ud),

χ1(x1) ≥ 0,

For solving this, we consider the following cases.
Case 1: α1, β1 ≥ 0, Z(u)β1 − β2(u2) ≥ 0. Then the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r+)α1 ≥ C2 + α2(u2) − (Z(u)β1 − β2(u2)) − Dβ1,

(1 + r+)α1 ≥ C2 + α2(ud) − (Z(d)β1 − β2(ud)) − Dβ1.

123



On asset pricing in a binomial model...

We can easily check that in this case the optimal portfolio is (α1, β1) =
(0, β2(u2)/Z(u)) = (0, 62.40) which is independent of β0, and

Q1(β
0, u) =

{
C1 + α1 − (Z(u)β0 − β1) − Dβ0 Z(u)β0 − β1 ≥ 0

C1 + α1 + (β1 − Z(u)β0) − Dβ0 Z(u)β0 − β1 < 0

Case 2: α1, β1 ≥ 0, Z(u)β1 − β2(u2) ≤ 0, and Z(d)β1 − β2(ud) ≥ 0. Then the
problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r+)α1 ≥ C2 + α2(u2) + (β2(u2) − Z(u)β1) − Dβ1,

(1 + r+)α1 ≥ C2 + α2(ud) − (Z(d)β1 − β2(ud)) − Dβ1.

In this case the optimal portfolio is (α1, β1) = (0, 22.12).
Case 3: α1, β1 ≥ 0, and Z(d)β1 − β2(ud) ≤ 0. Then the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r+)α1 ≥ C2 + α2(u2) + (β2(u2) − Z(u)β1) − Dβ1,

(1 + r+)α1 ≥ C2 + α2(ud) + (β2(ud) − Z(d)β1) − Dβ1.

In this case the optimal portfolio is (α1, β1) = (12.43, 10.58).
Case 4: α1 ≤ 0, β1 ≥ 0, Z(u)β1 − β2(u2) ≥ 0. Then the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r−)α1 ≥ C2 + α2(u2) − (Z(u)β1 − β2(u2)) − Dβ1,

(1 + r−)α1 ≥ C2 + α2(ud) − (Z(d)β1 − β2(ud)) − Dβ1

μα1 + β1 ≥ 0.

In this case the optimal portfolio is (α1, β1) = (−41.18, 62.40).
Case 5: α1 ≤ 0, β1 ≥ 0, Z(u)β1 − β2(u2) ≤ 0, and Z(d)β1 − β2(ud) ≥ 0. Then

the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r−)α1 ≥ C2 + α2(u2) + (β2(u2) − Z(u)β1) − Dβ1,

(1 + r−)α1 ≥ C2 + α2(ud) − (Z(d)β1 − β2(ud)) − Dβ1

μα1 + β1 ≥ 0.

In this case the optimal portfolio is (α1, β1) = (−38.28, 58).
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Case 6: α1 ≤ 0, β1 ≥ 0, and Z(d)β1 − β2(ud) ≤ 0. Then the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r−)α1 ≥ C2 + α2(u2) + (β2(u2) − Z(u)β1) − Dβ1,

(1 + r−)α1 ≥ C2 + α2(ud) + (β2(ud) − Z(d)β1) − Dβ1

μα1 + β1 ≥ 0

There is no solution for this case as all constraints are not satisfied.
Case 7: α1 ≥ 0, β1 ≤ 0, and Z(d)β1 − β2(ud) ≤ 0. Then the problem will be

Q1(β
0, u) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(u)β0 − β1) − Dβ0,

s.t. (1 + r+)α1 ≥ C2 + α2(u2) + (β2(u2) − Z(u)β1) − Dβ1,

(1 + r+)α1 ≥ C2 + α2(ud) + (β2(ud) − Z(d)β1) − Dβ1

α1 + μβ1 ≥ 0

In this case, the optimal portfolio is (α1, β1) = (23.83, 0).
By considering all cases, we observe that the global optimal portfolio is

(α1(u), β1(u)) = (−38.28, 58) as it has the minimum value for Q1(β
0, u) for any

β0.
Let us now consider problem Q1(β

0, d) for finding the optimal portfolio
(α1(d), β1(d)). We have

Q1(β
0, d) = min

x1=(α1,β1)
C1 + α1 − ϕ1(Z(d)β0 − β1) − d1(β

0),

s.t. (1 + r2)α
1 ≥ Q2(β

1, ud),

(1 + r2)α
1 ≥ Q2(β

1, d2),

χ1(x1) ≥ 0,

With the samemethod,wecanfind that the global optimal portfolio is (α1(d), β1(d)) =
(−6.68, 10.12).

Finally, we construct x0 = (α0, β0) by solving the following problem

Q0(v3) = min
x0=(α0,β0)

−φ(−x0),

s.t. (1 + r1)α
0 ≥ Q1(β

0, u),

(1 + r1)α
0 ≥ Q1(β

0, d),

χ0(x0) ≥ 0.

Using the previous findings, we will solve the problem:

Q0(v3) = min
x0=(α0,β0)

α0 + β0+ − β0−,
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s.t. (1 + r1)α
0 ≥ C1 + α1(u) − ϕ1(Z(u)β0 − β1(u)) − d1(β

0),

(1 + r1)α
0 ≥ C1 + α1(d) − ϕ1(Z(d)β0 − β1(d)) − d1(β

0)

χ0(x0) ≥ 0.

We will, again, consider the following cases.
Case 1. α0, β0 ≥ 0, and Z(u)β0 − β1(u) ≥ 0. Then the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r+
1 )α0 ≥ C1 + α1(u) − (Z(u)β0 − β1(u)) − Dβ0,

(1 + r+
1 )α0 ≥ C1 + α1(d) − (Z(d)β0 − β1(d)) − Dβ0.

Solving this, we get (α0, β0) = (0, 52.73) and v0 = −φ(−x0) = 53.26.
Case 2. α0, β0 ≥ 0, Z(u)β0 − β1(u) ≤ 0, and Z(d)β0 − β1(d) ≥ 0. Then the

problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r+
1 )α0 ≥ C1 + α1(u) + (β1(u) − Z(u)β0) − Dβ0,

(1 + r+
1 )α0 ≥ C1 + α1(d) − (Z(d)β0 − β1(d)) − Dβ0.

Solving this, we get (α0, β0) = (0, 18.83) and v0 = −φ(−x0) = 19.02.
Case 3. α0, β0 ≥ 0, and Z(d)β0 − β1(d) ≤ 0. Then the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r+
1 )α0 ≥ C1 + α1(u) + (β1(u) − Z(u)β0) − Dβ0,

(1 + r+
1 )α0 ≥ C1 + α1(d) + (β1(d) − Z(d)β0) − Dβ0.

Solving this, we get (α0, β0) = (8.17, 11.25) and v0 = −φ(−x0) = 19.53.
Case 4. α0 ≤ 0, β0 ≥ 0, and Z(u)β0 − β1(u) ≥ 0. Then the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r−
1 )α0 ≥ C1 + α1(u) − (Z(u)β0 − β1(u)) − Dβ0,

(1 + r−
1 )α0 ≥ C1 + α1(d) − (Z(d)β0 − β1(d)) − Dβ0,

μα0 + β0 ≥ 0.

Solving this, we get (α0, β0) = (−34.80, 52.73) and v0 = −φ(−x0) = 18.46.
Case 5. α0 ≤ 0, β0 ≥ 0, Z(u)β0 − β1(u) ≤ 0, and Z(d)β0 − β1(d) ≥ 0. Then

the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,
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s.t. (1 + r−
1 )α0 ≥ C1 + α1(u) + (β1(u) − Z(u)β0) − Dβ0,

(1 + r−
1 )α0 ≥ C1 + α1(d) − (Z(d)β0 − β1(d)) − Dβ0,

μα0 + β0 ≥ 0.

Solving this, we get (α0, β0) = (−32.59, 49.38) and v0 = −φ(−x0) = 17.28.
Case 6. α0 ≤ 0, β0 ≥ 0, and Z(d)β0 − β1(d) ≤ 0. Then the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r−
1 )α0 ≥ C1 + α1(u) + (β1(u) − Z(u)β0) − Dβ0,

(1 + r−
1 )α0 ≥ C1 + α1(d) + (β1(d) − Z(d)β0) − Dβ0,

μα0 + β0 ≥ 0.

There is no solution for this case as all constraints are not satisfied.
Case 7. α0 ≥ 0, β0 ≤ 0, and Z(d)β0 − β1(d) ≤ 0. Then the problem will be

Q0(v3) = min
x0=(α0,β0)

α0 + β0,

s.t. (1 + r+
1 )α0 ≥ C1 + α1(u) + (β1(u) − Z(u)β0) − Dβ0,

(1 + r+
1 )α0 ≥ C1 + α1(d) + (β1(d) − Z(d)β0) − Dβ0,

α0 + μβ0 ≥ 0.

Solving this, we get (α0, β0) = (20.29, 0) and v0 = −φ(−x0) = 20.29.
After considering all cases, we observe that the global initial optimal portfolio is

(α0, β0) = (−32.59, 49.38), and the minimum initial endowment required to hedge
v3 is v0 = 17.28.

7 Conclusions

In this paper, we extend the classical CRR binomial model by incorporating fixed
and proportional transaction costs, portfolio constraints, and dividend payments. As a
foundational framework, we use vonNeumann-Gale dynamics and adapt the approach
developed by Bensaid et al. (1992), allowing us to model realistic market conditions
more comprehensively. Our model introduces both random fixed and proportional
transaction costs, with different rates for long and short positions, and accounts for
dividend payments with potentially different random rates for long and short positions.
Additionally, we allow short selling under specific margin constraints. By incorpo-
rating these complexities, we provide a robust framework for pricing and hedging
strategies that aligns more closely with real-world financial scenarios.

A key contribution of this paper is the development of an algorithm to compute opti-
mal hedging strategies in this enriched framework. By using a recursive, sequentially
optimal approach, we derive hedging prices and demonstrate the practical application
of the model through a detailed three-step numerical example. The results show that
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while transaction costs introduce significant complexity, our model can still provide
effective solutions for pricing and hedging in markets with both fixed and proportional
costs.

The findings in this paper suggest several directions for future research. A key
area for further development would be to improve the computational efficiency of
the algorithms, particularly when dealing with different random rates, which were
simplified in the presented example, and for handlingmore steps in the binomialmodel.
Addressing the discretization error issue is also crucial, as it influences the trade-off
between transaction costs and rebalancing frequency. Optimizing this balance could
significantly enhance the accuracy of the model.
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