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Editorial

Land Degradation Assessment with Earth Observation

Elias Symeonakis

Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK;
e.symeonakis@mmu.ac.uk

For decades now, land degradation has been identified as one of the most pressing
problems facing the planet. Alarming estimates are often published by the academic
community and intergovernmental organisations claiming that a third of the Earth’s land
surface is undergoing various degradation processes and almost half of the world’s popu-
lation is already residing in degraded lands. Moreover, as land degradation directly affects
vegetation biophysical processes and leads to changes in ecosystem functioning, it has a
knock-on effect on habitats and, therefore, on numerous species of flora and fauna that
become endangered or/and extinct.

By far the most widely used approach in assessing land degradation has been to
employ Earth observation (EO) data. Especially during the last decade, with technological
advancements and the computational capacity of computers on the one hand, together with
the availability of open access, remotely sensed data archives on the other, numerous studies
dedicated in the study of the various aspects of land degradation have been undertaken.
The spectral, spatial and temporal resolution of these studies varies considerably, and
multiscale, multitemporal and multisensor approaches have also evolved.

This Special Issue (SI) on “Land Degradation Assessment with Earth Observation”
provides 17 original research papers with a focus on land degradation in arid, semiarid
and dry-subhumid areas (i.e., desertification) but also temperate rangelands, grasslands,
woodlands and the humid tropics. The studies cover different spatial, spectral and temporal
scales and employ a wealth of different optical, as well as radar sensors: from the finest
spatial scale of an Unoccupied Aerial Vehicle (UAV), to PlanetScope, Sentinel-1 and -2,
Gaofen, Landsat, MODIS, PROBA-V, SPOT VGT and AVHRR. Some of the ancillary datasets
included in the methodological framework of a number of the papers are also derived from
remotely sensed imagery, e.g., the SRTM digital elevation model or the Climate Hazards
group Infrared Precipitation with Stations (CHIRPS) precipitation estimates. Many studies
incorporate time-series analysis techniques that assess the general trend of vegetation
or the timing and duration of the reduction in biological productivity brought about by
land degradation (e.g., Mann—Kenndall test, Theil–Sen’s slope, BFAST, TSS-RESTREND,
LandTrendR). A number of papers employ statistical approaches in their analyses (e.g., prin-
cipal components analysis, ordinary least squares or geographically weighted regression)
or machine learning classification/regression techniques (e.g., Random Forests, Support
Vector Machines). As anticipated from the latest trend in EO literature, some studies utilise
the cloud computing infrastructure of Google Earth Engine to deal with the unprecedented
volume of data that current methodological approaches entail.

Geographically, the papers of this SI are mostly related with areas within Africa
(9 papers), which is unsurprising, as the African continent is the most severely affected by
land degradation. The Asian region is also well represented with seven papers, and one
paper is focused on an area in North America. In terms of the processes addressed, both
abrupt and more salient changes and degradation processes are covered, with the most
studied theme being the different aspects of vegetation degradation:

• Tomaszewska and Henebry [1] investigate pasture degradation in the Kyrgyz Republic,
using spatiotemporal phenometrics with MODIS land surface temperature (LST) and
Landsat Normalized Difference Vegetation Index (NDVI) data;

Remote Sens. 2022, 14, 1776. https://doi.org/10.3390/rs14081776 https://www.mdpi.com/journal/remotesensing
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• Meng et al. [2] study grassland degradation in the Tibetan Plateau (China) with UAV
and Gaofen data;

• Gedefaw et al. [3] look at rangeland degradation in New Mexico (USA) through a
time-series analysis of the Global Inventory Modeling and Mapping Studies (GIMMS)
NDVI and the Parameter elevation Regressions on Independent Slopes Model (PRISM)
precipitation data;

• Wanyama et al. [4] study vegetation condition in the Mount Elgon ecosystem (Kenya
and Uganda) with MODIS NDVI and CHIRPS precipitation data and a combination
of trend and breakpoint analysis methods;

• Barvels and Fensholt [5] also look at vegetation condition. They use Landsat NDVI
time-series and CHIRPS rainfall estimates with trend analysis techniques to assess
greening and browning trends in the highlands of the Ethiopian Plateau;

• Adenle and Speranza [6] investigate degradation in the Nigerian Guinea savannah by
combining MODIS-derived land degradation status estimates from a previous study
with spatial data on different drivers of land degradation to identify socio-ecological
archetypes of land degradation;

• The paper by Urban et al. [7] focuses on monitoring shrub encroachment in the
Free State Province (South Africa) by incorporating a dense time-series of both radar
(Sentinel-1) and optical (Sentinel-2) data;

• Li et al. [8] look at the spatial differences of vegetation response and associated land
degradation due to multiple mining activities in northwestern China. They use
Landsat imagery, monitor vegetation change using time-series analysis techniques
and estimate the spatial heterogeneity of the change related specifically to mines.

Another common theme of the Special Issue is land degradation related to drought:

• Verhoeve et al. [9] study vegetation resilience under increasing drought conditions
in two districts of Nothern Tanzania. They employ the National Oceanic and Atmo-
spheric Administration (NOAA) Climate Data Record (CDR) AVHRR NDVI data
together with Climate Research Unit (CRU) temperature and a combination of Cen-
Trends and CHIRPS precipitation estimates;

• Kimura and Moriyama [10] look into drought conditions in Mongolia. They examine
the trends in AVHRR- and MODIS-derived NDVI, as well as in an aridity index
calculated using surface reflectance and LST data from MODIS, and propose a method
to monitor land-surface dryness;

• Akinyemi [11] investigates the relationship between drought severity and land use/cover
change in 17 constituencies in Botswana. She employs NDVI data from SPOT VGT
and PROBA-V and land cover information from the European Space Agency’s (ESA)
Climate Change Initiative (CCI) and the Copernicus Climate Change Service (C3S-LC).

Soil erosion also appears as one of the land degradation processes of interest in the
Special Issue:

• The study by Phinzi et al. [12] over an area of South Africa compares different classifi-
cation algorithms and resampling methods to identify the optimal combination for the
mapping of complex gully erosion systems, using PlanetScope data from the wet and
dry seasons;

• Wang et al. [13] bring together MODIS NDVI and Land Aerosol Optical Depth data,
climate assimilation and ancillary spatial data to develop a Google Earth Engine-based
model for the delineation of the wind erosion potential of the entire Central Asian
region (i.e., Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan and Tajikistan).

Land degradation related with the salinisation of the soil is also addressed in this
Special Issue:

• Yu et al. [14] use Landsat data and integrate the salinization index, albedo, NDVI
and the land surface soil moisture index to establish the salinized land degradation
index (SDI) and apply their approach in an area that runs through Turkmenistan
and Uzbekistan;
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• Moussa et al. [15] compare a salinity index to an approach that employs Sentinel-2-
derived NDVI time-series for detecting salt-affected soils in irrigated systems in an
area of Niger.

One of the papers of the Special Issue deals with the humid tropics. In their study,
Liu et al. [16] propose a framework for the improved accounting of reference levels (RLs)
for the United Nations’ Reducing Emissions from Deforestation and Forest Degradation
(REDD+) programme. They combine the Intergovernmental Panel on Climate Change’s
(IPCC) Good Practice Guidance on Land Use, Land Use Change and Forestry with a land
use change modelling approach and apply this to an area in southern China. Finally, the
paper by Reith et al. (2021) focuses on the issue of land degradation monitoring and the
methodology suggested by the United Nations Charter to Combat Desertification (UNCCD)
to inform the sustainable development goal (SDG) 15.3.1 (i.e., “Proportion of degraded land
over total land area”). Aiming to optimise the land degradation neutrality (LDN) efforts of
the UN, Reith et al. [17] compare the land degradation assessments for an area in Central
Tanzania derived using the coarser spatial-resolution MODIS and the finer Landsat data.

A clear message stemming from this SI is the ever-increasing relevance of Earth Obser-
vation technologies when it comes to assessing and monitoring land degradation. With
the recently published IPCC AR6 Working Group II Report (https://www.ipcc.ch/report/
ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf, accessed on
3 March 2022), informing us of the severe impacts and risks to terrestrial and freshwater
ecosystems and the ecosystem services they provide, the EO scientific community has
a clear obligation to step up its efforts to address any remaining gaps—some of which
have been identified in this SI—in order to produce highly accurate and relevant land
degradation assessment and monitoring tools.

Funding: Elias Symeonakis is partly funded by a LEVERHULME TRUST INTERNATIONAL ACA-
DEMIC FELLOWSHIP (Contract Number IF-2021–040).

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Degradation in the highland pastures of the Kyrgyz Republic, a small country in Central
Asia, has been reported in several studies relying on coarse spatial resolution imagery, primarily
MODIS. We used the results of land surface phenology modeling at higher spatial resolution to
characterize spatial and temporal patterns of phenometrics indicative of the seasonal peak in herba-
ceous vegetation. In particular, we explored whether proximity to villages was associated with
substantial decreases in the seasonal peak values. We found that terrain features—elevation and
aspect—modulated the strength of the influence of village proximity on the phenometrics. Moreover,
using contrasting hotter/drier and cooler/wetter years, we discovered that the growing season
weather can interact with aspect to attenuate the negative influences of dry conditions on seasonal
peak values. As these multiple contingent and interactive factors that shape the land surface phenol-
ogy of the highland pastures may be blurred and obscured in coarser spatial resolution imagery, we
discuss some limitations with prior and recent studies of pasture degradation.

Keywords: Kyrgyzstan; pastures; Landsat; MODIS; land surface phenology

1. Introduction

The Kyrgyz Republic (Kyrgyzstan) is a small, highly mountainous nation of ~6.5 mil-
lion in 2019, where more than 60% live in rural areas and where agropastoralism is the
predominant land use [1]. Degradation of pasture resources in highly mountainous Kyrgyz
Republic has been both widely reported [2–8] and disputed [9,10]. Many studies have
attempted to detect land degradation in Central Asia by using remote sensing products
based on finer temporal but coarser spatial resolution imagery [4,7,8,11–16]. While the
finer temporal resolution products are better able to obtain clear views of the land surface,
coarser spatial resolution products blend together heterogeneous surfaces. This blending
or mixing is of particular concern in mountainous terrain, where differential insolation
regimes arising from the interaction of aspect and slope generates microclimates that can
accommodate distinct vegetation communities exhibiting different phenologies [3,17–19].

Untangling the differential influences of climate and human activity is complicated by
coarser spatial resolution [7,14,20]. Pastoralism in Kyrgyzstan is characterized by transhu-
mance, the seasonal movement of livestock to fresh pastures, and vertical transhumance in
particular, where the herds are moved from low-elevation winter pastures near villages
through transitional pastures in spring (and again in fall) to higher elevation summer
pastures distant from settlements. This combination of spatial heterogeneity, terrain effects,
and seasonality of pasture use presents challenges for detecting pasture degradation from
coarser resolution remote sensing imagery. A further complication is presented by the high
interannual variation in weather arising from the land-locked location of the country, its
relatively high elevation, and regional climate change [12,21–24].

Remote Sens. 2021, 13, 3449. https://doi.org/10.3390/rs13173449 https://www.mdpi.com/journal/remotesensing
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Here, we explore the pasture degradation question across rural Kyrgyz Republic using
phenological metrics (phenometrics) derived from finer spatial resolution, but less frequent
imagery (Landsat 30 m) linked to more frequent, but coarser spatial resolution products
(MODIS 1 km) across 17 years (2001–2017). The phenometrics that we use here indicate the
first seasonal peak in NDVI and the amount of thermal time (measured as accumulated
growing degree-days calculated from land surface temperature time series) required to
reach that peak NDVI. These phenometrics can be calculated for each pixel in each year
for which there are sufficient, high-quality data and for which the joint time series exhibit
sufficient seasonality to enable the modeling of the land surface phenology (LSP). Pasture
degradation can be evaluated with phenometrics in a variety of ways, including trends,
variation, extremes, and abrupt spatial and/or temporal shifts [12,20,25,26]. However, we
are interested here in three questions about patterns that can complicate interpretation of
patterns and trends: (1) What are the spatial patterns of the phenometrics as a function of
distance from village center? (2) How do these patterns change as a function of elevation?
and (3) How do these patterns change as a function of aspect?

Although we focus on the patterns of the temporal mean phenometrics during the
study period, we also examine the patterns during two years with contrasting weather:
hotter, drier 2007 versus cooler, wetter 2009. This study leverages the findings from prior
studies [25,26] using the same approach to modeling land surface phenology and advances
our understanding of the spatio-temporal dynamics of vegetation in the socio-ecological
landscapes of montane Central Asia, specifically in the Kyrgyz Republic.

2. Materials and Methods

2.1. Study Area

The study area focuses on pasture lands within the territory of the Kyrgyz Republic
that neighbors Uzbekistan (west), Kazakhstan (north), China (east and southeast), and
Tajikistan (southwest) (Figure 1). The total area of the country is shy of 200,000 km2 (96%
in land), and the 2019 population was about 6.5 million, according to the World Bank
(https://data.worldbank.org/country/kyrgyz-republic; accessed on 20 June 2021). It is a
highly mountainous country, where more than 56% of the territory lies above 2500 m and
where the mountain ranges of the Tien Shan, Pamir, and Alatau cover more than 90% of
the total land area [27]. Pastoral rangelands constitute 87% [1] of the agricultural lands
in the Kyrgyz Republic. Less than 10% of the land is used for crops, while forests cover
only about 5%. Our study period extends from 2001 through 2017. The Kyrgyz Republic is
divided into seven provinces (oblasts)—Talas, Chuy (including the capital city, Bishkek),
and Issyk-Kul in the northern part as well as Jalal-Abad, Naryn, Osh, and Batken in the
southern part—and 40 districts (rayons).

2.2. Geospatial Data

The land surface phenology metrics (or phenometrics) and terrain information used
for this study were supplied from our previous work [25], where a detailed description of
data, its processing, and phenometrics calculation methodology can be found. We provide
an overview here.

To calculate LSP metrics, we used two products: MODIS land surface temperature
(LST) and Landsat surface reflectance NDVI.
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Figure 1. Pasture land use area (light tan) and selected settlement points (blue-green) in the Kyrgyz Republic (from [28,29])
draped over the SRTM 30 m DEM [30] (Projected coordinate system: Albers Conic Equal Area). Province (oblast) names
appear in yellow.

We downloaded two tiles (h23v04 and h23v05) of 8-day MODIS Terra and MODIS
Aqua Land Surface Temperature (MOD11A2/MYD11A2 V006) products at 1 km spatial
resolution [31] from 2001 (MODIS/Terra) and from 2002 (MODIS/Aqua) up to the end of
2017. We merged tiles, removed poor quality pixels, converted units from Kelvin to ◦C,
and reprojected data to Albers Conic Equal Area at 30 m spatial resolution using bilinear
resampling.

The surface reflectance NDVI dataset from Landsat Collection 1 Tier 1 Level-1 Precision
and Terrain (L1TP) of Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) was acquired for
years 2001 to the end of 2017 from the USGS Earth Resources Observation and Science
(EROS) Center Science Processing Architecture (ESPA) On-Demand Interface (https://
espa.cr.usgs.gov/). We downloaded 13,285 images across 33 unique tiles (WRS-2 Paths
147–155 and Rows 30–33) which were already projected into Albers Conic Equal Area. We
masked poor-quality pixels and applied an inter-calibration equation to adjust Landsat 5
TM surface NDVI and Landsat 7 ETM+ surface NDVI to the surface Landsat 8 OLI NDVI,
which on average was shown to have higher values (cf., Table 3 in [32], Surface NDVI from
OLI = 0.0235 + 0.9723 ETM+). Because of the small differences between the Landsat 5 TM
and Landsat 7 ETM+ data [33,34], we used the same equation for both datasets.

For the analyses conducted in this study, we additionally used three other geospatial
datasets: (1) digital elevation model, (2) pasture land-use mask, and (3) point coverage of
settlements. We downloaded 133 tiles of SRTMGL1, the NASA Shuttle Radar Topography
Mission Global 1 arc second (~30 m) V003 elevation product [30] from USGS Earth Explorer
(https://earthexplorer.usgs.gov/). Tiles were merged and reprojected into the Albers
Conic Equal Area at 30 m spatial resolution using bilinear resampling. We then generated
aspect and slope layers. For this study, we masked out pixels from all layers where slope
was greater than 30 degrees. Additionally, we created sets of three terrain layers where we
left only pixels on the contrasting aspects (northern: NW-N-NE-E, southern: SE-S-SW-W)
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at four elevation ranges: 1800–2400 m, 2400–2900 m, 2900–3400 m, and 3400–4000 m, and
elevation−aspect interactions.

The pasture land-use class (122,405 km2) was obtained from a Soviet-era land use map
that was updated in 2008 using Landsat 7 ETM+ and MODIS datasets for the CACILM
project [28,29]. We used those data to mask out non-pasture pixels in the terrain and LSP
layers to focus only on the pasture land-use pixels.

The settlement point layer was also obtained from the CACILM project where the
dataset was collected and consolidated by ECONET WWF Project [35] national teams. Over
Kyrgyzstan, the layer has 703 points representing detailed administration levels, including
small villages. We conducted a quality check on this dataset and eliminated points that
were clearly mislocated, yielding 617 point locations (Table 1) for analysis.

Table 1. Number of settlement points after dataset revision and filtering per province (oblast).

Province (Oblast) Total Points Points after 10 km Filter

Batken 63 36
Chuy 67 33

Issyk-Kul 100 45
Jalal-Abad 113 58

Naryn 96 44
Osh 137 56
Talas 41 21

TOTAL 617 293

2.3. Methods
2.3.1. Land Surface Phenology

We used a downward-arching convex quadratic (CxQ) function to characterize
LSP [36–38]. The model uses a vegetation index—here the NDVI from a Landsat sur-
face reflectance time-series—as proxy for active green vegetation, and thermal time—here
accumulated growing degree-days (AGDD) from MODIS LST—as proxy for insolation.

To obtain AGDD, we first transformed two diurnal and nocturnal observations from
the MODIS on Terra and on Aqua into a mean LST using the following Equation (1):

mean LSTt = [max(LSTtTERRA1030, LSTtAQUA1330) + min(LSTtTERRA2230, LSTtAQUA0130)]/2 (1)

where LSTtTERRA1030 is the LST for period t at the Terra daytime overpass, LSTtAQUA1330 is
the LSTt at the Aqua daytime overpass, LSTtTERRA2230 is the LSTt at the Terra nighttime
overpass, and LSTtAQUA0130 is the LSTt at the Aqua nighttime overpass.

We filled gaps that resulted from missing or filtering excluded pixels using the Sea-
sonally Decomposed Missing Value Imputation method [39], replaced all negative values
with 0 ◦C, and calculated growing degree-days GDD (2) at compositing period t as the
maximum of mean LST and Tbase, where Tbase was set to 0 ◦C [37,40].

GDDt = max(mean LSTt − Tbase, 0) (2)

For each year, we produced 46 GDD composites that were multiplied by 8 to account
for the 8-day MODIS product composite period and accumulated each year into time series
of AGDD (3), with an annual reset in January to 0 ◦C:

AGDDt = AGDDt-1 + (GDDt × 8) (3)

Prior the CxQ LSP model fitting, it was necessary to further clean and filter NDVI and
AGDD datasets to reduce noise and spurious data. Therefore, we filtered out observations
with NDVI < 0.1 and AGDD < 100 to avoid non-vegetated or snow-covered pixels. To
account for cloud contamination that may have slipped through the masking process, we
looked for unusual abrupt dips in the NDVI time-series. We first calculated the simple
average of NDVI observations on either side of the focal observation. We then calculated the
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percentage difference between the average NDVI and the focal observation and excluded
observations that were ≥15% than the average of the two neighboring observations [25,26].
Having NDVI and AGDD datasets prepared for each pixel and each year (from 2001 to
2017), we applied the CxQ LSP model shown in (4):

NDVI = α + β × AGDD + γ × AGDD2 (4)

Using the fitted coefficients (4) for the intercept (α), slope (β), and quadratic (γ)
parameters, we calculated two LSP phenometrics: Peak Height [PH=α − (β2/4 × γ)],
which is the maximum modeled NDVI; and Thermal Time to Peak [TTP = −β/2 × γ],
which is the quantity of AGDD required to reach PH and corresponds to the duration of
green-up phase. To control CxQ LSP model fitting performance, we used a suite of six
quality criteria: (i) the fitted quadratic parameter coefficient was less than zero (γ < 0);
(ii) TTP greater than the AGDD at the first observation; (iii) adjusted R2 greater than 0.7;
(iv) Root Mean Square Difference (RMSD) less than 0.08; (v) at least seven observations in
the time series to be fit, where at least three observations were distributed before and at
least three after the PH; and (vi) the PH less than or equal to 1.0.

If any criterion was not fulfilled during the fitting process, then the last observation in
the time series was removed and the model fitting procedure was rerun over the reduced
time series. We repeated this fitting procedure until either the fitted model passed all
criteria or the length of the time series was fewer than seven observations. In the latter
case, the model fit for that pixel was labeled as failed and no phenometrics were calculated
for that pixel.

Next, for each pixel where model fit was successful and phenometrics were obtained,
we calculated the mean values of PH and TTP across 17 years. We also highlighted PH
and TTP from the years 2007 and 2009, which were drier and wetter weather conditions,
respectively. As mentioned in Section 2.2, we used the pasture land-use layer to mask data.

2.3.2. Settlement Ring Buffer Analyses

From the settlement point coverage, we randomly selected (ArcMap Software
10.6.0.8321, Random Generator Type: default ACM599, seed:0) points with the spatial
constraint of 10 km from each other, which resulted in 293 focal points for analysis
(Table 1).

Then, we created 10 ring buffers around each settlement focal point from 500 m to
5000 m distance in 500 m intervals (0–500 m, 500–1000 m, 1000–1500 m, 1500–2000 m,
2000–2500 m, 2500–3000 m, 3000–3500 m, 3500–4000 m, 4000–4500, and 4500–5000 m).
The spatial constraint of 10 km ensured that the ring buffers would not intersect. Fi-
nally, we prepared nine datasets (raster stacks) at four elevation classes—(1) 1800–2400 m,
(2) 2400–2900 m, (3) 2900–3400 m, and (4) 3400–4000 m—yielding 36 in total, as follows:

1. Elevation classes {1–4}, all aspects, slopes < 30◦, PHmean, TTPmean;
2. Elevation classes {1–4}, all aspects, slopes < 30◦, PH2007, TTP2007;
3. Elevation classes {1–4}, all aspects, slopes < 30◦, PH2009, TTP2009;
4. Elevation classes {1–4}, northern aspects, slopes < 30◦, PHmean, TTPmean;
5. Elevation classes {1–4}, northern aspects, slopes < 30◦, PH2007, TTP2007;
6. Elevation classes {1–4}, northern aspects, slopes < 30◦, PH2009, TTP2009;
7. Elevation classes {1–4}, southern aspects, slopes < 30◦, PHmean, TTPmean;
8. Elevation classes {1–4}, southern aspects, slopes < 30◦, PH2007, TTP2007;
9. Elevation classes {1–4}, southern aspects, slopes < 30◦, PH2009, TTP2009.

Once these data were prepared, we extracted pixels from each set of settlement point
ring buffers across all 36 datasets. During the extraction process, we ensured that only
those pixels whose center point was within the ring buffer polygon were included so the
same pixel would not spill into the neighboring ring buffers. Because of the prior pixel
filtering by pasture land-use map, elevation classes, slope threshold value, and the fact
that LSP CxQ modeling did not always succeed (i.e., no phenometrics calculated), the
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number of extracted pixels varied within each ring buffer for each dataset, and in some
instances, there were no pixels to extract due to the multiple filtering steps. When there
were extracted pixels, we calculated the mean values for each ring buffer, which were
used for the complementary analyses of the influence of elevation, aspect, growing season
weather, and distance from village on the two phenometrics.

3. Results

3.1. Buffer Mean Values of the Peak NDVI as a Function of Distance and Elevation

Figure 2 displays the spatial mean ±2SE values of the fitted NDVI Peak Height within
each ring buffer calculated from the mean PH values across all years. Not surprisingly,
there is considerable variation, but some patterns are evident. First, the PH decreased with
increasing elevation. Second, the variation in the PH increased with elevation. Third, PH
increased with distance from villages at 2400–2900 m and 2900–3400 m.

 

Figure 2. Elevational gradients in modeled peak NDVI: mean ±2SE of the ten ring buffer mean values calculated from the
temporal mean Peak Height. Sequential color scheme starting from left represents four classes of elevation: 1800–2400 m,
2400–2900 m, 2900–3400 m, and 3400–4000 m.

3.2. Contrasting Mean Values of Phenometrics Nearby and Far from Villages

Figure 3 subsets the distributions to focus on either end of the spatial series: the
0–500 m ring buffer captured those pasture areas closest to villages and the 4500–5000 m
ring buffer captured pastures that were far from the focal village and not intruding on the
ring buffer of another village. For PH (Figure 3, left panel), there was no difference in the
lowest elevation class (1800–2400 m), but the differences between PH values nearby and far
from villages were strong at both 2400–2900 m and 2900–3400 m, where the PH values in the
distant ring buffer were higher than in the nearby ring buffer. However, the distributions
of the mean PH values were significantly different between the 0–500 m and 4500–5000 m
buffers only at the 2900–3400 m elevation range, according to the Kolmogorov–Smirnov
two-sample test with the Dunn-Šidák correction for post-hoc multiple comparisons [41].
Note that in the highest elevation class (3400–4000 m), there were no pasture areas in the
ring buffer nearest (0–500 m) to villages. It is also evident that the variation of PH in
the nearby ring buffer appeared larger at higher elevations relative to that in the lowest
elevation class, but this difference may result from fewer samples at high elevations.
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The Thermal Time to Peak phenometric (Figure 3, right panel) decreased with ele-
vation, as expected, and the distant TTP ring buffer means were consistently—but not
significantly—lower than the nearby values.

 
Figure 3. Contrasting values from pasture areas nearby and far from villages: mean ±2SE of the two (0–500 m in light blue,
4500–5000 m in purple) buffer mean values of temporal mean Peak Height (left) and mean Thermal Time to Peak (right) for
the four elevation classes.

3.3. Influence of Weather on Phenometrics

Figure 4 shows the PH (left) and TTP (right) means for the ring buffers nearby versus
far from the villages. For PH, the contrast between years and distance from villages was
significant only for the 2900–3400 m elevation class (Figure 4, left). At the lowest elevation
class, the nearby ring buffer means were not significantly different, but the distant means
were. TTP was clearly lower during 2009, the wetter year, at all elevations, and lower
at higher elevations, as expected. Evaluation by the Kolmogorov-Smirnov two-sample
test (with the Dunn-Šidák correction) confirms what Figure 4 (right panel) shows: the
TTP distributions were significantly different between 2007 and 2009 at every elevation
class, but the difference between 0–500 m and 4500–5000 m ring buffer distributions was
significant only at the 2900–3400 m elevation class and only in the drier year of 2007.

3.4. Influence of Aspect on Phenometrics

We tested for differences in the distributions of buffer means as a function of aspect
(NW-N-NE-E vs. SE-S-SW-W) by distance from settlement point and elevation class using
the Kolmogorov-Smirnov two-sample test with the Dunn-Šidák correction for post-hoc
multiple comparisons. Northerly aspects consistently showed higher Peak Height means
than in southerly aspects, but these differences were not statistically different at every
distance or elevation class (Figure 5). In the lowest elevation class (1800–2400 m), the effect
of aspect on PH was significant starting at the 2500–3000 m ring buffer; in the 2400–2900 m
elevation class, the difference in PH between aspects appeared significant 500 m closer
to the settlement point (i.e., at the 2000–2500 m ring buffer). In the two higher elevation
classes, the aspect differences were not significant, but the variation about the means
appears lower in the more distant ring buffers.

11



Remote Sens. 2021, 13, 3449

 

Figure 4. Differences in phenometric values (Peak Height at left, and Thermal Time to Peak at right) arising from distance
and weather: mean ±2SE of the two ring buffer (0–500 m as a triangle, 4500–5000 m as a circle) means of 2007 (in red) and
2009 (in dark cyan) for the four elevation classes.

3.5. Interaction of Weather, Aspect, and Distance on Phenometrics

Figure 6 shows the distributions of phenometrics for northerly and southerly aspect
slopes from pasture areas nearby (0–500 m) and far from (4500–5000 m) villages in the drier
year of 2007 and the wetter year of 2009. The Kolmogorov-Smirnov two-sample test with
the Dunn-Šidák correction reveals four patterns of interest in the Peak Height distributions:
(1) the aspect effect on PH is significant at the two lower elevation classes only far from
villages; (2) at the far ring buffer at each elevation class between 1800 m and 3400 m, the
distributions of PH means from southerly aspects in the drier year of 2007 are significantly
different from the northerly aspect PH means in the wetter year of 2009; (3) at each distance
and elevation, distributions of PH means are not significantly different by year for the same
aspect, i.e., the distributions of southerly (or northerly) aspect PH means are not different
between years; and (4) the distributions of northerly aspect PH means in the drier year of
2007 are not significantly different from the southerly aspect PH means in the wetter year
of 2009. This last pattern is clearer in Figure 7 (top panels) and illustrates how the northerly
aspect slopes moderate the impact of dry years on pasture LSP.

The patterns in the TTP distributions were not surprising (Figure 6, right): (1) de-
creasing TTP with increasing elevation; (2) lower TTP values in the cooler, wetter year of
2009; and (3) no apparent aspect effect in the TTP buffer mean distributions. The bottom
panels in Figure 7 show more clearly how strongly the TTP mean distributions diverge
between years.
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Figure 5. Contrasting values from pasture aspect: mean ±2SE of the ten ring buffer mean values of temporal mean
Peak Height at two contrasting aspects (northern aspects in dark purple; southern aspects in dark orange) for the four
elevation classes.
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Figure 6. Interaction of weather, aspect, and distance: distributions of the phenometrics (Peak Height (left) and Thermal
Time to Peak (right) from two nearby (0–500 m) and distant (4500–5000 m) ring buffer mean values calculated from the
hotter, drier year of 2007 (northern aspects [N] in red, southern aspects [S] in orange) and the cooler, wetter year of 2009
(northern aspects [N] in a dark cyan, southern aspects [S] in a light blue)) at the four elevation classes.
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Figure 7. Differences in phenometric values (Peak Height on top and Thermal Time to Peak at bottom) arising from contrasts
in weather and aspect: mean ±2SE of the two ring buffers at 0–500 m (left) and 4500–5000 m (right) from villages for hotter,
drier 2007 (northern aspects [N] in a red triangle, southern aspects [S] in an orange circle) and cooler, wetter 2009 (northern
aspects [N] in a dark cyan triangle, southern aspects [S] in a light blue circle) for the four elevation classes.

4. Discussion

The results of these linked analyses address the questions posed earlier. The Peak
Height phenometric tends to increase in pasture areas as distance from the village increases.
One interpretation of this pattern is the pasture areas near villages tend to be degraded.
Winter pastures are closer to villages than either summer or transitional pastures and
have been shown to exhibit significant differences in biogeochemistry and vegetation
composition [5]. However, this general pattern can be modulated by the terrain, both
elevation and aspect. Of the four elevation classes, significantly larger PH differences were
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seen between nearby and distant buffer rings in the 2900–3400 m elevation class (Figure 3,
left). TTP decreased with elevation class but showed no clear difference between nearby
and distant values (Figure 3, right), due in part to the much coarser spatial resolution of
the LST data.

For the same reason, there was no clear influence of aspect on TTP (Figure 6, right
panels; Figure 7, bottom panels). In contrast, the influence of aspect on PH was strongest
in the lower elevation classes (Figure 5, bottom panels). When distant from a settlement,
the PH on a northern aspect slope during a dry year appeared very similar to the PH on a
southern aspect slope during a wet year (Figure 7, top right). However, in pasture areas
closest to settlements, this aspect influence vanishes (Figure 7, top left).

The advantages of our study are several. First, we integrated long time series of two
independent remote sensing products through a simple biometeorological model of land
surface phenology that responds to the progress of growing season temperature rather
than to the mere passing of days [37,38]. Second, the CxQ model has been shown to
capture the initial seasonal peak well in grassland LSP [25,37,38]. Third, the finer spatial
resolution of our analysis captured the influence of terrain features on vegetation growth
and development as captured by the phenometrics [25].

Four limitations of our study are key. First, even the 30 m Landsat data can miss
important landscape features influencing LSP [42]. Second, the 1 km spatial resolution
of the MODIS LST product is coarser than would be optimal for use in rugged terrain.
However, there are no effective alternatives at this point. Third, the CxQ model captures the
initial seasonal peak but not necessarily the post-peak decay, particularly if there is heavy
grazing post-peak [25]. This limitation is not as serious as it may first appear: we expect
clear evidence of pasture degradation to appear only after several years of overgrazing,
particularly if coupled with a severe drought. Fourth, while the pasture land-use mask
was critical for omitting non-pastoral land-uses, there is substantial uncertainty associated
with its development and accuracy. We have no accuracy assessment associated with it,
and we expect that commission error is more likely than omission error, which would have
the effect of increasing variance and decreasing the significance of the patterns. Finally, a
key caveat for interpretation of these results should be noted: the 5 km extent of analysis
was not meant to capture the summer pastures associated with villages. Summer pastures
can be 10–50 km or more from a given village, and the spatial allocation and arrangement
of summer pastures can be quite complicated.

Given our findings, to what extent do they raise questions about previous remote
sensing studies on widespread degradation of pasture resources? The relationship between
the scale of observation and the scale of the phenomenon of interest is crucial to the
understanding and interpretability of the remote sensing data [43]. It is clear from these
results that terrain effects can be obscured by coarser spatial resolution data, yet there is
another scale to consider as well. Prior studies have demonstrated significant effects of
climate oscillation modes on LSP in Central Asia [12,44,45]. However, more recent work at
higher spatial resolution was not able to discern a significant influence from climate modes
because the influence on LSP was overridden by local landscape structure [26].

Another facet of the degradation monitoring problem relates to the impact of spatial
heterogeneity on the characterization of LSP. An important empirical study [46] explored
how spatial heterogeneity in the land surface phenology observed at finer spatial resolution
influences the timing of phenophase detection when observed at coarser spatial resolution.
They found, when the land cover was homogeneous, that greater than 60% of Landsat
8 OLI 30 m pixels exhibiting start of season (SOS) detections were within 1 day of the
SOS detection within a VIIRS pixel of 500 m spatial resolution. In contrast, less than 20%
of the 30 m SOS detections were within 1 day if the land cover within the 500 m pixel
was heterogeneous. They further reported that the SOS detection timing at the coarser
spatial resolution was controlled by the timing when roughly 30% of the 30 m pixels within
the 500 m pixel transitioned to SOS [46]. Thus, phenophase detections at coarser spatial
resolutions are biased toward the earlier components in the vegetated land surface if the
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target landscape exhibits spatial heterogeneity. The study shows that the scaling effect on
LSP is not resolvable with simple averaging. The mountain pastures of the Kyrgyz Republic
and elsewhere in Central Asia exhibit a higher spatial heterogeneity than the croplands
of central Iowa examined in [46]. Using a nonstandard MODIS product at 250 m spatial
resolution, a study of pasture degradation in western Kyrgyz Republic found that pastures
with a higher abundance of non-palatable vegetation exhibited later timing of peak NDVI
during dry years in sub-alpine and mountain steppe ecozones but negligible impact in
normal years [8]. The study is notable in that it included an extensive field component and
demonstrated that higher NDVI values can accompany pasture degradation.

Several prior studies that have used MODIS data to detect trends in browning or
greening in Kyrgyzstan and elsewhere in montane Central Asia may have been biased
towards detecting browning trends and interpreting them as evidence of degradation due to
using Collection 5 (C5) of the MODIS products. The differences between C5 and Collection
6 (C6 aka V006) are pronounced due to the loss of sensitivity of the red channel in the Terra
MODIS [47,48]. Trend comparisons between the two collections have shown that significant
negative trends in C5 were no longer significant in C6, and many nonsignificant trends
in C5 appeared now as significant positive trends in C6 [49,50]. Two earlier studies [4,14]
finding degradation in Kyrgyz pastures clearly used C5 products. Another study finding
degradation [8] used data that was unlikely to have included the C6 corrections. A recent
study [7] does not state which collection was used, but as the analysis period extended
only until 2014, it is likely that it used C5 instead of C6 as well. The key point here is that
as remote sensing products undergo upgrades that significantly change observed patterns,
it is important to revisit those studies relying on earlier product versions to re-evaluate
their findings in light of the new information.

A further concern is the use of simple linear slopes to detect significant trends. Ap-
plying ordinary least squares regression to a time series to fit a slope and declare the
slope to be the trend has serious limitations from a statistical standpoint [51,52]. Positive
autocorrelation reduces residual variance and inflates significance, increasing the risk of
a Type I inferential error. Alternatives exist, such as the nonparametric Seasonal Kendall
trend test, but it is not resistant to strong interannual autocorrelation. Fitting time series
with autoregressive models has not been common in remote sensing studies.

Our findings suggest potential degradation in pasture areas as indicated by lower
PHs closer to villages, but our analysis cannot rule out functional degradation arising
from an increase in the coverage of nonpalatable species that can enhance NDVI without
providing accessible forage [8,13,19]. Furthermore, what constitutes degradation in a
particular socio-ecological system is frequently more subjective and culture-bound than is
typically acknowledged [13,53–55].

5. Conclusions

We analyzed the landscape patterns of phenometrics based on fitted parameter coef-
ficients of the land surface phenology model applied to 17 years of Landsat and MODIS
seasonal time series across the montane pastures of the Kyrgyz Republic. We found
that the Peak Height of NDVI generally decreased closer to villages, but the patterns
were modulated—sometimes strongly—by elevation, aspect, and growing season weather.
These findings raise questions about reports of pasture degradation based on coarser
spatial resolution image time series. Our goal here was not to differentiate the relative
contributions of these factors, because they are not susceptible to linear “unmixing”. Rather,
we sought to recognize their potential influence on the mixed signal observed at coarser
spatial resolutions and to urge caution in interpreting, for instance, declines in NDVI trends
with pasture degradation and increases with pasture remediation. The situation is more
complicated. Due to the spatial heterogeneous distribution of pastures and pasture usage
in mountainous landscapes, contextual information should be used to interpret remotely
sensed patterns and trends in an appropriately nuanced manner.
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Abstract: The Kobresia pygmaea (KP) community is a key succession stage of alpine meadow degrada-
tion on the Qinghai–Tibet Plateau (QTP). However, most of the grassland classification and mapping
studies have been performed at the grassland type level. The spatial distribution and impact factors
of KP on the QTP are still unclear. In this study, field measurements of the grassland vegetation
community in the eastern part of the QTP (Counties of Zeku, Henan and Maqu) from 2015 to 2019
were acquired using unmanned aerial vehicle (UAV) technology. The machine learning algorithms
for grassland vegetation community classification were constructed by combining Gaofen satellite
images and topographic indices. Then, the spatial distribution of KP community was mapped. The
results showed that: (1) For all field observed sites, the alpine meadow vegetation communities
demonstrated a considerable spatial heterogeneity. The traditional classification methods can hardly
distinguish those communities due to the high similarity of their spectral characteristics. (2) The
random forest method based on the combination of satellite vegetation indices, texture feature and
topographic indices exhibited the best performance in three counties, with overall accuracy and
Kappa coefficient ranged from 74.06% to 83.92% and 0.65 to 0.80, respectively. (3) As a whole, the area
of KP community reached 1434.07 km2, and accounted for 7.20% of the study area. We concluded
that the combination of satellite remote sensing, UAV surveying and machine learning can be used
for KP classification and mapping at community level.

Keywords: Kobresia pygmaea community; unmanned aerial vehicle; Gaofen satellite; spatial distribution

1. Introduction

Alpine meadow is the major vegetation type on the Qinghai–Tibet Plateau (QTP),
China. It is important for animal husbandry, water conservation and biodiversity conserva-
tion [1,2]. Since the 1980s, due to the dual effects of climate change and human activities,
alpine meadow grassland has experienced different extents of degradation, especially in
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the source region of Yellow River, which is on the eastern part of the QTP [3]. The degra-
dation has restricted the sustainable development of animal husbandry and seriously
threatened local ecological security [4]. The degradation succession stages of the alpine
meadow grassland community include Poaceae, Kobresia humilis (KH), Kobresia pygmaea
(KP) and black soil type (BS). The KP community is the key stage for the management
of degraded grassland [5]. In the first two stages, the original community structure and
function can be quickly restored under the grazing prohibition and artificial measures [6].
However, further degradation of KP community will cause irreversible degradation until
the severest stage of black soil type [7]. Therefore, it is vital to map the current distribution
of KP community grassland for mitigation and adaptation measures. However, previous
grassland classifications have been performed at the vegetation type level, and few at
the community level [8,9]. At present, the spatial distribution and impact factors of KP
community on the QTP are still unclear [1,2,10]. Therefore, it is urgent to develop a method
for mapping alpine meadow at community level.

Traditional grassland vegetation community samples are mainly obtained with the
few field investigation, expert knowledge and literature reviews. Due to the complex
distribution and dynamic of grassland vegetation communities, the field investigation
cannot meet the accuracy requirement of classification [11–15]. In addition, remote sensing
(RS) vegetation indices have been commonly used as classification variables, “the same
object with different spectrum” or “the different object with same spectrum” have occurred
frequently [16–18]. Successful classifications at the community level requires: (1) the
RS images with proper temporal-spatial resolution, coverage, sensitive spectrum band;
(2) massive field observations; and (3) effective classification methods.

Compared with traditional multi-spectral remote sensing (e.g., MODIS, Landsat, HJ-
1A/1B), the Gao Fen 1 (GF1) and Gao Fen 6 (GF6) satellites have significant advantages in
grassland resource monitoring [19]. Each of these satellites has a high resolution of 16 m
(wide field view images, WFV), a relatively large detection width of 800 km and a short
revisit period of two days (four days for each, two days for combination) [20]. Additionally,
GF6 satellite adds the red edge band, which is beneficial to vegetation classification. Thus,
it is easier to collect high quality remote sensing images at a regional scale [21].

The massive field observation is the basis of RS classification of grassland communities.
However, the resolution of satellite images is insufficient to identify grassland commu-
nities, and traditional methods require large amounts of time, labor, cost and resources.
In recent years, with the development of unmanned aerial vehicle (UAV) technology,
the shortcoming of satellite and traditional methods in grassland resource monitoring
are supplied [22–24]. On the one hand, the aerial photographs provided by UAV have
high resolution, which can be used to identify the grassland vegetation community effec-
tively [25]. On the other hand, UAV has a large observation range, which can save time
and effort. Yi et al. (2017) [26] also developed a set of UAV aerial photography system with
fixed-point, multi-site, collaborative observation, which can realize massive observation
over large regions [27].

With the development of classification methods, machine learning algorithm has
obvious advantages in RS image classification [28,29]. Based on neural network (NN),
support vector machine (SVM), random forest (RF) and other machine learning algorithms,
the satellite vegetation index, phrenological characteristics, image texture and topography
are considered to improve the accuracy of RS classification [24,30–32]. However, RS
classification in grassland mainly includes the land use type (e.g., grassland, non-grassland,
woodland, etc.) [33], different biophysics characteristics (such as grassland with high,
medium and low coverage) [34] and types in different climatic zones (such as class, group
and type of grassland) [35].

In this study, we aimed to map the KP community over the eastern of QTP by using
the combination of UAV aerial photographing, GF WFV images and machine learning
algorithms. We hope this study can be helpful for guiding further mapping of the KP
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community over the whole QTP and provide scientific basics for restoration and manage-
ment activities.

2. Data and Methods

2.1. Study Area

The study area is located at the eastern of the source region of the Yellow River,
including Zeku County and Henan County of Qinghai province, and Maqu County of
Gansu province (Figure 1). It is one of the most important animal husbandry basis on
the QTP and also an important water source conservation area in China. The study
area is located at 33◦03′~35◦33′N, 100◦33′~102◦33′E, with elevation ranging from 2871
to 4850 m (Figure 1c). The mean annual precipitation ranges from 400~600 mm, mean
annual temperature is between −2.4~2.1 ◦C It belongs to the continental plateau temperate
monsoon climate. Alpine meadow is one of the main alpine grassland types, accounting
for 79.67% of the whole study area. Other than alpine meadow, mountain meadow, swamp
meadow and alpine steppe account for 13.22%, 1.78%, and 1.69%, respectively (Figure 1b).
The growth period of grassland plants is relatively short, only about 150 days, mainly from
May to September. The grasslands are mainly used for yak and sheep grazing.

 
Figure 1. Location, grassland type and topography of study area. (a) Location of the study area in Qinghai–Tibetan Plateau
and the observation sites; dots of different color represent the vegetation communities. Poaceae: Elymus nutans + Stipa
silena + Festuca ovina community, KH: Kobresia humilis community, KP: Kobresia pygmaea community, BS: black soil type, MM:
marsh meadow, SM: shrub meadow. (b) Grassland type of study area; (c) topography of study area.

2.2. Data and Preprocessing
2.2.1. Field Observation and Preprocess of Aerial Photographs

We carried out the field monitoring for vegetation communities of alpine meadow
based on aerial photographs by Phantom 3 professional and Mavic 2 zoom Quad-Rotor in-
telligent UAVs (manufactured by DJI Innovation Industries; http://www.dji.com (accessed
on 1 June 2018). According to grassland growth status and spatial representativeness, an
area in the range of 250 × 250 m was selected as an observation site, and four flight routes
were designed in each site, including one GRID flight way (200 × 200 m) and three BELT
flight ways (40 × 40 m) (Figure 2a). The flight way of UAVs was designed by FragMAP [22],
Phantom 3 professional was used to perform the GRID flight way at a height of 20 m (red
dot in Figure 2a,b), Mavic 2 zoom was used to perform the BELT flight way at a height
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of 2 m (green dot in Figure 2a,c). The positional accuracy of two UAVs was ±1.5 m hor-
izontally and ±0.5 m vertically. A photograph was then taken vertically downward at
each way point automatically, the photograph resolutions of GRID and BELT were 1 and
0.09 cm, and the ground coverages were 26 × 35 m and 2.57 × 3.43 m, respectively.

Figure 2. Strategy of field observation and data collection: (a) strategy of observation site; (b) Phan-
tom 3 professional and (c) Mavic 2 zoom Quad-Rotor intelligent UAVs.

To better identify the vegetation species, about 9~15 aerial photographs were collected
randomly by operating Mavic 2 zoom manually at a height of 0.5 m in each sample site. The
number of photographs was determined by the uniformity of community growth status.
These aerial photographs could clearly identify plant species, which was corresponding to
the traditional ground observation quadrat (Supplementary Figure S1).

According to the dominant species of grass vegetation, grassland coverage, texture fea-
tures and plateau pika (Ochotona curzoniae, hereafter pika) activities, the aerial photographs
were divided into six types, including four alpine meadow vegetation communities of
Poaceae, KH, KP and BS (Figure 3 and Table 1), two land covers of shrub meadow (SM)
and marsh meadow (MM). Additionally, the forest and others (bare land, construction use
and waters) were acquired based on the Google Earth images and GF WFV images. Field
observation was carried out at the peak time of grassland growth, and 751 sample sites
were observed from 2015 to 2019 in total (Figure 1c). About 30 sample sites were acquired
for forest and others.

2.2.2. Region of Interest Construction

According to the GPS information recorded in FragMAP and stored in aerial pho-
tographs property files, the names of photographs were renamed by the number of 1 to 16
by the DJI Locator software [22] in each site. Then the region of interest was built based
on photograph location information in the same observation site in ArcGIS and ENVI
software (Figure 3d,h,l,p). Additionally, about 30 samples (region of interest, ROI) for forest
and others (the water, bare land, and construction land) were selected in ENVI software,
according to the GF WFV images and Google Earth images.
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Figure 3. Classification criteria for aerial photographs of alpine meadow vegetation communities. (a,e,i,m) were aerial
photographs taken at the height of 20 m by Phantom 3. (b,c,f,g,j,k,n,o) were aerial photographs taken at a height of 2 m
by Mavic 2. (c,g,k,o) acquired with 2× wide-angle zoom lenses; (d,h,l,p) were Gaofen images of four types of vegetation
communities corresponded; Poaceae, KH, KP and BS represented communities of Elymus nutans + Stipa silena + Festuca
ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively.

Table 1. Characteristics of vegetation communities in alpine meadow.

Community Dominant Species Coverage Other Features

Poaceae Elymus nutans, Stipa silena,
Festuca ovina More than 90%

Tall grassland height (20–50 cm in height),
grassland was flat without any traces of

pika activity

KH
Kobresia humilis;

sub-dominant: Elymus nutans
and Festuca rubra

More than 90%
Grassland was flat with low height (<10 cm

in height) and high coverage, and small
number of pika appeared

KP Kobresia pygmaea Between 30~80%

Grassland had a unique morphology and
textural characteristics, with closed and
monospecific builds (2~3 cm in height),

polygonal crack patterns and a felty root
mat, pika and poisonous weeds are

invaded frequently

BS Weeds Less than 20% Pika was rampant and weeds
was overgrown

Poaceae, KH, KP and BS represented Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil
type, respectively.
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2.2.3. Acquisition and Preprocessing of Remote Sensing Data

The remote sensing data, including GF1 and GF6 WFV imager images, were down-
loaded from the China Centre for Resources Satellite Data and Application (http://www.
cresda.com/EN/ (accessed on 20 September 2019)). The WFV imager was carried by GF1
and GF2 satellites, with four multi-spectral bands (800 km of swath width) and eight
multi-spectral bands (850 km of swath width), respectively. The resolution of WFV image
was 16 m, and the revisit period for each satellite was 4 days. Together, the revisit period
could be reached up to 2 days (Table 2). Three scenes of WFV images with no cloud cover
in Zeku, Henan and Maqu, during the peak of grassland growth of 2019 and 2020 were
downloaded (Table 3). The GF WFV data were preprocessed using ENVI 5.3 software, and
the Radiometric Calibration module, FLAASH Atmospheric Correction module and RPC
(Rational Polynomial Coefficient) Orthorectification module was used for converting the
original DN value to atmospheric surface reflectance, atmospheric correction and precise
geometric correction of WFV images, respectively. Then, the Band Math module was
used to calculate the vegetation indices of NDVI, NDWI and NDMI. The Co-occurrence
measures module was used to extract image texture features of WFV images based on a
sliding window with 3 × 3 pixels, and the texture indices mainly included Mean, Variance,
Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment and Correlation.

Table 2. characterization of Gao Fen (GF) wide field view (WFV) cameras.

Satellite Band
Spectral

Range (μm)
Band Type

Spatial
Resolution (m)

Swath
Width (km)

Revisit
Period (day)

Orbit Altitude
(km)

GF-1

1 0.45–0.52 Blue

16 800 4 675
2 0.52–0.59 Green
3 0.63–0.69 Red
4 0.77–0.89 NIR

GF-6

1 0.45–0.52 Blue

16 800 4 645

2 0.52–0.59 Green
3 0.63–0.69 Red
4 0.77–0.89 NIR
5 0.69–0.73 Red edge 1
6 0.73–0.77 Red edge 2
7 0.40–0.45 Purple
8 0.59–0.63 Yellow

Table 3. List of GF1/6 WFV images used in this study.

County
Data of Satellite

Images
Satellite Path Row

Central Latitude
and Longitude

Cloud Percent

Zeku 2019.06.03 GF1 23 98 E 101.9, N 34.7 4%
Henan 2019.08.15 GF6 30 72 E 98.1, N 35.8 1%
Maqu 2020.08.25 GF6 18 72 E 104.7, N33.6 1%

The DEM data were 90 m shuttle radar topography mission (SRTM) images (version
V004) (http://srtm.csi.cgiar.org/ (accessed on 1 June 2018) in Geo-TIFF format. The Slope,
topographic position index (TPI) and aspect were calculated based on the DEM. Then, all
indices above mentioned were uniformly projected as UTM_Zone_47N (same as GF WFV).
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2.3. Vegetation Community Classification and Accuracy Evaluation
2.3.1. Classification Method

The maximum likelihood estimate (MLE), NN, SVM and RF classification methods
were employed. MLE assuming each statistic of different types in every band was normally
distributed, the likelihood of each pixel belonging to a certain training sample was calcu-
lated. Finally, the type of pixel was determined based on the highest likelihood [36]. NN
(also called artificial neural network, ANN) referred to a multi-layer network structure, the
Levenberg–Marquardt function algorithm was selected for NN training. The number of
neurons and hidden layers were determined based on a trial-and-error process [37]. SVM
was constructed by a set of hyperplanes in high- or infinite-dimensional space, the higher
the functional margin, the lower the generalization error of the classifier. The radial basis
function (RBF) was used as the kernel function, and the optimal cost and gamma values
were obtained for final classification [38,39]. The RF algorithm was constructed by the
classification tree, which applied a set of decision trees to improve prediction accuracy.
The bootstrap sample was employed to construct a decision tree. The training samples
were constantly selected to minimize the sum of the squared residuals until a complete
tree was formed. Multiple decision trees were formed, and voting was used to obtain the
final prediction [40,41]. MLE, NN and SVM methods were performed in ENVI supervised
classification toolboxes of Maximum Likelihood Classification, Neural Net Classification
and Support Vector Machine Classification, respectively. RF method was performed in
ENVI Extensions toolbox of Random Forest Classification [42].

2.3.2. Classification and Accuracy Evaluation

Given the classification accuracy and efficiency, three input datasets were used:
(1) GF1/6 WFV spectral band (band1 to band8); (2) vegetation and texture indices (NDVI,
NDWI, SAVI, Contrast, Correlation, Dissimilarity, Entropy, Homogeneity, Mean, Second
moment and Variance); (3) vegetation, texture, and topography indices (DEM, Slope, Asp
and TPI). About 70% of observation sites were selected randomly as a training set, and the
rest were used to validate classification accuracy in each county. The standard confusion
matrix was employed to evaluate the classification accuracy of images, and the overall ac-
curacy (OA), Kappa coefficient (Kappa), user’s accuracy (UA) and producer’ accuracy (PA)
based on the validation datasets were used to assess the precision of classification results.

3. Results

3.1. Characteristics of Field Observation and Its Corresponding Multi-Indices

The distribution of observed sites was shown in Figure 1a. The vegetation com-
munities of alpine meadow showed a considerable spatial heterogeneity. Among the
751 observed sites, the proportion of KH community is highest, with 56.32% of all observed
sites. Followed by KP community (17.04% of all observed sites), the number of KP com-
munity observation sites were 68, 37 and 22 for Maqu, Zeku and Henan, respectively. The
proportion of SM, MM, BS and Poaceae only accounted for 3.33~9.85% of all observed sites.

For the four types of alpine meadow grass communities and four types of land cover,
the statistics of GF1/GF6 WFV image bands, vegetation indices, topography indices and
texture indices were calculated in the study area (in Supplementary Materials). The result
showed that the characteristics of multi-indices in alpine meadow vegetation communi-
ties were very similar, and it was difficult to distinguish with commonly used indices
(Figure 4a,b,e). Even though eight land covers could be coarsely distinguished between
each other in red edge bands (band5 and band6 of WFV image) and DEM, there was
relatively large error in classification (with little difference in mean values and wide range
in variation) (Figure 4c,d,f).
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Figure 4. Statistical analysis results of band3 to band6 of GF1/GF6 images (a–d), NDVI (e) and DEM (f), respectively;
Poaceae, KH, KP and BS represent Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black
soil type, respectively.

3.2. Accuracy Evaluation of the Different Classification Methods

Accuracy assessment of classification was performed with the validation samples
listed in Table 4. Among the four classification methods, the RF method performed best,
with the highest overall accuracy and Kappa coefficient ranged from 74.06% to 83.92% and
from 0.65 to 0.80 in three counties, respectively. This was followed by the SVM method,
with an overall accuracy that ranged from 69.39% to 78.53% and Kappa coefficient that
ranged from 0.60 to 0.73. The accuracies of the NN and MLE method were the worst
(overall accuracy ranged from 40.78% to 73.89%; Kappa coefficient ranged from 0.24 to
0.67). Among the three classifications input, in general, the MLE, SVM and RF methods
based on the input data set of vegetation indices + texture + topography exhibited the best
performance, followed by the spectrum and vegetation indices + texture. However, the
performance of the NN method based on the above input data set showed contrary results
to the MLE, SVM and RF methods.
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Table 4. Overall accuracy and Kappa coefficient of eight land covers based on maximum likelihood estimate (MLE), neural
network (NN), support vector machine (SVM) and random forest (RF) and difference input data set in County of Zeku,
Henan and Maqu.

County Input Accuracy
Methods

MLE NN SVM RF

Zeku

Spectrum OA (%) 57.36 71.22 72.13 82.24
Kappa 0.50 0.64 0.65 0.78

Vegetation indices + texture OA (%) - 63.36 69.39 79.87
Kappa - 0.52 0.61 0.75

Vegetation indices + texture + topography OA (%) 63.75 40.78 78.53 83.92
Kappa 0.57 0.24 0.73 0.80

Henan

Spectrum OA (%) 68.03 75.14 74.96 81.32
Kappa 0.60 0.67 0.66 0.76

Vegetation indices + texture OA (%) 72.04 65.89 73.31 80.39
Kappa 0.64 0.54 0.65 0.75

Vegetation indices + texture + topography OA (%) 73.89 49.86 73.89 78.86
Kappa 0.66 0.34 0.66 0.73

Maqu

Spectrum OA (%) 65.67 70.04 70.28 75.96
Kappa 0.56 0.60 0.60 0.68

Vegetation indices + texture OA (%) 51.38 67.12 73.78 74.06
Kappa 0.40 0.55 0.65 0.65

Vegetation indices + texture + topography OA (%) 65.19 61.89 74.09 82.75
Kappa 0.56 0.46 0.65 0.77

Note: overall accuracy, OA; maximum likelihood estimate, MLE; neural network, NN; support vector machine, SVM; random forest, RF.

The results of the standard confusion matrix were shown in Table 5. The PA and UA
based on the RF method were highest in three counties, with 60.84% to 97.23% and 60.73%
to 78.09%, respectively. The PA and UA based on other methods showed lower value,
and the classification results of the KP community were easily confused with other grass
communities and land cover types.

Table 5. Producer’s accuracy and user’s accuracy of Kobresia pygmaea community based on maximum likelihood estimate
(MLE), neural network (NN), support vector machine (SVM) and random forest (RF) in Zeku, Henan and Maqu County.

County Input Accuracy (%)
Method

MLE NN SVM RF

Zeku

Spectrum PA 50.99 26.06 39.83 96.37
UA 49.01 47.96 56.89 74.07

Vegetation indices + texture PA - 38.83 19.61 86.94
UA - 46.85 46.49 69.94

Vegetation indices + texture + topography PA 69.30 64.93 84.82 97.23
UA 46.45 43.34 57.38 65.68

Henan

Spectrum PA 59.61 5.71 5.26 67.57
UA 29.83 80.85 57.38 60.81

Vegetation indices +texture PA 26.58 10.06 26.88 76.73
UA 41.75 44.97 54.43 67.59

Vegetation indices + texture + topography PA 35.83 - 32.83 68.67
UA 41.86 - 46.40 67.65

Maqu

Spectrum PA 70.68 64.83 52.74 67.23
UA 43.68 49.41 50.67 59.29

Vegetation indices + texture PA 59.45 13.68 61.32 60.84
UA 50.00 90.48 61.21 60.73

Vegetation indices + texture + topography PA 70.48 35.83 64.22 73.96
UA 45.53 52.32 57.42 78.09

Note: producer’s accuracy, PA; user’s accuracy, UA; maximum likelihood estimate, MLE; neural network, NN; support vector machine,
SVM; random forest, RF.
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3.3. Distribution and Area of KP Community

According to the vegetation community distribution map acquired by the RF method,
the spatial distribution of the KP community was fragmented with large spatial hetero-
geneity and small area (Figure 5). Among the three counties, the distribution of the KP
community was mainly located in: the north, east and around the county urban area of
Zeku County (around the town of Zequ, Qiakeri and Xipusha), with an area of 445.60 km2

(6.82% of Zeku County); the northeast and central part of Henan County (east of county
urban area, towns of Tuoyema and Duosun, and north of Saierlong), with an area of
176.76 km2 (4.48% of Henan County); the part of county urban area, towns of Oulaxiuma,
Muxihe and Awancang in Maqu County, with an area of 811.70 km2 (8.59% of Maqu
County). As a whole, the area of KP community reached 1434.07 km2, and accounted for
7.20% of the study area.

 

Figure 5. Distribution of Kobresia pygmaea community in Counties of Zeku, Henan and Maqu.
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4. Discussion

4.1. Influence Factors of KP Community in the Qinghai–Tibet Plateau

Generally, the KP community builds almost closed, non-specific, golf-course like
the lawn with a felty root mat. This characteristic mat not only protects soil against
intensive trampling by herbivores, but also helps to cope with nutrient limitations enabling
medium-term nutrient storage and increasing productivity and competitive ability of roots
against leaching and other losses [43–45]. However, with browning (patchwise dieback of
lawns), crack, collapse, fragmentation of KP community turf, the water budget [46], carbon
cycle [47,48] and soil nutrition [44,45,49] have been significantly changed [10].

Pastoralism may have promoted the dominance of KP community and is a major driver
for felty root mat formation [10]. However, the degradation of KP grassland may be caused
by both human activities and climate change [9]. The mean annual precipitation in the
northern and western parts of the QTP (the elevations ranged from 4400–4800 m) was less
than 450 mm, with an increase of inter-annual variability towards the west [2,10]. Grassland
suffered from co-limitation of summer rainfall and nutrient shortage [10,50–53]. The types
of grassland were diverse, but the species richness was low [10,15]. Hence, the ten distinct
plant communities were described in this area [2]. The grassland is dominated by KP
community in closed lawns with covers of 98%, and companion species less than 10 [10,43].

Our study area is located at the eastern edge of the QTP (including three counties),
the mean elevation is 3758 m (Figure 1c) and mean annual precipitation ≥ 450 mm. The
alpine meadow in study area consists of four types of vegetation communities, including
(a) the Poaceae community (Elymus nutans + Stipa silena + Festuca ovina), (b) the Kobresia
humilis community, (c) the Kobresia pygmaea community (KP), and (d) the denuded black
soil ecosystem. Those communities consist of more than 40 species, with mosaics of KP
community patches and grasses, other sedges and perennial forbs growing as rosettes
and cushions [54,55]. Overgrazing is the main inducing factor for grassland vegetation
community variation [5,10,56], but effect of climate still cannot be eliminated. Although
we have mapped the distribution of KP community, the relative contributions from cli-
matic and anthropogenic forces require further investigation. The main effect factor can
be distinguished by combining the potential distribution based on the ecological niche
model [57] and realistic distribution based on remote sensing, which is very important for
alpine meadow protection.

4.2. Challenges and Prospects for Alpine Meadow Grass Communities Classification
4.2.1. Field Observation

KP community plays a vital role in alpine meadow degradation succession in QTP.
However, its spatial distribution is difficult to map: on the one hand, the field observation
data is lacking; on the other hand, the distribution of the KP community is under a
dynamic variation with different disturbances [5,43]. The massive field observation is
the basis of RS classification for grassland community. Traditional grassland vegetation
community samples were obtained with the few field investigation, expert knowledge and
literature reviews [11–14,58]. Field observation is mainly carried out at quadrat, plot and
belt transection scales [15,59,60]. Due to the complex distribution of grassland vegetation
communities, the field investigation is difficult and time-consuming. Meanwhile, the expert
knowledge and literature reviews cannot meet the accuracy requirement of classification,
because of the subjective bias, the dynamic climate and anthropogenic activities [15,61].

In this study, the field observation was performed by UAV based on FragMAP [14].
The resolution of each aerial photo is ~0.87 cm and covers ~35 × 26 m of ground at the
height of 20 m, which is close to the traditional ground observation plot [25,62]. Moreover,
the UAV is efficient and easy to operate (about 15 min to finish each observation site),
which provides the possibility for rapid observation in large regions [24]. Most importantly,
the waypoints, once established, can be repeatedly used (the error of two flights of the
same waypoint is 1–2 m, and two photos on the same waypoint from two different flights
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are almost overlapped). It is suitable to monitor the dynamic variation of grassland
communities in a long-term period [25,62].

Limited by the UAV control range and battery life, the size of ROI was only 250 × 250 m,
and the proportion of image raster used for training classification is relatively small. Be-
sides, most of field observation sites were located in the flat area, which was near major
traffic roads. Therefore, the spatial distribution of KP community still had some uncer-
tainty in other regions of the study area. Moreover, the vegetation communities were
distinguished by manual visual interpretation, and it requires good knowledge of plant tax-
onomy and time-consuming. Hence, the automatic identification of vegetation community
based on aerial photograph and deep learning algorithm requires further exploration.

4.2.2. Classification Variables

NDVI, NDWI and SAVI have been commonly used as the classification variables
for grassland classification [20,33,59]. The vertical variation of grassland vegetation is
significantly changed with topographic features in the QTP [63], hence, topographical factor
is an important classification basis in alpine vegetation communities classification [64].
Additionally, texture features are also essential variables in object-based classification,
which usually reflect local spatial information relating to the change of image tone [16,17].
The common method in texture feature extraction is the grey level co-occurrence matrix
(GLCM). The texture metric includes angular second moment, contrast correlation, entropy,
homogeneity, difference, average and standard degrees [18]. Incorporating texture feature
information usually enhances the recognition of “the same object with different spectrum”
or “the different object with same spectrum” [16–18].

Our results showed that, the threshold range of these RS indices for identifying the
alpine meadow communities are commonly confused during extraction and identification.
According to the descriptive statistical value of those RS indices corresponding to the four
alpine meadow grass communities, the threshold range of KH was close to KP, and that
of Poaceae was close to BS among the NDVI, NDWI and SAVI (Figure 6a–c). Although
four grass communities could be distinguished in topography and texture metrics, there
were relatively few differences and large errors (with little difference in mean values and
wide range in variation) (Figure 6d–i). Therefore, it was difficult to distinguish the alpine
meadow grass communities based on single variable and simple combinations [33–35]. RS
classification accuracy can be improved by combining the RS, topographic and texture
indices (Tables 3 and 4).

Due to large errors in spatial quantification of some variables (such as texture indices),
the classification still has some limitations and uncertainties [29]. Hence, we consider
using high spatiotemporal resolution images in future research, such as the Sentinel- 2A/B
satellite images, to reduce the effects of spatial heterogeneity on spectral reflectance and
acquire more detailed texture features. Secondly, screening and reconstructing the remote
sensing vegetation index: combining existing vegetation index, screening out indices that
are more suitable for alpine meadow vegetation community classification.

4.2.3. Classification Method

Limited by the low temporal-spatial resolution, few spectrum band of RS images and
field observations, most of natural grassland classification were applied in land use types
(such as non-grassland, grassland, woodland, etc.) [33], different biophysics characteristics
(for example, grassland with high, medium and low coverage) [34] and types with differ-
ent climatic zones (e.g., groups and types of grassland) [35]. The most frequently used
classification methods are visual interpretation, maximum likelihood classifiers, k-nearest
neighbor and decision tree classification, and so on [65–67]. With the development of clas-
sification methods, the machine learning algorithm has obvious advantages in RS image
classification [28,29]. However, the previous grassland classifications have been done at
the vegetation type level, and few at the community level [8,9].
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Figure 6. Characteristics of RS indices (a–c), topography (d–f) and texture metrics (g–i) in eight types of land covers:
Poaceae, KH, KP and BS represent Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black
soil type, respectively.

Referenced with previously classification methods [20,58,68,69], the ANN, AVM and
RF were used to distinguish the alpine meadow grass communities based on RS, texture
and topographic indices in the QTP. Our results demonstrated that the RF algorithm had
higher overall accuracy than other algorithms by using the same training samples (with
74.06% to 83.92%). Compared with other methods, RF is a data-driven algorithm. With the
increase of input dataset, classification accuracy is improved correspondingly [66,70,71].
The RF algorithm can estimate complex nonlinear relationship and all the quantitative
and qualitative information distributed within the models better; thus, these models are
robust and fault-tolerant [69,70]. Moreover, the input classification indices can be acquired
by different multi-spectral remote sensing images, and it helps to integrate multi-source
remote sensing data [66,70,71]. However, it is difficult to train the RF model effectively
with a small sample dataset. RF algorithm composes a large sample decision tree, and
classification is performed based on the voting results of each decision tree, thus, has a
strong tolerance for data error [40,41]. Constructing decision trees consumes more time
while performing random forest classification [70].
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5. Conclusions

Based on the band spectral, vegetation indices, texture feature of GaoFen 1/6 wide
field view images, topographic indices and UAV field observation, this study examined
four classification methods and evaluated their accuracy. Our results showed that the
characteristics of RS indices in alpine meadow vegetation communities were very similar,
and it was difficult to distinguish the alpine meadow grass communities based on single
variable or simple combinations. The KP community could be distinguished through the
RF method based on combination of RS, texture and topographic indices. The spatial
distribution of KP community was fragmented with large spatial heterogeneity and small
area in three counties. The area was 1434.07 km2, which accounted for 7.20% of the whole
study area. Our study demonstrated it was feasible to map at the community level using
the satellite remote sensing, UAV surveying and machine learning methods. In future work,
more detailed texture features derived from the high spatiotemporal resolution images are
required to improve the grassland vegetation community classification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13132483/s1. Figure S1: Aerial photographs of alpine meadow vegetation communities. a, b,
c and d were photographs taken at the height of 2 m. e, f, g and h were photographs taken at a height
of 0.5 m; Poaceae, KH, KP and BS represent communities of Elymus nutans + Stipa silena + Festuca
ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively. Figure S2: Statistical
analysis results of band1 to band8 of GF1/GF6 images; Poaceae, KH, KP and BS represent Elymus
nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil type,
respectively. Figure S3: Statistical analysis results of texture indices of GF1/GF6 images; Poaceae,
KH, KP and BS represent Elymus nutans + Stipa silena + Festuca ovina, Kobresia humilis, Kobresia
pygmaea and black soil type, respectively. Figure S4: Statistical analysis results of vegetation and
topography indices of GF1/GF6 images; Poaceae, KH, KP and BS represent Elymus nutans + Stipa
silena + Festuca ovina, Kobresia humilis, Kobresia pygmaea and black soil type, respectively.
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Abstract: Rangelands provide significant socioeconomic and environmental benefits to humans.
However, climate variability and anthropogenic drivers can negatively impact rangeland produc-
tivity. The main goal of this study was to investigate structural and productivity changes in range-
land ecosystems in New Mexico (NM), in the southwestern United States of America during the
1984–2015 period. This goal was achieved by applying the time series segmented residual trend
analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index
(NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Param-
eter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment
framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an
increase in productivity, respectively. More than half of the state (55.6%) had insignificant change
productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A
decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and
ever green forest land cover classes, respectively. Significant decrease in productivity was observed
in the northeastern and southeastern quadrants of NM while significant increase was observed
in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of
detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated
Palmar Drought Severity Index as their number increased since 2000s following a similar increase
in drought severity. Some breakpoints were concurrent with some fire events. The combination of
these two types of disturbances can partly explain the emergence of breakpoints with degradation
in productivity. Using the breakpoint assessment framework developed in this study, the observed
degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Pro-
ductivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND
and RPMS on the occurrence of significant degradation in productivity over the grasslands and
shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively.
This assessment of NM’s vegetation productivity is critical to support the decision-making process
for rangeland management; address challenges related to the sustainability of forage supply and
livestock production; conserve the biodiversity of rangelands ecosystems; and increase their re-
silience. Future analysis should consider the effects of rising temperatures and drought on rangeland
degradation and productivity.

Keywords: NDVI; precipitation; drought; breakpoints and timeseries analysis; ecosystem structural
change; BFAST
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1. Introduction

Land degradation affects ecosystem productivity and threatens its capacity to sustain
human, livestock, and wildlife population specially in dryland environments. Drylands
that are susceptible to desertification occupy 39.7% (~5.2 billion ha) of the global terrestrial
ecosystems (~13 billion ha) [1,2]. Of this, sever land degradation is prevalent in over
10–20% of the dryland ecosystems [1–3]. For these reasons, land degradation in dryland
ecosystems is recognized as one of the major environmental and socioeconomic challenges
that can alter ecosystem services and human wellbeing [4–7]. Thus, understanding the rate,
expansion, and severity of drylands degradation has received (and will continue to receive)
considerable attention, due to their pivotal role in food production and water availability
for more than 2 billion people in the world [3,8–11].

The main causes of drylands degradation are principally associated with population
growth, overgrazing, inappropriate land and water use practices, and climate change
impacts [1,11,12]. As a result, noticeable and persistent loss of vegetation cover and biomass
productivity, reduction in forage and crop production, and decline in carrying capacity of
rangelands are becoming common in these ecosystem [3,13,14]. Future predictions showed
that climate change impacts (i.e., increase in surface air temperature and evapotranspiration,
and decrease in precipitation) are expected to worsen poverty and inequality in developing
countries [15,16].

Changes in above-ground biomass in drylands on which forage production and other
life securing ecosystem services depend on can be measured by the net primary production
(NPP) [13,17]. Several studies used temporal changes in NPP as an indicator of land
degradation [2,18–20]. Nevertheless, the measurements and estimation of land degradation
have been characterized by arbitrary assumptions, qualitative and inconsistent judgment,
unreliable and spurious estimations [7,21,22]. Several studies have been criticized for
underestimating the extent and severity of rangeland degradation [3,8,23]. The main
reasons being the climate of dryland ecosystems (i.e., low annual precipitation and its
increased interannual variability) [19,24], the successive occurrence of degradation for
many decades at regional or continental scales [20], and the lack of objective measurements
that quantify the extent and severity of all forms of degradation [4]. These reasons further
complicate the identification of changes in dryland productivity either due to human
activities (grazing and cropping) or natural variability [13,17]. Hence, the assessment of
drylands degradation requires techniques that encompass spatial and temporal properties
that strongly adhere to the measurement principles of repetitiveness, objectivity, and
consistency [21,25]. In this regard, earth observations (OE) proved to be the only feasible
means for long time and large-scale monitoring of vegetation productivity [8,9,18,24].

Vegetation indices (VIs) such as the normalized difference vegetation index (NDVI)
have been used as proxy to detect and quantify long-term land degradation in dry-
lands [6,7,11,17,18,21,25]. Two main categories of methodology have been employed to
assess land degradation in drylands [7,22]—the first one observes changes in relationships
between climate variables (i.e., precipitation and temperature) and VIs (i.e., measure of
vegetation greenness and productivity) [8,22,23]. The second category analyzes vegeta-
tion phenology to detect structural change caused by processes such as deforestation and
long-term trends [22,24]. Within each category, various methods have been applied. For
example, the methods in the first category aim to control the influence of precipitation
and/or temperature trends to detect permanent degradation [7,23]. The rain use efficiency
(RUE) as proposed by [19]—the ratio of NPP to rainfall—has been used as an indicator of
degradation [7,17,20,26,27] and ecosystem functioning [18,28]. The residual trend analysis
(RESTREND) method as proposed by [11] was used frequently to estimate changes in pro-
ductivity by relating annual maximum NDVI and precipitation [11,13,25,29]. In the second
category, the breaks for additive and seasonal and trend (BFAST) developed by [30,31],
have been employed to assess change in vegetation phenology with time (e.g., [32]).

Both RESTREND and BFAST, however, have limitations in accurately detecting land
degradation when the relationship between vegetation and climate breaks and due to over
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sensitiveness in areas where natural climate variabilities are prevalent, respectively [5,8,22].
Over sensitiveness is represented by the detection of false breakpoints using BFAST when
dryland vegetation skips phonological cycles in response to drought while the ecosystem
is healthy. The time series segmented residual trend analysis (TSS-RESTREND) method
was developed by [8,22,23] to address this limitation by combining BFAST and RESTREND
to detect the breakpoints where the relationship between vegetation and precipitation or
temperature changes [8,23]. The TSS-RESTREND leverages the ability of BFAST in detecting
breakpoints in NDVI long timeseries [5,8]. The TSS-RESTREND was applied to detect land
degradation in Australia and its results were qualitatively evaluated using wildfire data [8].
However, the TSS-RESTREND lacked in providing a quantitative assessment of detected
breakpoints [8].

About 40% of the United States of America (USA) land is classified as drylands [33].
The largest portion of these drylands is rangelands—comprising 31% of the USA land [34]—
which are mostly situated in the Western USA [35]. Rangelands support livestock produc-
tion particularly beef cattle and major local economies in the Great Plains, the Intermoun-
tain West, and the Southwest rely heavily on this industry [36]. Since the pre-settlement
era, about 34% of the USA rangelands have been permanently modified by human activi-
ties [37]. Woody plants encroachment, invasive species, prolonged drought, low resilience
and management of rangelands could be the most critical factors that can affect current and
future rangeland productivity [37,38]. Further, urban development, energy extraction (i.e.,
oil and gas), and expansion in agricultural lands are expected to contribute to rangelands
fragmentation [39]. The degree to which climate variables (e.g., interannual variability of
precipitation) can cause structural changes and affect forage productivity in New Mex-
ico’s (NM) rangeland ecosystems has not been adequately studied. Structural change in
an ecosystems can be described as the significant change in the pattern of organization
of the ecosystem necessary for functioning [35]. A structural change of rangeland was
considered as when a pixel has a significant break in its vegetation- precipitation relation-
ships (VPR) that leads to irreversible degradation or significant increase in productivity.
Moreover, quantitative assessment of rangeland degradation and its impacts on NM’s
food-water-energy systems is critical for the sustainable use of its resources.

The goal of this study was to identify long-term structural and productivity changes in
rangeland ecosystems due to interannual climate variability based on precipitation in New
Mexico during the 1982–2015 period. Taking advantage of the consistent NDVI timeseries of
Global Inventory Modeling and Mapping Studies (GIMMS), the study tested the hypothesis
that there is no significant change in rangeland productivity in NM between 1982–2015 by
evaluating the prevalence of significant difference in NM’s rangelands mean productivity
before and after the years where the VPR breaks were occurred. The specific objectives
were to: (1) characterize changes in rangeland productivity in terms of (a) direction of,
and (b) type of structural changes in NPP as represented by NDVI using TSS-RESTREND;
(2) develop an assessment framework for the identified changes in productivity; (3) use the
assessment framework along with independent productivity data to identify areas affected
by significant structural changes in NM’s rangeland ecosystems.

2. Data

2.1. Study Area

The study area was the state of New Mexico, USA, which covers a total land area of
314,918 km2 (Figure 1). NM’s climate is dominated by arid and semi-arid conditions with
an average annual precipitation ranging from less than 254 mm in the southern desert to
more than 500 mm in higher elevations in the northern part of the state [40]. The mean
annual air temperature ranges from less than 4.4 ◦C in high mountains and valleys in the
northern to 18 ◦C in the southern parts of the state.
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Figure 1. A map showing the location of the New Mexico, the contiguous USA (red polygon), and the nine ecoregions
within New Mexico [41].

NM’s land cover encompasses nine ecoregions that include the Chihuahua Deserts
(22%) in south, southwestern part of NM, Southwestern Tablelands (22%) and Western
High Plains (10%) in central, West and in the northwest parts of NM, Arizona/New Mexico
Mountains (14%), Arizona/New Mexico Plateau (19%), Madrean Archipelago and southern
Rockies [41] (Figure 1). Three major types of vegetation biomes (i.e., forest, shrubland and
grassland) comprise the respective ecoregions [42].

2.2. Vegetation Cover

NM’s grassland biomes, particularly in the Desert Grassland Association—desert
plain grassland and mixed grassland or mixed prairie—are dominated by black grama
grass (Bouteloua eriopoda) and tobosa grass (Hilaria mutica) in the desert plains. Bluestem
(Andropogon scoparius), san blue stem (A. halli), and Indian Grass (Sorghastrum nutans)
are parts of mixed grassland or mixed prairie. Woodland biome can be found within a
range of 1371 m to 2286 m elevation (amsl) and consists of one-seed juniper (Juniperus
monosperma) and pinon pine (Pinus edulis) sometimes with oak (Quercus spp.) with an
understory of grassland, forbs, and shrubs. Coniferous forest biomes can be found within
a range of 2590 to 3658 m amsl in Petran subalpine and petran montane dominated by
Enngelman spruce (Picea engel- mannii) and subalpine fir (Abies lasiocarpa). Petran montane
forest association (2591.8 to 2896 m a.m.s.l) covers an extensive area of the state dominated
Douglas fir, and white fir species. The land use/land cover data used in this analysis
included the National Land Cover Dataset of 2011 [43] as well as the state’s ecoregions [41]
and quadrants. These datasets were overlayed with the identified breakpoints to be related
to changes in productivity over these different land cover types.

2.3. GIMMS NDVI

To study temporal changes in rangelands’ structure (i.e., significant changes in NPP
trend), long-term NDVI timeseries was used as a proxy to NPP. Specifically, the GIMMS
NDVI product based on the third generation Global Inventory Modeling and Mapping
Studies NDVI (GIMM NDVIv3.1g) data was used in this study. These data was based on
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the Advanced Very High Resolution Radiometer (AVHRR) sensors [5,8] and it is of the
most accurate datasets currently available. This version of the data corrected for calibration
errors in a previous one [22]. The GIMMS NDVI data is available for the 1981–2015 period
only at spatial and temporal resolutions of 8 km and 16 days, respectively. The GIMMS
NDVI dataset was obtained from ECOCAST [44].

2.4. Rangeland Productivity

Rangeland productivity for the USA was obtained from the Rangeland Production
Monitoring Service (RPMS) dataset developed by the United State Forest Service [45]. The
dataset was prepared using NDVI from the Thematic Mapper for the 1984–2020 period
at 250-meter pixels. The dataset provides estimates of annual production of rangeland
vegetation in pounds per acre, which is useful in understanding trends and variability
of rangeland forage resources [45]. The RPMS dataset was coupled with the assessment
framework (Section 3.2) to evaluate the significance of rangeland productivity changes
compared to those identified by the TSS-RESTREND method.

2.5. Precipitation, Drought, and Fire

Gridded precipitation data developed by Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) was obtained from PRISM Climate Group [46]. Monthly
precipitation at ~4 km pixels was used. To evaluate the accuracy of breakpoints in terms
of timing, extent, and direction of change relative to potential disturbances, historical
drought and fire events were compared with the breakpoints. Mean monthly and annual
self-calibrated Palmar Drought Severity Index (PDSI) was acquired from [47]. Fire data
were obtained from New Mexico Resources Geographic Information System (RGIS) [48].

3. Methods

This analysis followed three main steps—data preparation, the application of TSS-
RESTREND, and the development and application of an assessment framework to evaluate
the detected breakpoints and changes in productivity (Figure 2). The first step involved
data acquisition, projection, resampling, and extraction of pixel values of GIMMS NDVI,
PRISM precipitation, and RPMS productivity. The second step (Section 3.1) involved the
application of the TSS-RESTREND method to identify breakpoints in space and time, their
significance, and their structural changes. The last step provided a framework (Section 3.2)
to evaluate the detected breakpoints using the RPMS—an approach that was lacking in the
work by [8,23].

3.1. Characterization of Change in Productivity Using TSS-RESTREND
3.1.1. NDVI and Precipitation Relationships

The Bimonthly GIMMS NDVI data were filtered using a quality control (QC) proce-
dure to remove non-reliable values based on a quality flag [49,50]. Pixels with at least 75%
reliable values were used. Non-vegetated pixels were excluded based on a threshold of a
median NDVI of less than 0.1 [50,51]. Out of 4474 pixels, a total of 4454 pixel were used in
the analysis. Complete mean monthly timeseries of NDVI (ctsNDVI) was assessed over
each pixel. The PRISM precipitation data was resampled using a bilinear method to match
the spatial resolution of the GIMMS NDVI and assessed at monthly time scale.

An ordinary Least Square regression (OLS) was used to develop the relationships
between the ctsNDVI and the complete timeseries of optimal accumulated precipitation for
each pixel for the 1982–2015 period (referred to as ctsVPR) [8]. The optimal accumulated
precipitation was determined by identifying the pairs of ctsNDVI and accumulated precip-
itation that provide the highest correlation coefficient. The correlation coefficients of all
possible OLS relationships between ctsNDVI and a matrix of precipitation accumulation
period (1–12 months) with offset period (0–3 months) were evaluated following [8]. The
relationships with the highest correlation coefficients were used to calculate the residual
between the observed and predicted ctsNDVI (referred to as ctsVPR-residual).
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Figure 2. Depreciation of TSS-RESTRND analysis and validation of breakpoints. In step 1, Data preparation which includes
(i.e., acquisition of NPP data, precipitation, and productivity data), projection, resampling, and extraction of pixel level
values. In Step II (TSS-RESTREND): method of residual fit, p-vector, trend of productivity change (i.e., decreasing, increasing,
non-significance change and indeterminant), and ecosystem structure change were detected. In Step III (Evaluation), include
stratified random sampling for validation, Welch’s t test on randomly selected pixels (i.e., to test the significant change of
productivity before and after the break years).

3.1.2. Identification of Breakpoints

The BFAST method was applied on the ctsVPR-residual to list potential breakpoints.
Briefly, the BFAST method decomposes the timeseries into season, trend, and reminder
components—an approach that allows to detect changes in the season and trend compo-
nents [52,53]. The list of potential breakpoints identified by the BFAST method [8] based on
the ctsVPR-Residuals were further evaluated for their significance in the VPR—allowing to
assess their impact on NPP as represented by the maximum NDVI timeseries. A Chow test
was applied on the VPR-Residuals on all pixels with significant VPR (α = 0.05). Based on
this test, all pixels that have no significant breakpoints in the VPR-Residual (α = 0.05) but
have significant VPR (α = 0.05) were further assessed using the standard RESTREND by
developing a regression between the VPR-Residuals and time (Equation (1)) [8].

yi = β0 + β1 x (RESTREND) (1)

where β0 is intercept, β1 is slope, and x is year
Pixels that showed significant breakpoints in VPR-Residuals (based on the Chow

test above) and had significant VPR were further evaluated for the significance of these
breakpoints but in the VPR also using Chow test. Pixels with significant breakpoints in VPR-
Residuals but not in the VPR were further assessed using the Segmented RESTREND by
developing a multivariate regression between VPR-Residual, time, and a dummy variable
(Equation (2))

yi = β0 + β1xi + β2zi + β3xizi (Segmented RESTREND) (2)

where β0 is intercept, x is year, z is value of dummy variable (0 or 1), β1 is slope, β2 is
offset at the breakpoint, and β3 is the change in the slope at the breakpoint.
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Pixels that showed significant breakpoints in VPR-Residuals and in VPR may indicate
the presence of significant structural changes and thus the assumption of stationarity
of the accumulation and offset periods used in the calculations of optimal accumulated
precipitation before and after a breakpoint [5,54]. The set if the NDVImax and precipitation
timeseries before and after a breakpoint was separated to recalculate new and independent
VPR on either side of the breakpoints [8]. The precipitation data were standardized to
account for the differences in the accumulation and offset periods among the breakpoints
(Equation (3)).

zi =
(xi − u)

δ
(3)

where z is the standard score, xi is observed values, μ is the mean, and δ is the standard
deviation. The NDVImax and standard score timeseries were further evaluated by fitting a
multivariant regression (Equation (4)) [5,8].

Yi = β0 + β1xi + β2zi + β3xizi (Segmented VPR) (4)

where x is the standardized precipitation for year i, z the value of the dummy variable
(0 or 1), β0 is intercept, β1 is slope, β2 is the offset at the breakpoint, and β3 the change in
the slope at the breakpoint.

Pixels that did not meet any of the above conditions were classified as indeterminant—
met the following conditions: (1) had no significant VPR and no significant breakpoints
in VPR; or (2) no significant VPR, significant breakpoints in VPR, and no significant
breakpoints in segmented VPR.

3.1.3. Identification of Structural Changes

Structural changes of each pixel within NM ecosystems were identified based on
three properties that include the significance of the breakpoints, direction of change (i.e.,
increasing and decreasing in productivity), and method of detection (as described in
Section 3.1.2). With the regard to the significance level and direction of change, all pixels
were classified into nine categories as shown in (Table 1) following [55] and similar to other
dryland degradation studies in Australia [8] and China [5].

Table 1. Categories of threshold for vegetation change.

Category Direction of Change Significance Description

I1

Slope > 0

p < 0.01
Pixels with significant

increasing trend of residual
at four classes of p levels
(0.01, 0.025, 0.05 and 0.1)

I2 0.01 ≤ p < 0.025

I3 0.025 ≤ p < 0.05

INC 0.05 ≤ p < 0.1

DI

Slope < 0

p < 0.01
Pixels with significant

decreasing trend of residual
at four classes of p levels
(0.01, 0.025, 0.05 and 0.1)

D2 0.01 ≤ p < 0.025

D3 0.025 ≤ p < 0.05

DNC 0.05 ≤ p < 0.1

NSC p ≥ 0.1 No significant change in
productivity

INC = Increase No Change, DNC = Decrease No Change, I1 = increasing trend in productivity level 1,
I2 = increasing trend in productivity level 2, I3 = increasing trend in productivity level 3, D1 = Decreasing
trend in productivity level 1, Decreasing trend in productivity level 2, D3 = Decreasing trend in productivity level
3, NSC = Non-significant Change.

Consequently, a pixel can be considered having:

• Non-reversable degradation or initiation of degradation if it exhibited a breakpoint
with p < 0.05 and a negative change (Table 1) in productivity as detected by Segmented
VPR or Segmented RESTREND, respectively,
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• Reversal or initiation of reversal in degradation, if it met the previous conditions except
with a positive as detected by Segmented VPR or Segmented RESTREND, respectively,

• Stable increase in productivity, if it exhibited a breakpoint with p < 0.05 and a positive
change as detected by RESTREND,

• Stable decrease in productivity if the opposite of the previous condition was detected
(a condition that can be considered as an initiation of degradation) [11,13].

• Non-significant change (NSC) in productivity irrespective of the detection technique
used (i.e., Segmented VPR, Segmented RESTREND, RESTREND, or Indeterminant), if
it had a breakpoint with p > 0.1 and a constant direction change (i.e., 0),

• Indeterminate change if it had p = 0 and slope = 0.

A summary of the pixels based on these structural change categories was presented
relative to NM’s total area, quadrant, ecoregions, and major land use/land cover classes.

3.2. Breakpoints Assessment Framework

The TSS-RESTREND method by [8] provided only a qualitative assessment of break-
points with other independent data in terms of significance and direction of changes. These
two properties are important to properly characterize changes in productivity. A frame-
work was developed in this study to address this gap by proposed means to quantitatively
assess these properties. This framework consisted of four steps: (1) Develop random
samples within the identified significant breakpoints; (2) Select and use independent pro-
ductivity data; (3) Evaluate the random samples at the pixel level; and (4) Group and
evaluate all random samples that fall within identified ecoregions—allowing to identify
whether the changes in productivity at the individual pixels are reflective of consistent
regional changes.

Random Samples: A set of random samples in terms of size and location can be
developed following [56,57]. To estimate the size of random samples, a prior knowledge of
image accuracy/variability is required [57]. The degree of variability in the RPMS data is
unknown, thus it was assumed that the maximum variability would be about 50% with 95%
confidence level and ±5% precision [56]. This criterion helps to determine representative
sample pixels using a stratified random sampling approach [58]. The strata were developed
based on ecoregions, land use/land cover, and direction of change. Based on the formula
from [57], the sample size was calculated as (Equation (5)).

no=
Z2 pq

e2 (5)

where no is the sample size, Z is the selected critical value of desired confidence level (1.96),
p is the estimated proportion of an attribute that is present in the population (0.5), and
q = 1 − p (0.5) with p and e (0.5) represent the desired level of precision.

The allocation of the random sample was based on the majority of the identified
breakpoints in each method (Section 3.1.2). The random samples can be broadly allocated
based on the direction of change and land cover within the identified significant breakpoints
in the two main categories—the Segmented VPR and Segment RESTREND. Ecoregions
and land use/land cover (NLCD 2011) [43] maps were overlaid to identify the locations of
the pixels within these regions for further assessment.

Selection of independent data: The productivity data from the RPMS [45] was used
to evaluate the accuracy of the identified breakpoints based on the TSS-RESTREND in
terms of direction and significance of change in productivity. The data was resampled
to match that of GIMMS NDVI [44,58]. Using the coordinates of GIMMS NDVI pixels,
the corresponding RPMS productivity was extracted. The rangeland productivity was
converted from pound per acre per year to kilogram per hectare per year. this process
allowed to prepare a dataset that include RPMS productivity and with the corresponding
TSS-RESTREND estimates of timing and direction of change, significance of breakpoints,
and method of detection for each random sample.

46



Remote Sens. 2021, 13, 1618

Pixel level assessment: Using the location of the randomly selected samples (break-
point pixels) and their identified year of breaks, the mean annual productivity for each pixel
based on the RPMS data can be calculated for before and after the break years. Over each
pixel, the number of years before and after the breaks were different and thus these mean
values had different sample sizes. These mean values before and after the breaks over each
pixel were then statistically compared using the Welch’s student-test for the significance in
their difference and direction of change. The Welch’s t test was conducted assuming that
the variances were not equal before and after the breaks [58,59]. The obtained results based
on RPMS data using the Welch’s test were compared with those from the TSS-RESTREND
method. A summary of the agreement of this comparison was provided over these pixels
as well as over the representative land cover classes.

Ecoregion level assessment: a similar approach was followed in this step of the
framework except in this case the randomly selected pixels were grouped to represent
ecoregions—all sampled pixels within each ecoregion represent a single entity (analysis
unit). The mean values of productivity based on RPMS of each group before their individual
breaks were further averaged and compared to the corresponding average after the break.
The averages were assessed for their significance and direction of change using the Welch’s
student-test. The results were then compared with those obtained based on the TSS-
RESTREND over the equivalent ecoregions.

4. Results

4.1. Characteristics of Change
4.1.1. Breakpoints and Direction of Change

The number of significant breakpoints detected (increased and decreased productivity)
and precipitation anomalies between 1982 and 2015 were shown in Figure 3. Out of all the
analyzed pixels (i.e., 4454), 814 (18.3% or ~50,000 km2) had significant breakpoints—with ei-
ther increasing or decreasing trends—were detected over different land cover types. The re-
maining pixels that showed insignificant change (NSC), indeterminant, or identified as Agri-
cultural represented about 55.6% (158,591 km2), 10.8% (30,656 km2) and 3.2% (9122 km2)
of NM’s area (~315,900 km2). The distribution of these pixels is shown in Figure 4. Out of
the 814 significant breakpoints, 52.3% (26,176 km2) and 46.5% (23,232 km2) had negative
(decreasing) and positive (increasing) change in productivity, respectively (Table 2). The
areas that showed significant increasing trends in productivity as I1, I2 and I3 were about
10,752 km2 (3.8%), 9408 km2 (3.3%), and 3072 km2 (1.1%) respectively. The areas that
showed decreasing trend in productivity with D1, D2, and D3 level of significance were
about 9088 km2 (3.2%), 13,056 km2 (4.6%), and 3776 km2 (1.3%), respectively.

Table 2. A summary of the identified direction of change in productivity based on the TSS-
RESTREND method in New Mexico during the 1982–2015 period.

Method
Direction of Change (% Relative to 4454 Pixels)

Total
Deceasing Increasing NSC * Agriculture Indeterminant

TSS-
RESTREND

17.6 12.8 55.6 3.2 10.8 100

* NSC = Non-Significant Change.

From all significant breakpoints, 58%, 20%, and 15.7% were observed in shrubland,
grassland, and evergreen forest ecosystems, respectively (Figure 5). The highest number of
detected breakpoints was 250 (or 31% out of 814) in 2005. Among them, shrublands and
grasslands combined accounted for 87.6% (219), out of which 72.8% and 14.8% were over
shrublands and grasslands, respectively.
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Figure 3. A summary of the number of detected significant breakpoints along with corresponding
precipitation anomaly (mm) based on a 33 year mean from PRISM. Top and bottom panels show
pixels with decreasing (red line) and increasing (green line) trends in productivity, respectively.

Figure 4. The spatial distribution, significance, and direction of change in productivity using TSS-
RESTREND (1982–2015). Bands of red (D1, D2, D3, D4) and green (I1, I2, I3, and INC) pixels
indicate those with decreasing and increasing trends in productivity, respectively. NSC (yellow) and
indeterminant (gray) pixels were those with non-significant and unidentified change, respectively.
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Figure 5. The percentages of breakpoints that were identified within shrubland, grassland, evergreen forest, and other land
cover types between 1982 and 2015 in NM categorized by the Segmented RESTREND and Segmented VPR methods.

4.1.2. Observed Types of Structural Changes

In general, identified breakpoints by the Segmented VPR method indicate significant
ecosystem structural change—either decrease (i.e., irreversible degradation) or increase in
productivity. Those identified with the Segmented RESTREND method indicate changes—
either decrease (initiation of degradation) or increase (reversal from degradation)—in
productivity that are not significant enough to alter the ecosystem structure.

From all obtained 814 significant breakpoints, 62.7% and 37.3% were identified using
Segmented VPR and Segmented RESTREND methods, respectively. From those identified
by Segmented RESTREND method, 20.8%, 10.5%, 3.4%, and 2.6% were over shrubland,
grassland, evergreen forest, and other land cover classes, respectively. From those identified
by Segmented VPR method, 37.3%, 12.3%, 9.5%, and 3.6% were over shrubland, evergreen
forest, grassland, and other land cover classes, respectively.

The total number of pixels identified by the different methods and their direction of
change were presented in Table 3. Those showed decreased (significant or insignificant)
productivity were 786 or 17.6% (46,976 km2) out of 4454. About 4.9% (~14,016 km2) were
identified using the Segmented VPR method; 4.3% (~12,160 km2) were identified using
the Segmented RESTREND method; and the remaining 8.5% were identified using the
RESTREND method (insignificant decrease or increase in productivity).

Table 3. A summary of the pixels (in % relative to 4454 pixels) and methods used to identify the
direction of change in productivity in New Mexico during the 1982–2015 period.

Method of Change Detection Decreasing Increasing NSC Total

RESTREND 8.5 4.6 54.8 67.9
Segmented RESTREND 4.3 2.5 0.0 6.8

Segmented VPR 4.9 5.7 0.8 11.4
Total 17.6 12.8 55.6 86.1

NSC = Non-Significant Change.

From all pixels that showed increased productivity (12.8% or 570 pixels, 34,816 km2),
5.7% (16,320 km2) were identified using the Segmented VPR method (i.e., significant
gradual increase), 4.6% (12,992 km2) were identified using the RESTREND method (i.e.,
insignificant increase), and the remaining 2.5% (7168 km2) were identified using the Seg-
mented RESTREND method (i.e., reversal of degradation).

More than half of NM’s area (55.6%~158,592 km2) show insignificant change in pro-
ductivity based on the total number of pixels that fell within the NSC category (p ≥ 0.1).
The pixels identified with the RESTREND method that accounted for 25.8% (~73,472 km2),
and the remaining 29% were considered indeterminate.

Regionally, non-reversible decrease in productivity (i.e., degradation) was mostly
observed in the northeastern (1.8%~5184 km2), northwestern (1.2%~3456 km2), and south-
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eastern (0.99%~2816 km2) quadrants NM (Figure 6). Moreover, the initiation of degradation
(i.e., decreasing trend based on the Segmented RESTREND method) was mostly detected
in northeastern (1.8%~4992 km2), and southeastern (2.1%~5888 km2) quadrants, with a
negligible initiation of degradation in the northwestern and southwestern NM (Figure 6).

Figure 6. Area and direction of change in productivity in northeastern, southeastern, northwest-
ern, and southwestern quadrants of New Mexico as identified using the Segmented VPR (de-
graded vegetation or gradual increase) and Segmented RESTREND (reversal and initiation of
degradation) methods.

From all analyzed pixels (i.e., 4454 pixels), the ones that showed increasing trends in
productivity based on the Segmented VPR method (i.e., 5.7% or ~16,320 km2) were detected
mostly in the southwestern (2.27%~6464 km2), southeastern (2%~5824 km2), and north-
western (1.3%~3712 km2) quadrants (Figure 6). Furthermore, 2.51% of the pixels (7168 km2)
revealed reversal from degradation—increased productivity based on the Segmented RE-
STREND method (Figure 6). From which, 0.45% and 0.92% were in the northeastern and
southeastern quadrants, respectively (Figure 6). The largest number of pixels that showed
NSC was detected in northwestern (46,144 km2), while southeastern quadrant exhibited
the least (32,256 km2~11.1%). Northeastern (40,896 km2) and southwestern (39,296 km2)
NM revealed an equal number of NSC pixels during the study period.

4.2. Dominant Land Cover Class Changes

Significant trends (increasing or decreasing) in productivity (irreversible degradation,
initiation in degradation, reversal in degradation, and initiation in reversal of degradation)
were observed on NM’s dominant land cover classes that include shrubland, grassland,
and evergreen forest (Figure 7).

From all analyzed pixels (i.e., 4454), 2.2% of NM’s grassland (6336 km2), 4.5% of the
shrubland (12,800 km2), and 1.7% of the evergreen forest pixels (4800 km2) showed signifi-
cant decreasing trends in productivity–either with a complete or initiation of degradation.
From all analyzed pixels, ~1.4% (3840 km2) and 0.88% (2496 km2) of NM’s grasslands that
showed significant decrease in productivity were attributed to initiation of degradation (i.e.,
the Segmented RESTREND method) and non-reversal degradation (i.e., the Segmented
VPR method), respectively (Figure 7).

Similarly, from all analyzed pixels, 2.2% (6336 km2) and 2.3% (6464 km2) of NM’s
shrublands that showed significant decrease in productivity were attributed to initiation of
degradation and non-reversal degradation, respectively. The degradation of shrublands
was dominant in the northwestern (2048 km2) and southeastern (2112 km2) quadrants,
while the degradation in grasslands was notably observed in northwestern (512 km2) and
northeastern (1664 km2) quadrants.
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Figure 7. Area and direction of change in productivity in grasslands, shrublands, and evergreen
forests in New Mexico as identified using the Segmented VPR (degraded vegetation or gradual
increase) and Segmented RESTREND (reversal and initiation of degradation) methods.

On the other hand, 5.7% (out of the 4454 pixels) of NM’s shrubland pixels (16,248 km2),
1.3% of the grassland pixels (3648 km2), and 0.92% of the evergreen forest pixels (2624 km2)
experienced either significant gradual increase in productivity or reversal of degradation
(Figure 8). From all analyzed pixels, 1600 km2 (0.56%) and 2048 km2 (0.72%) of the
grasslands that showed significant increase in productivity were attributed to reversal
in degradation (using the Segmented RESTREND method) and significant increase in
productivity (using the Segmented VPR method), respectively.

4.3. Assessment of Breakpoints

This section provides a summary of the results obtained based on the breakpoints
assessment framework described in Section 3.2.

4.3.1. Identified Random Samples

The total number of breakpoints based on the Segmented RESTREND and Segmented
VPR methods were about 304 and 510, respectively. From which, 384 samples were ran-
domly selected with 165 and 219 were based on the Segmented RESTREND and Segmented
VPR methods, respectively (Tables A1 and A2 in Appendix A). Since the Segmented VPR
had more significant breakpoints with a noticeable change in productivity, only those pixels
were subjected to the random selection. Only 155 samples out of the 219 (or 71%) showed
significant difference in productivity before and after the break years (either decreasing or
increasing) (Figure 9). The remaining 64 samples did not meet the criteria for significance
and were not considered. From the 155 samples, 24% and 76% were obtained over grass-
lands and shrublands, respectively. The distribution of the grassland samples (i.e., 24%)
represented the Southwestern (SW) Tablelands (46%), Arizona/New Mexico (AZ/NM)
Plateau (35%), and Chihuahua Desert (16%) ecoregions. Similarly, 58%, 25%, and 11% of
the shrubland samples (i.e., 76%) represented the Chihuahua Desert, AZ/NM Plateau, and
SW Tablelands ecoregions, respectively.

4.3.2. Changes in Productivity at Pixel Level

A summary of the comparison of the significance of the differences in mean productiv-
ity before and after the breakpoints between the Segmented VPR and the RPMS data was
shown in Table 4 along with the direction (increase or decrease) of change in productivity.
The results were presented as the percent of pixels that fell within each category relative to
the number of the random samples (i.e., 155).
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Figure 8. Direction of change in productivity in New Mexico’s quadrants during the 1982–2015
period indicating (a) non reversal degradation, (b) gradual increase, (c) initiation of degradation, and
(d) initiation of reversal from degradation along with the corresponding methods used.

Based on the Segmented VPR method, all the 155 randomly selected samples indicated
significant difference in productivity before and after the break years. However, based on
the RPMS only 55% of them showed significant differences in mean productivity before
and after the break years until 2019, respectively (Table 4). From the 155 samples, 37% and
18% showed persistent decreasing and increasing in mean productivity after the break
years until 2019 on RPMS data, respectively. About 36% and 9% showed increasing and
decreasing trends before and after the break years on the RPMS data, respectively.

From the 37% of the sampled pixels that exhibited persistent decrease in mean pro-
ductivity after the break years, 13% were in the Chihuahua Desert, and 18% in the SW
Tablelands ecoregions. From the 18% of the sampled pixels that exhibited significant
and consistent increase in mean productivity after break years, AZ/NM Mountains and
AZ/NM Plateau ecoregions accounted for 3% and 15%, respectively. From the 36% of the
sampled pixels with increased but insignificant difference in mean productivity before and
after the break years, 35% were over the Chihuahua Desert ecoregion, and the remaining
were equally obtained over AZ/NM Mountains and AZ/NM Plateau (Table 4). From the
9% of the sampled pixels with decreasing trend but insignificant difference in productivity
before and after the break years, 5% were over AZ/NM Plateau.
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Figure 9. The distribution of the randomly selected samples from the identified breakpoints based
on the Segmented VPR method along with the ecoregions in New Mexico.

Table 4. The percentages of pixels with decreasing and increasing trends in productivity as estimated
from the RPMS data relative to randomly selected pixels (155) based on the Segmented VPR method
categorized based on their significance of difference in mean productivity before and after the break
years over major ecoregions in New Mexico.

Ecoregion
Insignificant Difference Significant Difference

Total
Decrease Increase Decrease Increase

Arizona/New Mexico
Mountains 2 0.5 0 3 5.5

Arizona/New Mexico Plateau 5 0.5 6 15 26.5
Chihuahua Desert 1 35 13 0 49

Southwest Tablelands 1 0 18 0 19

Total 9 36 37 18 100

In the sampled grasslands and shrublands pixels (i.e., 24% and 76% of the 155 samples,
respectively) with either decreased or increased productivity, the difference in mean pro-
ductivity before and after the break years was insignificant in 5% and 40%, respectively on
RPMS (Table A3 in Appendix B). The grassland (12% of the samples) and shrubland pixels
(26% of the samples) with decreased productivity had significant lower mean productivity
before the break years on RPMS data. Similarly, out of the pixels that showed increased
trend on productivity, 7% from grasslands and 11% from shrublands had significantly
higher mean production than that before the break years on RPMS (Table A3).

4.3.3. Changes in Productivity at Ecoregion Level

A summary of the comparison between the Segmented VPR and RPMS at the ecore-
gion level (Section 3.2) including grassland and shrubland cover classes based on the
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sampled pixels (i.e., 155) was provided in Table A5 (Appendix C)—allows to highlight
whether the changes at the individual pixels are reflective of those at the regional level.

Based on the RPMS data, a continuous and significant decrease in shrublands’ mean
productivity after the break years in the Chihuahua (Welch’s test p ≤ 0.0001) and the
AZ/NM Plateau (p = 0.0397) ecoregions was observed. Similarly, significant decline in
mean productivity of grasslands of the SW Tablelands (p ≤ 0.0001) and AZ/NM (p = 0.019)
ecoregions were observed after break years. The shrublands within the AZ/NM Mountains
and the SW Tableland ecoregions and the grassland in Chihuahua and the AZ/NM Plateau
ecoregions exhibited insignificant differences in mean productivity between before and
after the break years—stable ecosystem productivity during the study period.

In contrary, the sampled pixels over the shrublands in the Chihuahua Desert (p = 0.0194)
and the AZ/NM (p = 0.00765). Mountain ecoregions showed significant increase in mean
productivity after the break years (Table A5). There was a significant increase in mean
productivity in the grasslands within AZ/NM Plateau ecoregions after the break years.
However, sampled shrubland and grassland pixels in the AZ/NM Plateau and the Chi-
huahua Desert, respectively, showed insignificant difference in mean productivity before
and after the break years, suggesting a negligible increase in mean productivity after the
break years during the study period.

5. Discussion

5.1. Characteristics of Change

The significance of the breakpoints as identified by the TSS-RESTREND methods
can be interpreted relative to observed ecosystem structural changes [8,13]. Out of 67.9%
of the pixels that met the criteria of RESTREND [13], 8.5% and 4.6% showed decreased
and increased productivity, respectively. These pixels exhibited gradual change as their
VPR remined consistent over time with no major ecosystem structural changes [13,60].
The behavior of the pixels that were identified by the Segmented VPR method (11.6%)
experiencing irreversible degradation (4.9%) or increased productivity (5.7%) can partially
be attributed to abrupt land use changes (decreeing or increasing) induced by human
activities and climate variability [13,61] such as overgrazing or easing of drought condi-
tions [62]. More than half of NM that did not experience significant change in productivity
(NSC = 55.6%—Table 2) was dominantly in the western part of the state. This can par-
tially be explained by the fact that western NM is the driest region in the state. Thus, it
experiences weaker interactions related to climate variability and human activities—thus
minimal effects on productivity. The pixels that were identified as indeterminant (10.8%)
were those that none of the methods was able to fit their observed behavior [8,55] and there
was no clear explanation for such behavior.

There were relatively higher human activities in northeastern, northwestern and
southeastern NM represented by crude oil and natural gas production and livestock
grazing practices. The prevalence of irreversible degradation and initiation of degradation
were apparent in these regions [63]. On the other hand, significant changes in productivity
(i.e., increase) was observed mostly in southwestern and northwestern NM, where forest
were minimally influenced by human activities. On landscapes where human activities
were dominant, i.e., southeastern NM, significant increase in productivity can be associated
with parallel restoration activities and land use management practices [55,64].

Overall, there was a consistent increase in the number of detected significant break-
points during the 1980s, 1990s, and 2000s, with 9.5%, 19.2%, and 71.4%, respectively
(Figure 10). Again, the combined effects of climate change and anthropogenic factors can
explain this increase [65]. For example, NM’s precipitation remained close to the long-term
average (only recently showed increased variability) since 1920 while air temperature
showed an increasing trend since 1970s [63,66,67] with a simultaneous increase in fossil
fuel production activities since 1980s.
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Figure 10. A summary of breakpoints with (a) decreasing and (b) increasing trends in productivity
along with the weighted average of self-calibrated Palmer Severity Drought Index (sc-PSDI).

It is challenging to identify a single factor that can be considered as the direct cause
of these breakpoints and ecosystem structural changes [8,68]. However, it was possible
to compare these breakpoints with some observed ecosystem structural changes whether
gradual (e.g., land use management and climate change) or abrupt (e.g., wildfire). Such a
comparison can help in evaluating the accuracy of these breakpoints in terms of timing,
distribution, and direction of change [8,53].

5.2. Land Cover Changes Relative to Drought and Wildfire

Some of the major drivers of change in NM’s dryland ecosystems were identified
as climate (e.g., drought) which is influenced by increased concentration of atmospheric
greenhouse gases (GHG) (e.g., CO2); wildfire; grazing practices (i.e., livestock density); and
land use conversion [21,35,68] were used here to highlight their effects on the breakpoints.

5.2.1. Detected Changes Compared to Previous Studies and Current Restoration Activities

The significant decrease in grasslands and shrublands was mostly observed in north-
western, northeastern, and southeastern NM—consistent with [4] that indicated that degra-
dation was mostly over grassland-savanna. Degradation of grasslands, in some cases, was
directly linked to increased productivity of shrublands. In NM, increased productivity
in shrublands was noticed southwestern deserts and plains. This increase was attributed
to land cover conversion from black grama and other valuable grasses-dominated areas
to bushes due to over grazing and drought [69]. The evident climate warming, expected
increase interannual precipitation variability, and projected increase in aridity can further
enhance the growth of shrubs (i.e., encroachments of woody plants) over grasses since the
later are heavily depended on transient surface moisture [70,71]. It was also argued that
increased CO2 concentration in the atmosphere can improve plant CO2 uptake and reduce
water loss through plant’s stomata thus increasing the photosynthesis process and this
mechanism actually favor woody vegetation over non-woody ones [72,73].

The general notion that was suggested in some studies was that encroachments of
shrublands to grasslands can be considered as one stage of degradation that can threaten
the integrity of the rangelands [74]. However, it was argued that, shrublands are not
necessarily degraded, nor do they necessarily represent “degradation” due to their ability
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to support valued ecosystem services [71,75], and they also have a long-term mean annual
above ground NPP—equivalent to that of grasslands [76]. In NM, there have been a number
of restoration and brush management efforts undertaken to control invasive species, and
retain favored shrub species [64]. This suggested that the attribution of drivers to changes
in productivity in environmental studies remains challenging owing to the diversity of
driving forces and limited sources of ground truth data for validation [77].

The increased productivity in grasslands that was observed in western NM can par-
tially be attributed to local scale successful restoration efforts by the Bureau of Land
Management [64]. These efforts targeted the replacement of Creosote and mesquite by
healthy grasslands, and reclamation of surfaces resulted from oil and gas extraction oper-
ations. According to Powell [78], gradual improvements in range conditions (increased
productivity) in southwestern NM was not only related to the results of better moisture,
but also cumulative efforts on rangeland management, such as proper stocking, vastly
improved grazing distribution, and brush management.

5.2.2. Breakpoints and Drought

The sc-PSDI for NM and the detected significant breakpoints with decreasing and in-
creasing trends were shown in Figure 10. A weighted average of the sc-PDSI was calculated
over the breakpoints with decreasing and decreasing trends separately to evaluate their
timing against drought events. Some previous findings suggested that extended periods of
drought (or relatively dry conditions) can introduce lasting negative impacts (degradation)
on rangelands and other ecosystems [8,79]. Based on Figure 10, it was noticed that from
all the detected breakpoints during the study period (1982–2015), 67.9% were observed
only in 2000s from which 38.2% exhibited decreased trend in productivity (Figure 10a).
Coincidently, these breakpoints overlapped with frequent and extended periods of drought
events in NM that were also observed regionally in the southwest USA during 2000s. The
impact of this regional drought had resulted in a decrease in productivity in more than 30%
of the coterminous USA, out of which ~15% (equivalent to more than 41 million ha) was
rangelands [37].

The increased number of breakpoints after 2000 suggested a permanent degradation
or damage to ecosystems which mechanistically can occur when these ecosystems have
little to no time to recover from a previous consecutive drought event. A recovery period
from a drought event as defined by [79] is the return of an ecosystem to pre-drought values
of GPP and can vary from immediate to multiple years depending on vegetation, climate,
disturbance, and drought. It was indicated that dryland ecosystems such as those in NM,
had experienced increased recovery periods that were highly sensitive to precipitation
and temperature [79]. With the expected future projections of rising temperature and drier
conditions, the drought recovery of dry ecosystems would even be longer. When droughts
have shorter return period (or more frequent) this makes ecosystems more susceptible to
drought or ecosystem degradation continues and builds up until a threshold is reached and
the degradation become irreversible (or permanent), a condition that was referred to in [79]
as a tipping point. This study suggested that these thresholds may have been reached as
represented by the detected breakpoints. This explains, to some extent, the appearance
of breakpoints compared to drought events. The timing of these breakpoints suggested
the accumulation of dry conditions that impact ecosystem functions until reaching tipping
points. Further analysis is needed to understand the timing or emergence of the breakpoints
and drought accumulation periods and the response of ecosystems relative to vegetation
type and climate.

Moreover, these recent exceptionally drought conditions in NM (during 2000–2015)
also varied in spatial extent, duration, and intensity [80]. These variations may have
contributed to the occurrence of 38% breakpoints with decreasing trends (i.e., initiation
and irreversible degradation) in southeastern (Eddy, Lea, Chaves, and Otero counties);
northeastern (Colfax, De Bacca, and San Miguel counties); and northwestern NM (San Juan
county). From all pixels that experienced significant decrease in productivity, 35% were
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observed in De bacca, San Miguel, San Juan, and Otero counties as drought might have a
profound influence in reducing vegetation productivity (e.g., plant mortality) [81,82].

On the other hand, reversal from degradation and significant increase in produc-
tivity was dominantly observed in the northwestern, southeastern, and southwestern
NM (Figure 8). In NM, wetter years were observed from 1986 to the end of 1990s, followed
by drier years from 1999–2003 and 2005 (Figure 10). Significant breakpoints with increase
in productivity were identified during 2000s dry years in Otero, Dona Anna, Luna, San
Juan and Socorro counties. About 13.5% of these breakpoints were observed in the first
four of counties. This can partially be attributed to the fact that precipitation remained near
the long-term mean after the drier years over these counties that resulted in reversal from
degradation or significant increase in productivity, respectively (Figure 10).

5.2.3. Breakpoints and Wildfire

Wildfire generally reduces plant cover, alters habitat structures, decrease rangeland
conditions, and requires much longer recovery period [83]. The significant breakpoints
with decreased productivity (i.e., irreversible degradation based on Segmented VPR) that
coincided with fire events are shown in Figures 11 and 12. Major wildfire incidents
occurred in 1989 and 1994 followed by a consistent increase in frequency each year since
2001. This increase was noticeably concurrent with drought events. The number and
time of some breakpoints mostly followed these of the fire incidents. The alignment of
fire incidents with breakpoints can indicate the ability of TSS-RESTREND to detect the
timing of ecosystem changes as suggested by [8]. However, based on Figures 11 and 12,
it appeared that only a small number of breakpoints coincided with fire incidents during
the study period—suggested that fire may have a limited contribution to the development
of breakpoints. While, the timing of these fire incidents can partly explain the occurrence
of the breakpoints, it was not rationale to state that these fire incidents were the only
direct cause of the breakpoints. Other factors need to be considered to provide a rational
explanation of the remaining breakpoints such as vegetation types and their response to
environmental and climate disturbance (drought). The accumulation of successive dry
conditions can push an ecosystem to pass a threshold of permanent damage of vegetation—
ideal fire-prone conditions. Further analysis is needed to identify the causes of breakpoints
relative the fire and was out of the scope of this analysis.

 
Figure 11. Timeseries of breakpoints concurrent different types of fire incidents in New Mexico during the 1984–2015 period.

5.3. Breakpoints and the RPMS

Based on the RPMS data, a decrease in the mean annual productivity was detected
over the pixels with significant breakpoints (i.e., identified by Segmented VPR method)
during the 1984–2019 period (Figure 13). The mean productivity of these pixels was lower
than that of the long-term of the 36 years which was about 613.2 kg/ha. Moreover, the
variability in the annual productivity of these pixels ranged from 588 kg/ha in 1995 to
641 kg/ha in 2006.
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Figure 12. A summary of breakpoints and fire incidents indicated with the timing of some major incidents.

 
Figure 13. Productivity anomaly based on the Range land Production Monitoring Service (RPMS) [45] averaged over the
pixels that were identified with the Segmented VPR method with decreasing trend during the 1984–2019 period.

Of the sampled pixels that were evaluated for changes in productivity before and
after the break years, 38% with decreasing trend showed a significant difference in mean
productivity after the break years with 12% in grasslands (Table A3) and 26% in shrublands
(Table A4). Similar to this finding, [84,85] indicated that there was an apparent decline in
NPP in the southwestern USA that was attributed to the response of these ecosystems to
the combination of a warmer temperature and a decline in precipitation. The pixels that
showed significant decrease in productivity in NM’s rangeland (i.e., in Chihuahua Desert
and AZ/NM plateau ecoregions) coincided with those from [45] that showed a similar
behavior (Table A5). The difference in the productivity before and after the break years
might be substantiated by the xeric nature of the southwestern USA and southeastern
Great Plains in response to interannual variability of the precipitation [86]. On the other
hand, 8% and 36% of sampled pixels with decreased and increased productivity (i.e., based
on the Segmented VPR), respectively showed insignificant difference in mean productivity
before and after the break years based on the RPMS data [45]. These findings were in
agreement with those by [83] which suggested that the structure and composition of semi-
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arid and arid regions of the southwestern USA have undergone noticeable changes over
the last two decades.

6. Limitation and Future Work

As the study aimed to detect degradation of vegetation, rangelands (i.e., shrubland
and grasslands), the authors acknowledged some limitations that need to be considered
when using these findings. The TSS-RESTREND was able to identify the breakpoints, their
location, time, and type and direction of change in productivity at the state level. Due to the
limited availability of ground biomass data, pixels that exhibited significant changes were
validated using derived productivity from the RPMS [45] that showed only 55% agreement.
Ground-based data can be more accurate means in assessing the identified breakpoints.
Another important factor that can contribute to degradation is the temperature which can
significantly affect NM’s dryland ecosystems.

For future, the authors would address some of these limitations using ground observa-
tions (when available) for example from the long-term rangeland monitoring observatories
at the Jornada Experimental Range. The obtained breakpoints seemed consistent with some
of the disturbances (drought and fire). However, the authors would consider the combined
use of temperature and precipitation to improve the detection of breakpoints such as the
pixels that have been classified as indeterminant. Additional quantitative analysis would
be conducted to determine how drought may affect the timing of breakpoints, rangeland
condition, and productivity, which can be useful in developing rangeland management
practices to adapt and mitigate drought impacts.

7. Conclusions

This study evaluated the degradation of New Mexico’s rangelands during the 1984
2015 period with respect to climate using an NDVI timeseries—as a surrogate of NPP—
and precipitation to represent climate variability. These datasets were evaluated using
the TSS-RESTREN method to detect breakpoints in the NDVI timeseries, direction and
significance of change in productivity at each pixel. The study developed a breakpoint
assessment framework that allowed to quantitively evaluate the identified changes that
used an independent productivity data (i.e., RPMS). A qualitative assessment of the changes
against land management activities, drought, and wildfire was also conducted.

The study indicated that about 17.6% of New Mexico experienced a decrease in
productivity while 12.8% of the state experienced an increase in productivity. More than
half of the state (55.6%) had insignificant change productivity, 10.8% was classified as
indeterminant, and the remaining 3.2% was considered as agriculture was not evaluated.

The degradation in productivity was observed in about 2.2%, 4.5%, and 1.7% of NM’s
grassland, shrubland, and evergreen forest land cover classes, respectively. Simultaneously,
about 5.7%, 1.3%, and 0.92% of NM’s shrublands, grasslands, and evergreen forests were
characterized by an increase in productivity, respectively. Regionally, significant decrease
in productivity was observed in the northeaster and southeastern quadrants of the state
while significant increase was observed in northwestern, southwestern, and a small portion
in southeastern quadrants. The timing and number of detected breakpoints coincided with
NM’s drought frequency and severity and some fire incidents.

The TSS-RESTREN showed 55% agreement with the RPMS data over areas with
significant decrease in productivity based on randomly selected pixels. Regionally, there
was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant
degradation in productivity over the grasslands and shrublands within the Arizona/New
Mexico Tablelands and in the Chihuahua Desert ecoregions, respectively.

A long timeseries assessment of rangeland productivity in New Mexico is critical
to support decisions related to ecosystems management and conservation. The findings
of this study can be used to address some of the rangeland degradation challenges that
directly impact rangeland conditions, forage supply in the region, and New Mexican’s
livelihood as these systems support livestock production. In areas where degradation was
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prevalent (i.e., northeastern, and southeastern NM), special intervention would be needed
to conserve the biodiversity of rangeland and increase the resilience of these ecosystems.
As this study considered only precipitation, it was noticed that the rising temperature can
play a significant role in vegetation. Thus, future analysis should consider its effects on
rangeland productivity. Future research should also pay more attention to the association
of degradation and productivity with recurring droughts.
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Appendix A

Proportional allocation of the randomly sampled pixels as identified by Segmented
VPR and Segmented RESTREND is shown in Table A1.

Table A1. Allocation of the randomly selected pixels as identified with Segmented VPR method over the different land
cover classes based on the National Land Cover Dataset of 2011 (NLCD 2011) along the corresponding ecoregions.

Ecoregions
Decreasing Increasing NSC

Total
52 71 82 31 42 52 71 82 42 52 71

Arizona/New Mexico Mountains 1 1 0 0 1 10 1 0 0 0 1 16
Arizona/New Mexico Plateau 13 4 0 0 0 16 7 0 1 2 0 43

Chihuahua Desert 21 1 0 1 0 73 6 0 0 5 0 106
Colorado Plateaus 4 0 0 0 0 2 0 0 0 1 0 6

High Plains 4 1 1 0 0 1 1 0 0 0 2 11
Madrean Archipelago 0 0 0 0 0 3 1 1 0 1 0 5

Southwestern Tablelands 10 16 0 0 0 1 1 0 0 1 1 31

Total 53 24 1 1 1 106 18 1 1 9 4 219

31 = Bareland, 42 = Evergreen Forest, 52 = Shrub/Scrub, 71 = Grassland/Herbaceous, 82 = Cultivated Crops.

Table A2. Allocation of the randomly selected pixels as identified with Segmented RESTREND method over the different
land cover classes based on the National Land Cover Dataset of 2011 (NLCD 2011) along with the corresponding ecoregions.

Ecoregions
Decreasing Increasing

Total
22 52 71 90 95 42 52 71 52

Arizona/New Mexico Mountains 0 1 0 0 0 0 3 2 0 6
Arizona/New Mexico Plateau 0 1 2 1 0 0 6 4 0 13

Chihuahua Desert 1 37 1 0 1 0 25 4 0 68
Colorado Plateaus 0 1 0 0 0 0 1 0 0 1

High Plains 0 9 6 1 0 0 1 0 0 16
Madrean Archipelago 0 1 0 0 0 0 0 0 0 1

60



Remote Sens. 2021, 13, 1618

Table A2. Cont.

Ecoregions
Decreasing Increasing

Total
22 52 71 90 95 42 52 71 52

Southern Rockies 0 0 1 0 0 0 0 0 0 1
Southwestern Tablelands 0 15 30 0 1 1 4 6 1 58

Total 1 65 39 1 1 1 40 16 1 165

22 = Low Intensity Developed, 52 = Shrub/Scrub, 71 = Grassland/Herbaceous, 90 = Woody Wetlands, 95 = Emergent Herbaceous Wetlands.

Appendix B

The percentages of the randomly selected pixels (i.e., 155 identified by Segmented-
VPR method) over grasslands and shrublands that were evaluated for their significance of
the difference in mean productivity between before and after the break years at the pixel
level using the Rangeland Production Monitoring Service (RPMS) data.

Table A3. The percentages of the randomly selected grassland pixels with respect to their significance in the difference in
mean productivity before and after the break years based on the RPMS data along with their identified direction of change
over the major ecoregions in New Mexico.

Ecoregions
Insignificant Difference Significant Difference

Total
Decreasing Increasing Decreasing Increasing

Arizona/New Mexico Mountains 1 0 0 0 1
Arizona/New Mexico Plateau 0 0 1 7 8

Chihuahua Desert 0 3 1 0 4
Southwestern Tablelands 1 0 10 0 11

Total 2 3 12 7 24

Table A4. The percentages of the randomly selected shrublands pixels with respect to their significance in the difference in
mean productivity before and after the break years based on the RPMS data along with their identified direction of change
over the major ecoregions in New Mexico.

Ecoregions
Insignificant Difference Significant Difference

Total
Decreasing Increasing Decreasing Increasing

Arizona/New Mexico Mountains 1 1 0 3 5
Arizona/New Mexico Plateau 5 1 5 8 19

Chihuahua Desert 1 32 12 0 45
Southwestern Tablelands 0 0 8 0 8

Total 6 33 26 11 76

Appendix C

A summary of the statistical significance test result of the difference in mean in
productivity before and after the break years using the randomly selected pixels (i.e., 155
identified by Segmented-VPR method) based on the Rangeland Production Monitoring
Service (RPMS) data at the ecoregion level.
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Table A5. Significance of the difference in mean productivity before and after the break years based on the on increasing
and decreasing shrublands and grassland randomly selected pixels using RPMS data at the ecoregion level.

Trend Ecoregion

Shrublands Grasslands

Welch’s t-
Statistic

df p Welch’s t-
Statistic

df p

Decreasing

Chihuahua Desert −4.35 1379 ≤0.0001 s −1.23 39 0.227
Arizona/New Mexico Mountains 0.33 119 0.742 −1.98 69.6 0.0516

Southwestern Tablelands −1.79 735 0.0745 −4.35 1053 ≤0.0001 ***
Arizona/New Mexico Plateau 2.06 1122 0.0397 * 2.38 126 0.019 *

Increasing

Chihuahua Desert 2.34 2178 0.0194 * 1.47 196 0.143
Arizona/New Mexico Mountains 2.72 108 0.00765 ** - - -

Southwestern Tablelands - - - - - -
Arizona/New Mexico Plateau 1.42 857 0.157 2.4 736 0.065 *

*** p values less than or equal to 0.0001, ** p values less than 0.001, * p values less than 0.05.
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Abstract: Many developing nations are facing severe food insecurity partly because of their
dependence on rainfed agriculture. Climate variability threatens agriculture-based community
livelihoods. With booming population growth, agricultural land expands, and natural resource
extraction increases, leading to changes in land use and land cover characterized by persistent
vegetation greening and browning. This can modify local climate variability due to changing
land–atmosphere interactions. Yet, for landscapes with significant interannual variability, such as the
Mount Elgon ecosystem in Kenya and Uganda, characterizing these changes is a difficult task and more
robust methods have been recommended. The current study combined trend (Mann–Kendall and Sen’s
slope) and breakpoint (bfast) analysis methods to comprehensively examine recent vegetation greening
and browning in Mount Elgon at multiple time scales. The study used both Moderate Resolution
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Climate
Hazards group Infrared Precipitation with Stations (CHIRPS) data and attempted to disentangle nature-
versus human-driven vegetation greening and browning. Inferences from a 2019 field study were
valuable in explaining some of the observed patterns. The results indicate that Mount Elgon vegetation
is highly variable with both greening and browning observable at all time scales. Mann–Kendall and
Sen’s slope revealed major changes (including deforestation and reforestation), while bfast detected
most of the subtle vegetation changes (such as vegetation degradation), especially in the savanna
and grasslands in the northeastern parts of Mount Elgon. Precipitation in the area had significantly
changed (increased) in the post-2000 era than before, particularly in 2006–2010, thus influencing
greening and browning during this period. The greenness–precipitation relationship was weak
in other periods. The integration of Mann–Kendall and bfast proved useful in comprehensively
characterizing vegetation greenness. Such a comprehensive description of Mount Elgon vegetation
dynamics is an important first step to instigate policy changes for simultaneously conserving the
environment and improving livelihoods that are dependent on it.

Keywords: bfast; Mann–Kendall; Sen’s slope; East Africa; NDVI; breakpoint analysis; vegetation
trends; greening; browning; Kenya; Uganda; trend analysis; land use; land cover

1. Introduction

Vegetation plays very important roles in ecosystem processes, including the mitigation of climate
change effects [1] and the regulation of land surface temperatures, carbon and energy cycles [2–4].
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At the same time, significant changes in terrestrial vegetation have been reported in the recent past [5,6].
Previous studies have concluded that these changes are driven by (1) slowly-changing natural processes,
such as regional climate change (e.g., changes in temperature, precipitation, etc.), nitrogen disposition
and increasing atmospheric CO2 concentrations [7], and (2) more rapid anthropogenic activities,
including land-use and land-cover (LULC) change (e.g., deforestation [8,9], overcultivation and
overgrazing [8], afforestation, expanding green areas in cities [1] among others). These processes do
not operate in isolation [7] but rather interact at multiple scales, with global-scale drivers interacting
with processes at the regional and local scales [10], thus making vegetation change dynamics a complex
phenomenon to examine. Understanding vegetation dynamics has attracted substantial attention in
the past years, specifically in the wake of climate change and variability [11]. As such, knowledge of
vegetation response to climate change is critically important in the effort to maintain the supported
processes as well as the human livelihoods derived from them [12]. Such an analysis has been difficult
in the past, due in part to limited access to consistent data both in space and time. However, with recent
developments in Earth observation (EO) technologies, spatio-temporally contiguous remote sensing
(RS) data have been collected, making it possible to investigate vegetation dynamics accurately and
comprehensively in terms of other environmental processes, at multiple scales.

The Normalized Difference Vegetation Index (NDVI), which is the normalized sum of the difference
in reflectance between near infrared and red bands, has extensively been used [5,10,13] as an indicator
of photosynthetic activity and vegetation amount [14]. Previous studies used this vegetation index
(VI) to characterize vegetation processes such as productivity decline [6], phenology [15,16] and
greening and browning [1,5,10,12,17,18]. Variability in NDVI generally follows patterns of climatic
conditions, mainly precipitation [11,19–22]. The NDVI–precipitation relationship is largely a strong
positive one, particularly in locations where total annual precipitation is less than 1000 mm [19,22].
This relationship is further compounded in space and time by site-specific factors such as existing LULC,
vegetation structure and composition [22], topography [10] and soil type [23]. As a result, vegetation
greenness response to climate has shown significant spatial and temporal variability. For instance,
contrasting natures and strengths of the NDVI–precipitation relationship have been reported: a strong
linear relationship in the Sahel [19] and a log-linear one in East Africa [22]. In other studies, seasonal
precipitation with different lag times was found to correlate strongly with NDVI [13,22]. This complexity
implies that (i) results from a specific regional analysis are not transferable to another region; (ii) any
slight spatial and/or temporal misspecification may lead to misleading results about vegetation
greenness–precipitation relationships and patterns; and (iii) understanding vegetation change requires
multiple images (time series, TS) as opposed to the extensively used traditional classification and
change detection methods.

East Africa depends heavily on rainfed agriculture, which puts food security and rural livelihoods
at risk [24]. The importance of land in this region cannot be overemphasized [24], yet land holdings
are small and steadily declining [24,25]. At the same time, populations have been increasing thus
necessitating expansion of food production while also navigating the effects of climate change in the
area. Over recent decades, therefore, East Africa has witnessed significant landscape transformation
due to both human and natural drivers [6,26]. Generally, natural vegetation has been converted to
farmlands, grazing lands and human settlements [25]. This LULC transformation has been reported in
the Mount Elgon ecosystem (MEE), a major water catchment tower supplying water to three major
lakes in East Africa (Lake Turkana, Kenya, Lake Kyoga, Uganda and Lake Victoria, Kenya, Uganda and
Tanzania [27]). The MEE is dominated by croplands in most locations, mixed vegetation (primarily
savanna, grasslands, and shrubs) in the northern portion and the Afromontane forest (Figure 1).
The high population growth and densities in the area have translated into need for more land [28].
Coupled with political interference and corruption among park and reserve staff, the need for more
land has resulted in forest encroachment and deforestation as ecologically fragile land is cleared for
agriculture and settlement [28–32]. The changes in LULC have, in part, altered the functioning of
the ecosystem [29] and, as a result, the mountain area has experienced more frequent landslides,
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prolonged droughts, and flooding [30,31]. Evidence of a changing climate has been reported [33] and
this may result in increased frequency of these events. As such, the livelihoods of at least 2 million
people [27,31] are threatened. Despite this, the complex MEE landscape is currently understudied.
A key study of LULC change was conducted by Petersson, Vedeld, and Sassen [27] and employed
institutional theory in analyzing processes that led to deforestation within protected areas (PAs) in the
transboundary MEE. It was found that, especially on the Kenyan side, it was challenging to correctly
quantify LULC change due to the overlap between bamboo, plantation and Shamba system farms.
Other studies have been conducted on relatively smaller spatial scales, mostly on the Ugandan side.
Such studies have focused on the effect of LULC change on landslide occurrence [28], soil organic
carbon, food security and climate change vulnerability [34], carbon stocks and climate variability [35]
among others. However, some of the studies have reported contradictory results especially about the
magnitude of LULC change within the agricultural land-use class. This may be due to the complex
LULC orientation, which leads to persistent greening and browning in the MEE, thus making it difficult
to correctly characterize vegetation dynamics especially using traditional classification and change
detection methods. More robust methods are therefore needed, and TS analysis has been applied to
comprehensively examine spatio-temporal landscape changes, particularly for constantly variable
landscapes like the MEE.

Figure 1. Mount Elgon ecosystem (MEE) land-use and land-cover (LULC) in 2018. This map was created
by reclassifying Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover data (MCD12Q1)
created by the University of Maryland [36]. Mixed vegetation includes savanna, grasslands, and shrubs.
Cropland includes cropland and the cropland-vegetation mosaic classes. The black-gray line represents
the boundary between Kenya and Uganda and the red triangle is Wagagai Peak, the highest point on
Mount Elgon (4321 m above sea level).

TS analysis of RS data has been used to characterize environmental phenomena by describing both
trends and discrete change events [37]. In recent years, application of TS methods has increased and
this has been driven by improved access to RS imagery (for instance, due to opening up of the Landsat
archive in 2008 [38]), improvements in the integration of RS and GIS (Geographic Information Systems)
and general advancements in computing power [39]. As such, analysis of LULC change, including
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vegetation greening and browning, has significantly evolved from the traditional bitemporal image
analysis to using multiple and continuous observations. Common methods for TS analysis include
Fourier analysis [40,41], principal components analysis, [42,43] and the Mann–Kendall statistic [44].
The Mann–Kendall statistic has been used to identify the presence and nature of monotonic trends in
vegetation time series [5,10,45]. It is a non-parametric statistic; thus, data does not have to conform to
any specific distribution [46]. Besides, Mann–Kendall compares relative magnitudes of sample data
instead of raw data values and therefore missing values are allowed in the analysis. The Mann–Kendall
analysis is often followed by the Sen’s slope estimator [47], which quantifies the strength of the
monotonic trends [12,45]. The Sen’s slope estimator calculates the median of the set of slopes generated
from Mann–Kendall [47]. Mann–Kendall and Sen’s slope have been found to be more robust for TS with
outlying values as compared to parametric statistics like ordinary least squares [12]. These two statistics
identify and quantify any overall trends in a time series and are therefore well suited for examining
vegetation greening and browning. Previous studies have successfully used these methods in assessing
the consistency of greening and browning patterns across spatio-temporal scales in northern India [12]
and assessing variability in greening and browning patterns caused by use of different RS imagery in
the boreal forest of central Canada [48]. However, the assumption that the vegetation trend preserves
its change rate throughout the period of study means that some greening and browning changes are
masked [5]. For instance, later greening in a consistently browning vegetation may not be detected
using Mann–Kendall and Sen’s slope. To counter this issue, more TS decomposition methods have been
proposed, including Breaks for Additive Season and Trend, bfast [16]. Using bfast, even subtle changes in
vegetation can be monitored. This algorithm has successfully been used in delineating anthropogenic,
fire and elephant damage within forest ecosystems in Kenya [49]. Complementing Mann–Kendall
and Sen’s slope with bfast can therefore be valuable in examining vegetation greening and browning
trends, especially in a dynamic environment like the MEE. In such an analysis, the latter can be used
to characterize changes detected by the former. Vegetation trends can then be characterized in more
detail and this can be the basis for understanding effects of climate on terrestrial ecosystems [5] and
the development of ultimate strategies for the sustainable management of ecosystems [10].

The goal of this study was to characterize comprehensively, over multiple time scales,
recent patterns and trends in MEE vegetation greening and browning. Here, the main objectives
were; (1) to assess and quantify the nature and magnitude of change in MEE greenness for the period
2001–2018; and (2) to characterize trends and variability in MEE precipitation as a way to disentangle
nature- versus human-driven vegetation greening and browning. It is hypothesized that (1) changes in
climate have forced local communities in the MEE to expand croplands at the expense of the natural
vegetation thus leading to deforestation and degradation; and (2) the high variability exhibited in
the MEE landscape requires integration of both general (such as Mann–Kendall and Sen’s slope) and
sequential (such as bfast) TS analysis methods to be fully characterized. To achieve these goals, the study
analyzed spatio-temporal trends and patterns in Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI (2001–2018) and Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
precipitation (1986–2018) at multiple temporal scales (dekadal (10-day), 16-day, seasonal), using an
integration of Mann–Kendall, Sen’s slope and bfast algorithms. The study also incorporates inferences
from a field study conducted in the MEE in 2019 to explain some of the vegetation change dynamics in
the area. This analysis thus produces a more comprehensive characterization of vegetation dynamics
in the MEE, which would not be possible using traditional classification and change detection methods.
Results would help fill in some of the existing gaps in literature about nature and magnitude of
LULC change and the stability of LULC in the MEE. Such a comprehensive description of MEE
vegetation dynamics is an important first step to initiate dialogue aimed to instigate policy changes for
simultaneously conserving the environment and improving livelihoods dependent on it.
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2. Study Area Description

The MEE is located in western Kenya and eastern Uganda (Figures 1 and 2). The studied area
covers approximately 15,000 km2 and extends from 1◦37′42.82′′ N, 33◦55′45.07′′ E and 0◦42′15.76′′ N,
35◦14′18.84′′ E. Mount Elgon is a solitary volcano and is among the oldest in East Africa [28,32].
The highest point, Wagagai Peak, is 4321 m [28,50] and is found on the Ugandan side. This area rises
from a plateau that lies 1850–2000 m in the east and 1050–1350 m to the west with a caldera that
extends 8 km wide [50]. Vegetation in this area is zoned by altitude and mountain forest, farmland and
Afro-Alpine heath and moorland are the common land covers [27]. Declared a protected area in 1968
and 1992 in Kenya and Uganda, respectively [31,51], Mount Elgon Forest, a montane rainforest [52],
is home to many important indigenous tree species [27].

Figure 2. Map of the MEE in eastern Uganda and western Kenya showing long-term (1986–2018) mean
annual total precipitation (CHIRPS [53]). Generally, the driest parts are the grasslands in northeastern
MEE. The study area is wettest in the south and around the mountain region. Major protected areas
and towns are shown for reference. FR is shorthand for forest reserve, NR is national reserve, NP is
national park, WS is wetland system and WR is wildlife reserve.

The MEE receives rainfall in a bimodal pattern (two rainy seasons) and, according to Mugagga,
Kakembo and Buyinza [28], most of the rainfall is received between April and October on the Ugandan
side (with mean annual amounts ranging from 1500 to 2000 mm). The Kenyan side receives long
rains between March and June and short rains between September and November—average annual
rainfall ranging from 1400 to 1800 mm [54,55]. There is minimal temperature variation for the area—an
average minimum of 15◦C and a maximum of 23◦C on the Ugandan side [28] and 14 and 24◦C on the
Kenyan side [55]. However, temperatures and precipitation have a strong variation with changes in
altitude [27].
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3. Materials and Methods

The present study integrated Mann–Kendall, Sen’s slope and bfast in the analysis of NDVI and
precipitation trends to characterize recent greening and browning patterns and trends within the MEE.

3.1. Data and Sources

This study utilized the following datasets (Table 1) in the analysis of greening and browning
trends in the MEE.

Table 1. Description of original datasets used in the study.

Dataset Spatial Resolution Temporal Resolution Duration Source

MODIS
MOD13Q1.V6 250 m 16-day 2001–2018 https://lpdaacsvc.cr.usgs.

gov/appeears/

CHIRPS 5 km 5-day 1986–2018 https:
//earthengine.google.com/

3.1.1. MODIS NDVI and CHIRPS Precipitation

This study used MODIS NDVI data in the TS analysis of spatio-temporal changes in MEE
vegetation greenness signal. The 16-day NDVI composite MOD13Q1.V6 [56] with a 250-meter spatial
resolution was obtained through AppEEARS (https://lpdaacsvc.cr.usgs.gov/appeears/) [57]. Data for
the period 2001–2018 were used. While Landsat data [58] have a better spatial resolution and historical
coverage, and are therefore better suited for this study, they were limited by the many data gaps in
the TS over the MEE due to persistent cloud cover and Landsat’s long (16-day) revisit time. As such,
MODIS NDVI, which has previously been used successfully in similar studies in East Africa [6,22,59],
was used in this study. This study also used CHIRPS precipitation data [53]. These data have a
spatial resolution of 5 km and provide global daily and pentad records from 1981 to present. For this
study, these data for the period 1986–2018 were obtained and preprocessed within Google Earth
Engine (GEE) [60]. It is worth noting here that there were no observation data to assess the accuracy
of the CHIRPS dataset over the MEE. However, this dataset has been used extensively in similar
studies [12,61,62]. Moreover, this dataset was recently validated [63] and the results showed that the
CHIRPS data are reasonably accurate in estimating rainfall over east and South Africa.

NDVI preprocessing involved quality assessment using the associated VI quality files. Pixels with
low quality, high aerosol content, cloud cover and possible shadows were excluded during this exercise.
NDVI and precipitation composites for specific time scales were then generated. First computed were
mean NDVI TS during the wet season for the period 2001–2018. Here, imagery in April, May and
June was used. The TS of mean NDVI for each 16-day period during the season were also created.
As a result, there were generally two TS for each month and were labeled h1 and h2 for TS created
from NDVI composites recorded roughly in the first and second half of the month, respectively.
For precipitation, the TS of total amount over the wet season were computed for different periods;
1986–2018 (33 years); 1986–1996 (first 11 years); 1997–2007 (median 11 years); 2008–2018 (last 11 years);
1986–2005 (first 20 years); 1999–2018 (last 20 years); and 2001–2018 (18 years, similar to the NDVI
TS length). While the present study was aimed at characterizing changes in vegetation greenness
from 2001 to 2018, analysis of longer precipitation TS was necessary to understand any longer-term
precipitation patterns in the MEE that may influence the vegetation patterns. TS were also generated
of total precipitation amounts for each dekad over the wet season. In this analysis, these dekads for the
month of April were labelled April d1 (for dates 1–10), April d2 (for dates 11–20) and April d3 (for the
rest of the month). The same nomenclature was used for dekad TS in May and June. These were
used to assess nature and strength of relationship between vegetation greenness and precipitation
variability over a shorter time scale, in which case results from dekad precipitation TS were compared
to results from 16-day NDVI. The 16-day NDVI composites were used here due to unavailability of

72



Remote Sens. 2020, 12, 2113

data to compute dekad NDVI composites. Finally, monthly precipitation composites were generated
for the period 1986–2018, for use in analyzing breakpoints in MEE precipitation.

3.1.2. Field-Collected Data

Environmental data from local communities and government officers within the MEE were
collected using semi-structured interviews and direct observation in July–September 2019 (IRB Number:
STUDY00002404). Most of the interviewees were from significantly changing landscapes (areas showing
significant changes in vegetation greenness). The participants in this study were interviewed about
perceptions of climate change and land-use change, and historical patterns of agriculture and land-use
change. Interviews were conducted and written responses recorded using Qualtrics software [64].
The fusion of such qualitative data with quantitative RS data is important because indigenous and
historical accounts of LULC change in such a constantly variable landscape can be used to fill in gaps
that may not be fully explained using RS and GIS alone.

3.2. Methods

This section describes the methods and analyses performed on NDVI and precipitation TS to
identify areas and characterize patterns of vegetation greening and browning within the MEE. These two
analyses were performed in R [65] and trends were assessed at the 95% significance level. After analysis
of monotonic trends in greenness and precipitation, it was necessary to perform breakpoint analysis
on these time series, to detect any significant breaks within the data. These two types of analyses are
described in more detail below. Figure 3 highlights major methods used in this study.

Figure 3. Flowchart of analysis methods used in the study.
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3.2.1. TS Analysis: Mann–Kendall and Sen’s Slope

To analyze initial spatiotemporal changes in vegetation greening and browning trends in the MEE,
the current study borrowed from methodologies presented by Landmann and Dubovyk [6]. However,
since NDVI TS often do not meet assumptions for parametric analysis [48], the current study used
the nonparametric Mann–Kendall test rather than linear regression. To calculate the Mann–Kendall
test statistic, data values are evaluated as an ordered TS [46] and each value is then compared to all
subsequent values [46,66]. The Mann–Kendall S statistic is initially assumed to be 0 and a value of 1 is
added to (subtracted from) the test statistic if the value of an observation is higher (lower) than that of
the previous observation [46,66]. There is no change to the statistic if the values are equal. Equation (1)
below shows the Mann–Kendall test equation. High positive and low negative values of S, respectively,
indicate increasing and decreasing trends, but the strength of the trend is statistically quantified by
computing probability associated with S and the size of the data sample [46].

S =
n−1∑
k=1

n∑
j=k+1

sign
(
xj − xk

)
(1)

where sign
(
xj − xk

)
= 1 if xj − xk > 0
= 0 if xj − xk = 0
= −1 if xj − xk < 0 Source: Khambhammettu [46]

The magnitude of the trends was quantified using Sen’s slope estimator [47]. These algorithms
were used in this study first to characterize and quantify any general patterns in MEE greenness during
the growing season (April, May, and June). The analysis then investigated more subtle changes in
vegetation greenness over shorter (16-day) periods during the growing season. From these, areas of
increasing (decreasing) greenness were mapped as areas of vegetation greening (browning).

To disentangle changes due to human and natural forcings, monotonic trends were assessed in the
precipitation TS and magnitude of the trends quantified. The analysis was performed on precipitation
series at different temporal scales—based on the length of the time series (including 33-, 20-, 18-
and 11-year periods) and TS resolution (including dekad totals, and general growing season totals).
From these analyses, areas with significant positive (negative) precipitation trends were mapped as areas
experiencing significant and consistent wetting (drying) over the analysis period. A cross examination
of results from greenness and precipitation trend analysis was conducted to distinguish any human-
from nature-driven vegetation greening and browning. Using available very-high-resolution imagery
from Google Earth Pro [67], the nature of LULC conversion was ascertained. Besides, the statistics of
LULC change (including greening, browning pixels) were calculated.

3.2.2. Breakpoint Analysis: bfast

To further understand any temporal patterns in MEE greenness and precipitation, the bfast
algorithm was applied using the ‘bfastSpatial’ package (http://www.loicdutrieux.net/bfastSpatial/).
There exists a predictable annual cycle of greening an browning in vegetation, and these coincide with
the occurrence of rainy and dry seasons [49]. bfast, created by Verbesselt et al. [16] and Verbesselt
and Zeileis [68], creates a best-fit seasonal regression model with a trend component for the time
series [69]. This approach follows three main steps (i.) fitting a harmonic model based on a historical
(‘stable’) period, (ii.) testing observations that follow the historical period for any structural breaks
from the fitted model, and (iii.) calculating the magnitude of change which is the median residual
between observed and expected values in the monitoring period [49,70]. While this approach has been
applied on forested landscapes, the current study applied it to the whole of the MEE, whose LULC
comprises forested, savanna, grassland, and cropland LULC (Figure 1). This was prompted by the
unique LULC orientation in the MEE that makes it difficult to detect LULC changes via satellite image
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change detection analysis [27]. bfast breakpoint analysis can sequentially monitor vegetation change
on a yearly basis, thus making it a suitable method for assessing changes in such LULC.

The models used in this part of the study were parameterized based primarily on the study by
DeVries et al. [70]. First, the time series was divided into historical and monitoring periods. A minimum
of two years for the historical period is recommended when using MODIS 16-day data [49,68]. In this
study, therefore, the period 2001–2004 was used as the initial historical period and was assumed to be
generally stable before the start of the monitoring period. First-, second- and third-order harmonic
models were fit on the NDVI data, the results were assessed, and the first-order model was finally
selected as the suitable instance to use. The single-order model has been used previously with the
assumption that vegetation phenology generally follows a similar trend [70]:

yt = α+ γ sin(
2πt

f
+ δ) + εt (2)

where yt dependent variable
t independent variable
f temporal frequency
α model intercept
γ model amplitude
δ model phase
εt error term

As in the study by DeVries et al. [70], the trend component was excluded from the time series to
reduce chances of yielding false breakpoints.

The change magnitude was calculated as the median of the residuals in the monitoring period.
The median is thought of as a conservative measure, unlike the sum, that minimizes the chances of
getting inflated magnitudes and therefore false breakpoints [70]. However, increasing the number of
observations before and after a change event, by including long monitoring periods, yielded very high
magnitudes and unrealistically numerous breakpoints. As such, this study elected to use sequential
non-overlapping one-year-a-time monitoring periods. Here, the TS was trimmed to include the historical
period plus one-year monitoring period. For monitoring the period from January to December 2005,
for example, the TS for January 2001 to December 2005 was used, and the monitoring period was
set to start in January 2005. This sequential monitoring approach is illustrated in DeVries et al. [70].
The approach is advantageous as it enables the assessment of subtle changes in vegetation within
the MEE, especially alternating degradation and restoration that would go undetected using other
methods. The default values for h, the minimal segment size between potentially detected breaks in
the trend model given as a fraction relative to the sample size [49], were used in this study.

Breakpoint analysis was also performed on the monthly total precipitation TS. The analysis was
performed on both 1986–2018 and 2001–2018 time series, to understand any longer-term patterns as
well as recent changes in the precipitation. Here, the third-order harmonic model with the trend term
was the best fit. While there was no direct application on record of bfast for precipitation breakpoint
analysis, it is noted that the algorithm can be used for this purpose [71,72].

3.3. Validation of Results

A hybrid validation of analysis results was performed in this study. The collection of reference
data borrowed from the methodology used previously by Landmann and Dubovyk [6]. The seasonal
greening and browning map from Mann–Kendall and Sen’s slope analysis (Figure 4) was linked to
very-high-resolution imagery in Google Earth Pro and both qualitative and quantitative accuracy
assessment of the results was performed. Locations of greening, browning and no change were
investigated by visually interpreting historical imagery in Google Earth Pro. The selection of these
testing points was based on the minimum size of detectable change (at least 250 m, the size of a MODIS
NDVI pixel) and the availability of sufficient imagery to interpret change. As such, only locations
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with very-high-resolution imagery in one of the three initial and final years (2001–2003, 2016–2018,
respectively) were used. By visually assessing historical imagery spanning these periods, vegetation
change, or lack thereof, could be observed. A total of 153 visually interpreted points (51 browned,
50 greened and 52 no change) were used. Greenness change in pixels at these locations was first
recorded. The seasonal greening and browning map from Mann–Kendall and Sen’s slope analysis
(Figure 4) was also reclassified into greened, browned and no change classes. The testing points
were then compared to the reclassified raster and accuracy measures including overall, producer’s,
and user’s accuracies were calculated. The final points were locations with pixels that indicated highly
discernible change (like deforestation, reforestation etc.).

It was challenging to evaluate sequentially monitored vegetation change since it was not possible
to gather testing points due to many temporal gaps in images in Google Earth Pro. In most instances,
one can rarely find images for successive years, thus making it difficult to validate year-to-year
change results. Since the bfast algorithm detects even subtle changes in vegetation greenness,
changes could not be discerned with high confidence and therefore calculating accuracy assessment
statistics would be misleading due to inconsistencies in testing data [73]. As such, these results
were only visually and qualitatively assessed, and a general trend of change in the pixels was
interpreted rather than year-to-year change. Evaluating such time series results has been found to
be challenging previously [37,74]. In this study, inferences drawn from the field interviews were also
qualitatively incorporated in this exercise to explain some of the trends detectable in both trend and
breakpoint analyses.

4. Results

This study highlights and characterizes, using the Mann–Kendall, Sen’s slope and bfast algorithms,
recent vegetation greening and browning trends and patterns in the MEE at multiple time scales.
The results highlight portions of the MEE that experienced persistent and significant changes in
vegetation greenness, as indicated by changing NDVI. The results from similar analyses of precipitation
TS are also presented and, together, attempt to disentangle nature- from human-driven changes
observed over the MEE landscape.

4.1. Trend Analysis Results

4.1.1. Persistent Vegetation Greening and Browning in the MEE

Greening (browning) was defined as any significant increase (decrease) in NDVI as shown by either
Kendall τ (Mann–Kendall and Sen’s slope) or the magnitude of change (bfast). The results indicate
various greening and browning patterns during the growing season (Figure 4) and near-half month
(Figure 5) periods. During the growing season, greenness significantly increased in approximately
27% (3400 km2) of the study area. Here, NDVI increased at rates up to 0.025 per year. These locations
were concentrated mostly within croplands, grasslands, and savanna (Figure 1). Significant browning
was also evident, with NDVI in more than 1400 km2 (about 11% of the total area) decreasing by
up to 0.035 per year over the analysis period. These areas were mostly located in the southwestern
part of the MEE in Uganda. This location includes the Namatala wetland, which has experienced
intensive conversion to agriculture and settlement in the past years [75]. Browning was also evident
in other locations around the Mount Elgon ecotone and elsewhere in the MEE. Based on our visual
assessment, most of these corresponded to areas where deforestation occurred over the analysis period.
No significant trends were found in the rest of the MEE (62%, 7800 km2).

Analysis of greening and browning trends in NDVI for every 16-day period in the months of
April, May and June showed similar patterns; most browning occurred in the southwestern MEE and
greening elsewhere. Most of the changed areas experienced greening and browning at rates of up to
0.03 and -0.04, respectively. The highest proportions of land where greening occurred was found in the
month of May, especially the May h1 period, in which about 20% (2400 km2) of the MEE experienced
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significant greening (Figure 5). Greenness increased in more than 1600 km2 (13%) of the study area
during May h2. More greening was experienced in the June h2 and April h2 (9% of MEE greened
during both periods). The greatest proportion of browned areas was observed in June h1, where about
600 km2 (5%) of the MEE experienced vegetation greenness decline (Figure 5E). Most of the land within
the MEE did not experience any significant change during these 16-day periods.

Figure 4. Map of significant changed (greened and browned) locations during the growing season.
Slope values (Kendall τ), indicative of magnitude of change per time step, are shown here. White pixels
indicate no significant change.

Figure 5. Cont.
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Figure 5. (A–F) Greening and browning trends in the Normalized Difference Vegetation Index (NDVI)
for every 16-day period in the months of April, May and June for 18 years (2001–2018).

4.1.2. Precipitation Variability in the MEE

The test for monotonic trends in precipitation revealed various patterns of consistently increasing
(wetting) and decreasing (drying) precipitation within the MEE (Figure 6). Most of the areas experienced
increased precipitation over the years and only negligible proportions of the study area became drier.
The greatest proportions of land during which consistently wetter conditions prevailed include
1999–2018, 1986–2018 and 2001–2018 (82%, 58% and 38%, respectively). The areas experiencing change
covered approximately 10,300, 7200 and 4800 km2, respectively. These periods also showed the greatest
magnitude of change in precipitation amount. Here, precipitation increased by at least 13, 4, and 5 mm
per year for 1999–2018, 1986–2018 and 2001–2018 periods. In addition, about 27% of the MEE also
experienced wetter conditions during 2008–2018.

There were very small portions of the MEE with wetter conditions during the earlier years in
the analysis; 1.61% of land (200 km2) recorded wetter conditions in 1986–1996 while there was no
significant increase in precipitation during the 1986–2005 and 1997–2007 periods. Consistently drier
conditions were observed in two time periods (1986–1996 and 1986–2005). However, only negligible
proportions of land (up to about 2%) experienced this change, although at substantial magnitudes of
up to 9 mm per year. Different spatial patterns existed from 2000; significantly increasing precipitation
in 2008–2018 was observed mostly on the Ugandan side, and the mountain forest and wetland reserves
seemed to be excluded (Figure 6B). In 2001–2018, the changed pixels were mostly found within the
mountain area, in the north and some areas in the west (Figure 6E). On the other hand, areas in the
northeastern portion of the study area did not experience changes in precipitation during the 1986–2018
period (Figure 6F). Lastly, the 1999–2018 period had significant increases in total seasonal precipitation
with an exception of a few eastern and southeastern portions of the MEE (Figure 6D). Overall, there was
an increase in precipitation for most areas in the study area, with an increasing magnitude of change,
especially in the post-2000 era.
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Figure 6. (A–F) Maps of precipitation change for each analyzed time period.

The trend analysis for each dekad in the growing season found that, based on rates of change, the
2008–2018 period recorded the highest change in precipitation in April d1 and May d1, at rates of up to
13 mm per yearly dekad, see Figure 7). Areas where this change was experienced were located mostly
in western MEE. An increase in precipitation was also recorded in April d2 in 2001–2018, June d3 in
1986–1996 and June d3 in 2008–2018. Negative trends in MEE precipitation were also observed in some
dekads, mostly in 1986–2005. During this period, precipitation decreased in April d1, May d2 and
June d1, at the rate of up to 3 mm per annual dekad.

Based on the proportions of land with significant change in precipitation, the study found that
most of MEE precipitation significantly changed during May d1 in 1986–2018 (90%, 11,300 km2) and
May d1 in 1999–2018 (43%, 5400 km2, Figure 8). From these results, some patterns are clear. For the
months of May and June, annual dekad precipitation increased significantly for all time periods,
although at varying rates and proportions. Precipitation in most of the MEE was more stable in the
earlier years in the study (as in 1986–1996) or generally depicted significant and consistently drier
conditions (as in 1986–2005). Based on these results and those in Figure 6 above, it was necessary
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to conduct a breakpoint analysis to provide a better characterization of any specific spatio-temporal
breaks in precipitation and greenness trends.

Figure 7. (A–C) Significantly changed precipitation for dekads in the period 2008 to 2018.

Figure 8. (A–E) Significantly changed precipitation for dekads in the period 1999 to 2018.

4.2. Breakpoint Analysis Results: bfast

While breakpoint analysis was performed for both 1986–2018 and 2001–2018 precipitation TS,
no significant breaks were found in the former. Therefore, results from 2001–2018 are presented in
this study.

4.2.1. MEE Precipitation

The breakpoint analysis in bfast revealed no significant breaks in MEE average mean total
monthly precipitation. However, breakpoints monitored for each pixel from January 2005 revealed
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very interesting patterns. In most configurations, the analysis revealed significant breakpoints in
2006 and 2007 for most of the MEE. To reduce the influence of post-change detection observations on
change magnitude, the same analysis was performed for the period 2001–2008, with 2001–2004 set
as the historical period. Therefore, change maps and statistics provided are based on this adjusted
analysis. Precipitation changed significantly in the two years, with about 9800 km2 (66% of the
area) and 4800 km2 (32%) of the MEE experiencing wetter conditions in 2006 and 2007, respectively
(Figure 9). Most of the breakpoints in 2006 were detected in the months of July–October, while a great
proportion of changes in 2007 were detected in March and April. Similar wetter conditions were
detected in some locations in the months of May and June for both years. No drier conditions were
detected. The magnitude of precipitation change ranged from approximately 10 to 53 mm during the
monitored period (Figure 10A) and the bfast models used could explain up to 70% of the variance
in the precipitation breakpoints (Figure 10B). Precipitation was also monitored sequentially for the
period 2005–2018 and no breakpoints were detected except for a few pixels in 2005–2007.

Figure 9. (A,B) Months when major breaks were detected in the precipitation time series (2001–2008)
when the period 2005–2008 was monitored.

Figure 10. (A,B) Adjusted R2 (greater than 0.5) and magnitude of change in the precipitation time
series (2001–2008) using 2005–2008 as the monitoring period.
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4.2.2. MEE Greenness

The analysis of breakpoints revealed that some significant breaks existed in the NDVI time series for
each year (2005–2018). Having been sequentially monitored, the results include, for each monitored year,
months when the breakpoints were observed, the magnitude of change at the breakpoints, the length
of historical data used and adjusted R2. In this analysis, only highly statistically significant changes
(p < 0.05) are reported. This decision was based on two reasons: (i.) There were no ground data for
validating results from sequentially monitored bfast. To ensure that only accurate results are reported,
breakpoints from models with less than 50% adjusted R2 were excluded. Thus, only breakpoints from
models with average to high explanatory power were reported. This 50% threshold has been used
elsewhere by Landmann and Dubovyk [6]. (ii.) Vegetation greenness in the MEE showed significant
interannual variability. As such, to ensure a long-enough historical period used by ‘bfastSpatial’,
the study excluded any breakpoints from models using a historical period of less than two years.

The ‘bfastSpatial’ model was able to detect changes in vegetation greenness, especially in the
grasslands of the northeastern MEE (Figures 1 and 11). The observed changes could be due to both
natural factors (such as variability in precipitation) and/or human activities (for example, clearing
of land for agriculture and settlement, deforestation for charcoal burning and construction etc.).
The maximum magnitude of changes ranged from −0.24 and 0.21, thus indicating only subtle changes
in the MEE vegetation. The breakpoints were detected in each of the years, but most of them were
observed in 2013, 2007 and 2010 (greening) and 2009 and 2017 (browning), as shown in Figure 11.
Overall, there were more areas where significant greening trends were detected compared to browning,
with about 17% of the MEE (about 2500 km2) and 10% (about 1500 km2) showing greening and
browning, respectively, over the monitoring period. These represent annual greening and browning
rates of about 1.2% and 0.7%, respectively.

Figure 11. Cont.
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Figure 11. Greening and browning in the MEE. The results from bfastSpatial using NDVI time series
(2001–2018) while sequentially monitoring each year in 2005–2018. These maps show magnitudes of
change for pixels with significant breakpoints.

Based on the yearly changes, differentiated greening and browning patterns were observed during
the monitoring period. Cumulatively, the greatest proportion of land with changed greenness was in
2013 in which significant breakpoints were observed in approximately 13% of the MEE (approximately
1850 km2). This was followed by 2009 (1350 km2), 2007 (1200 km2) and 2010 (650 km2) (Figure 12).
For 2013, 2010 and 2007, the majority (over 95%) of the changed locations experienced greening.
The year 2009 recorded browning in over 99% of the changed locations.

Figure 12. Greening and browning in the MEE. The results from bfastSpatial using NDVI time series
(2001–2018) while sequentially monitoring each year in 2005–2018. The graphs show the total area of
land that experienced greening and browning for each monitored year.
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4.2.3. MEE Greenness vs Precipitation

There was an increase in precipitation in 2006 compared to previous years (Figure 13).
There followed a steady decrease in 2007–2009 and finally an increase in 2010. Similar changes
were observed in greenness during the five years. First, there was greening at most breakpoints in 2007
following the significant wetting in 2006. Significant browning followed, most of which occurred in
2009. This was also observable in an aspatial bfast breakpoint analysis performed on MEE mean NDVI,
in which a sudden increase in NDVI was observed towards the end of 2006, followed by a consistently
reducing trend until 2009/2010, in which another sudden increase was found (Figure 14). No significant
breakpoints were found from a similar analysis using mean MEE precipitation. However, results from
‘bfastSpatial’ indicate that most of the MEE had very significant increases in precipitation in the second
half of 2006 and the first half of 2007. Therefore, the corresponding changes in vegetation greenness
can be attributed to this change in precipitation.

Figure 13. Violin plot of average total annual precipitation in the MEE. The red box highlights the
period 2006–2010.

The significant and extensive browning observable mostly in 2009 (Figure 11) may be explained
in terms of vegetation regaining its ‘normal’ greenness levels following sudden greening due to
an above-normal precipitation. However, no significant breaks were found in precipitation around
2013, the year with the highest proportion of land with detected change in vegetation greenness.
Thus, such browning and greening trends can be explained with regards to other factors, including
temperature and anthropogenic activities that may have altered vegetation greenness during the
monitoring period. The ‘bfastSpatial’ model did not find any significant breakpoints, in precipitation
TS, in 2012. This may be due to the unstable historical data prior to the monitoring period. However,
the violin plot (Figure 13) indicates that this year had some of the highest precipitation recordings.
As such, there is a high chance that the greening following in 2013 was influenced by this increase
in precipitation.

A visual inspection of these results in Google Earth Pro indicates that the subtle changes are
indicative of various LULC changes. There was evidence of human settlement being introduced into
the grasslands in the northeastern MEE. Information gathered from the field corroborates this finding
and further explains the implications for landscape greenness. Inhabited by nomadic pastoralist
communities, this part of the MEE is susceptible to degradation, especially when these communities
move, driven by rainfall patterns, to settle within the grasslands. Based on fieldwork and data from
Google Earth Pro, reduced natural vegetation and tree density were evident in these locations. In other
instances, the new inhabitants converted natural vegetation to agriculture and, although this would
result in environmental degradation, some planted crops were greener than the natural vegetation,
and, therefore, these areas were shown to exhibit greening trends. In other locations outside of the
grasslands, visible greening trends were indicative of some afforestation practices. Data from the field
revealed that this kind of greening was driven by the cultivation of evergreen early maturing blue
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gum (Eucalyptus globulus) tree species, sometimes together with and other times in the place of the
maize crop. This was especially common in the eastern and southeastern parts of the domain and
parts of Uganda.

Figure 14. bfast mean 16-day NDVI time series decomposition (2001–2018). Breakpoints in trend were
found between 2006 and 2010.

4.3. Accuracy Assessment

Validation of Man-Kendall and Sen’s slope results revealed an overall accuracy of 98.04% and
user’s accuracies of 100%, 98% and 96.2% for browned, greened, and unchanged locations, respectively
(Table 2). Producer’s accuracies of 98% (for both browned and greened locations) and 98.1% (no change)
were also obtained. The visual inspection of bfast results using Google Earth Pro also revealed that
most of the detected subtle changes occurred. However, no more detailed information like year of
change could be discerned due to the lack of available high-resolution imagery.

Table 2. Mann–Kendall and Sen’s slope accuracy assessment statistics.

Browned Greened No Change User’s Accuracy

Browned 50 0 0 100
Greened 0 49 1 98

No change 1 1 51 96.2
Producer’s
Accuracy 98 98 98.1

Overall Accuracy 98.04

5. Discussion

5.1. Precipitation and Vegetation Change in the MEE

Climate change continues to affect economies in most developing nations, especially those relying
heavily on natural processes for their livelihoods. Agriculture remains the backbone of many of
these nations [76–82], yet agriculture’s vulnerability to climate change effects cannot be contested.
Climate-related natural hazards, including extensive flooding, extended droughts [83], landslides [28]
among others, have significantly impacted agricultural production and endangered lives. The frequency
of these events shows an increasing trend [84,85], thus trapping many agriculture-dependent
communities in an unending struggle for survival. Therefore, existing food insecurity in these
developing nations can be attributed to their overreliance on rainfed agriculture [83]. Moreover,
the high population growth and densities in these nations and elsewhere have translated into need for
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more agricultural land [28]. Coupled with political interference and corruption among forest park
and reserve staff, this need for more land has resulted in forest encroachment and deforestation as
ecologically fragile land is cleared for agriculture and settlement [28–32]. Therefore, understanding the
major drivers of landscape change is an important first step to inform better decisions to simultaneously
conserve the natural environment and improve the livelihoods dependent on it. First, being able to
separate nature- from human-induced landscape changes would be valuable in this endeavor.

Changes in the landscape occur at varying rates and magnitudes across space and time, from very
subtle tree damages to forest clearings [49]. In this study, two major forms of landscape change—
browning (areas of declining vegetation) and greening (areas of increasing vegetation) [12]—were
studied. The results show that MEE greenness exhibited substantial variability, and some form of
the greening and browning change was recorded each year. As expected, these changes varied by
scale, with the highest proportions of greened and browned locations observed over the growing
season rather than any of the individual 16-day periods. Importantly, there was a lot of activity
in areas bordering the mountain forest, as expected. Clearly, both greening and browning trends
were observable, particularly on the Kenya side. Significant deforestation occurred as a result of
encroaching fertile land on the high slopes of the mountain, for agriculture and settlement (examples
in Figure 15). This finding has been reported in previous studies [27,28]. The Shamba system, thought
of as a win-win arrangement, enabled local communities to farm in protected areas while tending to
the growing trees in their early stages of growth [27]. This was a government effort originally meant
to convert native to plantation forests and later to replant trees on harvested forest land. However,
the Shamba system farms overlap with plantation forest and bamboo vegetation thus making it more
difficult to conclusively identify, characterize and quantify the nature and magnitude of LULC change,
especially by the use of traditional classification and change detection methods [27]. The significant and
consistent browning in the southwestern MEE are attributed to the conversion of the Namatala wetland
to agriculture (mostly paddy rice farming) and settlement (due to the growth of Mbale town) [75].
Since the early 2000s, 80–90% of this wetland has been converted. The wetland area is an Important
Bird Area (IBA) [86] and therefore the reported LULC conversion caused many nature–human and
human–human conflicts, including, respectively, bird poisoning and competition among people to
own and utilize the wetland.

Disentangling nature- from human-induced vegetation change is an important yet complex task.
In this study, patterns of change in precipitation varied with the TS duration (33-, 11-, 20- and 18-years)
and resolution (dekad, seasonal). Previous studies indicated that precipitation in the area exhibited
significant temporal variability, with both positive [63] and negative [80] trends observed over time.
It can be inferred that precipitation had changed more (increased) over the period after 2000 than earlier.
This implies that some of the vegetation greening and browning should be linked to this MEE wetting.
This is true for the period 2006–2010, where bfast reveals that greening and browning events in the
MEE follow significant wetting and drying events. However, a visual interpretation of Mann–Kendall
analysis maps for both MODIS NDVI and CHIRPS precipitation did not show much similarity. Besides,
bfast did not reveal any breakpoints in precipitation around 2013, the year when most breakpoints in
greenness were detected. While this may be a fault in the bfast model used (because of, for instance,
instability in historical data used), precipitation alone may not be a reliable predictor of vegetation
change [49]. Davenport and Nichols [22] concluded that the NDVI–precipitation relationship varies
both spatially and temporally, is not linear, generally exhibits a three-month lag, and depends on
underlying LULC types. Therefore, it is likely that these complex relationships were not well revealed
in both analyses in this study. Besides, the observed greening and browning patterns may be driven by
other climate factors (such as temperature), which were not examined in this study, due in part to data
unavailability for the MEE. Moreover, the spatial scale mismatch between the CHIRPS and MODIS
data make more quantitative comparisons challenging.
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Figure 15. (A–D) Some of the greened and browned areas identified by Mann–Kendall and Sen’s slope.
Images (A–C) indicate the conversion of natural vegetation (mostly forest) to cropland and settlement.
Image (D) indicates afforestation. Source: Google Earth Pro [67].

Visual inspections of the results from both analyses revealed the applicability of Mann–Kendall
and bfast methods in detecting changes in vegetation greenness. Most people in the MEE are small-scale
farmers, owning sometimes less than an acre (0.4 hectares) of land. This represents less than 10 percent
of the pixel size used (250 by 250-meter MODIS), meaning that some subtle land conversions were
missed. The choice to use these data was necessitated by the frequent availability of MODIS NDVI
data. The ability of Mann–Kendall and bfast in delineating areas of change in the MEE using this
coarse imagery is important, as free finer RS imagery like Landsat is limited by both cloud cover across
tropical regions and their coarse temporal resolutions. Looking forward, combining Sentinel-2 and
Landsat imagery may help address this issue, but this will not resolve the problem for historical studies
like this one.

The use of Mann–Kendall and bfast algorithms proved to be a valuable integration. Mann–Kendall
performed well in mapping locations that had experienced significant change in the entire TS (2001–2018).
Consistently greened and browned locations were mapped with high confidence (95% significance
level) and similar patterns existed for both 16-day and average growing season periods: significant
and consistent browning in southwestern MEE and greening elsewhere. The best and most accurate
results were obtained using average growing season NDVI TS. Here, browned locations (especially
around mountain boundaries and southwestern MEE) and greening elsewhere were clearly demarcated.
This indicates that the growing season period, rather than the shorter 16-day period, is the best temporal
scale for monitoring vegetation change in the MEE. bfast on the other hand performed well in mapping
changed greenness locations for sequentially monitored periods from 2005 to 2018. This part of the
analysis revealed only subtle changes in vegetation greenness in most locations, indicative of vegetation
degradation rather than deforestation [70]. Importantly, areas with breakpoints across multiple years
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were effectively identified, a finding that would likely be omitted if using traditional post-classification
change detection methods. These findings demonstrate that the process of vegetation greening and
browning can be studied more thoroughly by fusing these two methods. Using Mann–Kendall and
Sen’s Slope, one can assess and quantify monotonic trends in their TS to get the general picture in the
series. This can be complimented with an assessment of the temporal occurrence of significant breaks
in the series using bfast. Using this integrated approach, vegetation greening and browning can be
fully characterized and understood to provide more information for better decision making.

5.2. Sources of Uncertainty

Due to a lack of ground precipitation measurements, the present study did not validate the
CHIRPS data over the MEE. The GHCN data [87] would potentially be used, but only one data point
existed in the study area and was therefore deemed insufficient for this task. While this is a potential
source of uncertainty, these data have been used extensively in similar studies. Moreover, CHIRPS
data are based on ground station data since they are created through “smart interpolation” procedures
that incorporate both satellite information and gauge data [53] thus making daily CHIRPS imprecise,
and reliable only at dekad or higher aggregations. Validation of bfast results was also not possible due
to a similar lack of data. Frequent, high-resolution imagery was not freely available to download and
process, and the study relied on imagery from Google Earth Pro which had a lot of spatial and temporal
gaps. While no accuracy statistics were calculated for these results, the results were interpreted based
in part on data collected from the MEE field study.

6. Conclusions

The MEE of eastern Uganda and western Kenya was found to exhibit significant variability
in vegetation dynamics and precipitation regimes. This variability was attributed to the existing
LULC orientation especially in eastern MEE and climate change and variability. As such, it is
highly probable that analysis of only a few images to ascertain MEE landscape change would yield
inconsistent results. In this study, greening and browning in the MEE was examined using both
TS trend and breakpoint analysis methods. The MEE had experienced significant and persistent
greening and browning at different time scales and this change was attributed to both natural factors
(including changing precipitation) and anthropogenic factors (especially the vegetation-to-cropland
conversion). The southwestern MEE had consistently browned due to the conversion of the Namatala
swamp to paddy rice farming and settlement. A lot of activity was also observed around the
mountain forest boundary as people encroached and converted the forest LULC to agriculture and
settlement. There were breakpoints in the vegetation greenness TS, particularly in the savanna and
grassland land covers in northeastern MEE. The breakpoints were detected in each of the monitored
years (2005–2018), but most of them were observed in 2013, 2007 and 2010 (greening) and 2009
and 2017 (browning). The study also concluded that MEE precipitation had significantly changed
(increased) in the post-2000 era. More specifically, total precipitation significantly increased in 2006
and 2009–2010 with a consistently decreasing trend in between. We therefore concluded that these
precipitation changes influenced significant greening and browning patterns observed in the same
period. The greenness–precipitation relationship was weak in other periods as greening and browning
changes were not strongly influenced by changing precipitation. This may be attributed to the complex
nature of the MEE landscape and/or the spatial and temporal scale mismatch between MODIS NDVI
and CHIRPS precipitation data. The integration of Mann–Kendall, Sen’s slope and bfast proved useful
in comprehensively characterizing recent changes in vegetation greenness within the MEE. Having
a comprehensive description of vegetation change is an important first step, especially for such a
variable landscape, to effect policy changes aimed at simultaneously conserving the environment and
improving livelihoods that are dependent on it.
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Abstract: In Ethiopia land degradation through soil erosion is of major concern. Land degradation
mainly results from heavy rainfall events and droughts and is associated with a loss of vegetation
and a reduction in soil fertility. To counteract land degradation in Ethiopia, initiatives such as the
Sustainable Land Management Programme (SLMP) have been implemented. As vegetation condition
is a key indicator of land degradation, this study used satellite remote sensing spatiotemporal trend
analysis to examine patterns of vegetation between 2002 and 2018 in degraded land areas and studied
the associated climate-related and human-induced factors, potentially through interventions of the
SLMP. Due to the heterogeneity of the landscapes of the highlands of the Ethiopian Plateau and the
small spatial scale at which human-induced changes take place, this study explored the value of using
30 m resolution Landsat data as the basis for time series analysis. The analysis combined Landsat
derived Normalised Difference Vegetation Index (NDVI) data with Climate Hazards group Infrared
Precipitation with Stations (CHIRPS) derived rainfall estimates and used Theil-Sen regression,
Mann-Kendall trend test and LandTrendr to detect changes in NDVI, rainfall and rain-use efficiency.
Ordinary Least Squares (OLS) regression analysis was used to relate changes in vegetation directly to
SLMP infrastructure. The key findings of the study are a general trend shift from browning between
2002 and 2010 to greening between 2011 and 2018 along with an overall greening trend between
2002 and 2018. Significant improvements in vegetation condition due to human interventions were
found only at a small scale, mainly on degraded hillside locations, along streams or in areas affected
by gully erosion. Visual inspections (based on Google Earth) and OLS regression results provide
evidence that these can partly be attributed to SLMP interventions. Even from the use of detailed
Landsat time series analysis, this study underlines the challenge and limitations to remotely sensed
detection of changes in vegetation condition caused by land management interventions aiming at
countering land degradation.

Keywords: developing countries; Google Earth Engine; land degradation; Landsat time series
analysis; semi-arid areas; sustainable land management programmes

1. Introduction

Degradation of land and soil affects approximately one third of the global land area
that is used for agriculture [1], involving livelihoods of more than 1.5 million people [2].
Land degradation is of particular concern in developing countries, as this issue poses a
threat to food security for a large number of poor people and to local economic activities [3].
In the United Nation’s Convention to Combat Desertification (UNCCD) (art. 1f) land
degradation is defined as “reduction or loss, in arid, semi-arid and dry sub-humid areas,
of the biological or economic productivity and complexity of rainfed cropland, irrigated
cropland, or range, pasture, forest and woodlands resulting from land uses or from a
process or combination of processes, including processes arising from human activities
and habitation patterns”. Among those processes are soil erosion or long-term loss of
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natural vegetation [4]. In Ethiopia, land degradation results mainly from soil erosion by
water [5] and occurs particularly in the Ethiopian highlands which are inhabited by 88%
of the national population, cover 60% of the national livestock resources and encompass
90% of the area suitable for agriculture [6]. The country’s natural physical conditions are
one of the underlying drivers of land degradation. Ethiopia has always been prone to soil
erosion and droughts due to high rainfall variability, which causes reduced vegetation
cover in dry years and soil loss in subsequent wet years [7]. In Ethiopia’s highlands, soil
erosion is facilitated by steep terrain with slopes in excess of 30% [5]. Moreover, population
pressure, increasing livestock (and with it deforestation), overgrazing (due to uncontrolled
free grazing) and the expansion of agricultural fields into marginal land are underlying
drivers of soil erosion [5,8]. The shortage of fertile cropland led to a shifting of cattle and
livestock grazing activities to areas that are specifically vulnerable to soil erosion such as
deforested, ecologically fragile hillsides with steep slopes. Gully formation, the removal
of soil along drainage lines (channels) by surface water runoff, is one of the apparent
consequences of soil erosion in Ethiopia [8].

The restoration of degraded land and soil, the implementation of sustainable land
management (SLM) and resilient agricultural practices are targeted in the United Nation’s
Sustainable Development Goals (SDG). To address in particular target 15.3 which aims to
combat desertification and restore degraded and soil, UNCCD adopted the Land Degrada-
tion Neutrality (LDN) Target Setting Programme. Achieving LDN will also contribute to
reaching other SDGs including those on poverty reduction, food and water [9]. To counter
desertification and land degradation UNCCD and affected developing countries have set
voluntary targets and implemented National Action Programmes that are supported by
international cooperation, including financial and technical resources [4]. In this context,
developing countries have implemented land management and land restoration projects on
both national and local levels in collaboration with multilateral and bilateral development
partners. To rehabilitate degraded landscapes and scale up SLM in Ethiopia, the Ethiopian
government launched the Sustainable Land Management Programme (SLMP) in 2009
in collaboration with a range of international donors including the World Bank and the
German Development Bank (KfW) [10]. The impact of Sustainable Land Management
(SLM) in Ethiopia has been studied through runoff and soil loss measurements [11] and
analyses within the economics field, for instance by examining household data to assess the
effect on crop yields [12]. A study by Ali et al. used earth observation derived vegetation
indices to estimate the impact of SLM in a single watershed in Ethiopia [13].

Monitoring of land surface dynamics, such as land degradation (‘browning’) or land
recovery (‘greening’) is widely done by implementing earth observation time series analysis.
A plethora of studies have examined long term trends by applying ordinary least square
(OLS) linear regression models, e.g., regressing vegetation indices with time, based on
high temporal resolution data such as from Advanced Very High Resolution Radiometer
onboard National Oceanic and Atmospheric Administration (AVHRR-NOAA) or from
Moderate Resolution Imaging Spectroradiometer (MODIS). For the Sahel, linear trends of
yearly NDVI anomalies derived from AVHRR [14] or linear trends of the seasonal NDVI
amplitude and integral [15] have been examined to monitor vegetation. MODIS NDVI data
have been used to detect land degradation and regeneration processes in the Sahel [16],
Mongolia [17] and Ethiopia [18].

Studies of semi-arid areas [19–22] and of Ethiopia [23] have demonstrated a strong
relationship between rainfall and NDVI. Therefore, methods have been developed to
disentangle rainfall-related effects from human-induced effects on land degradation. The
rain-use efficiency (RUE), defined as the ratio of above-ground net primary production
(ANPP) to annual precipitation [24], has been used to detect non-precipitation related land
degradation. The basic assumption involved in the use of RUE is the existence of a constant
linear relationship between vegetation productivity (or ANPP) and precipitation in areas
where land is not affected by human-induced degradation [25]. By normalising for the effect
of interannual rainfall variability on ANPP, human-induced changes can then be singled
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out [26]. RUE has been used as a measure in several studies, e.g., of the Sahel [25,27], South
Africa [19], global drylands [2] and Northern Eurasia [26]. Furthermore, residual trend
analysis, i.e., analysing the residuals from a NDVI-rainfall regression model, was found to
be effective in disentangling the climate effects from human-induced land degradation [28,29].
In areas with steep terrain land degradation can be driven by climate effects such as
high rainfall variability. Hermans-Neumann et al. combined NPP trends, precipitation
variability and census data to identify areas in Ethiopia where high in-migration is coupled
with land degradation, proposing the latter is likely occurred due to human activities [18].

Since the opening of the Landsat archive by the United States Geological Survey
(USGS) in 2008, an increasing amount of studies that exploit medium/high resolution
data for time series analysis has been published [30,31]. In parallel, new change detec-
tion methods that not only account for linear (in this case gradual trends), but also for
abrupt occurrences by separating time series into individual segments, have been devel-
oped. Amongst those are Landsat-based detection of Trends in Disturbance and Recovery
(LandTrendr) and Breaks For Additive Seasonal and Trend (BFAST) which have been widely
used for vegetation monitoring. BFAST has for example been used to detect gradual and
abrupt changes in NDVI and rain-use efficiency [26,32–34] and water-use efficiency [35].
LandTrendr has been widely used for monitoring forest disturbances (fire or stand clearing)
and forest regrowth [36–38], forest biomass [39] and for agricultural and land abandonment
mapping [40].

The aim of this study was to temporally and spatially analyse vegetation dynamics
in degraded land areas in Ethiopia between 2002 and 2018 in relation to management
programmes implemented to counter land degradation. Due the heterogeneity of the
landscapes of the areas examined in this study and the fact that human-induced changes
are expected to take place at a small spatial scale, this study aimed at exploring the
value of using medium resolution Landsat data derived from different sensors for trend
analysis at a spatial and temporal scale compatible with the scale of SLMP interventions.
The investigated areas had gone through interventions aiming at avoiding further land
degradation and increasing vegetation cover. In this context, associated human-induced
and climate-related factors of land degradation and land recovery were examined. The
specific objectives of this study were:

1. The examination of spatiotemporal vegetation trends using Landsat time series and
to analyse their forcing mechanisms (climate-related vs. human-induced).

2. The assessment of the detectability of the impact from typical SLMP interventions on
vegetation conditions from the use of relevant remote sensing data sources available
at no costs.

2. Materials and Methods

2.1. Study Area

The study area consists of 21 major watersheds which are distributed in three different
zones of Ethiopia, in Amhara, Oromia and Tigray, and have mean altitudes between 1200
and 3100 m (Figure 1), mean slopes up to 14.4 degrees and mean annual rainfall between
approx. 600 and 1900 mm per watershed (calculations based on CHIRPS data). The
watersheds are located in semi-arid and sub-humid agro-ecological zones where temperate
to cool climate prevails and are surrounded by low-lying tropical warm to hot savannas
and semidesert regions [18,41]. They are characterised by heterogeneous landscapes,
with croplands and grasslands as the most dominant land cover and hillsides, which
have been degraded and closed for farming and grazing. Agriculture is dominated by
small-scale subsistence mixed farming systems, i.e., crop production mixed with livestock
rearing activities [41]. Crops are mainly grown during the wet period from March through
September with harvest taking place mostly in October to December [18].

The watersheds constitute intervention areas of the Sustainable Land Management
Programme, a multi-donor supported project, first implemented by the Government
of Ethiopia in 2009 and phased out in 2019. SLMP’s overall goal was to “reduce land
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degradation and improve land productivity in selected watersheds in targeted regions
in Ethiopia” [10]. It’s first component, watershed and landscape management, aimed at
reforesting and afforesting degraded communal land, increasing agricultural and livestock
productivity, reducing carbon emission, building climate resilience and increasing water
availability. To achieve these goals, activities such as hillside communal land treatment,
including the prohibition of free grazing, gully rehabilitation and cropland treatment
using biophysical measures, promoting agro-forestry and fodder production, and the
construction of water harvesting structures were supported in the watersheds [10].

The 21 major watersheds each comprise between 6 to 20 micro-watersheds (Figure 1)
with a total of 314 micro-watersheds and an average area of 7 km2. 220 micro-watersheds
(1541 km2) received SLMP support from 2011 to 2019 by KfW with the technical assistance
of the German Agency for International Coorporation (GIZ). In the following, the sup-
ported micro-watersheds are referred to as treatment areas while the remaining 94 micro-
watersheds (543 km2) that did not receive any support are referred to as control areas.

 

Figure 1. Overview map of the location of the study areas (i.e., major watersheds) and elevation.

2.2. Data

Landsat Collection 1 atmospherically corrected Surface Reflectance (SR) Tier 1 prod-
ucts were used for the period 2001–2019 including three different sensor systems: Landsat
5 Thematic Mapper (TM) for the epoch 2001–2012, Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) for the epoch 2001–2019 and Landsat 8 Operational Land Imager (OLI) for
the epoch 2013–2019. Due to the failure of the Landsat-7 ETM+ Scan Line Corrector (SLC)
in 2003, the ETM+ data are reduced by about 22% in each scene [42]. Rainfall estimates
were derived from Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
data. The product is resampled to a spatial resolution of 0.05 degrees [43]. Following Funk
et al. CHIRPS data have been largely used to examine rainfall trends and drought patterns
in Ethiopia. The dataset is affected by uncertainties due to the inverse distance weighting
function that is used for the blending procedure [43].

Polygon shapefiles for the micro-watersheds were provided by GIZ. Furthermore,
between 2012 and 2018, the GFA Consulting Group collected georeferenced location data
of soil and water conservation (SWC) measures that were implemented through SLMP to
monitor the progress in the treated micro-watersheds. These data were used to relate vege-
tation development directly to SWC measure locations. The types of measures included in
the dataset represent combinations of physical SWC constructions and biological activities
(e.g., planting). Personal communication with SWC experts and project leaders during
field visits in 2019 revealed that two types of measures included in the dataset, hillside
terraces and check dams, should have a direct impact on the surrounding vegetation cover,
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within a radius of approx. 500–1500 m. See Appendix A, Table A1 for details regarding the
purpose and the number of geolocations available in the dataset.

2.3. Methods

All remote sensing data were acquired in Google Earth Engine (GEE), a cloud-based
platform for geospatial data processing that stores a large repository of publicly available
data [44]. Data processing and analysis were conducted using Python packages such as
NumPy and Rasterio and the GEE client library (Figure 2).

Figure 2. Workflow of the overall steps of the methodology.

2.3.1. Pre-Processing

For both cloud and cloud shadow masking, the C Function of Mask (CFMask),
provided by USGS as pixel quality band as part of the Landsat products [45] was utilised.
Visual inspection showed that using only CFMask proved to be insufficient. Therefore,
clouds were additionally processed by the Google cloud score algorithm and cloud shad-
ows by the Temporal Dark Outlier Mask (TDOM) [46]. Remote sensing analyses that
integrate different sensor data require cross-calibration of the different datasets to ensure
consistency [47–49]. As OLI spectral bands widths are narrower compared to ETM/ETM+,
OLI NDVI values are on average higher [47] and it was therefore necessary to adjust OLI
to ETM/ETM+ NDVI values before temporally aggregating the data. Transformation
functions were developed using ordinary least squares (OLS) regression:

NDVIETM+ = a × NDVIOLI + b (1)

For this purpose, OLI and ETM+ NDVI images were paired based on the closest
available dates. As OLI and ETM+ share the same orbit offset by 8 days, the western
and eastern side of a sensor acquisition are overlapped by the eastern and western sides,
respectively of the other sensor [47]. In these areas where the sensor acquisitions spatially
overlap, image pairs are available with a temporal separation of only one day. To optimise
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the inter-comparison, pixels used to produce the OLS models (Figure A1) were therefore
extracted for the study area where overlap existed. To minimise problems related to chang-
ing surface states and conditions such as different crop cycle stages [47], pairing was done
during the dry season (November to February), i.e., for two seasons, 2013/14 and 2017/18,
for an area including a large range of vegetation densities (including evergreen vegetation).

NDVI has been used extensively for analysis of dryland vegetation [50] as NDVI
saturation that can occur in densely vegetated areas is rarely a concern in drylands [51].
NDVI was here used as a proxy for the vegetation condition during the period of analysis.
Annual NDVI maximum value composites (MVC) were produced based on all cloud-free
available pixels during the period August through October, which represents in the end of
the growing season. As image coverage was insufficient, a three-year (+1/−1 year) moving
maximum window was used to fill data gaps (Figure A2). Annual rainfall composites
were computed using the seasonal rainfall sum (March to September). As agriculture is
primarily rainfed and crop productivity highly dependent on rainfall (MOFED, 2002) [52],
the rain-use efficiency (RUE) was used as a proxy for assessing non-climate related changes
in vegetation conditions [25,26] inherent to the implementation of the SLMP activities to
counter land degradation. As vegetation productivity in the study area is predominantly
determined by seasonal rainfall, RUE was calculated as the ratio of the maximum NDVI,
as an approximation of ANPP, and the seasonal rainfall sum. For this purpose, the rain-
fall composites were resampled from 0.05 degrees to Landsat resolution of 30 m using
bicubic interpolation.

2.3.2. Theil-Sen Regression and Mann-Kendall (MK) Trend Test

The temporal development of NDVI was used as an indicator of land degradation
(‘browning’) and land recovery (‘greening’). Spatiotemporal patterns of NDVI and rainfall
were examined using the non-parametric Theil-Sen median slope [53] to analyse changes
in vegetation condition (climate-related vs. human-induced). The Mann–Kendall (MK)
test [54] was applied to evaluate NDVI trends at the 99% (p < 0.01) and rainfall trends at
the 95% (p < 0.05) significance level. A stricter criterion (p < 0.01) for NDVI trends was
applied due to the temporal smoothing of the Landsat-based NDVI time series. Pixel-wise
slope differences were calculated between the two periods of 2002–2010 and 2011–2018.
The split of the two periods is determined by the timing of the SLMP implementation and
length of time series.

Aggregated NDVI trends were calculated for treatment and control areas using the
median. This was done for the total study area (“regional” scale) as well as for each
major watershed that comprises both treatment and control micro-watersheds (“local”
scale). To assess the effects of treatments, i.e., SLMP interventions, the significance of the
difference in the distribution of per-pixel-NDVI trends between the two sample groups was
evaluated using the Mann-Whitney U test, which is a non-parametric test for independent
samples, non-normally distributed data and different sample sizes [55]. Spatial patterns
were assessed by inspecting trend maps with the additional use of multi-temporal Google
Earth VHR images.

In order to investigate the spatiotemporal relationship between vegetation and rainfall,
the agreement of NDVI and rainfall trend directions was computed on a pixel-basis for each
period. This method is based on a model which, following Horion et al. [26], interprets the
nature of changes in ecosystem functioning based on the combination of growing season
vegetation and rainfall trends. A decrease in growing season vegetation despite an increase
in precipitation or vice versa is likely to be caused by human activities. In contrast, trend
combinations with the same direction of change are likely to be caused by climate (see
Figure A3 for further explanation). The stronger the magnitudes of change in a given
direction, the more likely the cause attribution [26].
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2.3.3. LandTrendr

In addition to the trend analysis based on fixed time periods (Section 2.3.2), we
conducted an analysis based on the LandTrendr approach in GEE [56]. This was done to
further explore the importance of analysing land degradation and SLMP interventions at
the level of Landsat pixel resolution rather than at coarser spatial resolution (e.g., MODIS
predominantly being used for time series analysis) where subtle vegetation changes at
local scale is likely to go unnoticed. The implementation of SLMP interventions was
conducted at different times during the eight-year epoch 2011–2018 in the different micro-
watersheds. Therefore, human-induced changes through SLMP occurred presumably
within a time period shorter than eight years. Horion et al. argue that abrupt changes
in RUE can indicate significant changes in ecosystem response to precipitation through
human activities [26]. To identify trends with a shorter duration than eight years and
to obtain more information about the types and timing of the changes, LandTrendr was
applied to NDVI and RUE composites. The algorithm was used to fit a model for the period
2002–2018 with a maximum number of three segments (for the sake of simplicity) and a
confidence interval of 95% (p ≤ 0.05) determining the significance of the fitted segments.
For each significant segment, the algorithm returns the magnitude, duration and rate of
change as well as the start year in which the segment was detected, the end year and the
corresponding NDVI value defined by the identified vertices (Figure A4). The Pearson’s
correlation coefficient (r) was used to mask pixels where RUE correlated with rainfall over
the overall period 2002–2018 using a confidence interval of 95% (p < 0.05). This was done,
as the use of satellite-based RUE time series to identify non-precipitation related land
degradation/recovery is problematic for pixels where RUE remains correlated with NDVI,
as this suggests NDVI changes still to be controlled by changes in precipitation [25,57,58].

2.3.4. Effect of Soil and Water Conservation (SWC) Measures on Vegetation Trends

OLS regression was used to estimate the effect of SWC measures on vegetation trends
where the trend represents the dependent variable and the distance to the SWC points the
explanatory variable. To investigate the influence of SWC distance on the trends, buffers
were created based on the geolocations of the different SWC types and implemented based
on three different sizes: buffers with a 250 m and 500 m radius, both with a zone width
of 50 m (Figure A5), and buffers with a 1000 m radius and a zone width of 100 m. Within
each zone the trend results were aggregated in two ways; first, by using the median of all
Theil-Sen trends and second, by using the proportion of the significant Theil-Sen as well as
LandTrendr increases. The aggregated results were regressed against the corresponding
distance value of the zone.

3. Results

MK trend test revealed that rainfall trends were not significant in any of the sub-
periods apart from 0.3% of the study area with increasing trends in 2002–2010 (p < 0.05).
Over the entire study period 2002–2018, monotonic increasing trends were found for 17%
and decreasing trends for 1.3% of the total area. When considering all rainfall trends,
increasing trends were observed in 91% of the entire study area for the sub-period 2002–
2010, 54% for the sub-period 2011–2018 and 78% for the entire study period 2002–2018.

The increasing rainfall trends during 2002–2010 had a median annual change of
15.2 mm and occurred with mainly decreasing NDVI trends (Figure 3a). During 2011–
2018 rainfall experienced almost no or little changes (median annual change of 1.5 mm)
while NDVI was predominately increasing (Figure 3b). Over the entire study period 2002–
2018, minimal increases in rainfall with a median annual change of 4.2 mm occurred with
increases in NDVI (Figure 3c). When considering only significant rainfall trends for this
period (Figure 3d), the agreement shows a more pronounced pattern of positive significant
monotonic NDVI and rainfall increases with an annual change rate of 15.8 mm per year.
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Figure 3. Spatial agreement of all annual rainfall trends and significant NDVI trends (p < 0.01) as density plots for the total
study area for (a) the period 2002–2010, (b) 2011–2018 and (c) 2002–2018, and for (d) 2002–2018 with significant rainfall
trends (p < 0.05).

3.1. Treatment and Control Areas
3.1.1. Theil-Sen Trends

In the period 2002–2010 the median trend in NDVI was negative with an annual
decrease of −0.0065, while in 2011–2018 NDVI annually increased by 0.009 (Figure 4a). The
proportion of pixels where significant NDVI trends occurred in both periods accounted for
2.6% (treatment) and 2.8% (control). The distributions of the trend differences of these pixels
are left-skewed for both treatment and control areas and have a median of 0.019 (treatment)
and 0.018 (control) (Figure 4b).

The most common trend was a shift from negative to positive (Figure 4c). The propor-
tion of significant negative-positive trends was slightly higher for treatment areas (1.84%)
than for control areas (1.79%) (Figure 4c). The overall trends (all trend types included),
the negative-positive trends, and trends with the same sign in both sub-periods all had a
positive median trend (Figure 4d). The median trends were similar for both sample groups.

The results of the individual watersheds reveal that cases where treatment areas have
larger trends than control areas dominated (Table A2). When treatment and control micro-
watersheds from all major watersheds were treated as two large sample groups, the overall
NDVI trend was larger for treatment (0.019) than for control (0.0183).

Figure 4. Theil-Sen NDVI trends. (a) Distribution of statistically significant (p < 0.01) trends for both sub-periods for the
total study area; (b) Distribution of NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010) for treatment and
control areas; (c) Proportion of each type of change for all significant pixels and (d) Median of NDVI trend differences (slope
of 2011–2018 minus slope of 2002–2010) for the overall trend and for each type of change constellation.

3.1.2. LandTrendr

A LandTrendr-based approach was used to refine the Theil-Sen trend analysis that
was based on two fixed time periods defined by the major scheme of SLMP support.
LandTrendr detected for 46% of both treatment and control areas statistically significant
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(p ≤ 0.05) changes in NDVI for the entire study period 2002–2018, that were subsequently
analysed as a function of change types. For 92% of the study area pixels showed negative
correlation of RUE and rainfall and were therefore not included in the change type analysis
(Section 2.3.3). The remaining significant RUE changes (that were not correlated with
rainfall changes) accounted for 2% of treatment and 3% of control areas.

The most frequent NDVI change type (amongst the 46% of statistically significant
pixels) consisted of one decreasing followed by an increasing trend for 29 and 28% of all
significant pixels in treatment and control areas, respectively (Figure 5a). The second most
frequent change type were two consecutive increasing trends (24 and 26%, respectively).
For RUE, the most common trends were of the same type as for NDVI, however with a
larger share of two consecutive increasing trends (44 and 42%, respectively).

To examine the timing of detected trend segments for treatment and control areas, the
onset of the decreasing and increasing trend segments with the greatest rate were extracted
from each pixel (i.e., from each trend sequence) and aggregated in two groups, respectively.
Generally, treatment and control areas showed the same pattern in the timing of trends
without any pronounced differences. For both sample groups, the timing of the onset of
approx. 90% of both NDVI and RUE decreasing trends was in 2002 (Figure 5b). In contrast,
only approx. 40% of the NDVI increasing trends for both groups occurred in this year. For
RUE increasing trends the proportions amounted to 53% (treatment) and 51% (control).
The remaining NDVI and RUE recoveries occurred proportionally more equally distributed
over the years after 2002 (2–10% in the remaining years of the time series).

 
Figure 5. LandTrendr results for treatment and control areas, respectively; (a) Change types detected by LandTrendr with
“+” indicating increasing and “-“decreasing trends. As the change types resulted from fitting either one, two or three
segments into the time series, different combinations of trends existed. For example, while “-“ indicates a decreasing trend
over the entire study period, “- + +” indicates one decreasing trend followed by two increasing trends; (b) Timing of NDVI
and RUE trends.

3.2. Visual Inspections of Trends Using Google Earth

Google Earth imagery was used to inspect all 21 major watersheds and showed that
the limited amount of significant RUE trends to a wide extent occurred in areas where
tree plantations have been established extensively. The watershed of Banja was selected as
an exemplary case of illustration (Figure 6) to link interventions on the ground with the
trends captured by the remote sensing time series data. Here, the positive trend differences
represent pixels where trees have been planted between 2011 and 2018 and negative trend
differences were mostly found in croplands, while grazing land showed no change in
NDVI (Figure 6a). NDVI recoveries (an increasing trend segment) detected by LandTrendr
were observed to be more dispersed in time (Figure 6c) and space (Figure 6d) as compared
the RUE (Figure 6e). The higher uniformity of the RUE results at the pixel level can be
explained by the coarser resolution of the CHIRPS rainfall data used to compute RUE time
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series at the scale of Landsat NDVI data. The strongest changes in RUE were therefore more
likely to be found in the same year for different pixels as compared to changes in NDVI.
RUE recoveries were mostly detected between 2013 and 2014 (Figure 6c) and represent
pixels where trees have been grown on former cropland or grazing land (Figure 6e). This is
exemplified in the time series (Figure 6b) at the point of interest (POI) where LandTrendr
detected the strongest NDVI recovery in 2012 that continued until 2017 with a rate of 0.07
per year. The rather high NDVI and low rainfall in 2015 led to high RUE in this year;
hence the detection of a positive RUE trend in 2013 with a rate of 0.09 per year. The VHR
images show that while agricultural fields and grazing lands were largely unterraced in
2005 (Figure 6f), benches of terraces were fully established in 2013 (Figure 6g). From this
year on, tree cover expanded until 2020 (Figure 6h).

 
Figure 6. Watershed of Banja. (a) NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010); (b) Time series at
the POI; (c) Timing of the largest NDVI and RUE recoveries in the AOI; (d) Spatial distribution of the timing of the largest
NDVI recoveries and of (e) RUE recoveries in the AOI; VHR images showing (f) mainly unterraced hillside in 2005, (g) the
establishment of terraces in 2013 and (h) expanded tree cover area in 2020.

Furthermore, an inspection of Google Earth imagery from the watershed Yilmana
Densa (Figure 7a) revealed that positive vegetation trends occurred mainly outside agri-
cultural fields. Generally, the timing of NDVI recoveries in this watershed was equally
distributed over the entire study period while RUE recoveries occurred mainly in 2009,
2011 and 2013 (Figure 7b). Recovery trends detected after 2010 were mainly detected along
riverbanks, on steep hillsides, and on land affected by gully erosion. This is shown in area I
(Figure 7c) and area II (Figure 7d) which accordingly showed positive trend differences that
were associated with a trend shift of significant monotonic negative-positive trends. The
two VHR images of the river in area I show that this development is related to a decline in
eroded soil from 2013 to 2016. For area II, the VHR images show that while the hillside
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was largely covered by degraded soil in 2014, it was revegetated in 2019 which explains
the positive NDVI trends. Furthermore, area III (Figure 7e), characterised by degraded
land and affected by gully formation, increased in vegetation cover between 2005 and 2019
which is reflected by the positive NDVI trend differences. This result also coincides with
the evaluation through the performance assessment by GFA Consulting Group in which
the area of the corresponding micro-watershed was described as “reclaimed land from
gully erosion transformed into forage production and other economic activities” (personal
communication with GFA’s SLMP team leader).

Figure 7. Watershed of Yilmana Densa. (a) NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010); (b) Timing
of the largest NDVI and RUE recoveries; Zoom-in areas showing (c) a decline of eroded soil at a riverbank (area I), (d) an
increase in vegetation along a hillside (area II) and (e) an increase in vegetation in and nearby a gully (area III) with
corresponding trend patterns.

3.3. Effect of SWC Measures on Vegetation Trends

The regional regression results (results based on the available SWC data in the entire
study area) showed strong negative relationships of trends and distance particularly for
check dams. The strongest relationships were found between the distance and the median
trend differences (slope of 2011–2018 minus slope of 2002–2010) within 250 m (r = −0.97 **,
r2 = 0.94) and 500 m (r = −0.98 ***, r2 = 0.8) (Figure A6a, Table 1) as well as between the
distance and the proportion of significant increases 2011–2018 within 250 m (r = −0.97 **,
r2 = 0.93) and 500 m (r = −0.95 ***, r2 = 0.91) (Figure A6b, Table 2). For the latter type of
trends, terraces showed strong negative relationships within 500 m (r = 0.87 **, r2 = 0.76)
and 1500 m (r = 0.85 ***, r2 = 0.73) radius (Table 2). Otherwise, linear relationships within
1500 m buffers were for both SWC types predominately weak.
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Table 1. Regional OLS regression results for median trend differences (all trends).

SWC Type
Buffer Option 1 (250 m) Buffer Option 2 (500 m) Buffer Option 3 (1500 m)

Slope r r2 Slope r r2 Slope r r2

Check dams −1.7 × 10−5 −0.97 ** 0.94 −8.60 × 10−6 −0.98 *** 0.8 −4.00 × 10−7 0.23 0.05
Terraces −2.0 × 10−7 −0.02 0 −2.00 × 10−7 −0.06 0 −8.00 × 10−7 −0.58 * 0.34

Differences exist with different significance levels (* p < 0.05, ** p < 0.01, *** p < 0.001).

Table 2. Regional OLS regression results for the proportion of significant positive trends in the period 2011–2018.

SWC Type
Buffer Option 1 (250 m) Buffer Option 2 (500 m) Buffer Option 3 (1500 m)

Slope r r2 Slope r r2 Slope r r2

Check dams −0.046 −0.97 ** 0.93 −0.03 −0.95 *** 0.91 −0.007 −0.79 *** 0.63
Terraces −0.035 −0.64 0.42 −0.029 −0.87 ** 0.76 −0.010 −0.85 *** 0.73

Differences exist with different significance levels (** p < 0.01, *** p < 0.001).

The results showed stronger correlations for a few local regressions models (results of
the individual watersheds). An example is the watershed of Tahtay Koraro that experienced
increasing trends particularly along the micro-watershed borders where steep slopes exist.
Strong negative relationships of trends and the distance to both check dams and terraces
were observed. Significant increases between 2011 and 2018 clustered at the location of
two check dams and one terrace (Figure 8a). The strongest relationship was found within a
250 m radius (r2 = 0.98) with a decreasing proportion of significant trends from 74% at 50 m,
to 36% at 250 m and to 13% at 1500 m (Figure 8b). The VHR images reveal that the hillsides
were, in accordance with the SWC data, terraced in 2016 and increased in vegetation cover
up to 2019 (Figure 8c).

 
Figure 8. OLS regression of trends and the locations of SWC measures in the watershed of Tahtay Koraro. (a) Significant
NDVI trends 2011–2018 with SWC points showing the year of completion; (b) Combined regression model for all check
dams and terraces in the watershed for the proportion of significant increasing NDVI trends 2011–2018; (c) Multi-temporal
Google Earth VHR images showing the zoom-in area with an increase in vegetation cover from 2004 to 2019 and the
construction of terraces in 2016. ** p < 0.01, *** p < 0.001.
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Another example of spatial correlations of increasing NDVI trends and SWC measure
locations was observed for the watershed of Gudeyabila where the trend differences
(Figure 9a) and recovery trends detected after 2010 (Figure 9b) clustered in close proximity
to a check dam. Here, a decrease of the median NDVI from 0.015 at 50 m to 0.005 at 250 m
(r2 = 0.85) was observed (Figure 9c). The VHR images show the existence of a gully as
well as mainly unterraced hillside in 2013 (Figure 9d). The construction of the check dam,
which was completed at the gully in 2015, was accompanied by treatment through terraces
of the surrounding hillside area including grazing land and cropland.

Figure 9. OLS regression of trends at a check dam location in the watershed of Gudeyabila; (a) Trend differences (slope of
2011–2018 minus slope of 2002–2010); (b) Timing of recovery trends; (c) Regression model of the median trend difference for
the check dam location; (d) Google Earth VHR images showing mainly unterraced hillside in 2013 and the construction of
terracing in 2015. * p < 0.05, ** p < 0.01.

4. Discussion

During the entire period 2002–2018 and during the second sub-period 2011–2018, the
study area showed more pixels of NDVI increase than decrease and vice-versa during the
sub-period 2002–2010 (Figures 3 and 4a). The browning trends in the latter period coincide
with previous findings by Hermans-Neumann et al. who identified declining net primary
production between 2000 and 2009 in the highlands of Amhara and Oromia [18]. Besides
the greening trends between 2002 and 2018, several results of this study indicate a shift
from browning to greening within the same period. On the one hand, this was indicated
by the results from the Theil-Sen trend analysis with a shift from decreases to increases
in 2011 (Figure 4c), on the other hand, browning to greening was also expressed by the
LandTrendr results showing a relatively large number of the negative-positive change
types (Figure 5a). For RUE, this change type was the second most common one. The
general shift from negative to positive trends was also in agreement with the timing of
increases and decreases, as decreases occurred mainly in 2002 and increases mainly after
2010 (Figure 5b).
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14% of the study area experienced a significant increase in both NDVI and rainfall in
the overall study period 2002–2018. This spatiotemporal pattern indicates climate-related
greening [26]. In the first epoch 2002–2010, the study area presented mainly negative rates
of change in NDVI despite increasing (but not significant) rainfall trends (Figure 3a). Even
though this pattern indicates human-induced browning, evidence of this is not provided
due to the insignificance of the rainfall trends and the results rather suggest that declining
NDVI was not related to a long-term change in rainfall. Rainfall variability in North, West
and central Ethiopia increased during the period 1983 to 2012 [59]. As extreme weather
conditions pose major challenges to agricultural activities through reduced crop yields
and intensified soil erosion [59], changing intra-annual patterns are overlooked by using
seasonally summed rainfall and the results could possibly be improved by examining
trends in rainfall intra-annual variability [60].

4.1. Treatment and Control Areas

The Mann–Whitney U test results showed larger median NDVI trends between 2011
and 2018 for treatment areas than for control areas at the regional level with most local
test results (i.e., within each individual major watershed) indicating this as well (Table A2).
However, the medians differed only marginally and the significant differences in the
distributions of the per-pixel trends were not immediately apparent in the trend maps. The
significance of test results may be attributed to large sample sizes facilitating distributions
to be significant.

The LandTrendr results did not reveal any substantial differences in the types and
timing of changes between treatment and control areas (Figure 5); hence did not provide
evidence for an improved development of treatment than control areas. However, it should
be considered that this result may be tied to the applied methodology, particularly the use
of the maximum NDVI which may not fully capture effects of interventions. This may be
the case if the impact of interventions show an increase in crop yield that might be reflected
better as an increase in the integral of the phenological crop cycle curve (integrated NDVI)
or if the impact is the reduction of eroded soil in the end of the rainy season which could
lead to higher NDVI values in the end of the phenological cycle, rather than causing an
increase in maximum NDVI. Future research should, provided that the data availability
will be sufficient (e.g., Sentinel-2), therefore include seasonal metrics when examining
changes in vegetation condition related to SLM interventions.

4.2. Visual Inspections of Trends Using Google Earth

Whereas the previously discussed results based on the analysis conducted and re-
ported at the level of watersheds did not indicate strong differences in vegetation develop-
ment between treatment and control areas, closer visual examination of the trend maps
showed that human-induced land improvements can be detected from the Landsat-based
approach developed, though at localised scales rather than consistently spread through-
out entire watersheds. For a few major watersheds, particularly for Banja and Sekela in
Amahara region, the VHR images supported that RUE increases between 2012 and 2014
were due to the establishment of tree plantations (Figure 6). Following Mekonnen et al.,
communal and private lands in rural areas in Amhara region have been extensively used
for the expansion of Eucalyptus and Acia plantations due to the demand for wood re-
source [61]. Furthermore, the government has been promoting tree planting widely through
the introduction of campaigns. Consequently, woodlots, home gardens, trees on cropland
and farm boundary plantations have become common agroforestry practices [61] which
may explain the general emergence of small tree patches in various watersheds.

Furthermore, from visual inspection it was observed that notable changes occurred
outside cultivated fields as patches of increasing trends in vegetation cover, particularly
at hillside locations and along streams and gullies (Figure 7). These clusters of pixels
were characterised by a negative-positive trend shift (MK) and were in agreement with
LandTrendr recoveries of which the largest were detected after 2010. Since in these instances
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VHR images could verify the regrowth of vegetation, these negative-positive trend shifts
can be linked to anthropogenic land improvement where degradation previously occurred.
Moreover, findings of positive development could be confirmed by results from the GFA
Consulting Group performance assessment (Section 3.2).

4.3. Effect of SWC Measures on Vegetation Trends

The OLS regression results demonstrated that positive changes in NDVI could be
attributed to the impact of SLMP infrastructure. Visual inspection showed that this was
visible in the spatial patterns for several locations at check dams and terraces, as shown
in the case examples (Figures 8 and 9). This coincides with results from a study by Ali
et al. who used NDVI and other satellite derived indices to evaluate the impact of SWC
measures on different land use (i.e., on cultivated land and non-cultivated land such as
degraded hillsides), and found that biophysical measures had a particular high impact on
non-cultivated land [13].

In general, the most significant positive changes in NDVI were observed within the
smallest buffer zone; i.e., the decrease in the medium change rate or density of change
occurrence was mainly observed within 250 m distance from the location, in few cases
within 500 m (Tables 1 and 2). At distances larger than this and up to 1500 m, trends
levelled off or even increased again. Field visits showed that gullies typically pass through
cultivated fields and in these cases revegetation efforts are conducted mainly directly at
the gully only. Hence, for land restoration of gullies dense vegetation regrowth does not
often take place across larger distances from the restoration activities. Land improvement
in proximity to check dams could therefore also occur as a line type pattern in the trend
map. In this case, circular buffer zones will not help explaining vegetation trends. Apart
from this, it should be considered that rehabilitation activities can occur at a smaller
scale than Landsat’s spatial resolution of 30 × 30 m, in which cases changes would not
easily be detected. The spatial scale of the impact of SWC interventions as implemented
in Ethiopia therefore underlines the challenge of detecting changes related to improved
land management in developing countries based on the use of traditional remote sensing
methods for change detection.

5. Conclusions

The aim of this study was to examine vegetation dynamics between 2002 to 2018 in
degraded areas in the Ethiopian highlands and assess the impact of SLMP interventions. To
examine vegetation dynamics in complex landscapes in Ethiopia on a detailed spatial scale,
we investigated the potential of combining remote sensing data from different Landsat
sensors using cloud-based geospatial processing supporting a high-resolution time series
analysis. The vegetation dynamics in the study areas showed a shift from

browning (2002–2010) to greening (2011–2018) along with an overall greening trend
over the full period (2002–2018). From the spatiotemporal patterns of NDVI and rainfall it
could be concluded that the browning trend was not explained by long-term changes in
rainfall. In contrast, the greening trend over the full period could—for 14% of the study
area—be explained by increases in rainfall. Overall, no clear patterns of anthropogenic
induced changes in vegetation were found when aggregating results at the catchment scale,
as NDVI median trends did not clearly indicate better development in SLMP intervention
areas than in control areas. Visual inspection based on multi-temporal Google Earth
imagery showed that the changes in NDVI and rain-use efficiency did spatially overlap
areas of small-scale land improvements related to human management, however, on a
smaller scale than a micro-watershed (the smallest aggregation level). The OLS regression
results provided evidence of land recovery that could be attributed particularly to SLMP
infrastructure (check dams and terraces). Positive impacts on vegetation were found to
be contributing to improving the rehabilitation of degraded hillside areas and gullies.
These findings underline that the little differences found between treatment and control
areas when aggregated to the level of (micro-)watersheds are rooted in a scale issue, and
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highlight the need for per-pixel trend analysis using sensor systems like Landsat, or higher
spatial resolution, to be able to remotely capture the effect of SLMP interventions.

The ecological improvements through SLMP, identified here at the per-pixel level from
the use of Landsat time series, are an important contribution to restore terrestrial ecosystems
as targeted in the Sustainable Development Goals. Continuous efforts in developing means
for improved monitoring of human-induced vegetation restoration of degraded lands will
be essential to maintain rehabilitated land, prevent further land degradation and support
environmental sustainability.
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Appendix A

Table A1. Description of soil and water conservation (SWC) measure data.

Type of SWC Measure Purpose Number of Geolocation Points

Hillside terraces Terraces are built to stabilise cultivated land, or to stabilise area. 11

Check dams

Check dams are obstruction walls constructed at the bottom of a
gully, small streams or trenches in order to reduce run-off volume

and prevent further widening of the gully channel [62]. These
treatment measures are typically combined with revegetation
activities to gain higher run-off infiltration into the sediments.

43

Figure A1. Landsat cross-calibration. (a) Distributions of ETM+ and OLI NDVI values; (b) OLS regression of ETM+ NDVI
against OLI NDVI values. For a given OLI NDVI value, the corresponding ETM+ value is usually lower.
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Figure A2. Interpolation. (a) Interpolation of a pixel’s annual maximum NDVI time series (blue) through a three-year
maximum moving window (green). The data gap in 2003 is interpolated; (b) Annual maximum value composite (MVC) with
gaps produced by Landsat-7 ETM+ SLC error and clouds; (c) Interpolated MVC through applying a three-year maximum
moving window.

Figure A3. Interpretation of the nature of changes in ecosystem functioning based on the spatial
agreement of vegetation (NDVI) and rainfall trends. A decrease in NDVI despite an increase in
precipitation or vice versa is likely to be caused by human management. Trend combinations with
the same slope direction are likely to be caused by climate change [26].

Figure A4. LandTrendr. Fitted segments into an annual maximum NDVI time series.

 

Figure A5. Example of buffer zones used for the OLS regression analysis to examine trends at soil
and water conservation measure locations.
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Table A2. Mann-Whitney U results with the sample size N (number of significant pixels), the median
NDVI trend, and U indicating whether treatment areas have significantly 1 larger or smaller trends
than control areas. Watersheds that did not include any control micro-watersheds are not included.

Major Watershed
Treatment Control

U
N Median N Median

Laelay Adyabbo 2091 0.0128 750 0.0116 -
Tahtay Koraro 6627 0.0203 604 0.0165 Larger ***

Emba Alaje 1080 0.0089 34 −0.0091 Larger ***
Gondar Zuriya 693 0.0137 491 0.0172 Smaller **

Takusa 2182 0.0208 2526 0.0130 Larger ***
West Estie 5248 0.0252 1203 0.0237 Larger ***

Hagere Mariam 1060 0.0065 60 0.0164 Smaller ***
Sinan 2135 0.0213 1324 0.0218 -

Aneded 3517 0.0292 2387 0.0270 Larger ***
Yilmana Densa 2539 0.0242 2204 0.0193 Larger ***

Sekela 2384 0.0212 972 0.0196 Larger **
Quarit 2000 0.0222 1220 0.0183 Larger ***
Banja 2370 −0.0003 2974 0.0052 Smaller ***
Ale 861 0.0112 131 0.0117 -

All watersheds 43,984 0.0190 16,880 0.0183 Larger *
1 Differences exist with different significance levels (* p < 0.05, ** p < 0.01, *** p < 0.001).

 
Figure A6. Regional OLS regression models for check dams with (a) the median of all trend differences and (b) the
proportion of significant positive trends during 2011–2018 within the zones as dependent variable. The red line shows
the linear slope when including zones up to 250 m distance, the blue line when including zones up to 500 m. ** p < 0.01,
*** p < 0.001.
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Abstract: The Nigerian Guinea Savannah is the most extensive ecoregion in Nigeria, a major food
production area, and contains many biodiversity protection areas. However, there is limited under-
standing of the social-ecological features of its degraded lands and potential insights for sustainable
land management and governance. To fill this gap, the self-organizing map method was applied
to identify the archetypes of both proximal and underlying drivers of land degradation in this
region. Using 12 freely available spatial datasets of drivers of land degradation—4 environmental;
3 socio-economic; and 5 land-use management practices, the identified archetypes were intersected
with the Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived land-degradation status
of the region, and the state administrative boundaries. Nine archetypes were identified. Archetypes
are dominated by: (1) protected areas; (2) very high-density population; (3) moderately high informa-
tion/knowledge access; (4) low literacy levels and moderate–high poverty levels; (5) rural remoteness;
(6) remoteness from a major road; (7) very high livestock density; (8) moderate poverty level and
nearly level terrain; and (9) very rugged terrain and remote from a major road. Four archetypes
characterized by very high-density population, moderate–high information/knowledge access,
and moderate–high poverty level, as well as remoteness from a major town, were associated with
61.3% large-area degradation; and the other five archetypes, covering 38.7% of the area, were respon-
sible for small-area degradation. While different combinations of archetypes exist in all the states,
the five states of Niger (40.5%), Oyo (29.6%), Kwara (24.4%), Nassarawa (18.6%), and Ekiti (17.6%),
have the largest shares of the archetypes. To deal with these archetypical features, policies and
practices that address increasing population in combination with poverty reduction; and that create
awareness about land degradation and promote sustainable practices and various forms of land
restoration, such as tree planting, are necessary for progressing towards land-degradation neutrality
in the Nigerian Guinea Savannah.

Keywords: archetypes; self-organizing maps; land degradation; drivers; savannah; Nigeria

1. Introduction

With increasing global population, environmental change, and competing claims on
land, the need to maintain land productivity and reduce land degradation has become even
more critical. Various global initiatives reflecting this urgency include the United Nations
Convention to Combat Desertification (UNCCD) goal of achieving a Land-Degradation
Neutral (LDN) World [1]; the African Forest Landscape Restoration Initiative (AFR100)
aiming to restore 100 million hectares of land in Africa by 2030 [2]; and the Great Green
Wall Initiative across the Sahel [3]. Yet, land degradation (LD), i.e., the persistent reduction
(negative trend) or loss of the biological productivity or ecological integrity of land or its
value to humans, remains a diverse and complex issue [4,5].

The African Savannah is among the globally threatened landscapes [6], where climatic
and edaphic conditions, as well as human activities, constrain vegetation regeneration [7,8].
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In West Africa, the savannah ecozones are prone to LD and experience both anthropogenic
and non-anthropogenic pressures [7,9]. These expose its 353 million inhabitants and their
livelihoods to various impacts such as decline in ecosystem services, food insecurity, migra-
tion, and civil conflict [8]. In Nigeria, LD cases across its agroecological zones are mostly
triggered by a singular factor or a combination of factors, which include: desertification, de-
forestation leading to biomass loss, land pollution caused by oil spillage and illegal mining,
as well as extensive soil erosion [10]. Thus, agroecological zones like the Nigerian Guinean
Savannah (NGS) are experiencing pressures from urbanization, agricultural expansion and
an increasing population that is largely dependent on land resources for livelihoods [11,12].
The NGS, covering 49% of Nigeria, is widely degraded, its ecosystem services continue
to decline, and livelihoods remain precarious [11,12]. Unsustainable land use and climate
stress have been implicated in this widespread degradation [11,13–15]. While the indicators
of LD drivers, their interplay, and implications at scale are generally acknowledged [14,16],
there is a lack of knowledge of the constellation of factors characterizing specific degraded
landscapes, such as the NGS, and their interplay [11]. The explanations of several studies
in the NGS on LD drivers are often without an integrative perspective capable of exposing
the interactions between potential LD drivers [16,17].

Recent studies thus stress the need for an integrative approach to enable a better
understanding of the constellation and interplay of LD drivers in land systems [14,17].
One such integrative approach is archetypical clustering for identifying recurrent patterns
in land conditions [18,19]. Archetypes, i.e., patterns or processes that occur repeatedly
across space and time [19,20], have been found to provide a more holistic understanding of
land system processes [20]. This understanding enables comparability across cases and
helps identify strategic policy options to address land management across scales [18–20].
Archetype studies have been conducted on food security in the Peruvian Altiplano [21];
institutional analysis and climate change in the Peruvian Andes [22]; national analysis of
ecosystem services in Germany [23]; water governance of river basins [24], and global land
resources management [25]. An archetype approach thus helps to illuminate the associative
patterns and influence of the complex drivers of global changes (such as LD) that have
often been treated in isolation [19,20,25].

This paper thus aims to identify the characteristic patterns of social-ecological factors
associated with LD in the NGS and to analyze the implications of the identified LD
archetypes for land governance and sustainable land management (SLM) in the region.
In the subsections, the description of the social-ecological conditions in the NGS, the study
methods and hypothesis, the archetypical patterns of drivers, their thematic, and spatial
characterization, including the links to different levels of LD, and the implications of the
archetypes for land governance and SLM in the NGS are presented.

2. Materials and Methods

2.1. Study Area

The Nigerian Guinea Savannah (NGS) (Figures 1 and 2) is an ecological region found
between 6.50◦N and 9.62◦N, 2.77◦E and 13.18◦E. Occupying central Nigeria, it is the coun-
try’s most extensive ecological zone, referred to as the Middle Belt of Nigeria. The zone
consists of parkland savannah, gallery forests, and derived savannah, including distinc-
tive montane vegetation [26], with tropical dry and wet seasons. Rainfall in the wet
season (April to October) is about 1240–1440 mm. The dry season lasts from November
to March [27]. Average maximum annual temperature varies from 31 ◦C to 35 ◦C while
the average minimum ranges from 20 ◦C to 23 ◦C [27]. The region is broadly divided into
two sub-regions based on distinctive vegetation types, namely the Southern and Northern
Guinea Savannahs. The Southern Guinea Savannah has taller trees, such as locust bean
tree (Parkia biglobosa), and grasses such as Gamba grass (Andropogon gayanus); while the
Northern Guinea Savannah is characterized by bush with some trees (e.g., Isoberlinia spp.)
and relatively shorter grasses (e.g., Hyparrhenia spp.) [27]. The NGS has a high level of
fauna and flora and hosts major perennial rivers such as River Niger and River Benue. Sub-
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sequent years of uncontrolled deforestation and poor land management has transformed
the zone largely into a degraded landscape (Figure 2) [12].

Figure 1. Map of the Nigerian Guinea Savannah including the administrative boundaries of states (Adapted from [26]).

Figure 2. (a) Landscape showing a degraded patch of the Nigerian savannah vegetation in Shiroro local government area,
Niger state, Nigeria; (b) a mix of degraded land with few bushes and trees interspersed in Borgu local government area,
Niger state, Nigeria. (Source: own fieldwork, 2019).

2.2. Framing Land-Degradation Drivers

In this study, LD drivers were understood as determinants, i.e., reasons, factors, or ac-
tions, shaping the rate of human activities, leading to a decision to remove or reduce vegeta-
tion cover thereby causing a decline or loss of land resources’ productivity [14,28]. Factors
prompting LD are broadly categorized either as proximal or underlying drivers [16,17,29].
Proximate drivers are human activities or immediate actions, including the decision to di-
rectly use or alter the land cover [14]. Underlying drivers include indirect or underpinning
factors, such as socio-economic factors (e.g., poverty) and biophysical factors (e.g., topo-
graphic variables) that trigger proximate causes of LD [14]. Based on literature [17,28,29]
and a report on the LDN target for Nigeria in 2018 [30], three main categories of LD drivers
of the Nigerian Guinea Savannah Archetypes (NGSA) namely: environmental, socio-
economic, and land-use management practices were identified. Based on the available
spatial and remote sensing data, 12 drivers comprising three environmental, four socio-
economic, and five land-use management practice categories were selected (Table 1a–c).
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The processes through which the variables (whether as proximate or underlying drivers),
drive the LD are explained in Table 1a–c.

2.3. Datasets Selection

For this study, factors were considered based on their influence on land-use decisions
and LD [16,29,31] (see Table 1 for details). Climatic variables such as rainfall were not
included because human-induced activities are the prevailing cause of LD, especially in the
NGS [11,12]. However, human-induced drivers are better managed than climatic drivers
of LD [11,32].

2.3.1. Land-Use Management Practices

Land-use management practices have been linked to degraded land in Nigeria through
land clearing and conversion including intensification [13]. Other unsustainable land-use
management practices include rapid agricultural expansion, uncontrolled bush burning,
deforestation, excessive wood extraction, unplanned infrastructure extension, and urban
development, including overgrazing [12,13,33]. For this study and based on spatial data
availability, data on land-use management practices were acquired and processed, respec-
tively. The fire-occurrence density was derived from the National Aeronautics and Space
Administration (NASA) active fire hotspot data of 2018 (firms.modaps.eosdis.nasa.gov)
after running a spatial point-density analysis of the active fire spots at 250 m resolu-
tion. The livestock grazing intensity data for 2005, developed by Harvest Choice in
2018 (www.ifpri.org/project/harvestchoice) was used. The generated distance to the
major road in 2016 for Nigeria, at a resolution of 3 arc-second (approximately 100 m
at the equator) was acquired from (www.worldpop.org/project/categories?id=14) [34].
The Euclidean distance analysis of the extracted major town polygons from Google Earth
(www.google.com/earth/) was used to determine the distance to major towns at 250 m
resolution. Using the International Union for Conservation of Nature (IUCN) recognized
protected area polygon for Nigeria (www.protectedplanet.net/country/NGA), the den-
sity of the protected area at 250 m resolution across the NGS was generated through
point-density analysis.

2.3.2. Socio-Economic Drivers

Demographic and socio-economic factors such as population density, income, poverty,
and illiteracy are drivers of LD in certain contexts [16,29]. In other contexts, they may
even be drivers of improved land conditions [35]. However, in the case of Nigeria, its over
200 million inhabitants and population density of 226 km2 place a huge demand on land
resources [33,36]. Thus, gridded human population density constructed for 2018 in 2020,
from random forest-based dasymetric redistribution at 3 arc-second (approximately 100 m
at the equator) spatial resolution, was downloaded from www.worldpop.org [34]. Male and
female literacy layers of high resolution at 1 km × 1 km gridded cells developed for 2003
in 2017, based on a geostatistics approach [37], were acquired [34]. These are necessary as
they are proxies for access to agricultural extension information, as previous studies show
that limited information on SLM drives LD [16,38]. The poverty headcount in percentages
for Nigeria at 1 km for 2013 mapped through Bayesian model-based geostatistics analysis
was downloaded from www.worldpop.org [34], because poverty can foster practices that
cause LD, while LD can foster a poverty trap [38]. These drivers were selected in that they
are known factors that influence decisions on land and SLM LD [28,29,38].

2.3.3. Environmental Drivers

Land can be sensitive to degradation due to its environmental and physiographic
characteristics, influencing human decisions to use land [31]. Such influential characteristics
include soil bulk density (BD), elevation, and slope [13,39]. For this study, the already-
processed NASA Shuttle Radar Topography Mission (SRTM) based slope and elevation
for Nigeria by [40] at a resolution of 3 arc-second (approximately 100 m at the equator)
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produced for 2020 was acquired from www.worldpop.org [34]. The spatial mapping of the
bulk density (BD; soil compaction) in 2018 at 250 m resolution from 0 cm to 30 cm depth
were downloaded from www.soilgrids.org and then averaged to give the overview of the
BD for the study area [41–43].

2.4. Methods
2.4.1. Conceptual Framework

The workflow in Figure 3 was applied to the 12 drivers (Table 1a–c), which served as
inputs for identifying archetypes. The intermediate outputs from the framework, such as
correlation between drivers including cluster features, can be found in supplementary
material Figures S1–S5.

Figure 3. The conceptual framework.

2.4.2. Identifying Archetypes of Land-Degradation Drivers Using Self-Organizing Maps

To develop the Nigerian Guinea Savannah Archetypes (NGSA) of LD drivers, the
12 driver datasets were clipped to the boundary outline and resampled to a 250 m pixel
size, using the nearest neighbor technique (Figure 3, Box 2), and then projected to a
uniform coordinate system (i.e., Minna/UTM zone 31N). To enhance the clustering of the
datasets, data were normalized (Z-score) to reformate into a common scale (Figure 3, Box
2). Correlation was calculated to identify relationships between the drivers (Figures S5 and
S6) and the extent of interdependencies among the dataset that might limit the analysis.
Then the Kohonen Self-Organizing Map (SOM) technique was applied to generate a single-
layer map of the archetypes of LD drivers [54]. The SOM approach involves organizing
data (in this case, the 12 spatial datasets) into patterns based on their inherent similarities
and dissimilarities into different groups [54,55]. By testing the different combinations
of clusters and using a performance analysis involving both the Davies–Bouldin index
and the mean distance of the classified grid cells [23,25], nine clusters of LD drivers were
identified as archetypes (see supplementary material, Figures S2–S5). The Z-score, i.e.,
standardized score from the SOM, was used to examine values of each driver in terms of
distance from the mean and to explain the clusters. A Z-score that is equal to the mean is
zero, while positive and negative Z-score, i.e., greater than or less than zero, depict distance
way above or below the mean. Through an ordinal scaling, the relative standing of the
Z-score from the mean was ranked. If the Z-scores = 0, this implies mean/low influence
of a driver; Z-score ≤ ±1 = moderate influence; ±1 < Z-score < ±2 = high influence; and
Z-score ≥ ±2 = very high influence, respectively (Figure 3, Box 3). From the absolute
values of the Z-scores of each cluster, the percentage dominance categories in the clusters
were determined [23] (Figure 3, Box 3).
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2.4.3. Linking Archetypes of Land-Degradation Drivers to State Administrations and
Land Status

In a previous study by [11], LD status was captured using rainfall-corrected vegetation
greenness as a proxy (Figure 3, Box 4). By overlaying the archetypes cluster (Figure 3, Box 3)
with the LD status of the area (i.e., degraded, stable, and improvement) (Figure 3, Box 4), the
percentage share of each archetype per LD status was determined. This enabled the grouping
of the nine archetypes as undergoing large-area or small-area degradation, respectively. Thus,
archetypes with area coverage <10% of the total degraded area have a small-area degradation,
while archetypes with area coverage ≥10% of the total degraded area are classified as large-
area degradation clusters [56]. Through spatial overlay [23], the linking of the archetypes
with the states’ administrative boundaries to determine the share of each archetype per state
was possible (Figure 3, Box 4). The emerging results were used to explain and discuss the
implications for land governance and SLM in the NGS (Figure 3, Box 5).

3. Results

3.1. Land-Degradation Status

Using Normalized Difference Vegetation Index (NDVI) as a proxy for degradation
status, Figure 4 shows the spatial distribution of LD in the NGS by [11]. About 38%
(251,401 km2) of the NGS is degraded, while 14% (91,258 km2) and 48% (319,470 km2)
show improvement and remain stable, respectively. While improved and stable areas are
mostly found in the north of the NGS and to a certain extent in the south of the NGS,
large-area degradation is predominantly found in the centre of the NGS, ranging from its
north-western to its eastern border.

Figure 4. Land-degradation (LD) status for the Nigerian Guinea Savannah (NGS) (Source [11]) using Normalized Difference
Vegetation Index (NDVI) as a proxy after correcting for rainfall.
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3.2. Land-Degradation Archetypes

In this section, the archetypes and how they can improve the understanding of LD
in the NGS are presented. Figure 5 displays each archetype according to the percentage
contributions of driver categories, while Figure 6 shows the spatial distribution of the
archetypes. Based on the 12 input drivers, nine archetypes of LD drivers were identified
(Figure 5). Five archetypes were dominated by land-use management practices (NGSA 1,
NGSA 5–8), and three dominated by socio-economic drivers (NGSA 2–4), while NGSA 9
was dominated by environmental drivers (Please refer to supplementary material, Table S1
for a description of the archetypes).

3.3. Spatial Distribution of Archetypes

The spatial distribution of the nine archetypes of LD drivers is shown in Figure 6.
In Table 2, a brief description and share of each archetype in the NGS is provided.

From Table 2, six clusters (NGSA 2–5, NGSA 7 and NGSA 9) with individual total
areas greater than 10% cover 78.5% of the total area, while the remaining three archetypes
with individual total areas smaller than 10% of the area cover 21.5% of the NGS.

 
Figure 5. The Z-score normalized values of drivers characterizing the nine archetypes of LD drivers, (zero depicts the mean
for the NGS; the percentage contribution of driver categories into archetype clusters is presented in the boxes: red: land-use
management practice; blue: socio-economic; green: environmental drivers).
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Figure 6. Spatial characterization of archetypes of LD drivers. See supplementary material, Section 6 for the full description
and ranking of the archetypes in relation to administrative and land status.

Table 2. Description and share of the archetypes of LD drivers.

SOM Brief Description Area Share (%) Area Share (km2)

NGSA 1

Archetype dominated by protected areas: Areas with very
high numbers of protected areas that are associated with the
moderate–high influence of elevation, bulk density and
high literacy.

3.3 14,412

NGSA 2
Archetype dominated by very high-density population:
Areas with very high population density and with minimal
influence of livestock and high fire activities.

15.3 67,169

NGSA 3

Archetype dominated by moderately high
information/knowledge access: Mainly areas with a
moderately high level of both male and female literacy,
including fire-occurrence activities but with low poverty.

12.4 54,528

NGSA 4

Archetype dominated by low literacy level and
moderate–high poverty level: Area characterized by
moderate–high poverty and minimal fire activities, but with
low levels of both male and female literacy.

20.1 88,036

NGSA 5

Archetype dominated by rural remoteness: Highly
dominated by land-use management practices and remote from
major towns but with a moderately low population density,
protected area prevalence, and low livestock density.

10.1 44,408

NGSA 6

Archetype dominated by remoteness from a major road:
Highly dominated by land-use management practices, which
occur at a far distance away from major roads with moderately
high poverty and literacy but with moderate fire and livestock
activities.

8.7 38,273
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Table 2. Cont.

SOM Brief Description Area Share (%)
Area Share

(km2)

NGSA 7 Archetype dominated by very high livestock density: Areas with
a very high livestock density and moderate levels of other drivers. 10.1 44,044

NGSA 8

Archetype dominated by moderate poverty level and nearly
level terrain: Collectively driven by all drivers’ categories but fairly
dominated by land-use management practices, but with a moderate
elevation and moderate influence of bulk density and poverty.

9.4 41,297

NGSA 9
Archetype dominated by very rugged terrain and remote from a
major road: Areas with moderate elevation, high slope, and distant
from the major road.

10.5 45,880

100.00 438,046.88

3.4. Categories of Archetypes According to State Administrative Boundaries and LD Status
3.4.1. Degree of Land-Degradation Status per Archetype

Figure 6 links the archetypes with the LD status (degradation, stable, improvement;
Figure 4), to highlight their proportions and potential interplay (Figure 7). Four archetypes
with very high population density (NGSA 2), moderate–high information/knowledge access
(NGSA 3), and moderate–high poverty level (NGSA 4), as well as NGSA 5—very remote from
a major town—are associated with 61.3% of the large-area LD, while the other archetypes
account for 38.7% of small-area degradation (Figure 7). Six archetypes—NGSA 2 to NGSA 5,
as well as NGSA 7, with very high livestock density, and NGSA 8 with dominant land-use
management practices and nearly level terrain—are responsible for 78.4% of the large-area
stable status and the other archetypes for 21.6% of the small-area stable status (Figure 7). For
the large-area improvement, six archetypes, NGSA 2 to NGSA 4 and NGSA 7 to NGSA 9
with rugged terrain, i.e., very high slope and moderate elevation, covered 78.7% while other
archetypes account for 21.3% of small-area improvement (Figure 7). For the complementary
table, see supplementary material, Table S3; and Section 6 for the full description and ranking
of the archetypes in relation to LD status.

Figure 7. Archetypes in percentage of associated LD status (For full percentages, see supplementary material, Table S3).
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3.4.2. Share of Land-Degradation Archetypes per State Administration Unit

State administrations manage land within their jurisdictions, hence they influence
land-use decisions in Nigeria. Figure 8 shows the percentage share of the archetypes
within a state’s boundary (for the complementary table, see supplementary material,
Table S2). Seven states, comprising Bauchi, Kaduna, Kwara, Nasarawa, Niger, Plateau,
and Zamfara have all the nine archetypes. While four states, namely Benue, Kebbi, Taraba,
and the Federal Capital Territory (FCT) are covered by eight of the nine archetypes. The
remaining states have an uneven combination of all archetypes, with the portion of Abia
state found within the NGS only embodying one archetype (i.e., NGSA 2). The five
states comprising Niger (40.5%), Oyo (29.6%), Kwara (24.4%), Nassarawa (18.6%), and
Ekiti (17.6%), have the largest shares of the archetype of NGSA 4, i.e., a moderate–high
poverty level. The supplementary material Table S2 contains the grouping of the archetypes
according to the state administrative units.

Figure 8. Share of LD archetypes by states in the NGS. Note: shares outside the NGS, that were not analyzed, are in grey.
(For full percentages, see supplementary material, Table S2).

4. Discussion

4.1. Understanding the Archetypes of Large-Area Degradation

Areas identified to be under large-area degradation are archetypes with more than
10% of their areas experiencing biomass degradation (NDVI). Four major archetypes of
large-area degradation were thus identified (Figures 5 and 7). Out of these, NGSA 3,
with prolonged cases of fire occurrence, and NGSA 5, with rural remoteness from a major
town (Figure 5), highlight land-use management practices as the drivers of large-area
degradation in the NGS. NGSA 3 thus confirmed studies that have implicated fire-related
activities such as charcoal making, farming, and hunting with bush burning as causes
of LD [57,58]. The dominant characteristics of NGSA 5, on the other hand, contradicts
the notion that land areas closer to major towns are more prone to LD than those farther
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away [16,17,29]. NGSA 5 rather reveals the rural areas and natural resource users in remote
areas who adopt unsustainable land-use practices (of NGSA 3), such as continuous bush
burning and deforestation, trigger LD [59].

Apart from archetype NGS 5 with high remoteness from a major town (Figure 5),
the other three, i.e., archetypes with very high-density population (NGSA 2), moderately
high information/knowledge access (NGSA 3), and moderate–high poverty level (NGSA
4), are dominated by high percentages of socio-economic drivers. Thus, socio-economic
factors are major underlying causes that indirectly push other proximate drivers of large-
area degradation in the NGS [29,60,61]. With the low population density of three (NGSA
3–NGSA 5) out of the four archetypes experiencing large-area degradation, high poverty,
and low literacy, this factor can be inferred to be associated with large-area degradation
in the NGS context [59,61,62]. This confirms studies such as [62,63], who reported that
poverty intensifies a tendency to change vegetation cover, as many people deplete natural
vegetation for fuel, food, and as a source of income because of fewer or no alternative
livelihood options. This invariably points to the areas with high poverty and low pop-
ulation density, i.e., rural population, covering the northwest central and northeast of
the NGS, encompassing the states of Kebbi, Niger, parts of northern Kwara, FCT (mainly
around Abuja, see the area illustrated in Figure 5), and parts of Nasarawa, Plateau, Taraba,
Kaduna, and Adamawa states, which have experienced extensive degradation [11]. Al-
though, NGSA 2 with a very high-density population, hints that urban areas, with their
high population density, are also associated with large-area degradation in the NGS, the
degradation is not as extensive as in the low-population-density remote areas. Therefore,
this result deviates from the general notion that a high-population density is the main
cause of LD in Nigeria [13,33]. Hence, a high population density alone does not drive LD
without certain complementary factors, such as poverty, illiteracy that restricts information
or knowledge access, and poor national policies that are prevalent in Sub-Saharan African
contexts [64]. Therefore, the three socio-economic sub-drivers—poverty, literacy and pop-
ulation density—are core interrelating drivers in large-area LD, that require attention in
addressing LD in the NGS [29,62,65].

While the percentages of land-use management practices and socio-economic factors
dominate as potential drivers of large-area LD, specific environmental drivers of the
archetypes also underpin the large-area LD (Figure 5). The nearly level terrain condition,
i.e., low-elevation–flat terrain of the four large-area archetypes, is known to encourage
land cultivation in Nigeria [13]. In addition, the characteristics of low bulk density of
NGSA 2, NGSA 3 and 5, and the high bulk density of NGSA 4 with moderate–high poverty
level also highlight soil characteristics that encourage large-area degradation [42,43]. The
low bulk density archetypes signify few areas in the southern part of the NGS with
suitable soil for cultivation. The archetypes characterized by high bulk density on the other
hand correspond to areas with the highest impact of agricultural management practices,
such as machinery and high cropping impacts [42]. This represents 23% of the large-area
degradation archetypes, and in turn reflects the widespread LD due to the high agricultural
engagement by the rural dwellers in the zone [63].

4.2. Understanding the Archetypes of Small-Area Degradation

Five archetypes of small-area degradation were identified, that is, archetypes where
degraded areas are less than 10% of the archetype area. LD and their drivers thus differ
locally and are context-specific [5,60], and an archetype approach can help identify the socio-
ecological contexts [66]. From the five small-area archetypes, three archetypes identified
with very high presence of protected areas (NGSA 1), that are very remote from a major
road (NGSA 6), have a very high livestock density (NGSA 7), and have high percentages of
land-use practices (Figure 5). While the NGSA 1 reflects its conservation and restricted use
status, the additional association of NGSA 1 with high and rugged elevations like NGSA 9,
further explains its small extent of degradation. However, with its low proximity to major
roads and major towns, degradation in protected areas as captured in NGSA 1 call for an
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investigation into the specific activities driving degradation in protected areas, such as
encroachment by human activities [11,63], despite government regulations, particularly
around communities that host protected areas [67,68].

In archetypes NGSA 6 and NGSA 9, the small-area degradation is highly driven by
non-proximity to a major road, without much influence of other sub-drivers (Figure 5).
Nearness to major roads is a measure of infrastructural development that influences acces-
sibility and the spread of land-use management practices, including information [69]. Thus,
NGSA 6 represents remote areas with restricted access, which can hamper the propagation
of sustainable land-management initiatives [29,38,49]. As in NGSA 1 and NGSA 6, the
very high livestock density configuration of NGSA 7 (Figure 5) is also associated with
small-area degradation (Figure 7). The Guinea savannah in particular is currently under
pressure from high grazing activities because the Sahel and Sudan savannahs have been
extensively degraded by overgrazing [15,70], leading to competition for grazing resources
and conflicts in the region [71]. Overgrazing has been associated with the disappearance of
the typical savannah vegetation and the emergence of the Sudan–Sahelian Savannah in the
NGS [15,72]. Thus, from the combination of drivers above, there is a critical need for an
improved management of grazing resources, protected areas, and the governance of land
resources in the NGS [11,36,68]. While all small-area archetypes are mostly dominated by
the land-use management drivers, NGSAs 6 and 8 are the only small-area archetypes that
are distinctly driven by the socio-economic drivers characterized by areas with low popu-
lation density, i.e rural population with corresponding moderate information/knowledge
access. Unlike other factors, poverty (high or low) is not a distinctive feature of these
archetypes (Figure 5), hence this study cannot confirm the notion that ‘the higher the
poverty, the more the degradation’ held by many studies of small-area degradation [38],
as noted Table 1. Considering that poverty is widespread in the NGS, there is a need for
integrating other social-demographic and social-relational data for a better understanding
of the interactions between poverty and LD.

4.3. Archetypes and Policy Insights

As multiple factors are associated with LD, policy interventions aimed at achieving
SLM need to be inter-sectoral. However, many policies in Nigeria, such as the Nigerian
National Agricultural Policy, focus on single sectors and often do not have LD reduction
as a primary objective [10]. Key policy topics related to these findings are sustainable use
and management of natural resources, poverty reduction, environmental awareness and
education, strategy to reduce dependence on land and natural resources for livelihoods,
and inclusion of LD in land-use planning.

With the extensive LD in the NGS, policies for the sustainable management of natural
resources including water, soil, and biodiversity, as well as their coherence, are essential [73].
While several response programmes such as the Nigeria National Policy on Environment
are promulgated to address activities that cause LD [74], they remain reactive without
an effective scaling up to tackle the drivers of LD. For example, the proposed national
policy on the rediscovery of grazing routes and reserves remains unprepared to address LD
because the advocates focus on the profit and the pressing need to tackle the farmers and
herders clashes in Nigeria [67,71], without a recourse to the fact that spatial developments
in Nigeria have overtaken several historical grazing spaces [67]. The polarized nature
of Nigeria between sectional and ethnic divides further raised several counter notions
with socio-political undertones to such policy moves by the government [75]. This subse-
quently affected the acceptance of related policies such as the 10-year National Livestock
Transformation Plan (NLTP), ranching plan, and open grazing [67]. While it is obvious
that degradation induces competition and tension among natural resources users, policy
decisions on land-based issues require a special focus on LD and land restoration.

Although results did not explicitly show that only low/high poverty is associated
with large-/small-area degradation, poverty contributes to the different archetypes iden-
tified. Nigeria has about 83 million (40%) of its population living below $1.90 per day,
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comprising 52% rural dwellers whose livelihoods are predominantly tied to agricultural
activities [76,77]. About 30 million more Nigerians are expected to be added to the na-
tional population living in extreme poverty by 2030 [77]. Many of the poor depend on
livelihood activities such as charcoal making and hunting with bush burning that promote
LD [57,58]. Archetype NGS 4, which covers the largest proportion of the NGS (20%) and
has moderate–high poverty and a low level of both male and female literacy, is charac-
terized by large-area degradation. Two broad groups of the country’s poverty alleviation
programmes (PAPs) have been identified in Nigeria [78]: (a) the Core Poverty Alleviation
Programmes (CPAPs) such as Better Life Programme for Rural Dwellers (BLP) and Family
Economic Advancement Programme (FEAP), and (b) the Non-Core Poverty Alleviation
Programmes (NCPAPs), which include the National Agricultural Land Development Au-
thorities (NALDA). Such policies had no long-lasting effects [78,79] and did not focus
on the intersections between poverty and LD. Other policies such as the Agricultural
Development Projects (ADPs) and Vision 20-2020 are in a dying state [78,79], with most
interventions aimed at increasing farmer revenue and reducing poverty, and mainly focus
on improving input supply without giving attention to improving land management.

Nigeria has about 56.9% adult illiteracy [80], with variations across states and regions
including urban and rural areas (i.e., urban 74.6% and rural 48.7%). NGSA 3 shows the link-
age of low male and female literacy with large-area degradation. Most farmers and herders
in Nigeria did not finish primary education and are less likely to access and understand the
little knowledge and information disseminated through extension services or lack the re-
sources to access this information themselves [79,81,82]. While the use of mobile phones is
promoted to improve access to information, little or no information is provided on sustain-
able land-use and management. According to [83], technology is necessary to scale up the
adoption of initiatives amongst resource-poor users. With the widespread poverty, weak
industrial presence to absorb the increasing population, and the reliance on the primary
sector, the quest to exploit environmental resources supersedes interest for environmental
protection and management [84]. Hence, pathways to improving land management need
to be sought both outside agriculture (e.g., creating employment opportunities outside
agriculture) as well as within agriculture through improving farmers/herders’ access to
sustainable land management practices as well as motivating their adoption [85].

With the growing LD, effective policy on land-use planning is critical for degradation
response in Nigeria as the current land-use policies and practices do not adequately
consider sustainable land management [10,86]. The historic lapses in the National Land
Use Act (LUA) of 1978 persist, whose focus only recognizes land ownership and promotes
land access without a sustainable land-use plan or governance to cater for the pressure from
the growing population. Calls to review the LUA to give room for a more sustainable policy
for land-use planning and governance in Nigeria [10,13], remain unheeded. A challenging
question is thus: what opportunities can be identified for promoting SLM [10]?

4.4. Archetypes and Sustainable Land Management (SLM)

Based on literature and the study results, sustainable fuelwood management/energy
efficiency, reforestation and afforestation, sustainable pastoralism, and structural land
management measures are potential interventions to address LD.

In Nigeria, over 70% of the population rely on wood fuel for cooking, which is an
underlying driver of deforestation and associated LD [63]. In recognition of the reliance on
fuel wood, sustainable fuelwood management (SFM) is being promoted under the United
Nations Development Programme (UNDP)/Global Environment Facility (GEF) project on
management of fuel wood in mitigating the effects of climate change such as in Kaduna State,
Nigeria [87,88]. While such initiatives have made some progress in establishing woodlots,
producing energy-efficient cooking stoves, and establishing local forest management com-
mittees, low community buy-in, land tenure, and governance remain key constraints [88].
A review of such initiatives can provide insights on how to improve states’ SLM outcomes
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and out-scale them to other states in the NGS. Thus, SFM has some potential for promoting
landscape stewardship in the region [87,89].

Tree-based programmes also hold potential to reduce LD and remain the principal
focus of restoration programs [90]. Reforestation, afforestation, and agroforestry have been
found advantageous and successful around the world and in Nigeria, particularly in LD
response [91]. In Nigeria, successive governments at all levels have worked collaboratively
to encourage and implement various afforestation projects [92]. For instance, among the
frontline states of the Great Green Wall Afforestation Programme, tree planning campaigns
with eucalyptus species and shelter belts for sand dune and degradation fixation are com-
monly practiced [74,92]. Therefore, land users in Nigeria can be incentivised to participate
in tree-based initiatives, which have recorded successes elsewhere, such as in Kenya [64],
to reawaken interest in combating LD. Such initiatives can focus on Niger, Nassarawa,
Kwara, and Kogi, including Kaduna and Oyo states, due to the prevalence of large-area
LD archetypes. Agroforestry, a multifunctional practice of cropping with trees and shrubs
on arable land, is also a potential SLM practice that can improve land productivity, is a
low-cost and adaptable tree-based initiative [91,92], that contributes to food security and
land resource conservation [91].

With the evidence of high livestock grazing activities in archetype NGSA 7 (Figure 5),
traditionally, pastoralism is predominantly practiced in northern Nigeria, with southward
movement following the rain and in search of pasture and water during the dry season.
Overgrazing causes LD, and indiscriminate overgrazing has caused negative stereotyping
and fuelled tensions between pastoralists and non-pastoralist-actors, causing loss of lives
and properties as well as communal crisis [67,71]. In some cases, overgrazing by livestock
and excessive open grazing lead to the failure of afforestation programmes, including
severe violation of protected areas across West Africa [67,93]. While pastoralism under
a proper management system is ecologically, economically, and socially viable [94,95],
climate change and poor land management in the face of growing national population and
pressures from neighbouring herding countries make traditional pastoralism unsustainable
in Nigeria [71,93,94]. Studies thus call for controlling open grazing to check indiscriminate
overgrazing and secure livestock production in Nigeria [75,96].

In view of several environmental consequences of the archetype driven by terrain
characteristics, avoiding degradation-prone rugged terrain is key to maintaining the re-
maining biomass of the zone. Investing in SLM structures such as land levelling, terracing,
and contour farming are critical to tackling LD [97,98], particularly on agricultural land-
scapes like the NGS, where engagement in farming remains necessary for livelihood
sustenance [12,13], and biodiversity and natural conditions are threatened largely by agri-
cultural expansion [13]. Terracing and high-altitude afforestation for erosion control, for
example, have been recognized to reduce loss of soil and LD on sloped terrain [99]. Simi-
larly, contour farming and staggered contour trenching, which involves planting of crops
across a slope based on elevation contour lines are also effective for managing degradation
on rugged–steep terrain [99].

5. Conclusions

This study identified nine archetypes of LD drivers in the NGS, which are mostly
dominated by social-economic, land-use management practices, and a slight influence from
environment drivers. Specifically, four archetypes characterized by a very high-density
population, moderately high information/knowledge access, and moderate–high poverty
level, as well as remoteness from a major town, account for 61.3%, 78.4%, and 78.7% of
total degraded, stable, and improvement areas, respectively. LD is mostly evident in states
bordering the northwest to the central and northeast of the NGS, such as Niger state, which
have predominantly large rural farming communities. Besides revealing the LD drivers,
the archetypes characteristics provide a basis for determining and prioritizing relevant
SLM policies and practices such as poverty reduction, creating environmental awareness
and promoting sustainable pastoralism as well as robust land-use planning to strengthen
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land governance in Nigeria. Despite the limitations of spatial data on the driving factors,
the outputs from this study provide a useful guide on how archetypes can serve as a tool for
progressing Nigeria’s LDN through SLM. Like most unsupervised classification techniques,
field validation of the archetypes results is necessary because of the adopted self-organizing
mapping techniques. However, this could not be conducted because mobility limitations
and scarcity of spatially explicit data limited the number of variables that could be used for
this study. As more spatially explicit data on Nigeria and Africa become available, they
need to be integrated in future studies of archetypes as well as validating them with field
observations.
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Abstract: Increasing woody cover and overgrazing in semi-arid ecosystems are known to be the
major factors driving land degradation. This study focuses on mapping the distribution of the
slangbos shrub (Seriphium plumosum) in a test region in the Free State Province of South Africa. The
goal of this study is to monitor the slangbos encroachment on cultivated land by synergistically
combining Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Sentinel-2) Earth observation
information. Both optical and radar satellite data are sensitive to different vegetation properties
and surface scattering or reflection mechanisms caused by the specific sensor characteristics. We
used a supervised random forest classification to predict slangbos encroachment for each individual
crop year between 2015 and 2020. Training data were derived based on expert knowledge and
in situ information from the Department of Agriculture, Land Reform and Rural Development
(DALRRD). We found that the Sentinel-1 VH (cross-polarization) and Sentinel-2 SAVI (Soil Adjusted
Vegetation Index) time series information have the highest importance for the random forest classifier
among all input parameters. The modelling results confirm the in situ observations that pastures are
most affected by slangbos encroachment. The estimation of the model accuracy was accomplished
via spatial cross-validation (SpCV) and resulted in a classification precision of around 80% for the
slangbos class within each time step.

Keywords: shrub encroachment; slangbos; land degradation; Earth observation; time series; Sentinel-1;
Sentinel-2; Synthetic Aperture Radar (SAR); Soil Adjusted Vegetation Index (SAVI); machine learning

1. Introduction

Increasing woody cover and overgrazing in open semi-arid ecosystems are known
to be one of the major factors driving land degradation [1]. In the context of this study,
land degradation is defined as “the many human-caused processes that drive the decline
or loss in biodiversity, ecosystem functions or ecosystem services in any terrestrial [ . . . ]
ecosystems” [2] (p. 28).

During recent decades, woody cover encroachment in open ecosystems has signifi-
cantly increased in southern Africa, which have led to crucial environmental, land cover
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and land-use changes [3–7]. Venter et al. [8] concluded that the intensification of woody
cover is not only connected to rising CO2 concentrations in the atmosphere, as a result
of the human-induced global climate change, but it is also noticeable on regional aspects
(e.g., extinction of large herbivore herds, and fires). However, CO2 fertilization improves
water-use efficiency, due to the reduced stomatal conductance of woody plants [9]. Con-
sequently, even with constant water ingestion, rising CO2 concentrations would lead to
increased growth rates of woody biomass in relation to grass communities. Nevertheless,
water availability and temperature are the key constraints on woody plant growth and are
the crucial parameters in explaining encroachment patterns [5].

This study focuses on analyzing the spreading of the slangbos or bankrupt bush
(Seriphium plumosum) in a selected test region in the Free State Province of South Africa.
Though indigenous to South Africa, slangbos has been documented to be the main en-
croacher on the grassvelds (South African grassland biomes) in the provinces of the Free
State, North West, Mpumalanga, Eastern Cape and Gauteng [10,11].

The rainfall optimum of Seriphium plumosum is between 620 and 750 mm per year [12],
which lies between the semi-arid and mesic biome [13]. The shrub reaches a height and
diameter of up to 0.6 m and has small light green leaves, which makes them perfectly
adapted to long dry periods, compared to grass communities and the leaves are unpalatable
to grazers due to their high oil content [14]. However, du Toit et al. [15] found that
cattle graze young slangbos plants, which were regrown one year after active fire control
measures. Slangbos prefers to grow on low fertile loamy soils, which makes hilltops and
dry areas in the Free State vulnerable to this encroacher [16]. The encroachment of slangbos
is responsible for a decrease in the grasslands productivity, pastures and livestock carrying
capacity. The root system of Seriphium plumosum, which reaches a depth of up to 1.8 m
and an extent of 1 m2 around the plant [14], competes with the surrounding grass for
water and the availability of nutrients, which leads consequently to a reduction in the
grass layer [17,18]. As slangbos is unpalatable for grazers, the shrub puts bigger pressure
on the existing open grassland, which becomes vulnerable to overgrazing, increasing the
potential of land degradation [16]. Moreover, slangbos is found to have high allelopathic
potential, which impedes other plant species from finding suitable growing conditions in
the surrounding area of a slangbos [19]. This poses great challenges to farmers on the one
hand and for the local biosphere on the other hand. Approximately 11 million hectares of
rangeland could become unsuitable for grazing if measures to eradicate the plant do not
succeed. This could result in an annual loss of about ZAR 760,000 (South African Rand)
(about EUR 44,000) for a 1000 ha livestock farm with a slangbos infestation of 50% of the
pasture area [20].

Field observations detecting shrub distribution are cost intensive, time consuming
and often do not address the spatial heterogeneity of encroachment patterns [21]. Earth
Observation (EO) data from different sources and across different wavelengths (e.g., from
ESA’s Copernicus Sentinel Programme) provide a suitable tool for mapping the extent
and the velocity of woody encroachment [7,22–25]. The freely available optical and radar
satellite data from the Copernicus Programme have short revisiting times (5 to 12 days)
as well as high spatial resolution (10 m). Hence, they allow for monitoring woody cover
encroachment in quasi near real-time and enable transferability and reproducibility in
other regions. Bush encroachment mapping in southern Africa utilizing various sources
of EO information (e.g., optical and radar) was investigated by recent studies [8,26–31].
These studies analyzed shrub cover increase, using high to low spatial resolution EO
data investigating different approaches (e.g., land cover classification [27,31], random
forest [8,26,29], trend analysis [28,30]). However, few studies have focused on one specific
shrub species only. In general, an intensification of woody cover was present in all studies,
especially in the open rangelands. Local studies revealed that protected areas with large
herbivore populations (e.g., elephants) occasionally show a loss in woody or tree cover [27].

Remote sensing techniques are not likely to replace field measurements completely,
as the validation of EO approaches deriving woody vegetation composition is still of
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high importance [21,32]. However, they allow for continuous wall-to-wall monitoring on
a larger spatial extent of the parameter woody cover, which is considered an essential
biodiversity variable [33].

The goal of this study is to monitor the slangbos encroachment on rangeland and
pastures in the Free State Province, South Africa, between 2015 and 2020 by synergisti-
cally combining Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Sentinel-2) EO
information. Both optical and radar satellite data are sensitive to the different vegetation
properties and surface scattering or reflection mechanisms caused by the sensor specific
characteristics. This study aims to (1) investigate the sensitivity of optical and radar remote
sensing toward Seriphium plumosum and (2) to use combined SAR and optical dense time
series to perform encroachment mapping on a regional scale in the South African grassland
biomes. Utilizing time series, particular features in hyper-temporal radar and spectral data
are examined to conclude the temporal variations observing Seriphium plumosum.

2. Materials and Methods

2.1. Study Area

The monitoring of slangbos encroachment was carried out on an approx. 90 km by
50 km (4500 km2) area located in the Free State Province between the towns of Ladybrand
in the east and Botshabelo in the west (Figure 1).

 

Figure 1. The study area is located in the Free State Province, South Africa, close to the border of the
Kingdom of Lesotho (in white). (Source: National Land Cover Classification of 2018 [34], Roads of
South Africa [35]).

The region is part of the Highveld grassland ecosystem (1300 m–1700 m a.s.l.), which
is characterized by a continental climate with a mean annual temperature of around 14 ◦C.
However, days with temperatures below the freezing point are common during the winter
season. The mean annual precipitation ranges from 500 mm to 700 mm, and the majority
of rain occurs in the summer season between November and March [11].

The study area is known for extensive plains, cultivated areas and plateaus, which
form the relief. The region is sparsely populated and mostly used for cattle and arable
farming as well as water reservoirs. The primary land cover types are rangelands for
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grazing, cultivated land, shrubland and open grassland. The Highveld grassland biome
is influenced by three major land degradation phenomena, namely (1) changes in plant
composition, (2) loss of vegetation cover with a subsequent increase in wind and water
erosion occurrence and (3) bush encroachment [11]. Moreover, the study area is one of
the regions with the highest impact of invasive alien plant species throughout all of South
Africa [36].

2.2. Data
2.2.1. Sentinel-1 and Sentinel-2

The Sentinel-1 and Sentinel-2 missions of the European Space Agency (ESA) Coper-
nicus Programme have led to the increased availability of open access EO information
covering both the optical and the microwave spectra. This opens new possibilities for
the analysis of data with high spatial as well as temporal resolution for various appli-
cations, e.g., agricultural monitoring, and vegetation change analysis. The synergetic
use of these EO data is especially valuable, as both satellites acquire data in parallel but
measure different properties of the Earth’s surface. In comparison to Sentinel-2, Sentinel-1
acquires undisturbed images of the Earth’s surface, regardless of atmospheric effects and
sun illumination.

For this study, Sentinel-1A C-Band SAR (5.405 GHz—approx. 5 cm wavelength)
dual-polarized (VV–vertical/vertical, and VH–vertical/horizontal) scenes were utilized,
covering the time period between 2015 and 2020 with a spatial resolution of up to 10 m.
Sentinel-1 has a revisit time of a few days (3 to 12 days), depending on the geographic
location and acquisition of both Sentinel-1A and -1B. In South Africa, the image acquisition
repetition is twelve days [37]. In the Free State Province, only Sentinel-1A data from
the ascending orbit are available, collecting images at around 5:00 p.m., local time. The
Sentinel-1 footprint is represented by relative orbit numbers 14 and 116, which were
used jointly.

The Sentinel-2 constellation consists of two satellites, namely Sentinel-2A (start of
acquisition: November 2015) and Sentinel-2B (start of acquisition: August 2017). Since
Sentinel-2B became operational, the revisit time has been approximately five days. In this
study, data acquired between 2016 and 2020 from the optical Sentinel-2 constellation were
used. Each of the two satellites (Sentinel-2A and -2B) has 13 bands covering the spectrum
from the visible to the Short-Wave-Infrared (SWIR) and a maximum spatial resolution of
10 m. The images are acquired at around 10:30 a.m. local time [38].

In this study, Sentinel-1 Single Look Complex (SLC) and Ground Range Detection
(GRD) images were utilized. Whereas the SLC data comprise the phase information,
which is used to derive the interferometric coherence, the GRD data contain only the
amplitude and are already multilooked. In total, 313 Sentinel-1 GRD, 145 Sentinel-1 SLC
(144 coherence pairs) as well as 503 Sentinel-2 images were utilized. For the coherence
estimation, Sentinel-1 SLC scenes from the relative orbit 14 were used.

2.2.2. Agricultural Statistics 2014–2018

Spatial information for the different crop types planted in the study area was provided
by the Department of Agriculture, Land Reform and Rural Development (DALRRD) [39].
The dataset contains information of crop types planted between 2014 and 2018, where each
dataset represents an individual crop year. A crop year is defined from June until May
of the next year, and includes both winter (June–September) and summer (October–May)
planting seasons.

In general, the Free State Province has the highest number of farming units, which are
summed up to almost 8000 entities, which represent approximately 20% of the national
total. Approximately 460,000 km2 are used for agriculture of which 80% were used for
grazing and the remaining 20% were used mainly for dryland crop production [40].

Between 2014 and 2018, the cultivated land in the study area was dominated by
pasture vegetation (Figure 2). Maize, sunflower and soybeans can be identified as major
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crops during the same period, whereas the amount of wheat and sorghum is negligible.
However, fallow land areas, which are certainly prone to a slangbos invasion, have shown
a significant increase between 2014 and 2018, with the largest expansion between 2016/17
and 2017/18.

 

Figure 2. Area for different cover types of the cultivated land within the study area for the crop years between 2014 and
2018 (Source: [39]).

In 2014/15, croplands (approx. 380 km2 (33%)) and pasture (approx. 730 km2 (63%))
covered most of the cultivated land within the study area. At this time, the study region
was characterized by 23 km2 (2%) fallow land. In 2015/16, the area covered by fallow
land increased by 7% to an area of 110 km2, where both, pasture and cropland declined
by equal percentages. Soybeans showed the largest decline during that time, which was
followed by a slightly increasing trend toward 2018. In 2016/17, the statistics show that
especially cropland turned into fallow land, which increased by approximately 7% to an
area of 190 km2. Sunflower showed the largest decline during that period (60 km2 (5%)). In
2017/18, the class fallow showed the largest increase to 43%, which equals around 480 km2.
At this time, the area, which was covered with pasture beforehand, decreased by about
280 km2 (23%), whereas the number of croplands had no significant loss. However, a large
decline for maize was found in this year (50 km2 (4%)), as these areas were changed to
soybeans or sunflowers.

2.2.3. Reference Data

The essential ground reference sites were exploited via field exploration, aerial photo
documentation and local expert knowledge. In order to scale the amount of ground
validation, the Google Earth high-resolution time series imagery [41] and the National Geo-
spatial Information (NGI) very high resolution aerial photos [42] were used. The previously
identified slangbos sites were used as a blueprint for creating a set of labeled fields in
the area, utilizing manual mapping in cooperation with local partners at DALRRD [39].
The ground references consist of binary spatial polygons indicating the occurrence or
absence of slangbos. An oversampling of the critical slangbos and grassland land cover
was performed to draw the focus of the classification algorithm to this discrimination
task. Finally, the labeled dataset totals up to roughly 14 km2, which makes up 1.2% of the
agricultural area and 0.3% of the entire study area.
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2.3. Methods
2.3.1. Sentinel-1 Pre-Processing

The Sentinel-1 GRD data were pre-processed using PyroSAR [43], which is designed for
large-scale SAR satellite data processing within a Python framework. It offers a complete
solution for organizing and processing SAR data for different historical and current satellite
missions, with additional functionalities, which are available after the pre-processing of the
SAR satellite images (e.g., mosaicking and resampling images to common pixel boundaries
suited for time series analysis). PyroSAR offers the possibility to utilize the open-source
ESA’s Sentinel Application Platform (SNAP) as well as the GAMMA Remote Sensing
software for licensed users.

The Sentinel-1 GRD data were pre-processed using GAMMA (Software Version: July
2018, GAMMA Remote Sensing AG, 3073 Gümligen, Switzerland) [44]. (1) To convert from
digital numbers (DNs), which are recorded by the sensor, to physical units, a radiometric
calibration was applied for each dataset. (2) The orthorectification of the data was carried
out, using the precise orbit state vectors (precise orbit ephemerides, POE) as well as height
information from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) [45] at 30 m spatial resolution. (3) The conversion of beta naught (β0) to gamma
naught (γ0) values was achieved by a terrain flattening [46], utilizing the SRTM DEM.

The interferometric coherence (γ) represents a measure of the correlation between two
complex SAR images and can be described as follows:

γ =
E [u1 u ∗

2 ]√
E [|u1|2]

√
E
[
|u2|2

] (1)

where u1 and u2 are two complex (SLC) acquisitions, |u1| and |u2| are their amplitudes,
and E[x] is the expected value of the considered variable x. The coherence takes values
between 0 and 1, where 0 represents no correlation and 1 represents a perfect correlation
between the image phases [47,48]. Depending on the backscattering properties of the
surfaces and their variation over time, the coherence is variable; therefore, it is useful
for land cover classification [49,50], and biomass estimation [51,52], as well as for change
detection (e.g., mapping deforestation) [53,54].

The Sentinel-1 SLC data were pre-processed, using SNAP. The coherences were only
calculated for the co-polarized mode (VV) because of the stronger signal and thus higher
signal-to-noise ratio. The coherence estimates were created for all adjacent date pairs with
a temporal baseline of 12 days. However, in 2015 and 2016, eight interferometric coherence
pairs (four in each year) were based on a 24-day temporal baseline, which was caused by
the interruption in the acquisitions due to maintenance or other technical related issues at
the early lifetime of the satellite.

(1) The first processing step was to apply the orbit state vector files to the SLC data,
using the precise orbit state vectors (precise orbit ephemerides, POE). (2) As the SLC images
are acquired in three sub-swaths (one image per swath and polarization) in TOPSAR mode
(Terrain Observation with Progressive Scans SAR), the TOPSAR split function was applied
to calculate the coherence based on each sub-swath. (3) In order to co-register the SLC
swaths of an image pair, the back-geocoding function was accomplished utilizing the height
information from the SRTM DEM [45] at 30 m spatial resolution. (4) The coherence between
both SLC datasets was calculated using the interferogram module in SNAP. (5) TopSAR
merge was utilized to merge the individual sub-swath before performing (6) the terrain
correction, which also utilized the SRTM DEM dataset as the height information.

2.3.2. Sentinel-2 Pre-Processing

Sentinel-2 L1C products consist of TOA (top of atmosphere) reflectances in carto-
graphic geometry. The Sentinel-2 data are provided in tiles with a fixed coverage of about
10,000 km2 (100 by 100 km) projected in UTM/WGS84 along a single orbit [38].
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In order to obtain the bottom of atmosphere reflectance, the Sen2Cor processor [55]
was utilized with additional parameter settings, such as aerosol optical thickness and water
vapor, but without the correction for cirrus and terrain. Each band of the pre-processed
Sentinel-2 L2A products has the identical spatial resolution as the original L1C input band,
namely 10 m for bands 2, 3, 4, 8, 20 m for bands 5, 6, 7, 8a, 11, 12 and 60 m for bands 1, 9,
10. In addition, the Python application [56] of the FMask algorithm [57–59] was used to
produce cloud masks with a resolution of 20 m from the Sentinel-2 L1C data.

To assess the sensitivity of the satellite image data concerning vegetation processes, the
NDVI (Normalized Difference Vegetation Index) [60] and SAVI (Soil Adjusted Vegetation
Index) [61] were retrieved from each Sentinel-2 L2A scene with a spatial resolution of 10 m:

NDVI =
(N − R)
(N + R)

(2)

SAVI =
(N − R)

(N + R + L)
(1 + L) (3)

where N corresponds to the near-infrared (NIR) channel of Sentinel-2 (band 8), R corre-
sponds to the red channel of Sentinel-2 (band 4) and L is a factor, which is used to minimize
the influence of the soil brightness in the SAVI (here L = 0.5) [61].

Vegetation dynamics for a specific area are often analyzed using time series constructed
from indices. Here, time series were constructed with the entire Sentinel-2 data archive
from 2016 to 2020. To avoid spurious data due to atmospheric distortions, each index file
was masked with the corresponding FMask product before stacking. In some regions,
depending on the weather conditions in combination with the topography, each time series
along a pixel stack can have substantial gaps lasting up to eight weeks. However, with
the introduction of Sentinel-2B, gaps in areas with intensive cloud cover are considerably
shorter, with at least one suitable acquisition each month.

2.3.3. Combined Time Series Analysis

For enhancing the interpretability of the dense time series, we employed the smoothing
algorithm, Friedman’s “super smoother” [62], an adaptive, variable-span linear smoother. It
provides a smoothing prediction due to the adaptive spans and utilization of the parameter
of least residuals. The default setting provided in the R-implementation was found to be
the most suitable for the interpretation of the time series.

2.3.4. Predictive Modeling and Interpretation

In order to predict the spatial distribution of slangbos on cultivated land, a random
forest model was fitted for each crop year and validated using spatial cross-validation
(SpCV) [63]. Random forest models are widely used in remote sensing applications due to
their robustness to overfitting and flexible approach to recognizing non-linear structures in
feature spaces [64,65].

In this study, the predictor set consists of optical indices from Sentinel-2 (NDVI, SAVI),
co-polarized (VV) and cross-polarized (VH) Sentinel-1 backscatter as well as coherences
(VV) comprises 67, 154 and 119 features for each investigated crop year 2015/16, 2016/17
and 2017/18, respectively. The model was trained on a labeled set of 5000 randomly
selected pixels, indicating slangbos and non-slangbos fields. Due to the anticipated spatial
autocorrelation effects, the model was cross-validated with 100 iterations and 5 folds of
k-nearest-neighbor spatially segmented test data sets in order to derive accuracte metrics
of the model predictions presented.

The random forest models were assessed, using the overall accuracy (OA) throughout
all model runs. The OA includes the model performance on both slangbos and non-
slangbos sites and is, therefore, prone to an overoptimistic classification performance.
Therefore, the averages of recall (how much slangbos were missed) and precision (how
much slangbos were falsely assigned) were also estimated in order to assess the capacity of
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the model to distinguish slangbos. An independent validation approach, utilizing in-situ
data, which are not part of the machine learning methodology, was not applicable, as no
such additional ground data were available. Hence, this study relies on the results of the
internal spatial cross-validation of the random forest approach, which is a feasible approach
and was utilized by other studies to reduce the overoptimistic model performance when
using only random distributed points instead of spatially separated folds [66].

Since the hyperparameter settings for random forests are relatively stable [67–69], no
separate tuning was set up. The number of trees ntrees was set to 300 (large and stable
averaging possible) with mtry =

√
P, where P is the number of features in the model [70].

These parameters were optimized prior to model fitting, as they were found to be sensitive
with respect to model accuracy and computation time. The so-called model tuning was
carried out to identify the best parameter set for the SpCV and training [71,72]. Other
parameter settings were left as the default.

The random forest feature importance determines how much each feature decreases
the impurity weight when kept out of the model. It was proven to be a reliable means
of assessing feature importance on the model predictions while accounting for all other
predictors in the model [73]. It must be mentioned that correlated predictors take away
their ranks as features akin to compensate for the loss of information. The model setup, the
retrieval of feature importance and the SpCV are implemented in the R software package
mlr3 [74] with bindings to sperrorrest [63].

3. Results

3.1. Combined Time Series Analysis of Sentinel-1 Backscatter and Coherence and Sentinel-2 NDVI
and SAVI

The input variables for the random forest approach classifying the spreading of slang-
bos in the study area were (1) the Sentinel-1 backscatter (S1 VV and S1 VH), (2) Sentinel-1
coherence (S1 VV), (3) Sentinel-2 NDVI and SAVI time series. This section highlights the
temporal profiles of these variables for different land cover classes (slangbos, grassland,
woodland and cultivated areas) (Figure 3) in order to investigate which parameter could
be best suited to distinguish between the slangbos class and the other classes. In addition,
precipitation information from the CHIRPS (Climate Hazards Group Infrared Precipitation
with Stations) product [75], which represents rainfall estimates from rain gauge and satellite
observations, was utilized to account for the characteristics of the dry and wet season to
the time series signal.

Areas with slangbos encroachment are characterized by a clear increasing trend of the
cross-polarized VH backscatter intensities. This is especially true between 2016 and 2017.
Afterwards it seems to be stabilized, as it is also noticeable for the other classes cultivated
and grassland. At the beginning of the time series, the severe drought of 2015/2016,
which had a vast impact on the vegetation development during these years [76–78], is
clearly visible. The sparse precipitation indicated in the CHIRPS product in 2016 can be
seen as an additional indicator of the drought. InSAR coherences similarly show low
amplitudes in the first two years of the time series. Yet, this trend fades in years that were
not drought-affected. Therefore, the drought may have affected a stronger slangbos growth.
The coherence only shows increase and stabilization, compared to the other culture types
where the coherence decreases between 2015 and 2016 and then increases afterwards. The
SAVI time series is characterized by low amplitudes mainly in ranges between 0.1 and
0.2, while NDVI ranges between 0.2 and 0.6 at high amplitudes. During the drought, the
amplitude of either optical index was lower. In comparison, the NDVI has higher values as
well as higher amplitudes during the entire time series when compared to the SAVI.

Grasslands exhibit lower cross-polarized VH backscatter values, compared to the
slangbos areas. These circumstances are due to the higher proportion of volumetric scatter-
ing effects in the slangbos shrubs compared to the vertically oriented grasses. However,
the impact of the drought is also visible at the beginning of the time series. Thus, dry
grasslands or grasslands fallen barren due to water scarcity result in reduced backscatter.
The amplitude of the coherence is similar during the entire period when compared to
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slangbos but shows larger dynamics when related to the other classes. The SAVI indicates
slightly higher temporal dynamics in comparison to areas infected by slangbos growth
during the entire time series.

 

Figure 3. Temporal dynamics of the Sentinel-1 VH backscatter, Sentinel-1 VV coherence, Sentinel-2 NDVI and SAVI time
series. In addition, precipitation information from the CHIRPS (Climate Hazards group Infrared Precipitation with Stations)
product [75].

The woodland areas reveal higher backscatter values, compared to the other classes,
which is a result of the volumetric scattering mechanism in the crones of upper tree
canopies. The amplitude of the cross-polarized backscatter is low, which reflects almost
no seasonality in the woodland areas. The temporal profile of the coherence is quite low
(decorrelation) with also low seasonality.

The cultivated areas show the largest Sentinel-1 VH backscatter dynamics, which is
caused by the harvest cycles. This is also true for the NDVI signal. The SAVI is somewhat
comparable to the grassland class, with lower seasonal dynamics. The impact of the
severe drought in 2015/2016 is visible between 2016 and 2017, which could be identified as
repercussions of the drought to the vegetation growth.

The comparison of the temporal signature of the four different parameters for the
classes slangbos, grassland, woodland and cultivated areas, have indicated that the Sentinel-
2 derived SAVI index, as well as the Sentinel-1 VH backscatter, shows the highest potential
in separating between the class slangbos from the others. Figure 4 shows the comparison
between the NDVI and the SAVI as well as Sentinel-1 VH backscatter and VV coherence for
the four classes. While the NDVI confirms no separability between slangbos, grasslands
and cultivated areas, the SAVI provides a more potent means of discriminating these classes.
In addition, the Sentinel-1 VH backscatter time series for slangbos delineate from the other
classes when compared to the Sentinel-1 VV coherence.
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Figure 4. Separability of the class slangbos from other land cover classes for the variables Sentinel-1 VH backscatter,
Sentinel-1 VV coherence, Sentinel-2 NDVI and SAVI time series.

3.2. Classifying Slangbos using Random Forest
3.2.1. Variable Importance

The variable importance was calculated for the crop years between 2015 and 2018
(Figure 5). The results show that the Sentinel-2 derived SAVI has the highest importance for
the classification algorithm (refer to Section 3.2, Figure 4). This is especially true for the crop
years 2015 to 2016. However, this year needs to be analyzed with caution, as the Sentinel-2
data are only available from early 2016, and thus are not available for the entire crop year.
During the same crop year, the NDVI, as well as the cross-polarized Sentinel-1 VH data,
have important contributions to the classification result. The Sentinel-1 VV coherence
results in the lowest variable importance for all observed crop years. During 2016 and
2018, the variable Sentinel-1 VH had less significance for the classification algorithm when
compared to the Sentinel-2 derived NDVI. This importance must be handled with care, as
a higher abundance of a feature subset, e.g., the denser time series of Sentinel-1 compared
to cloud-free Sentinel-2 acquisitions result in a relatively lower overall importance of
that feature subset. However, the optical indices and cross-polarized SAR still dominate
the bulk of the model performance. The inter-comparison between the years is further
dominated by the number of predictors used for modeling, e.g., the crop year 2017/2018
shows the lowest importance, as the highest number of predictors was used.

3.2.2. Spatial Cross-Validation (SpCV)

The spatial cross-validation was carried out for each of the crop years between 2015
and 2018. Figure 6 shows the accuracies of the binary classification of the categories
slangbos as well as non-slangbos. The overall accuracy exceeded 90% for the entire period.
The precision measure indicates to what extent the slangbos was correctly classified (around
80%). The recall measure is even higher, which is an indicator of how much slangbos was
missed during classification (13% to 16%). Slightly lower precisions were found for the
years 2016/17 and 2017/18.
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Figure 5. Variable importance for the input parameters Sentinel-1 VV coherence (CO), cross-polarized Sentinel-1 backscatter
(VH) as well as Sentinel-2 derived NDVI and SAVI.

 

Figure 6. Classification accuracy metrics derived from spatial cross-validation for each of the crop years between 2015
and 2018.

3.2.3. Slangbos Probability Measures

The probability measure is an output of the random forest algorithm and describes
the potential assignment of the individual pixel to the class slangbos between 2017 and
2018 [79] (Figure 7, left).

The figure gives a detailed insight into the different characteristics of agricultural fields
being potentially infected by slangbos growth. The dark field in the center of the image
is surrounded by fields with high probabilities for slangbos encroachment, which is also
visible as brownish areas in the optical Sentinel-2 image (Figure 7, right). In combination
with the Sentinel-2 images, it can be illustrated how the probability index reflects the
heterogeneity within each of the fields. This information might be utilized to identify
areas that need to be prioritized for slangbos-clearing investigations within a slangbos
encroachment monitoring system.
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Figure 7. An example of the probability measure mapping slangbos encroachment in the project area.
The comparison with an optical image illustrates how the probability index reflects the heterogeneity
within fields. Left: probability measure for the assignment of individual pixels to the class slangbos
between 2017 and 2018. Right: Sentinel-2 Short-Wave Infrared (SWIR) image from 30.08.2017
(RGB = bands 12-8A-4). (Field boundaries source: [39]; contains modified Copernicus Sentinel data
[2017–2018]).

3.3. Mapping
3.3.1. Regional Scale Analysis

Figure 8 shows the distribution of the areas which were identified to be infected by
slangbos encroachment for the entire study area between 2015 and 2020. The presented
areas were not used for model training. Areas in red are dominant and relatively homo-
geneously distributed in the entire study area. These areas indicate that slangbos were
prevalent during the beginning of the time series in 2015/2016. Blue areas are spread
between the southern and the eastern part of the study area. The patches indicate slangbos
and shrub cover during the second half of the time series, after 2017. These areas are likely
to be those that were infected by the growth of slangbos or shrub encroachment during
that time period. Few areas are classified as green, which indicate slangbos only found in
2017, which are often adjacent to orange areas, indicating slangbos or shrub cover also in
2015. These regions might be areas in which slangbos and shrub cover were cleared either
by hand or due to fires.

Figure 9 highlights four areas, showing the classification result within the rangeland
areas to describe the spatial pattern in more detail. Area 1 is a heavily encroached prone site.
The local partners from LandCare confirmed this site to be cleared during our observation
period. In particular, the red areas in the rangelands were cleared between 2015 and 2019.
On the other hand, regrowth in recent (since 2017) years is found in other areas, which are
shown in cyan. In the center, some white areas are visible, indicating slangbos infection
during the entire period. In Area 2, a fire occurred in September 2017, which resulted in a
massive loss of shrub cover (green areas) [80]. On the other side, shrub encroachment on
native rangelands is found on the eastern part of the plateau (red areas). Area 3 is a large
managed site, where also shrub clearing took place during the second half of the observed
period. Area 4 is characterized by intensive shrub encroachment in the rangeland sites
since 2017/2018. The classification algorithm was able to even detect these small areas.
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Figure 8. Spatial distribution of the regions affected by slangbos encroachment for the entire study area between 2015 and
2020. This map represents each crop year in a specific layer of the RGB composite (R: 2015/16, G: 2017/18, B: 2019/20). The
numbered boxes show the zoom-in for a detailed analysis within the next sections. (Roads: [35], Map data source: Esri, Digi-
talGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community).

 

Figure 9. Subset of the boxes 1 to 4 (Figure 8) showing slangbos infected areas in the rangelands (R: 2015/16, G: 2017/18,
B: 2019/20). (Map data source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community).
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3.3.2. Field Boundary Scale Analysis

Figure 10 highlights four areas within the cropland boundaries, which were provided
by the DALRRD [39]. The region inside the grey dashed line in area 5 is identical to the
subset shown in Figure 7, which was utilized to show the classification results of the
model. This region shows heavily encroached pastures, where some of them were found
to be fallow. Large areas are shown in white, indicating that slangbos were growing on
the rangelands during the entire time period. Area 6 illustrates areas that were rapidly
encroached by slangbos in 2017/2018 (turquoise and blue). Green areas are likely caused
due to misclassifications, as it would mean that slangbos only occurred in 2017/18 and
suddenly disappeared. However, man-made clearing management or fires might also
be causing this spatial pattern. Area 7 represents a vast shrub control side, where large
areas were infected by slangbos during the entire time (white areas); some areas show
the effect of clearing actions after 2015/16 (red areas). Area 8 shows a diverse spatial of
different slangbos encroachment dynamics. Some areas indicate slangbos infections during
the entire period. Large areas show slangbos clearing activities, which are shown in red
(cleared in 2015/16) and yellow (cleared after 2017/18). Small areas indicate slangbos
infections during the later stage of the time period (turquoise), which might be fields, which
were cleared a few years before and when already affected by slangbos encroachment.

 

Figure 10. Subset of the boxes 5 to 8 (Figure 8) showing slangbos infected areas in the field boundaries by crop years (R:
2015/16, G: 2017/18, B: 2019/20). The grey dashed line in subset 5 represents the region shown in Figure 7. (Map data
source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS
User Community).

The crop statistics were used to identify which crop type classes are affected the most
by the encroachment of slangbos. Figure 11 indicates the relative area covered by slangbos
on cropland, fallow land and pastures between 2015 and 2018. It needs to be mentioned
that only time period for which crop statistics were available is covered. Thus, recent years
were not accessible through the DALRRD, as these data were still classified for internal use
only at the time of writing.
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Figure 11. Relative area (in %) statistics on slangbos encroachment of different agricultural land types (cropland, fallow
land and pastures).

The statistics on slangbos encroachment of different agricultural land types clearly
demonstrate that pasture areas are highly affected by the encroachment of slangbos. Fallow
areas also show some sensitivity to infection by the growth of slangbos. Croplands reveal
almost no sign of being affected by the encroachment of slangbos, which is attributed to
intensive management (i.e., plowing) throughout harvest cycles. These findings are an
indication for the reliabilty of the classification approach, as we did not expect slangbos
encroachment on croplands, due to the intensive management.

4. Discussion

This study focused on the classification of slangbos encroachment on agricultural land,
using ESAs Copernicus Sentinel-1 and Sentinel-2 time series between 2015 and 2020 for a
test area in the Free State Province, South Africa. The classification accuracies of over 80%
indicate a solid approach for slangbos encroachment mapping, using optical and radar
time series information from ESAs Sentinels data. Moreover, the random forest classifier
was used as a framework for the multi-temporal and multi-sensor classification.

The paper investigated slangbos encroachment on a comparatively small study area
of around 4500 km2, where slangbos is known to be the main encroacher. The agricultural
statistics revealed that fallow areas increased dramatically after 2015 and doubled until the
end of 2018. In this year, fallow areas covered more than 50%, with the remaining areas
being almost evenly distributed amongst croplands and pastures. This abandonment of
agricultural land is a known phenomenon of the land-use change in South Africa, which
is driven by climate as well as socio-economic factors [81]. The statistics on slangbos
encroachment of different agricultural land types revealed that this process is more recent
in abandoned crop areas as compared to regions near settlements [82].

Upcoming research activities might focus on larger areas, where other bush communi-
ties or shrub types represent the main invader. As an example, it is worth mentioning the
black wattle (Acacia mearnsii), which also imposes great pressure on grassland communities
in South Africa [83,84]. Hence, future studies could build upon this methodology to aim
for the discrimination between different shrub communities in regions, where a mixture
of different encroachers is present. If the goal is to classify different shrub communities,
the presented binary approach has limitations in the separation of different encroachers.
This might need additional data (e.g., hyperspectral [85]) for the training of more suitable
machine-learning models.

However, classifying different shrub communities is likely to introduce other issues,
such as spectral and scattering uncertainties, which can be attributed to the canopy spacing
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of the individual plants that need to be considered in future studies. Depending on the
spatial resolution of the data, the influence of grass and soil between shrubs need to be
analyzed in more detail, as it has major impacts on the reflectance and backscatter. Further
research will increase the knowledge of those scattering mechanisms of slangbos and other
bush communities in contrast to grassland. Regarding the classification of slangbos, it
is likely that the Sentinel-2 derived SAVI as well as the Sentinel-1 VH backscatter are of
higher potential than the NDVI and Sentinel-1 VV coherence. In the case of the SAVI,
it might be attributed to the fact that slangbos patches grow more sparsely, and thus
benefit from the bare soil consideration in the SAVI estimation, as the influence of the
soil brightness is reduced in comparison to the NDVI [86]. As droughts might favor bush
encroachment [87,88], it is of high importance to integrate information on precipitation
dynamics in future studies. Here, we utilized coarse resolution CHIRPS data for analysing
the yearly precipitation dynamics. Since rainfall events might occur locally, information
from climate stations or data products with higher spatial resolution could be of great
value for upcoming investigations.

To make the model performance more flexible and effective as well as applicable
for investigations in other or larger regions, the training input should be limited to only
important model features. In this study, more than 500 features were used as model training
input, with around 100 for each individual crop year. These might be not applicable when
transferring the methodology to other larger regions. To enhance the model performance
and based on the known variable importance, Sentinel-1 VH backscatter, Sentinel-2 SAVI
and NDVI time series might solely be utilized as input variables. Methods for interpretable
machine learning and feature selection are desirable for future research, making the models
comprehensible and transparent. In addition, the use of statistical metrics from hyper-
temporal EO data might be a feasible solution to analyze time series in a cost-effective
and descriptive way. Simple descriptive statistics, such as median, standard deviation or
quantiles in conjunction with regression functions or temporal filters might improve the
model performance as well as classification results.

The availability of agricultural statistics for the entire observation period is crucial for
the identification of classes that were infected by slangbos encroachment. In this study, the
statistics were available between 2014 and 2018 only. Hence, statistics for two crop years
(2019 and 2020) were missing.

Future investigation might utilize different measures to assess the accuracy. In this
study, we measured the accuracies based on a binary classification (slangbos and non-
slangbos), which integrates issues related to the sample size of both classes. The overall
accuracy might be not reliably interpretable in this case, whereas recall and precision are
more valuable measures. The overall accuracy is prone to the imbalance of the sample size
between the slangbos and non-slangbos classes [89]. The recall marks the rate of “missed”
slangbos pixels, while the precision is the rate of falsely detected slangbos areas. Both
numbers can be low, as they are only based on true positive, false negative and false positive
values. The true negative sample size is extremely large, as is common in most remote
sensing classifications since they include all classes, e.g., water, urban, and grassland,
pixels.Upcoming investigations should emphasize the potential of mapping slangbos
encroachment, using cloud-based solutions (e.g., Google Earth Engine) to minimize the
data processing times for the users. This might result in a bush encroachment monitoring
system, where products are directly accessible by the users without any data interaction.
Such a monitoring system is likely to result in an early warning system using near-real-time
classification approaches, advances in the potential of current methodologies identifying
infected areas, as well as helping to plan optimal clearing strategies supporting sustainable
land management strategies.

5. Conclusions

The objective of this paper was to monitor slangbos encroachment between 2015 and
2020 in a test region in the Free State Province, South Africa. The slangbos classification was
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carried out utilizing a synergetic combination of Sentinel-1 and Sentinel-2 time series within
a machine-learning framework, applying a random forest classifier. Field inventory and
high-resolution image analyses as well as spatial crop statistics and slangbos verified areas,
which were provided by the DALRRD, were used for training and spatial cross-validation.

The time series analysis of the Sentinel-1 and Sentinel-2 data has shown that the
Sentinel-1 VH (cross-polarization) and the Sentinel-2 SAVI (Soil Adjusted Vegetation Index)
carry the highest separability between the shrub and other land cover classes. Moreover,
random forest permutation-based feature importance showed that these parameters pro-
vide the largest contribution to the classifiers when accounting for the other variables in
the model. The spatial interpretation revealed that the slangbos infected areas are well
captured for the different crop years between 2015 and 2020. Pastures are particularly
prone to slangbos encroachment, whereas cultivated areas are less affected. Even small
patches of slangbos growth and the resulting heterogeneity on different fields could be
identified with the used Sentinel-1 and Sentinel-2 data. This knowledge is an essential
information source for a slangbos-encroachment-monitoring system to identify areas that
need to be prioritized for slangbos-clearing investigations. The estimation of the classi-
fication accuracy was performed via spatial-cross validation and resulted in an overall
accuracy of around 90% for each crop year, with a positive predictive value (precision)
of around 80%. These accuracies indicate large potential for the transferability to other
regions for monitoring shrub encroachment.

The study has shown the potential of using high-resolution optical and radar Earth
observation time series to classify slangbos encroachment on pastures in the Free State
Province of South Africa. Future studies might utilize these findings in other regions of
shrub and bush encroachment.
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Abstract: Aggregated mining development has direct and indirect impacts on vegetation changes.
This impact shows spatial differences due to the complex influence of multiple mines, which is a common
issue in resource regions. To estimate the spatial heterogeneity of vegetation response to mining activities,
we coupled vegetation changes and mining development through a geographically weighted regression
(GWR) model for three cumulative periods between 1999 and 2018 in integrated resource regions of
northwestern China. Vegetation changes were monitored by Sen’s slope and the Mann–Kendall test
according to a total of 72 Landsat images. Spatial distribution of mining development was quantified,
due to four land-use maps in 2000, 2005, 2010, and 2017. The results showed that 80% of vegetation in
the study area experienced different degrees of degradation, more serious in the overlapping areas
of multiple mines and mining areas. The scope of influence for single mines on vegetation shrunk
by about 48%, and the mean coefficients increased by 20%, closer to mining areas. The scope of
influence for multiple mines on vegetation gradually expanded to 86% from the outer edge to the inner
overlapping areas of mining areas, where the mean coefficients increased by 92%. The correlation
between elevation and vegetation changes varied according to the average elevation of the total mining
areas. Ultimately, the available ecological remediation should be systematically considered for local
conditions and mining consequences.

Keywords: spatial heterogeneity; vegetation trends; mining development; geographically weighted
regression (GWR); Sen’s slope; Mann-Kendall; arid and semi-arid areas

1. Introduction

Vegetation dominating terrestrial ecosystems connects the material circulation and energy flow of
the biosphere [1] and plays a critical role in supporting ecosystem services and functions [2,3]. Vegetation
changes, thus, have increasingly become an inevitable indicator in global climate changes and regional
eco-environmental assessment [4,5]. Changes in natural conditions and strong human activities involve
ecological elements and ecological processes, and alter the regional environment [6]. As intensive
human activities, mining activities have an impact on 11 out of the 17 United Nations Sustainable
Development Goals (SDGs) [7], and are a constraint for achieving sustainable development [8]. Mining
activities, especially extractive ones, directly destroy vegetation and indirectly lead to environmental
problems, including air and water pollution [9], heavy-metal pollution [10], groundwater loss [11],
soil erosion and degradation [12]. These problems profoundly change the environment of vegetation
growth, and, in turn, disproportionately damage broader range of vegetation coverages and show
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spatial differences on vegetation changes. The vegetation changes representing local ecosystem health
are severely disturbed by mining activities [13]. Research on the effect of mining activities on vegetation
is essential for further ecological construction and achieving the SDGs.

Analyzing the mechanism of mining activities on vegetation growth in mining areas provides
significant insight for constructing ecological coal mining [14]. Researchers have made many findings
through field surveys and experiments focusing on soil parameters [15], microorganisms [16], root
environments [17], toxicological effects [18,19], colony symbiosis and photosynthesis [20], heavy-metal
pollution and enrichment in vegetation [21,22], the extinction of major dominant species [23],
and biodiversity loss [24]. Related studies have revealed that mining approaches impacting vegetation
growth are diversiform on a local scale and more complicated on a regional scale [25]. However,
mining development in resource regions is not a single sporadic mine pit, but a complex and systematic
industrial chain [26]. This chain involves a wholly integrated process and establishes diversified
industrial branches from mining excavation, transportation, preprocessing, and deep processing, to
material consumption and utilization [26,27]. The successive impacts are constantly accumulated
by the aggregation of one or more activities on receptors [28,29]. The difference in the spatial
accumulation degree over time and space causes different responses of various vegetation types to
mining development on a regional scale, resulting in significant spatial heterogeneity. Understanding
how mining impacts accumulate, and change over time is the key issue for assessing and monitoring
vegetation response to mining activities.

The regional ecological impact of mining development could be revealed through large-scale
observation [30]. Recent achievements include that coal mining is an important driving factor resulting in
serious regional vegetation degradation, especially in China’s Mongolia Plateau and alpine areas [29–31].
Vegetation disturbance caused by mining is evident on a large scale [30], and much more significant in
arid and semiarid areas [25,31]. The combined effect of climate conditions and ecological restoration
activities also make vegetation changes more volatile and show vast spatial differences [30,32]. In relation
to the regional scale, the relationship between mining development and vegetation changes during
the aggregation progress of mining development and the typical region where mining activities influence
more significantly, are still not well-understood. Establishing a mathematical coupling model between
vegetation trends and human activities is essential in a complex system under the coupling of natural
conditions and human activities [33].

Spatial analysis provides an advantage in understanding the variation in the impact of mining
on vegetation [34]. Traditional multivariate statistical analysis and simple spatial analysis, such
as ordinary least squares (OLS) models, usually assume that spatial relationships between variables
are stable in the entire study area and reflect any variation of spatial characteristics with difficulty [35].
Geographically weighted regression (GWR) constructs local regression equations from any given
geographic location to represent accurate quantitative characteristics of spatial relationships, thereby
avoiding the problems of spatial non-stationarity, heterogeneity, and autocorrelation [36]. Computed
correlation coefficients in the GWR model quantitatively express the spatial relationships at each
location. Geographically weighted regression models are widely used in urban landscape pattern
analysis [35,37,38], PM2.5 concentration estimation [39], carbon emissions [40], and ecosystem
services [41,42]. Sawut et al. [43] also estimated the heavy metal arsenic (As) contents of an open-pit
coal mine in soil on the basis of GWR.

Arid environments occupy more than 47% of Earth’s landmass with constant expansion throughout
the world [44]. Exploitation of mineral resources has had extensive environmental and social
consequences [45]. China is the leading country in energy production and consumption [46]. More than
70% of coal reserves are distributed in arid, semiarid, and fragile ecological regions, with high-strength
exploitation activities [23]. Analyzing the relationship of vegetation and mining development provides
practical guidance and reference for the development of mineral resources and ecological construction
in the Belt and Road Initiatives.
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As a representative resource-based city of China, Wuhai is not only a city that has maintained coal
exploitation for decades, but also an important ecological function zone in Inner Mongolia. In the context
of simultaneous ecological destruction and construction, setting Wuhai and its surroundings
as the research area was of great significance to regional ecological security and harmonious
development. The purpose of this article is to determine the spatial variability of mining impact on
vegetation changes. There were two detailed objectives: (1) To identify the mining development pattern
and associated vegetation dynamics in different periods, and (2) to explore the spatial variability of
vegetation response to mining development.

2. Study Area and Data Sources

2.1. Study Area

The study area (106.36◦E–107.05◦E, 39.15◦N–39.52◦N) mainly comprised the whole city of
Wuhai, and parts of Alxa League and Ordos according to the planning (2010–2030) of Wuhai and its
surrounding areas. The whole study area is located in the middle of Inner Mongolia with six districts
(Figure 1a) and surrounded by three deserts—the Uulan Buh, the Kubuqi, and the Maowusu [47,48].
The north–south-oriented Yellow river runs through the whole city and forms irrigation districts of
about 175 km2 with a narrow river beach wetland and an agricultural oasis [47]. Topographically,
the study area is low-lying in the northwest, and high-lying in the middle and east (Figure 1b).
The study area belongs to the middle-latitude temperate continental climate zone, a region affected
by the East Asian monsoon belt [49]. Annual precipitation is 160 mm, and annual evaporation is 20
times that of rainfall [47]. The main vegetation types in the study area are grassland and shrubland.
The combination of the Yellow river and the complex natural environment gives the entire region
a unique desertification ecosystem, including national wetland parks and an extremely precious plant,
Tetraena mongolica [48].

Figure 1. (a–b) Location, administrative divisions, land-use and land-cover map (a), and topography
(b) of study area. Land-use and land-cover map was monitored at 2017, provided by the Institute of
Geographic Sciences and Natural Resources Research in China. Note: districts of 1�, Uulan Buh; 2�,
Mengxi; 3�, Wuda; 4�, Haibowan; 5�, Etuoke Banner; and 6�, Hainan.
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Wuhai is a typical resource-based city where mining development comprises many mining
activities, including industrial base, surface mining, and waste dumping, and they play a dominant
role in social–economic development [49]. Industrial base mainly consists of coal washing, coal
storage, and primary and deep processing sites, while surface mining and waste dumping are the main
activity sites for mineral mining and disposal [48]. There are three industrial bases distributed across
the study area: the Wuda industrial base in the northwest, the Hainan industrial base in the midland,
and the Mengxi industrial base in the Mengxi district. Mining areas are attached to the Shendong
coalfield in Inner Mongolia and adjacent to the Ningdong Energy and Industrial Base, one of China’s
largest coal bases [23]. As the development progresses, decline transformation, and deepening of
social economic reforms, mining, coal, and chemical industries were introduced in this region over
the course of 30 years by enterprises with severe pollution and an extensive development model
from the developed eastern part of China [49]. Under the pressure of the inherent irreconcilable
conflict between social-economic development and ecological protection, it is more and more urgent to
recognize the internal relationship between ecological degradation and mining development

2.2. Data Sources

2.2.1. Landsat Data and Mining Maps

Normalized difference vegetation index (NDVI) values of all clear-sky Landsat images during
the growing seasons from April to October of 1999–2018 were obtained to composite interannual maximal
sequence to detect vegetation variation trends. Growing seasons included the vegetative and reproductive
phases of vegetation growth [50]; the maximal value of NDVI in the arid and semiarid areas represented
the best state of vegetation in a year. All Landsat data were obtained from the United States Geological
Survey (Table 1). Land-use maps were used to present the spatial distribution of mining activities
and calculate the distance from vegetation areas to mining areas. The maps were extracted from land-use
maps monitoring at 2000, 2005, 2010, 2017, respectively, from the Institute of Geographic Sciences
and Natural Resources Research. All maps were accurately interpreted on the corresponding historical
Google Earth images. Topography data at 30 m spatial resolution from the digital elevation model in
ASTER GDEM 2 (http://www.gscloud.cn/) were used to reveal the relationships between vegetation
dynamics and terrain features. All data were converted into a common coordinate system (WGS1984,
UTM Zone 49N), and raster data were resampled into 1000 × 1000 m.

Table 1. Sources of remote sensing data.

Theme Data Type/Images Number Resolution Time Source

Landsat 4-5 TM C1
Level-1 Satellite Imagery/ 41 Imageries 30 m 1999–2011 U.S. Geological Survey (USGS)

(http://www.glovis.usgs.gov/)
Landsat 7 ETM+

C1 Level-1 Satellite Imagery/ 11 Imageries 30 m 1999–2003 U.S. Geological Survey (USGS)
(http://www.glovis.usgs.gov/)

Landsat 8 OIL/TIRS
C1 Level-1 Satellite Imagery/ 20 Imageries 30 m 2013–2018 U.S. Geological Survey (USGS)

(http://www.glovis.usgs.gov/)

Historical Google
Earth Image Satellite imagery 17 m/4 m/2

m
2000, 2005,

2010, and 2017

Google Earth Pro
(http://www.google.com/intl/en_uk/

earth/versions/#earth-pro)

2.2.2. Boundary Data in Vector Format and Climate Dataset

The boundary of the research area was set according to the coal industry planning (2010–2030)
of Wuhai and its surrounding areas, which was made by the government of the Inner Mongolia
Autonomous Region. Basic geographic information was provided by the National Geomatics Center of
China (http://218.244.250.94:9003/English/html/1/), including a set of regional boundaries, major roads,
and river basins. The boundary of the conservation zone in the study area was drawn on the basis
of the Western Ordos national nature reserve [51]. The observed annual precipitation and average
temperature datasets were downloaded by the National Meteorological Information Center of China
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(http://data.cma.cn/en), to describe the impact of climate conditions on vegetation changes. This dataset,
comprising monthly observations, was obtained from 5 meteorological reference stations around
the research area in 1999–2018.

3. Methodology

The purpose of the article was to analyze the relationship between vegetation changes and mining
development on the basis of remote sensing data and the GWR model. Vegetation changes were
described by interannual NDVI trends (1999–2018), and the spatial distribution of mining activities
were obtained via four land-use maps (2000, 2005, 2010, 2017, respectively). Considering the intensity
of the potential influence of mining activities relying on distance [21,52], all data were divided into 1 km
units to calculate the distance from vegetation units to mining units on the basis of Euclidean distance
in ArcGIS 10.2. Minimal distance emphasizing the ecological impact of a single mine and summary
distance emphasizing regional mining impact on vegetation were differently analyzed. Minimal
distance was the shortest one of distances of central point between a vegetation unit and mining units.
The summary distance was the sum of distances of central point between a vegetation unit and mining
units. Topography was a limiting factor affecting vegetation changes in geographical conditions, such
as water and radiation balance. Elevation was regarded as an important factor in the analysis of
vegetation response to mining activities.

The methodology framework was divided into three steps (Figure 2). The first step was to
identify vegetation dynamics. Vegetation changes were divided into three stages, 1999–2005, 1999–2010,
and 1999–2018, to correspond to the cumulative effect of mining development in three periods, where
the starting year was set to 1999 to ensure the initial stability of the NDVI sequence. The second
was to present the spatial distribution of mining development, and calculate the minimal distance
and summary distance from vegetation areas to mining areas in units in different stages. The third was
to quantify the spatial relationships between two kinds of distances, elevation, the combination of
distance and elevation, and vegetation changes in the GWR model. Removing the improvement areas
of vegetation in the 1999–2018 period was to highlight the cumulative effects of mining development.
Detailed descriptions are provided in the following sections.

Figure 2. Framework of data processing flow.
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3.1. Trend Analysis of Vegetation Changes

NDVI is an indispensable indicator for mapping green biomass to describe vegetation dynamics
because they are closely related with biophysical and biochemical variables [53]. The calculation
method was detailed in a study by Maneja et al. [54,55]. All NDVI series were synthesized according
to the maximal value of the growing season in a year to eliminate interference caused by vegetation
changes, clouds, and the atmosphere. Sen’s slope is calculated by the median of the linear rate of
change between any two points in the sequence, which accurately expresses the trend and relatively
reduces noise interference [56,57]. The Mann–Kendall trend test is a quick and effective method for
detecting significance level with the advantage of not requiring time distributions and being insensitive
to outliers [58]. Sen’s slope estimator was used to first detect the direction and magnitude of vegetation
changes, and the Mann–Kendall trend test was then applied to quantify the significance level. Therefore,
vegetation trends could be estimated by the combination of Sen’s slope and the Mann–Kendall trend
test in light of the NDVI series.

Sen’s slope equation is shown in Equation (1) [57]:

θslope = Median
[(

NDVIj −NDVIi
)
/( j− i)

]
,∀ j > i (1)

The Mann–Kendall test is shown by test statistic S in Equation (2) [59,60]:

S =
n = 1∑
i = 1

n∑
j = i+1

sign(NDVIj −NDVIi) (2)

where signal sign
(
NDVIj −NDVIi

)
is;

sign
(
NDVIj −NDVIi

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
0
−1

(NDVIj −NDVIi > 0)(
NDVIj −NDVIi = 0

)
(NDVIj −NDVIi < 0)

(3)

The test statistic Z is defined as;

Z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(S− 1)/

√
V(S)

0
(S + 1)/

√
V(S)

S > 0
S = 0
S < 0

(4)

where variance V(S) is;
V(S) = n(n− 1)(2n + 5)/18 (5)

where θslope is the annual variation rate of the NDVI trend on a pixel scale, and NDVIi and NDVIj
represent the maximal NDVI values of monitoring years j and i, respectively; V(S) is the variance.
A positive value of θslope indicates an upward trend for vegetation, and a negative value means
a downward trend. Moreover, the appropriate statistical test in the process of inferring significance
is determined through the n values of the time-series lengths; when n < 10, the bilateral trend test
was used to directly show a slight upward or downward trend by test statistic S. When n >= 10,
test statistic S obeyed standardized normal distribution. Given confidence level α = 0.05, whether
the trend changed significantly depended on |Z| ≥ 1.96. Four kinds of classification were obtained
through trend and significance analysis: θslope ≥ 0&|Z| ≥ 1.96 denoted significant improvement,
and θslope ≥ 0&|Z| ≤ 1.96 indicated slight improvement, whereas θslope ≤ 0&|Z| ≥ 1.96 denoted
significant degradation, and θslope ≤ 0&|Z| ≤ 1.96 meant slight degradation.
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3.2. Relationship between Vegetation Changes and Mining Development in GWR Model

The GWR model was explored to examine the relationship between mining development
and vegetation changes, and their spatial variability. OLS is a global regression model, and parameter
estimates are consistent throughout the study area. The GWR model makes important improvements
in solving non-stationary spatial relationships and cross-space spatial autocorrelation by estimating
local parameter characteristics and geographic map variability in the association between results
and predictors [34,61]. This regional exploratory analysis technique can measure a set of local
parameters that could be mapped, estimated, and analyzed in each unit to provide new insights about
window movement and the global correlation of variables in a single modeling frame [62]. The GWR
model is expressed in Equation (6) [34],

y = β0
(
μ j, υ j

)
+

k∑
i = 1

βi(μ j, υ j)χi j + ε j (6)

where μ j and υ j denotes the spatial coordinates of sample points j and i; β0
(
μ j, υ j

)
indicates the intercept

of location j; βi
(
μ j, υ j

)
denotes the local estimated coefficient of independent variable χi j; and ε j is

the error term.
Local parameter estimation was conducted through a spatial weight matrix by a distance decay

weighted function in GWR modeling. The function was spatially modified by kernel function
bandwidth. Kernel function bandwidth determines the scope of spatial dependence, which means
the total numbers of neighborhood points. The Akaike information criterion (AIC) determined
the optimal bandwidth. More details about GWR were shown in Alahmadi et al. [62]. GWR analysis
was performed in the GWR tools of ArcGIS 10.2. All data were normalized by a standardized min–max
method before regressions.

The multicollinearity of the explanatory variables was excluded by the variance inflation factor
(VIF) value of the running OLS model [63]; all values were less than 7.5, which indicated that slight or
no collinearity existed in the explanatory variables. The performance of the GWR and OLS models
was compared using the values of AIC and R2; these two values were used to determine the predictive
capacity of the model. The higher the R2 was, the more reliable the independent variable’s explanation
of the dependent variable. AIC estimated the accuracy of the estimated value, and lower values could
better describe the observed data.

4. Results

Vegetation has been considerably degraded as the mining development rapidly expanded
according to Sen’s slope and the Mann–Kendall test. Spatial correlation of GWR expressed significant
spatial differences between minimal distance, summary distance, elevation, and vegetation changes.

4.1. Temporal Trends and Spatial Distribution in NDVI

The tendency of vegetation changes to first rise and then quickly decline appeared in the whole
study area. The proportion of the significant degradation area increased (Figure 3) according to
vegetation trend analysis of Sen’s slope. Clear improvements of vegetation changes accounted for
the majority of the study area (74%) in the initial stages, especially a significant improvement gathering
in the south of the study area (17%) with the NDVI value increasing nearly by 100% (Figure 3b).
Initially degraded areas were mainly distributed in the mining areas and eastern mountainous areas,
and 85% of them turned degradation into improvement during 1999–2010. Positive growth conditions
drove an upward vegetation trend in 1999–2010. Nevertheless, in 1999–2018, the overall trend of
vegetation had deteriorated, and degraded areas accounted for more than 80% of the total study area
(Figure 3c). Severely degraded vegetation areas (27%) were distributed in the north of the study
area and mining areas. Most significant improvements in the south of the study area were lost,
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and continuous degradation occurred in the western areas. The few improvements that were gathered
in the central town may result from ecological construction.

Figure 3. (a–c) Spatial distribution of vegetation changes by Sen’s slope and Mann–Kendall method.
(a) 1999–2005; (b) 1999–2010; (c)1999–2018.

4.2. Spatiotemporal Distribution of Mining Development

Mining development rapidly expanded over the past 20 years, and established a connected spatial
pattern in three major industrial bases. As shown in Figure 4, the total area of the industrial base was
9.57 km2 in 2000 and 184.98 km2 in 2017. Open pits gradually expanded with a uniform growth rate of
9.17 km2/a around the core industrial base, the distribution of which was in a narrow pattern along
the terrain of the valley in the middle, and an aggregate pattern in the northwest of the study area.
The waste dump was staggered with open pits and expanded from 2.85 km2 in 2000 to 69.36 km2 in
2017. Areas of mining activities expanded from 55.83 km2 in 2000 to 453.78 km2 in 2017, accounting
for more than one-tenth of the research area and 9 times the production scale in 2000. The average
expansion rate was 16%, 32%, and 7% per year in 2000–2005, 2005–2010 and 2010–2017, respectively,
with the highest expansion in the period of 2005–2010, as the market price of coal was at historic highs.

164



Remote Sens. 2020, 12, 3247

Figure 4. (a–d) Components and spatial distribution of mining activities in study area.

4.3. Mining Development and Elevation of Influencing Vegetation Changes

4.3.1. Correlation between Minimal Distance, Summary Distance, and Vegetation Changes

Spatial variation, mapping the relationship between distances and vegetation changes, was
clearly shown in Figure 5. The positive coefficient indicated that vegetation changes moved towards
an upward trend as the increase in distance to mining areas in the minimal and summary distance
models. The depth of colors expressed the level of the correlation coefficient and fitness to match
the variables.

For minimal distance, as distance increased, the impact of single mines on vegetation was
shrunken, but dominated around areas of mining activities. Areas with positive coefficient (above 0.01)
was 1418, 969, 866, and 733 km2, respectively, with a continuous decline trend of 48.31%. The mean
coefficient (above 0.02) continued growing by 20% (0.025, 0.026, 0.03, 0.033, respectively). Positive
coefficients were significantly higher around mining areas than those of other areas, and a clear shift
from negative to positive correction constantly occurred in the mining areas (Figure 5a–c). The spatial
pattern of areas with higher positive correlation (above 0.01) was consistent with spatial pattern of
mining development, especially in the middle of study area after removing the areas with an NDVI
slope of >0.

For summary distance, in the agglomeration process of mining development, the impact of
multiple mines gradually shifted from the outside to the inside and continued to be increasingly
concentrated in overlapping areas of mining activities. Areas with positive correlation (above 0.01)
were 1129, 704, 587, and 588 km2 respectively, showing a downward trend. The higher ones (above
0.02) maintained a downward trend in the east but an increasing trend in the west, with an area of
186, 0, 393, and 373 km2. The average coefficient continuously increased by 92% from 0.026 to 0.050.
The increase in both the area and coefficient of positive correlation had emerged and gathered in
the west overlapping areas of three industrial bases. This was more evident in the increase in areas
with positive correlation after removing areas with an NDVI slope of >0, with mean coefficients of up
to 0.056. The comprehensive impact of coal bases is more influential for regional vegetation changes.
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Figure 5. (a–h) Spatial patterns of correlation coefficients between distance and vegetation changes.
(a–d) Minimal and (e–h) summary distance in 1999–2018.

4.3.2. Correlation between Elevation and Vegetation Changes

Significant spatial differences were shown in the relationship between vegetation changes
and elevation (Figure 6). The positive coefficient indicated that vegetation degradation improved
with the increase in elevations, and the negative coefficient meant that vegetation degradation was
worsening with the elevation’s increasing.

Spatial relationship between elevation and vegetation changes varied according to the average
elevation of the total mining areas. Negative correlation in higher-elevation areas and positive
correlation in low-altitude areas were expressed in the relationship between elevation and vegetation
changes. The two were approximately bounded by the average elevation of the total mining areas.
Most areas with negative correlation were distributed in the middle and southwest of the study area,
with the proportion gradually decreasing from 56%, 62%, 47%, to 38%. Low-elevation areas in the south
gradually changed from negative into positive correlation as mining activities continuously expanded,
indicating that the degradation of low-elevation vegetation was more serious with the decrease in
elevation. Furthermore, this may partly explain the disappearance of extremely significant improvement
areas in southern areas as the Hainan industrial base agglomerating. Three positively correlated
aggregation areas of about 362 km2 were located in the middle, north, and south around the Yellow
river and constructed areas. The boundary between positive and negative correlations (–0.03 to 0 and 0
to 0.03) was consistent with the 1200–1230 m contour line, shown in Figure 6c,d.
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Figure 6. (a–d) Spatial patterns of correlation coefficients between elevation and vegetation changes
in 1999–2018.

4.3.3. Correlation between Minimal Distance, Summary Distance, Elevation, and Vegetation Changes

Proper spatial stationarity was enormously maintained in maps of distance factors and vegetation
changes after the combination of elevation and distances (Figure 7).

For minimal distance, quantity disappearance in positively correlated areas and expansion of
negatively correlated areas, especially in the western areas, were clearly shown in the combination
of minimal distance and elevation (Figure 7a–d). Such disappearance illustrated that the ecological
impact of a single mine on vegetation and its action pathway were not closely related to elevation.
As minimal distance to mining areas increased, elevation and distance had disproportionately opposite
effects on vegetation changes at different elevation levels, as per Sections 4.3.1 and 4.3.2.

For summary distance, the spatial distribution of positively correlated areas was relatively stable
and showed no significant difference in whether elevation was involved in the relationship of summary
distance and vegetation changes. Areas of positive coefficients continued growing with a proportion of
up to 86.36%, and the quantities of higher positive coefficients (above 0.02) in 1999–2018 had increased
by 17% compared with Figure 5e–h. Consequently, the comprehensive impact of summary distance
on vegetation changes was relatively stable and not determined by the elevation, but by the spatial
pattern of mining development. Moreover, after removing areas with an NDVI slope of >0, significant
improvements of the positive coefficients occupied the majority, and less than 14% of the negative
areas were distributed in the middle of the study area. The comprehensive ecological influence of
summary distance was constantly strengthened with the systemization of mining activities.
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Figure 7. (a–h) Spatial patterns of correlation coefficients between distance and vegetation changes.
(a–d) Minimal distance and elevation, and (e–h) summary distance and elevation in 1999–2018.

5. Discussion

5.1. Importance of Applying GWR in Studying Spatial Heterogeneity of Vegetation

Significant spatial heterogeneity of the relationship between mining development and vegetation
changes was revealed by comparing the GWR and OLS models (Tables 2 and 3). The adjusted R2 of
the GWR model was in the range of 0.19 to 0.62, which was higher and better than that of the OLS
model (all less than 0.1). This showed that the GWR model could greatly explain the impact of mining
on vegetation changes. Therefore, it was concluded that the spatial relationship between mining
development and vegetation changes was almost not linear, but showed great spatial heterogeneity.
All R2 of GWR also gradually increased with the expansion and aggregation of mining development,
indicating that mining development had increasingly significant impact on vegetation changes.

However, the question was why vegetation changes in the resource regions showed
significant spatial heterogeneity. Numerous studies suggested that vegetation greening rate was
elevation-dependent by the different sensitivity levels to precipitation and temperature changes in arid
and semiarid regions [64–66]. In mining areas, Liu et al. [67] found significant positive correlation in
the relationship between NDVI and elevation factor, while Li et al. [68] discovered that as the elevation
increased, the area covered by medium and high vegetation gradually decreased. We concluded
that the vegetation changes were closely related with the average elevation of mining activities,
and the higher degradation rate occurred away from the average elevation of mining activities due
to the gravity convergence of the basin in low elevation, and fragile conditions of vegetation growth
and high external sensitivity in high elevation.
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Table 2. Comparison in adjusted R2 of geographically weighted regression (GWR) and ordinary least
squares (OLS) models.

Adjusted R2 1999–2005 1999–2010 1999–2018 1999–2018R

Elevation
Adjusted R2

G 0.27 0.31 0.50 0.59
Adjusted R2

O 0.01 0.00 0.02 0.04

Minimal distance
Adjusted R2

G 0.28 0.33 0.52 0.62
Adjusted R2

O 0.05 0.04 0.00 0.00

Summary distance Adjusted R2
G 0.20 0.28 0.27 0.41

Adjusted R2
O 0.01 0.01 0.00 0.01

Minimal distance and elevation
Adjusted R2

G 0.20 0.27 0.29 0.41
Adjusted R2

O 0.05 0.03 0.02 0.05

Summary distance and elevation Adjusted R2
G 0.19 0.26 0.26 0.38

Adjusted R2
O 0.02 0.01 0.02 0.06

Adjusted R2
G: adjusted R2 of GWR; adjusted R2

O: adjusted R2 of OLS; 1999–2018R: 1999–2018 after removing areas
with normalized difference vegetation index (NDVI) slope of > 0.

Table 3. Comparison of Akaike information criterion (AIC) from GWR and OLS models.

AIC 1999–2005 1999–2010 1999–2018 1999–2018R

Elevation
AICG −31717.3 −34396.9 −32869.7 −28356.0
AICO −30523.8 −32951.2 −30187.1 −25504.8

Minimal distance
AICG −31739.0 −34488.6 −33030.7 −28700.3
AICO −30686.0 −33086.7 −30113.6 −25358.1

Summary distance AICG −31367.3 −34238.5 −31372.5 −27137.2
AICO −30517.9 −32968.3 −30118.3 −25381.6

Minimal distance and elevation
AICG −31364.3 −34189.6 −31489.8 −27145.2
AICO −30692.2 −33084.9 −30186.6 −25519.6

Summary distance and elevation AICG −31311.1 −34138.6 −31329.3 −26979.4
AICO −30549.2 −32969.9 −30214.0 −25589.5

Extensive human activities, including ecological management, are other drivers to determine
vegetation changes. Areas with negative correlation, where vegetation improved with the decline
of summary distance to mining areas (Figure 7h), are mainly distributed in the natural protected
areas with strong ecological management, though these are at the shortest distance in the summary
distance model, and should be the region with the highest degradation according to the assumption.
The effect of ecological protection could also be seen in the relationship between vegetation changes
and elevation (Figure 6d), such as the eastern, southeastern, and northeastern areas of positive
correlation. The significant improvement areas of vegetation were mainly distributed around the central
town because of ecological-engineering activities. Ecological activities are important measures to
maintain and improve vegetation growth, and become important factors to increase the spatial
heterogeneity of vegetation changes. Furthermore, all-natural protection areas were disproportionately
degraded, so existing protected areas must be strengthened, and the cumulative regionwide effects of
mining activities must be mitigated [69–71].

5.2. Effect of Distance on Vegetation Disturbance in Mining Areas

The results suggested that the ecological impact of a single mine was continuously strengthened
around the mining areas. A nationwide survey in China concluded that the distance of environmental
impact from mining sites varied from a few hundred meters to 10 km [72]. Previous studies have
shown that the influencing range of ecological disturbance in a single mine was mostly between 1000
and 3200 m [73,74]. In areas with poor vegetation growth conditions, the range of mining disturbance is
much greater [74]. The average distance of vegetation disturbance in large mining sites is greater than
that of small ones [75]. Empirical evidence from the Mongolian Plateau shows that this disturbance
range of large coal exacting areas had increased to over 5 km [75], where the ecosystem could maintain
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stable, sustainable, and rich ecosystem services [76]. The aggregated development of mining activities
enhances the range of ecological disturbance of individual mines.

For the comprehensive impact of mining activities, it is difficult to judge the distance threshold of
mining disturbance. Our research results showed that its impact on vegetation changes was determined
by the comprehensive spatial pattern of current and future mining development. Related scholars
made some preliminary explorations. Cheng et al. [77] suggested that, in large coal bases, the source
and distribution of heavy-metal pollution have significant spatial heterogeneity, there is a hot spot in
the overlapping area of multiple coal mines, and the dispersion of pollutants is higher than that of
single mines. Moreover, the distance of its heavy-metal pollution far exceeds the capacity of a single
mine, reaching more than 15 km. In the aggregation process of mining development, the centralization
effect of mining activities emerged, and was continuously enhanced and stabilized.

5.3. Response of Vegetation Changes to Climate Conditions

A warming–wetting trend occurred in the study area that provided excellent conditions for
vegetation growth, and the increase in precipitation showed spatial differences during the last two
decades (Figure 8). In the study area, the precipitation in the north was much lower than that in
the south, in which the precipitation growth reached the peak of about 7 mm/a on average during
1999–2010. This strongly explained overall improvements of vegetation in the study area, especially in
the south, where almost all significant improvements had emerged in 1999–2010. However, the degree
of vegetation degradation was relatively high in 1999-2018, although there was a significant vegetation
improvement in the previous period and a constant precipitation increase throughout the period.
This properly meant that the impact that resulted from mining development was far greater than
the impact of positive climate factors on vegetation during 2010–2018.

Figure 8. (a–c) Spatial distribution of precipitation slope by Kriging interpolation. Precipitation
data in 1999–2018 were acquired from five meteorological reference stations: Hanjinqi, Linhe,
Huinong, Etuokeqi, and Taole. Precipitation slope was obtained by linear regression based on
interannual precipitation data, and then imported into ArcGIS to obtain changes in the study area by
Kriging interpolation.
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Under the context of global warming, the research area experienced notable climate change. Prior
to 2010, temperature changes were relatively stable and even slightly decreased, and the average
temperature then rose rapidly by about 1.5◦C. Increased temperature promotes the germination
of vegetation in spring and improves the growth of vegetation; on the other hand, it increases
the transpiration and evaporation of plants in summer, which limits vegetation growth in arid
and semiarid regions. Ma et al. [78] reported that evapotranspiration variation was consistent with
changes in vegetation coverage, with a marginally increasing trend of about 0–5 mm/a during 2000–2010
and no significant increasing trend during 2011–2015 in the northwestern Loess Plateau. Numerous
studies also showed that climate warming is one of the main driving factors of greening in northern
China by enhancing photosynthesis and increasing vegetation activity [66,79–81].

In summary, climatic conditions were very favorable for the growth of vegetation during 1999–2018.
It is almost impossible that climate changes led to vegetation degradation in such a water-scarce area
with huge evapotranspiration, instead promoting vegetation growth.

5.4. Limitations

Although reliable and extensive data were used in this research, there were inevitable uncertainties
or limitations. The interannual series of the maximal NDVI can characterize the dynamic changes of
regional vegetation, but the shortage of data in some years and the image time deviation of the growing
season had a specific effect on the accurate assessment of vegetation changes. More accurate time-series
data and error analysis of calculation should be implemented in future studies. In addition, studies
on the spatial differences of dominant areas by single mine and regional mining impacts, and their
dominant areas conversion in resource regions should be strengthened in future research. Vegetation
changes in resource regions are a comprehensive manifestation of indicators, such as vegetation
types, climate conditions, groundwater depth, mining activities, and ecological management [30].
In relation to effect analysis of factors on vegetation, there may have been uncertainties brought about
by other indicators. The contribution of other indicators to vegetation changes is notable and should
be strengthened in future research.

6. Conclusions

Spatial heterogeneity is a great challenge in exploring the correlation between vegetation changes
and mining development. Through spatial correlation based on the GWR model, three dominating
factors were detected to quantify the correlation between vegetation changes and mining development
across time and space. Our analysis indicated that incremental and combined mining activities could
reverse the incremental trend of regional vegetation, leading to 86% degradation in the entire study
area. Vegetation experienced a trend first of growth and then decline in the aggregation process of
mining development. The scope of influence for single mines on vegetation had shrunk by about 48%,
and the mean coefficients increased by 20%, closer to mining areas. The scope of influence for multiple
mines on vegetation gradually expanded to 86% from the outer edge to the inner overlapping areas
of mining areas, where the mean coefficients increased by 92%. Elevation dependence of vegetation
changes varied according to the average elevation of total mining areas and played an important role
in causing the spatial heterogeneity of mining impact on vegetation. Ecological measures should be
implemented according to local conditions to achieve sustainable vegetation ecology.
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Abstract: East Africa is comprised of many semi-arid lands that are characterized by insufficient
rainfall and the frequent occurrence of droughts. Drought, overgrazing and other impacts due to
human activity may cause a decline in vegetation cover, which may result in land degradation. This
study aimed to assess drought occurrence, vegetation cover changes and vegetation resilience in the
Monduli and Longido districts in northern Tanzania. Satellite-derived data of rainfall, temperature
and vegetation cover were used. Monthly precipitation (CenTrends v1.0 extended with CHIRPS2.0)
and monthly mean temperatures (CRU TS4.03) were collected for the period of 1940–2020. Eight-day
maximum value composite data of the normalized difference vegetation index (NDVI) (NOAA
CDR—AVHRR) were obtained for the period of 1981–2020. Based on the meteorological data, trends
in rainfall, temperature and drought were determined. The NDVI data were used to determine
changes in vegetation cover and vegetation resilience related to the occurrence of drought. Rainfall
did not significantly change over the period of 1940–2020, but mean monthly temperatures increased
by 1.06 ◦C. The higher temperatures resulted in more frequent and prolonged droughts due to higher
potential evapotranspiration rates. Vegetation cover declined by 9.7% between 1981 and 2020, which
is lower than reported in several other studies, and most likely caused by the enhanced droughts.
Vegetation resilience on the other hand is still high, meaning that a dry season or year resulted in
lower vegetation cover, but a quick recovery was observed during the next normal or above-normal
rainy season. It is concluded that despite the overall decline in vegetation cover, the changes have
not been as dramatic as earlier reported, and that vegetation resilience is good in the study area.
However, climate change predictions for the area suggest the occurrence of more droughts, which
might lead to further vegetation cover decline and possibly a shift in vegetation species to more
drought-prone species.

Keywords: drought impacts; NDVI; drought adaptation; drought index; vegetation resilience;
drought vulnerability; standardized precipitation evapotranspiration index; AVHRR; land degrada-
tion

1. Introduction

The main component of terrestrial ecosystems is vegetation, which has a direct link to
many ecosystem services, such as food production, soil retention, climate regulation, water
purification and disease management [1]. The value of these services could decline or
disappear with an increasing pressure on vegetation resources. Not only natural influences
such as wildlife grazing and the weather, but anthropogenic pressures can also have a
negative influence on the productivity of vegetation [2].

Land degradation is defined as changes in land use from productive to unproduc-
tive due to natural or human-made factors [3]. Land degradation is one of the world’s

Remote Sens. 2021, 13, 4592. https://doi.org/10.3390/rs13224592 https://www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 4592

major socio-economic and environmental problems, affecting two-fifths of humanity [4].
Agricultural expansion has led to severe land degradation all over the world, particularly
when accompanied by high water consumption and the conversion of natural landscapes
into cultivated lands [5–7]. Land degradation undermines the land’s productivity and
contributes to the degradation of ecosystem services. Land degradation disproportionately
affects the poor and is sometimes the decisive component that causes poverty and social
conflict [8,9]. The loss of productive land is part of a vicious circle for many rural people in
developing countries in which land degradation can be both the cause and the effect of
poverty [10].

Semi-arid ecosystems in particular are under pressure from the rising demand for
natural resources and an increase in weather extremes. This is caused by an increasing
human population and by climate change, respectively. More frequent and severe droughts
have been forecasted in the 21st century, particularly in the mid-latitudes [11]. Increases
in drought occurrences are driven by a decrease in precipitation and/or an increase in
evapotranspiration due to higher daily temperatures [12]. As water availability acts as the
main driver of vegetation distribution and productivity in arid and semi-arid regions [13],
droughts impose a serious risk on the livelihood of many people [14].

Previous studies show that Eastern Africa has been suffering from an increase in
temperature and more frequent droughts, which have continued in the 21st century [15].
In this region a browning trend of the vegetation has occurred in the past 40 years [16,17],
which is among the most notable vegetation browning in the world. Some reports also
show a decline in vegetation productivity and an increase in land degradation [1,3,18]. On
the other hand, other remote-sensing-based studies have shown that areas in East Africa
have experienced fluctuations in vegetation cover, which were largely driven by variations
in soil moisture [19]. This can be explained by the quick response of vegetation in arid
and semi-arid biomes to rainfall fluctuations. Plant species have adopted mechanisms that
allow them to rapidly adapt to changing water availability and are also able to withstand
water deficits [20]. These mechanisms suggest a strong revival of vegetation health during
periods of water abundance [21]. However, the way vegetation responds to drought on
different time scales remains largely unknown because of the different response times and
vulnerability that species have to drought. By knowing this, the severity of degradation
can be assessed, and an estimate can be made on the importance of applying measures.

The semi-arid zone in northern Tanzania is an example of an area that suffers from
increasing droughts and enhanced soil degradation [22]. The area close to Lake Manyara,
covered by the Monduli and Longido districts, is primarily comprised of savanna and
rangeland, which is widely used for livestock grazing by the local Masai herders. According
to Wynants et al. [23], 2.0% of this area is degraded while there has been a serious increase
in the soil erosion risk from 1988 to 2016. Masai herders in the area complain about
more frequent droughts and a lack of sufficient grazing resources. Part of the problem
faced by the Masai is an increase in livestock numbers, which results in more pressure on
grazing resources [18,24,25]. Using Landsat satellite imagery from the Google Earth Engine,
Verhoeve [24] studied land use/cover changes in the Monduli and Longido districts over
the period of 1985–2018. The results showed widely fluctuating land use/cover classes over
time, and neither revealed any significant changes in land cover nor provided evidence
for large-scale vegetation degradation. These results contradict previous studies that
showed overall degrading vegetation cover in the study area [17,23,25,26]. According to
Verhoeve [24], vegetation cover is largely influenced by the amount of precipitation and
the occurrence of drought. However, it was also clear that vegetation resilience in the
study area is high, with a good recovery of vegetation cover following a drought year.
Similar observations were made for Sahelian West Africa, where the vegetation recovered
following the devastating droughts of the late 1970s and early 1980s [21].

In this study we used satellite-derived hydrometeorological data for drought analysis
and the normalized difference vegetation index (NDVI) as a proxy for vegetation response
to drought. The main objective was to investigate the resilience of vegetation to drought
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over different time scales in northern Tanzania during 1981–2020. To achieve this objective,
we first investigated the long-term hydrometeorological data and the occurrence of drought
in the region. Next, we analyzed the long-term interannual NDVI trends in the region.
Finally, we determined the short-term effects of drought on vegetation health and recovery
at different time periods.

2. Materials and Methods

2.1. Study Area

The study area comprises the districts of Monduli and Longido in Arusha Region,
northern Tanzania (Figure 1) [25,27]. The total area covers approximately 16,000 km2 and
has some 282,000 inhabitants [28]. The majority of the area lies in the East African Rift
Valley and is bordered by a high (~1300 m a.s.l) escarpment in the west. The valley floor
is about 300 m lower in the western part and gradually rises towards the east, where
there is no clear escarpment. Several small mountains are scattered throughout the Rift
Valley, which are mostly volcano remnants. It is an important area for wildlife conservation,
including or bordering the Lake Manyara, Arusha, Tarangire, Mount Kilimanjaro and
Serengeti National Parks, as well as the Ngorongoro Conservation Area.

The climate of the study area is semi-arid and has four climatic seasons [29]. In general,
the short rains season from November to January (NDJ) is followed by a short dry season
(Feb) until the long rains start, which typically occur from March to May (MAM). From
June to October (JJASO), a long dry season can be identified with cooler temperatures.
Because of high interannual variability, the NDJ season often continues into February. In
wet years the NDJ and MAM seasons often overlap in an almost continuous rainy season.
The annual rainfall is between 450 and 1200 mm, averaging around 750 mm. The lower
lying areas receive a mean annual rainfall of about 650 mm, whereas in the higher parts
the annual rainfall ranges from 1000 mm to 1200 mm on average [30,31]. The average
temperature is between 20–25 ◦C, with a minimum of 11 ◦C in July to September and a
maximum temperature of 31 ◦C in January and February [32,33].

The physical characteristics of the area, such as its morphology, geology and soils,
are strongly influenced by tectonic activities and volcanism [3]. These characteristics have
influenced the rainfall distribution, vegetation types and wildlife of the area. The Monduli
district is part of the Lake Manyara catchment. Lake Manyara, part of an endorheic basin,
is the southernmost lake within the eastern arm of the East African Rift System. The lake is
shallow and saline, and is situated at 960 m a.s.l.

In the districts are multiple large volcanic mountains, both active and inactive. These
mountains stand out in the dominantly flatter landscape, and often have higher rainfall
on or near their slopes. Apart from the forests on the slopes of the mountains, savanna is
the major land cover type. Savannas are generally on the transition area between tropical
rainforests to deserts, which in this area is represented by the forests of the Monduli
mountains, Mt. Meru and the Ngorongoro Conservation Area, and the drier, more arid
regions of Simanjiro District and Dodoma Region in the south. The savannas have been
managed extensively by the Masai through fire and grazing by their livestock, suppressing
the growth of bushes and trees [34,35].
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Figure 1. Study area: the Monduli and Longido districts within Arusha Region, northern Tanzania. Source: [27].

2.2. Data

The NDVI is an indicator of the vitality and density of vegetation of a remote sensing
image pixel [36]. It is regarded as a reliable indicator for land cover conditions and varia-
tions, and over the years it has been widely used for vegetation monitoring [37]. The NDVI
produced from historical satellite image archives captures long-term changes in vegetation
health and density, enabling the measurement of responses to climate variability [38].
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For this study we used the NOAA Climate Data Record (CDR) of AVHRR NDVI,
Version 5. This dataset contains daily measurements of surface vegetation cover, gridded at
a resolution of 0.05◦ and computed globally over land surfaces [39]. The AVHRR provides
data on a long-term basis (1981–current day) with a moderate spatial resolution. Other
datasets could have a higher spatial resolution, but they were not suitable because they
start providing data of the study area at a later date. The online platform Google Earth
Engine (GEE) was used to extract the daily NDVI values of the study area. GEE is a
high-performance cloud-based platform that gives access to a vast and growing amount
of earth observation data and provides the processing power necessary to analyze the
data [40]. The daily NDVI was used to compute 8-day maximum value composites to filter
out cloud irregularities. Of these maximum value composites, the mean NDVI of the study
area was used in this study.

The NDVI time series runs from 24 June 1981, the start of the AVHRR mission, until
24 June 2020. In 1988 a series of 51 negative NDVI values were measured, which coincides
with the service start of a new AVHRR satellite (NOAA-11), and were therefore left out
from further analysis. From week 36 in 1994 to week three in 1995 no data were available
due to sensor malfunctioning [41,42].

The hydrometeorological data included the monthly precipitation and temperature
of the study area. Limited in situ data were available as the study area is poorly gauged.
However, reanalysis and satellite-based techniques can provide continuous hydrometeoro-
logical data. Monthly precipitation was obtained from the CenTrends v1.0 extended with
the CHIRPS-2.0 dataset. The CenTrends dataset was developed for East Africa in particular
to overcome the precipitation data gaps and to enable the analysis of seasonal and decadal
fluctuations within a centennial context [43]. The CenTrends dataset is available from
1900. CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) is the
state-of-the-art observational daily precipitation dataset for East Africa. CHIRPS uses
additional infrared satellite data, and is therefore available from 1981. CenTrends and
CHIRPS are non-independent datasets as they are based on a similar assimilation technique
and underlying observational data for their overlap period. They are highly correlated
(0.95), justifying the extension of the CenTrends dataset with monthly averaged data from
CHIRPS [44]. The combination provides information about both trends in the past and
present. The combined dataset was obtained via the KNMI Climate Explorer and has a
spatial resolution of 0.2◦.

The temperature data used in this study were obtained from the CRU TS4.03 monthly
mean temperature. This dataset uses observations interpolated into 0.5◦ latitude/longitude
grid cells combined with existing climatology to obtain absolute monthly values [45]. The
CRU was validated with the nearest available in situ data of a meteorological station. The
in situ data were only available as mean monthly maximums. Therefore, the CRU TS4.03
mean monthly maximum temperature (CRUmax) was validated with the available in situ
dataset. With the use of the Pearson’s r, the correlation of the datasets was tested. This
statistical test was used because the datasets were continuous and normally distributed
(Shapiro–Wilk normality test: W = 0.97 and W = 0.95 for, respectively, the in situ and
the CRUmax datasets, at p < 0.05). The station mean monthly maximum temperatures
measured at Arusha and CRUmax are in close correspondence (r = 0.96, R2 = 0.91), but show
relatively high deviations in terms of their magnitude (RMSE = 1.84 ◦C) for 1979 to 2018.
The strong correlation indicates a good representation of the annual temperature cycle. An
overestimation of the CRUmax data was determined at T < 30.62 ◦C and an underestimation
above this value was determined.

As both the CHIRPS and the CRU TS4.03 datasets are delivered grid-sized, the means
of the monthly precipitation and the temperature of all grid cells were calculated for the
area between coordinates ~2–4◦S, ~35–37◦E, which includes the study area. Drought and
trends in precipitation and temperature were studied from 1940–2020, which is twice the
temporal range of the NDVI data.
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2.3. Trend Analysis

The health of vegetation and the corresponding NDVI value is dependent on many
anthropogenic and natural factors. The most important natural factors are temperature and
precipitation [46]. Therefore, the variations in NDVI and hydrometeorological data were
determined over time for the two rainy seasons (NDJ and MAM) and the hydrological year
(September–August). All the datasets showed a non-normal distribution over the research
period (Shapiro-Wilk normality test, p < 0.00). Therefore, the Mann-Kenndall (MK) test was
used to determine the direction and significance of trends. The MK test is a non-parametric
rank-based test method which is widely used to assess the presence of trends in a time
series of climatic, environmental or hydrological data [47–50]. The MK test results in a
measure of the rank correlation of Kendall’s τ (tau) and the significance (p-value). The
magnitude of the trend determined by the MK test was computed with Sen’s slope. This
test calculates both the slope and the intercept of a linear rate of change [51].

2.4. Drought Analysis

Due to the lack of data on stream flow, groundwater and soil moisture in the study
area, only the occurrence of meteorological drought was investigated. The standardized
precipitation evaporation index (SPEI) was used to determine drought. The SPEI is an
extension of the standardized precipitation index (SPI), which uses only precipitation
anomalies to determine drought [52]. To determine hydrological anomalies the SPI uses
only precipitation, while the SPEI uses both precipitation (P) and potential evapotranspira-
tion (PET) to determine drought. It takes into account the impact of changing temperatures
on water demand. This is important as evapotranspiration influences soil moisture vari-
ability and therefore vegetation water content [53]. PET was calculated in this study using
the Thornthwaite equation [54], available in the SPEI package of the “R” language. It
requires mean temperature and latitude as input values. Other equations (e.g., Hargreaves
or Penman) require variables for which no data were available for the study area. The
mean temperature data of CRU TS4.03 were used. The SPEI focusses on the anomalies,
and therefore the CRU data are assumed to be useful because of the high correlation with
in situ data despite the reported overestimation. As the study area lies between 2–4◦S, a
latitude of −3◦N was used in the Thornthwaite equation.

The SPEI measures P-PET anomalies based on a comparison of observations for a
period of interest (e.g., 1, 3, 6, 12 and 48 months) with the long-term historical record of that
period. It requires monthly data, preferably continuous and for 30 years or longer. For each
month a SPEI value is calculated using the month itself and a previous number of months,
which are together equal to the period of interest. For instance: when calculating the SPEI
of March with a period of interest of 3 months, the cumulative P-PET of January, February
and March is used. This value is then compared with the long-term record of cumulative
January–March P-PET. The period of interest of the SPEI represents typical time scales for
water deficits to affect different types of water sources. For example, the 1- or 3-month SPEI
represents short droughts and indicates immediate impacts, such as reduced soil moisture,
while the 12- or 24-month SPEI represents long droughts, causing, for instance, changes
in reservoir storages [52]. In this study the 3-month SPEI (SPEI-3) was used to represent
short-term droughts, while the 12-month SPEI (SPEI-12) values were used to represent
annual (medium-term) and multi-annual (long-term) droughts. Furthermore, the SPEI-3
was used to indicate dry/wet seasons and the SPEI-12 was used to indicate dry/wet years
within the study period.

To calculate the SPEI, the P-PET record is fitted to a probability distribution (log-
logistic) function. It is then transformed into a normal distribution with a mean of zero and a
variance of one. The result is the SPEI, which represents the number of standard deviations
from the mean. Positive SPEI values indicate anomalous wet periods, and negative values
indicate dry periods [52,53,55]. The magnitude of the SPEI gives a probabilistic measure
of drought/wetness intensity. For instance: an SPEI-3 equal to −2 in January–March of a
certain year means that the cumulative January–March P-PET of that year is 2 standard
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deviations smaller than the long-term average of cumulative January–March P-PET. Events
were defined according to the drought intensity classes of McKee et al. [52]: a drought
event was classified when the index was below −1 and a wet event was classified when
the index was higher than 1 (Table 1). Some studies suggest a denotation of −0.5 to 0.5 for
normal conditions [56,57]; however, due to the adaptation of the vegetation to semi-arid
conditions the effects of a mild drought on the vegetation are assumed to be neglectable.

Both seasons (NDJ and MAM) and years were classified as dry, wet or normal using
the SPEI. Here, the SPEI-3 of January and May were considered for, respectively, the NDJ
and MAM seasons. To determine whether a hydrological year was wet, dry or normal,
the SPEI-12 of August was used as this value is based on the previous September–August
P-PET values.

Table 1. SPEI-based classification of drought. Based on temperature and precipitation during a given
moment at a specified latitude, the SPEI gives anomalies of that given moment compared to other
years. Source: [52].

SPEI Classification Expected Probability (%)

0 to −0.99 Mild drought 34.1
−1.00 to −1.49 Moderate drought 9.2
−1.50 to −1.99 Severe drought 4.4

≤−2.00 Extreme drought 2.3

2.5. Vegetation Resilience

The resilience of vegetation was tested for multi-annual (long-term), annual (medium-
term) and seasonal (short-term) responses to drought. The 8-day maximum value compos-
ited NDVI and the SPEI values were used to investigate the effects of drought on vegetation
cover and resilience.

The long-term effect of changing climate conditions on vegetation cover is represented
by changes in the NDVI values over the years. Such changes over time in the NDVI values
represent a change in vegetation cover and vegetation health [58]. This was tested with the
MK test of 8-day maximum value composited NDVI from 1981 to 2020 and compared to
the long-term precipitation and temperature in the region. With the use of Sen’s slope [51],
the linear rate of change was calculated.

The annual (medium-term) dynamics in vegetation cover and its response to drought
were quantified by separating the years into different classes based on hydrological condi-
tions. Dry, normal and wet years were classified with the use of the SPEI-12. Additionally,
the year following a dry year was classified as a “recovery-year”, regardless of the hydro-
logical conditions of that year. The data of each of those four classes were than fitted by
using local polynomial regression (LOESS) to provide a smooth curve through a set of
datapoints. The response of the NDVI throughout the seasons was then compared for these
four different hydrological conditions. In a second step, vegetation resilience over time was
evaluated. For this purpose, three time periods were selected: 1991–2000; 2001–2010; and
2011–2020. If the resilience was not affected over the long-term, similar intra-annual NDVI
values were expected during dry years in each time period. The time periods were chosen
to have an approximate equal number of years classified as dry (SPEI-12 in August < −1).
The years 1981–1990 were left out because no drought had occurred during these years.

Finally, the seasonal (short-term) effect of drought on vegetation cover and resilience
was evaluated. The dynamics of vegetation response to seasonal droughts were tested by
comparing intra-annual NDVI trends during dry and non-dry periods. It was assumed
that if the vegetation has adapted to the semi-dry environment, it will withstand droughts
by reviving as soon as the conditions permit [59]. This would mean that the regrowth
of the vegetation is not dependent on the severity of a drought, as indicated by the SPEI
values. Hence, it was expected that the NDVI values of the subsequent non-dry season do
not deviate substantially from other normal (non-dry) years. Seasonal resilience was tested
by comparing the sinusoidal curve of the intra-annual NDVI pattern of dry years and the
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following normal or wet year. Moreover, the effect of the timing of a drought during a dry
year was assessed. The timing of the drought was determined with the use of the SPEI-3.
The moment of drought was characterized as an SPEI-3 smaller than −1 during the first or
the second rainy season (NDJ or MAM, respectively). Four situations were compared, in
which both seasons were dry (two occurrences), the first or the second season was dry (four
occurrences for both situations) or both seasons were normal or wet (thirteen occurrences).
The curves of the NDVI during these different timings of the drought show the response of
vegetation to the seasonal drought, and thus provide a proxy of vegetation resilience.

3. Results

3.1. Rainfall and Temperature

Variations in precipitation during the NDJ and MAM rainy seasons as well as the
hydrological year are shown in Figure 2. The rainfall in the study area is characterized by
a high but mainly homogeneous variation in seasonal rainfall (Figure 2A,B) and annual
rainfall (Figure 2C). Overall, the NDJ season has a higher variation than the MAM season
(CVNDJ = 0.49; CVMAM = 0.32), but on average rainfall in the NDJ season is lower compared
with the MAM season (226 mm vs. 327 mm) (Table 2).

The precipitation has a slightly decreasing trend in the MAM season and annual
rainfall, and a small increasing trend in NDJ rainfall (Figure 2). However, all trends are
insignificant according to the MK test (Table 3), which means it cannot be concluded
that the amount of rainfall has changed in the study area over the period of 1940–2020.
Temperature on the other hand does show a significant (α = 0.05) increasing trend (Figure 3).
This positive trend was observed both for the yearly averaged temperature as well as for the
seasonally averaged temperatures (NDJ and MAM) (Table 3). Deviations from this trend
in the form of relatively warm (e.g., 1951–1952) and cold (e.g., 1967) years are also visible.
Overall, the yearly average temperature increased by 1.06 ◦C between 1940 and 2020.

Table 2. Statistics of seasonal and annual precipitation and temperature during the period of 1940–
2020 in northern Tanzania. Trend based on Sen’s slope. During the warmer NDJ season there is, on
average, less precipitation with a higher level of variance compared to the MAM season.

Period

Precipitation Temperature

Trend
(mm/Decade)

Average
(mm)

CV 1 (-)
Trend

(◦C/Decade)
Average

(◦C)
CV 1 (-)

NDJ 5.7 226 0.49 0.12 22.1 0.020
MAM −3.7 327 0.32 0.12 21.8 0.022

Annual (Sept–Aug) −4.5 656 0.27 0.13 21.3 0.019
1, coefficient of variation.

Table 3. Seasonal and annual Mann–Kendall test trend results of rainfall and precipitation over the
period of 1940–2020 in northern Tanzania. At α = 0.05 the temperature is significantly increasing, but
the precipitation is insignificant.

Period
Precipitation Temperature

Tau p-Value Tau p-Value

NDJ 0.117 0.12 0.448 <2.2 × 10−16

MAM −0.0877 0.25 0.411 1.19 × 10−7

Annual (Sept–Aug) −0.0247 0.75 0.569 <2.2 × 10−16
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Figure 2. Total amounts of rainfall in northern Tanzania during the period of 1940–2020 based on the CenTrends v1.0
dataset extended with CHIRPS-2.0. (A) The NDJ (November, December and January) rainy season, (B) the MAM (March,
April and May) rainy season and (C) the hydrological year (Sept–Aug). Linear trend lines (black) are based on Sen’s slope.
Insignificant at α = 0.05. The NDJ-season has a higher variability compared to the MAM-season (CV = 0.49 and 0.32,
respectively), but a lower seasonal mean (226 and 327 mm, respectively).
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Figure 3. Average annual temperature in northern Tanzania during the period of 1940–2020 based on monthly mean data of
the CRU TS4.03 dataset. Linear trend (black) based on Sen’s slope. Significant at α = 0.05, increase of 0.13 ◦C/decade.

3.2. Drought Occurrence

The SPEI was calculated for periods of 3 months (SPEI-3), representing short-term
dry or wet seasons, and 12 months (SPEI-12), representing medium-term drought/wet
years. Figure 4 shows SPEI-3 and SPEI-12 time series over the time period of 1940–2020.
As expected, fewer drought events are identified with the SPEI-12 compared to the SPEI-3
time series. Multiple smaller events identified by the SPEI-3 can either be flattened out
or cumulated into one event of the SPEI-12. The latter effect is known as pooling [60].
Relatively wet and dry years can be distinguished, with either largely positive SPEI-12
values (e.g., the 1960s) or negative SPEI-12 values (e.g., the period of 1999–2006).

Both SPEI time series show a significant decreasing trend (SPEI-3: tau = −0.157, p-
value = 4.1 × 10−13; SPEI-12: tau = −0.148, p-value = 7.4 × 10−12). This means that a drying
trend is present in the study area, which is mainly the effect of the increasing temperature,
given the non-significant changes in rainfall in the study area. Higher temperatures result
in higher potential evapotranspiration values, which lead to overall more negative SPEI
values. The drying trend since 1940 is also reflected by the relatively large area below zero
(=dry) compared to the area above zero (=wet) in recent decades (1990–2020).

Zooming into the time period of the NDVI data (1981–2020), the 1980s was a decade
which barely shows long or extreme dry and wet events. The 1990s and 2000s are char-
acterized by more frequent and longer droughts. The period of 2001–2010 in particular
suffered from extended and severe droughts, with some SPEI values going below −2
(extreme drought). The differences in drought severity between decades is reflected by
the occurrence of low SPEI-3 and SPEI-12 values presented in Table 4. Assuming a normal
distribution of the SPEI, the occurrence of SPEI < −1 or SPEI > 1 would occur 15.9% of
the time and the mean would be 0. However, every decade since 1980 has fewer wet
events, and since 1991 more dry events have occurred than expected. The 2001–2010
decade was the driest period, represented by a high occurrence of droughts and a low
mean SPEI value over time, while the 2011–2020 decade experienced similar droughts as
the 1991–2000 decade. During the 1981–1990 decade the study area experienced a low
number of moderate to extreme events, which is also reflected by the steady rainfall values
over this time period (Figure 2). Before 1980, several periods of serious drought occurred,
for instance during 1953–1956 and 1975–1977 (Figure 4).
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Table 4. Percentage of total SPEI values per decade and mean SPEI values per decade. Based on the
definition of SPEI, the mean over the entire research period is 0, and the total of moderate to extreme
wet/dry seasons (−1 > SPEI > 1) should not exceed 15.9% of the time (Table 1). During the four most
recent decades this is not the case.

Period SPEI-3 SPEI-12

<−1 >1 Mean <−1 >1 Mean

% % - % % -

1981–1990 5.0 11.7 0.138 0.8 7.5 0.247
1991–2000 25.0 6.7 −0.353 28.3 9.2 −0.470
2001–2010 34.2 8.3 −0.437 30.0 9.2 −0.482
2011–2020 19.2 10.0 −0.309 17.5 9.2 −0.285

Figure 4. SPEI-3 (A) and SPEI-12 (B) values of 1940–2020. Blue indicates relatively wet conditions, while red indicates
relatively dry conditions in the indicated (3 or 12) antecedent time period in months. Significant (α = 0.05) negative trends
were found in both the SPEI-3 and SPEI-12.

3.3. Vegetation Cover and Resilience

The effects of droughts and seasonal rainfall on the resilience of vegetation in the area
were assessed by comparing the NDVI time series with the SPEI-3 and SPEI-12 values.
Trend analysis was applied to the long-term NDVI time series and a visual comparison
was applied to the intra-annual variations.

The NDVI values over the years (1981–2020) show a seasonal pattern, with relatively
high NDVI values in the period of the two wet seasons, and low values during the dry
season (Figure 5). The higher NDVI values indicate healthy vegetation with a high cover,
while the lower values indicate bare soil or low vegetation cover. Figure 5 also shows
that the NDVI values are generally lower during dry periods, as indicated by the negative
SPEI-3 values.

187



Remote Sens. 2021, 13, 4592

Figure 5. Interannual normalized difference vegetation index (NDVI) series, composed of 8-day maximum value composited
NDVI. The NDVI values were classified according to SPEI-3 values, which indicates drought (strong negative SPEI-3 values)
or wet (strong positive SPEI-3 values) conditions. A trend line (black) was fitted through all data based on Sen’s slope
(significant at α = 0.05).

The long-term NDVI has a significant downward trend (tau = −0.0623, p-value
8.38 × 10−5, Sen’s slope = −1.02 × 10−5). This downward trend results in a decrease
of 0.017 NDVI points (from 0.175 to 0.158) between 1981 and 2020. Therefore, over the
period of analysis, on average, vegetation cover in the study area has declined. Several
possible reasons for this vegetation cover decline can be given. The first is the conversion
of grazing land to arable land for crop production [23,24]. The second possibility is land
degradation due to overgrazing in the area [23,25]. The last reason could be the increased
temperatures and drought as exemplified by the SPEI values (Figure 4).

Figure 6 shows the same 8-day NDVI values as in Figure 5, but in this figure the values
have been plotted versus the hydrological year (Sept–Aug). The polynomial regression
lines of NDVI values for dry (red; SPEI-3 < −1), wet (blue; SPEI-3 > 1) and normal years
(black; −1 < SPEI-3 < 1) are also plotted. An additional regression line (yellow color) shows
the NDVI values for a year immediately following a drought year. Obviously, the wet years
have higher NDVI values than normal years, and thus better vegetation cover. During
dry years, the NDVI values are substantially lower than in normal years, indicating less
vegetation cover or less healthy vegetation. However, in the years following a drought year,
the NDVI values return to normal values, which indicates a high resilience of vegetation in
the study area. Apparently, the drought is affecting the vegetation temporarily, but during
the period of study (1981–2020) it has not led to dramatic vegetation degradation, apart
from the slightly negative long-term trend that was detected (Figure 5).

The intra-annual NDVI time series has been split into three decades: 1991–2000, 2001–
2010 and 2011–2020 (Figure 7). In each decade, two or three years were classified as dry
years (SPEI-12 < −1). The polynomial regression curves show that in the first (Figure 7A)
and last decade (Figure 7C) the NDVI values in a year following a drought year quickly
return to normal values. In the decade 2001–2010, which experienced the most droughts,
the NDVI values following a drought year also return to nearly similar levels as the long-
term normal. The normal year NDVI values in this decade are higher than in the other
two decades, which is surprising given the more severe drought conditions in this decade
(Table 4). Apparently, the rainfall was well-distributed during the normal years in the
period of 2001–2010, which resulted in good vegetation growth during those normal years.
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Figure 6. Intra-annual NDVI series, based on 8-day maximum value composited NDVI from 1981 to 2020. Based on the
SPEI-12 of the hydrological year, the lines represent the NDVI values belonging to normal (black), dry (red) or the year
subsequent to a dry hydrological year (yellow) with the use of locally estimated scatterplot smoothing (LOESS).

Figure 7. Intra-annual decadal NDVI series, composed of 8-day maximum value composited NDVI from (A) 1991–2000,
(B) 2001–2010 and (C) 2011–2020. The lines represent the NDVI values belonging to normal (black), dry (red) or the year
subsequent to a dry hydrological year (yellow) with the use of locally estimated scatterplot smoothing (LOESS).

In the last analysis, the impacts of seasonal droughts on NDVI development were
evaluated. The short-term effects of drought were tested with the use of the SPEI-3 for
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the NDJ and MAM seasons. The NDJ season was classified as dry when the SPEI-3 of Jan
was below −1. The MAM rainy season was considered dry when the SPEI-3 of May was
below −1.

The timing of the drought during the hydrological year has an effect on the pattern
and magnitude of the NDVI values (Figure 8). During a year in which both the short rainy
season (NDJ) is normal and the long rainy season (MAM) is normal the NDVI reaches
its peak of ~0.20 in early March (dark-green curve in Figure 8). On the other hand, the
occurrence of drought during the NDJ, MAM or both seasons impacts the development of
the NDVI over time. If the NDJ rainy season is normal the NDVI will pass the curve of two
normal seasons at first but will decline more quickly during a dry MAM season (yellow
curve). A year with a dry NDJ but normal MAM seasons (blue curve) shows a delay in
the development in the NDVI but reaches similar peak values as in a normal year. The
peak values of NDVI are reached about 1.5–2 months later than in a normal year, before
subsequently declining again. This either indicates that the vegetation recovery from the
dry NDJ season requires some time, or that vegetation cover in a normal year reduces more
quickly due to heavy grazing, which can start much earlier in a good rainfall year.

The duration of increased NDVI levels is similar if one of the rainy seasons is a dry
season. However, if both seasons are classified as dry (purple curve), this time period
is shorter. The purple curve shows that despite both seasons being classified as dry, the
MAM season still has enough rainfall to enable vegetation growth, albeit not as good
as during a normal or wet MAM season. The minimum amount of rainfall in the MAM
season is ~150 mm (Figure 2B), and in the two years that comprise the purple curve in
Figure 8 the MAM precipitation was 210 mm (2004) and 235 mm (2017). This explains the
relatively good vegetation cover in the MAM rainy season that on average has 78 mm more
precipitation than the NDJ season (Table 2).

Figure 8. Seasonal NDVI response to different drought regimes between 1991 and 2020. The dark-green line represents a
normal season, both during the NDJ and the MAM. The purple line represents two dry seasons, blue represents a dry NDJ
followed by a normal MAM season and yellow represents a normal NDJ followed by a dry MAM season.
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4. Discussion

4.1. Rainfall and Temperature

The total annual rainfall and the rainfall during the NDJ or MAM rain season in the
study area did not change significantly (α = 0.05) during the period of 1940–2020 (Table 3).
These results contradict the results of earlier research which indicated decreasing East
African rainfall due to lower MAM rainfall since the early 1980s [61–63]. The reason given
for the declining rainfall is the rapid warming of the Indian Ocean, which leads to stronger
convection and more rainfall over the Indian Ocean and less rainfall in East Africa. Our
data for Monduli and Longido districts do not confirm those reported results, as the rainfall
trends are all insignificant.

The rainfall data of the study area (Figure 2) are characterized by a high interannual
variation in amounts of rainfall. As in other semi-arid regions, mean annual rainfall does
not often occur; many years had much lower or much higher amounts of rainfall. This is
also reflected by the seasonal amounts of rainfall. In most years the NDJ rainfall was below
average, and in only a few years it was well above the average (e.g., 1962, 1998 and 2007),
which leads to a positively skewed distribution (skew = 1.33). The MAM rainfall was less
variable than the NDJ rainfall and more evenly distributed around the mean (skew = 0.56).
The hydrological years (Sept–Aug) in which the amounts of rainfall were below average
are usually caused by a lack of rainfall in one of the rainy seasons. During only 12 out
of 80 years both rainy seasons were more than 25% below average. For the NDJ season
this occurred in 28 of the 80 years, and for the MAM season this occurred in 21 years. For
the rainfall in the hydrological years, the contribution of the MAM season varied from 24
to 76%, but on average it was 50%. The NDJ season contributed between 14 and 64% of
rainfall to the hydrological year. On average this was 37%.

Unlike the amounts of rainfall, the temperature in the study area increased significantly
(α = 0.05) by 1.06 ◦C over the period of 1940–2020. A highly significant increasing trend
was determined and can only be caused by global warming [64]. According to [65] the
warming in East Africa started in the early 1980s, but our data series (Figure 3) shows that
a more or less steady increase in temperature had already started since 1940. Only the
1960s were relatively cool, but since then the increase in temperature was again steady
and approximately 0.12 ◦C per decade. This warming may have resulted in a more erratic
rainfall pattern with higher rainfall intensities due to the stronger convection [66]. However,
the rainfall data used in the study do not provide any information on the rainfall character,
and thus it cannot be confirmed that the rainfall has actually become more extreme.

4.2. Drought

Occurrence of drought in the study area was analyzed using the SPEI-3 (short-term
droughts) and SPEI-12 (long-term droughts). Both SPEI time series (Figure 4) show a
significant (α = 0.05) decreasing trend in SPEI values, indicating that drought has become
more serious recently than it was in the past in the Monduli and Longido districts. As
no significant changes in rainfall occurred, the enhanced drought can only be the result
of the warming of the area. Increasing temperature will result in a higher potential evap-
otranspiration [54], which will lead to stronger desiccation of the land, and thus more
drought stress in semi-arid areas such as the Monduli and Longido districts. Since 1993,
six long-term droughts (SPEI-12 < −1) have occurred, while in the 53 years prior to 1993
only three of such droughts occurred. A similar pattern can be observed for short-term
droughts (SPEI-3 < −1). A notable period without much drought was the period from the
late 1970s until the early 1990s (Figure 4 and Table 4).

It is difficult to compare our results with other studies, as study designs may be
different in timescales, datasets, research periods or study areas [67]. The importance of
the latter is underlined by [68,69], which studied the Greater Horn of Africa and obtained
large spatiotemporal variations in trends in precipitation and temperature between 1980
and 2010 [68], and trends in SPEIs between 1964 and 2015 [69]. A recent study on the
entire Lake Manyara catchment, including the Monduli and Longido districts, showed
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the presence of a drying trend over the past century [22]. Furthermore, a general increase
in decadal drought characteristics (duration, severity and frequency) from the 1930s to
present, with the exception of the wet 1980s, was reported by [22].

The observed increasing drought is in agreement with local people that state that it is
drier and warmer nowadays compared to 25–30 years ago [25]. The drying trend may raise
concerns for the future of the Monduli and Longido districts. Conway et al. [70] analyzed
the results of 34 climate models that simulated future precipitation and temperatures in
Tanzania. These results showed wide spatiotemporal variations within Tanzania regarding
future precipitation. The results indicate that the number of rainy days will decrease and
the that the intensity of events will increase. This suggests more variable rainfall with a
higher chance of droughts or floods in the future. In contrast to rainfall, the climate models
predict increasing temperatures between 0.8 and 1.8 ◦C for 2040 in addition to between 1.6
and 5.0 ◦C for 2090 (relative to the period of 1976–2005). The change is evenly distributed
across Tanzania. Thus, while future changes in precipitation are uncertain, it can be stated
that temperatures will continue to rise, which will further increase the drought risk in the
study area due to higher potential evapotranspiration rates.

4.3. Vegetation Trends and Resilience

Based on the NDVI timeseries a significant (α = 0.05) decline in vegetation cover was
observed between 1981 and 2020 (Figure 5). The fitted trendline indicates that the average
NDVI declined by 9.7%, from 0.175 in 1981 to 0.157 in 2020. This observed decline in
vegetation cover is less dramatic than previously reported numbers in other studies on
East Africa [1,23,71], which generally show 1.5 to 3 times more vegetation reduction than
our results. It is not clear why those other studies come to these higher vegetation cover
decline values for the same study area. One reason could be that our analysis is based
on near-continuous NDVI values while most other studies take NDVI values from fewer
moments in time. As clearly visible in Figure 5, the timing of the satellite imagery for NDVI
calculation can result in rather different NDVI values. This is equally true for the year
(dry versus wet) which is chosen and the timing of the image within that year (dry season
versus wet season).

The decline in vegetation cover observed here could be the result of different causes.
Parts of the study area have been converted from grassland into arable land, which on
average has lower vegetation cover [23,24]. Additionally, vegetation degradation due to
overgrazing leading to bare soil might play a role in the contemporary lower vegetation
cover [23,25,32]. Finally, the increase in drought severeness and frequency (Figure 4) might
also result in generally lower vegetation cover. Drought will not only reduce the amount of
green vegetation but will also affect the condition of the growing plants, which is reflected
by a lower NDVI [72]. Based on the available data and analyses, it is not possible to
conclude which of these reasons is the most important, and it could well be that all reasons
play a role in the declining vegetation in the study area. However, given the significant
increase in drought occurrence in the study area (Figure 4), it is believed that drought is
the main cause of declining vegetation cover.

Vegetation resilience of the study area can be characterized as high. When a year was
dry the NDVI values were lower than in a normal year, meaning less vegetation cover,
but the next year the vegetation always recovered to normal year values (Figure 6). The
recovery of the vegetation following a drought year did not change over time (Figure 7). In
the 2011–2020 decade the resilience was not different from the 1991–2000 and 2001–2010
decades. At the seasonal scale, vegetation resilience appeared to be good. A dry season
resulted in lower vegetation cover, but the vegetation came back quickly during the next
normal or wet season and reached similar NDVI values (Figure 8).

These results show that, despite a general decline in vegetation cover over the period
of 1981–2020, vegetation resilience was still good in the Munduli and Longido districts.
Drought had an immediate impact on vegetation cover, but once rains came back at normal
or above normal levels in a new season the vegetation quickly responded and returned to
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normal levels. However, what NDVI observations do not tell is possible changes in the
species composition. Pressures on the grazing systems could be drought and overgrazing,
which may lead to changes in the species that grow in the study area. Drought-tolerant
species could replace other species, while continuous preferential grazing of grass species
may result in the spread of less favorable plant species that are not eaten by the livestock,
and therefore considered a negative change [73,74]. The Masai herders in the study did
complain about the lower quality and less availability of grass resources in the area, and
mentioned drought and high livestock numbers as the main causes for the decline [24,25].

5. Conclusions

This study used remote-sensing-based datasets of meteorology and vegetation cover
to analyze vegetation resilience in the Monduli and Longido districts of North Tanzania.
The results of meteorological analysis show that the amounts of rainfall in the Monduli
and Longido districts did not change significantly during the study period (1940—2020),
but that temperatures increased by 1.06 ◦C over the same period. The rising temperature
resulted in higher potential evapotranspiration rates, which significantly increased drought
occurrence and frequency. Since the early 1990s serious droughts became more frequent as
well as longer, and it can be expected that in the future this trend will continue, given the
climate projections for Tanzania.

Vegetation cover in the two districts declined significantly by 9.7% over the period of
1981–2020. This decline in cover could be due to several reasons, but the increase in drought
most likely played an important role. Other reasons such as overgrazing by livestock, land
use conversions and species changes may have played a role as well, which have all
been indicated to occur according to local Masai herders. Despite the overall decline in
vegetation cover and more severe drought conditions, the resilience of the vegetation was
high. A drought year or season affected vegetation cover and health, as indicated by lower
NDVI values, but the vegetation recovered quickly during the following rainy season when
the amounts of rainfall were back to normal or above-normal levels.

Finally, it is concluded that despite the overall decline in vegetation cover, the changes
have not been as dramatic as earlier reported, and vegetation resilience is still good in the
study area. The climate change predictions for the area suggest a higher occurrence of
drought, which could cause a further decline in vegetation cover. In addition, a shift in
vegetation species to more drought-prone species could occur, which may lead to fewer
grazing resources for the local Masai herdsmen.
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Abstract: The 4D disasters (desertification, drought, dust, and dzud, a Mongolian term for severe
winter weather) have recently been increasing in Mongolia, and their impacts on the livelihoods of
humans has likewise increased. The combination of drought and dzud has caused the loss of livestock
on which nomadic herdsmen depend for their well-being. Understanding the spatiotemporal patterns
of drought and predicting drought conditions are important goals of scientific research in Mongolia.
This study involved examining the trends of the normalized difference vegetation index (NDVI)
and satellite-based aridity index (SbAI) to determine why the land surface of Mongolia has recently
(2001–2013) become drier across a range of aridity indices (AIs). The main reasons were that the
maximum NDVI (NDVImax) was lower than the NDVImax typically found in other arid regions of
the world, and the SbAI throughout the year was large (dry), although the SbAI in summer was
comparatively small (wet). Under the current conditions, the capacity of the land surface to retain
water throughout the year caused a large SbAI because rainfall in Mongolia is concentrated in the
summer, and the conditions of grasslands reflect summer rainfall in addition to grazing pressure. We
then proposed a method to monitor the land-surface dryness or drought using only satellite data. The
correct identification of drought was higher for the SbAI. Drought is more strongly correlated with
soil moisture anomalies, and thus the annual averaged SbAI might be appropriate for monitoring
drought during seasons. Degraded land area, defined as annual NDVImax < 0.2 and annual averaged
SbAI > 0.025, has decreased. Degraded land area was large in the major drought years of Mongolia.

Keywords: aridity index; drought; land degradation; remote sensing; satellite-based aridity index

1. Introduction

In recent years, global warming has caused an increase in temperature and decrease
in precipitation in drylands at high latitudes [1–4]. An increase in environmental stress
associated with human activities concurrent with climate change may spread the damage
caused by these three disasters [3,5].

In Mongolia, the damage caused by cold and snow is called “dzud” and is a natural
disaster that can lead to significant livestock mortality and economic damage [6,7]. The
authors in [7] have called desertification, drought, dust, and dzud the 4D-related hazards.
The impact of dzud during the winter is strongly affected by the drought conditions (low
pasture production) during the last summer. For example, dzud occurred from October 2009
to March 2010 due to the effect of drought during summer 2009 [7]. In Mongolia, about
30% of the workforce is engaged in raising livestock, and the 4D hazards, in addition to
global warming, pose a serious threat to their livelihood. The authors in [8] have indicated
that about 60% of the decline in vegetation in Mongolia from 1988 to 2008 can be attributed
to decreases in rainfall and increases in temperature.

The Aridity Index (AI) is a useful metric of the dryness or wetness in arid regions. The
AI is defined as the ratio of annual precipitation (Pr) to annual potential evaporation (Ep)
and is a water-balance-based climatic index. The total area of arid regions, determined from
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meteorological data collected from 1951 to 1980, was 41% of the terrestrial land surface,
including Antarctica [9,10]. The corresponding percentage was 37% from 1981 to 2010 [11],
and [12] have estimated that percentage to have been 39.5% from 2001 to 2013. These
estimates suggest that the total area of arid regions has not changed or even decreased
slightly since 1950.

The most widely used method to estimate aridity is the Palmer Drought Severity
Index (PDSI) [13], not the AI. The PDSI is calculated using meteorological data and takes
into consideration runoff, water supply, and the water retention capacity of the soil [14].
Some studies have estimated the PDSI in Mongolia [15–17], and all of them have concluded
that the PDSI decreased (i.e., drought became more severe) from 2000 to 2010. However,
there are some disadvantages to use of the PDSI. For example, the PDSI does not take
into account changes in the spatial distributions of soil, vegetation, and hydrological
processes [18].

With high resolution and frequency, satellite data offer advantages in monitoring
environmental conditions in arid regions [19,20]. For example, the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Copernicus Missions (specifically Sentinel 1 or 2)
have provided data since 2000 and 2014, respectively. Since lengthy cloudless periods are
common in arid regions, much of the MODIS or Sentinel data are usable for global analyses.

Some drought indices are based on remote sensing [21,22]. Spectral reflectance has
been widely used to calculate indices like the Normalized Difference Vegetation Index
(NDVI) and normalized difference water index (NDWI) because the calculation procedures
are simple [23]. The authors in [24] indicated that NDVI performed best in assessing land
degradation compared with other indices using spectral reflectance like a soil-adjusted
vegetation index (SAVI). Additionally, they revealed that thermal indices using land surface
temperature (LST) were identified as the most influential variable for land degradation
assessment. The authors in [25] have also suggested that a thermal index that uses the
difference of the land surface temperature (LST) between day and night is much more
useful as an indicator of water deficit. MODIS has provided daytime and nighttime LST
data observed over equivalent locations every day, which have enabled the calculation of a
thermal index since 2000.

The authors in [26] proposed a satellite-based aridity index (SbAI) that uses the
difference of the LST between day and night, and the SbAI has already been validated and
applied [12,26–29]. For example, years of major droughts in China have corresponded to
years in which large increases in degraded land area were identified [28]. In addition, a
comparison of the SbAI with the AI, that is, within Turc space (which is based on the water
balance concept indicated by water limited to energy-limited lines) identified 15 categories
in five zones: a stable zone, a zone transitioning toward dryness, a zone transitioning
toward wetness, a dry zone, and a moist zone [30]. The authors of [30] have shown that
the actual aridity was intensifying in most of Mongolia, though the climatic AI ranged
from arid to semi-arid. The authors in [31] have demonstrated the NDVI relationship
with precipitation and temperature in semi-arid regions and showed that the majority
of sites displayed seasonal reversal, associated with transitions from water-limited to
energy-limited conditions during wet winters.

Considering these past findings, the goal of this study was to examine the trends of
NDVI and SbAI to determine why the land surface of Mongolia has recently become drier
while the AI has ranged from arid to semi-arid and to propose a method to monitor the
land-surface dryness or drought directly, using only satellite data.

2. Methods

2.1. Target Area and Analysis Period

Mongolia is a landlocked country surrounded by Russia, China, and Kazakhstan. The
total land area is 1564,116 km2. Mongolia is surrounded by high mountains and is located
on a highland over 1500 m above sea level. The country has four distinct seasons, large
temperature variations and little rainfall. The climate changes widely, not only due to
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differences in altitude but also in latitude. The annual mean temperature is between −8 °C
and 6 °C, and the annual mean precipitation is between 50 mm and 400 mm [6].

The AI, SbAI, and NDVI in Mongolia were calculated for latitudes of 41–53◦ N
and longitudes of 87–120◦ E (Figure 1). With the exception of the woodlands in north-
ern Mongolia, most of the land surface in Mongolia has been classified as typical grass-
lands and bare soil, including the Gobi Desert in southern Mongolia [32]. The red circles
in Figure 1 indicate the SYNOP (surface synoptic observations) meteorological stations
—Ulaanbaatar, Mandalgovi, and Tsogt-Ovoo from north to south—which are located in
grassland, the boundary between grassland and bare soil, and bare soil, respectively.

Figure 1. Land-use classification in Mongolia. Dots indicate the SYNOP meteorological stations (Ulaanbaatar, Mandalgovi,
and Tsogt-Ovoo from north to south).

The time interval used to analyze the relationship between the AI and SbAI was
2001–2013. This period was chosen because precipitation data from the Global Precipitation
Climatology Center’s (GPCC) full data product (V7) are available throughout that time [12].
The GPCC has calculated precipitation for all global land areas during the target period
through objective analysis of climatological average rainfall at the rain-gauge stations in
its database.

The goal of this study is an examination of the trends of the NDVI and SbAI to deter-
mine why the land surface of Mongolia has recently (2001–2013) become drier. However,
to establish the annual changes before and after 2001–2013, we calculated the NDVI from
1981 to 2000 using Advanced Very-High-Resolution Radiometer (AVHRR) data and from
2001 to 2020 using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. We
calculated the SbAI from 2001 to 2020 using MODIS data.

2.2. Data

The analysis of data regarding the relationship between the AI and SbAI from 2001
to 2013 was taken from [30], with a horizontal resolution of approximately 1◦ in both
longitude and latitude.

We calculated the daily SbAI and NDVI from 2001 to 2020 using the Terra/MODIS data
products MOD09CMG and MOD11C1 for surface reflectance and land surface temperature
(LST) (https://modis-land.gsfc.nasa.gov/MODLAND_grid.html) (accessed on 27 May
2021). The spatial resolution of these two products was the same (0.05◦). We used the
“Collection 6” land product subsets web service to access and download the data [33].

We calculated daily NDVIs from 1981 to 2000 using the AVHRR surface reflectance
(Channels 1 and 2) with 0.05◦ resolution (https://www.ncdc.noaa.gov/cdr/terrestrial/
avhrr-surface-reflectance) (accessed on 27 May 2021). For long-term continuity of the
NDVIs from the AVHRR and MODIS, we compared these two NDVIs in 2000 and obtained
the following relationship with root mean squared errors (RMSE) = 0.09 (Figure 2):

NDVIMODIS = 0.998 ∗ NDVIAVHRR + 1.975 ∗ 10−5 (1)
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Figure 2. Relationship between the MODIS-NDVI and AVHRR-NDVI. Difference in color indicates
the relative frequency.

In this study, Equation (1) was used to correct the NDVIAVHRR from 1981 to 2000.
A global land-cover map (GLCM) was used to characterize the distribution of land

use in Mongolia (https://db.cger.nies.go.jp/dataset/landuse/en/) (accessed on 27 May
2021) (Figure 1). The GLCM is a raster image of Earth with a latitude-longitude resolution
of 30 s, and it assigns the land cover of Earth into seven categories [34].

Annual rainfall data from 2001 to 2020 at Ulaanbaatar, Mandalgovi, and Tsogt-
Ovoo (Figure 1) were downloaded from the Japan Meteorological Agency (JMA) website
(http://www.data.jma.go.jp/gmd/cpd/monitor/climatview/frame.php) (accessed on 27
May 2021). When data were missing, the Climatic Resolution Unit Time Series monthly
high-resolution gridded climate dataset was used to fill the gap (https://crudata.uea.ac.
uk/cru/data/hrg/) (accessed on 27 May 2021).

2.3. Analytical Methods

The SbAI can be physically interpreted as a metric of the reciprocal heat capacity,
which can be estimated from the ratio of the amplitude of the difference of the land surface
temperature (LST) between day and night to the incident net solar radiation [26]. For a
dry surface, the SbAI is large because the difference of the LST between day and night
(ΔTs) is large. The ΔTs is large because the low water content of the land surface causes its
heat capacity to be low. For the analysis in this study, we used an annual average SbAI,
which we calculated by averaging daily SbAIs, because the AI that we used to examine the
relationship between the AI and SbAI was also an annual average [27].

In the analysis, we used the maximum NDVI in each year, because the amounts of
vegetation were low, and information from NDVIs is lost in arid regions like Mongolia
when annual averages are used [27,35]. In this study, the maximum NDVI occurred in
August, and we used that NDVI as a metric of the potential for vegetation growth because
the vegetation was strongly affected by the amount of precipitation prior to August (85%
of annual rainfall in Mongolia occurs from April to July) [8,36–38].

The authors in [12,30] have used the SbAI to classify arid regions according to their
actual degree of aridity (Table 1).
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Table 1. Classification of arid regions using the SbAI and AI.

Class Range of SbAI Range of AI

Hyper arid (HAr) SbAI > 0.025 AI < 0.05

Arid (Ar) 0.022 ≤ SbAI ≤ 0.025 0.05 ≤ AI < 0.2

Semi-arid (SAr) 0.017 ≤ SbAI < 0.022 0.2 ≤ AI < 0.5

Dry sub-humid (DSH) 0.015 ≤ SbAI < 0.017 0.5 ≤ AI < 0.65

The range of the AI in each region, as defined by [9–11,39], is given in parentheses.
The authors in [30] have subdivided these regions into 15 categories based on the SbAI and
AI values of the four dryland regions (indicated by the double-headed red arrows along
the Y and X axes) listed above (Figure 3). The stable zone (green), which includes points
classified into the same dryland region by both the SbAI and AI, comprises categories 1, 2,
3, and 4. The transition zone, in which dryness is increasing (red), comprises categories 5
and 6, and the transition zone, in which wetness is increasing (blue), comprises categories
7, 8, and 9. In zones 10, 11, and 12, the magnitude of dryness is increasing in the dry zone
(SbAI > 0.025), and zones 13, 14, and 15 are becoming wetter (SbAI < 0.015) (Figure 3).

Figure 3. Relationship between the AI and SbAI, averaged over 2001–2013, and the 15 arid region
categories. The red, double-headed arrows along the axes indicate the range of values of the indices
that indicate hyper-arid, arid, semi-arid, and dry sub-humid regions. The blue dots with standard
deviations indicate the actual ranges of the AIs and SbAIs in Mongolia (modified from [30]).

The authors in [27] examined the global distribution of annual maximum NDVI < 0.2
and annual averaged SbAI > 0.025 and defined areas that meet both these criteria as
degraded land, which includes existing desert and land with both permanent and temporal
dust erodibility. We examined yearly variation of degraded land area in Mongolia between
2001 and 2020 and discussed it in relation to drought.

201



Remote Sens. 2021, 13, 2561

3. Results

3.1. Distribution of Averaged AI in Mongolia from 2001 to 2013

The distribution of the averaged AI from 2001 to 2013 indicated that the northern
region of Mongolia was dry sub-humid (DSH), the north central region was semi-arid
(SAr), and the south region was arid (Ar) (Figure 4). A latitude of 47◦ N is the boundary
between the SAr and Ar. The distribution of the AI corresponded to the distribution of
land classification: northern Mongolia is woodland, north-central Mongolia is grassland,
and southern Mongolia is bare soil (Figure 1).

Figure 4. Spatial distribution of annual AI averaged during 2001–2013 in Mongolia with a resolution of 1◦ latitude × 1◦ longitude.

However, when the SbAIs were plotted against the AIs (blue dots with standard
deviations in Figure 3), the areas that should have been in zones 2 and 3 were in zones
10 and 11 (Figure 5). This result indicates that the actual aridity in most of Mongolia was
more severe than the climatic aridity. The authors in [40] have published a map of the
distribution of aridity in Mongolia that shows a distribution of extremely strong to strong
aridity, and middle to weak aridity similar to zones 10 and 11, respectively.

Figure 5. Spatial distribution of dry zone categories 10 and 11 during 2001–2013 in Mongolia with a resolution of 1◦ latitude
× 1◦ longitude.

The authors in [30] have indicated that the yearly maximum of the NDVI (NDVImax)
in zones above the stable zone in Figure 3 has decreased, and the NDVImax in zones below
the stable zone in Figure 3 has increased. The values of the NDVImax are therefore strongly
related to the differences between the 15 zones in Figure 3. The values of the NDVImax in
zones 10, 11, 2, 3, and 5 are shown in Figure 3, and the distribution of the annual NDVImax,
averaged over 2001 to 2013, is shown in Figure 6. The ranges of the NDVImax were 0.20 ±
0.11 and 0.51 ± 0.16 in zones 10 and 11, respectively (Figure 6), and were nearly consistent
with the ranges of the NDVImax indicated in zones 10 and 5. That is, the smaller amount of
vegetation may be one of the reasons why the land surface of Mongolia became drier from
2001 to 2013 across a range of AIs.
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Figure 6. Spatial distribution of NDVImax values averaged during 2001–2013 in Mongolia with a resolution of 0.05◦ latitude
× 0.05◦ longitude.

These results suggest the following characterizations of zones 10 and 11:

• Zone 10 is climatically an Ar region. From 2001 to 2013, however, this zone had less
vegetation and was similar to an HAr region.

• Zone 11 is climatically a SAr region. The amount of vegetation in the summer is
moderate. However, the actual water retention throughout the year in zone 11 inferred
from its SbAI value was similar to that of an HAr region.

In Sections 3.2 and 3.3, we examine why the land surface of Mongolia became drier
from 2001 to 2013 across a range of AIs by examining the trends of the NDVIs and SbAIs.

3.2. Difference of Climatic Conditions Using AI

We compared the AI distribution in Figure 4 to that from 1981–2010, calculated by [41], to
identify the effects of climate change. Although a climatic trend toward aridity was apparent
in some places (red circles), the distribution of AIs did not generally change (Figure 4).

Many studies have addressed trends of precipitation in Mongolia [7,8,17,42]. The
authors in [43] examined the trend of annual precipitation from 1982 to 2010; they found
that precipitation over Mongolia had been decreasing since 1993 (the trend was especially
strong in northern and central Mongolia [17]) and the annual rainfall during 1994–2010
was about 30 mm lower than during 1982–1993. The authors in [7,8] found similar results.
A decrease in annual rainfall by 30 mm has little effect on the classification of climates
based on AI in Ar and SAr regions because the ranges of AIs in those categories are large:
0.05–0.2 and 0.2–0.5, respectively. The AI value itself may be reduced because of a decrease
in rainfall and enhanced potential evaporation related to warmer temperatures [44]. The
implication is that climatic effects are not revealed by a map of the distribution of AI values
that reflect drier land surfaces in Mongolia because the range of AI values is large.

Monitoring the amount of vegetation will be an effective way to examine the effect
of a decrease in rainfall by 30 mm over Mongolia. We therefore examined the trend of
the NDVImax in August over Mongolia from 1981 to 2020 (Figure 7) because the NDVImax
in August is sensitive to the amount of rainfall during the previous season [8,36,38]. In
Mongolia, 85% of the annual rainfall is from April to July [37]. Figure 7 shows that the
NDVImax decreased from 1994 to 2009. As previously mentioned, the annual rainfall during
1994–2010 decreased by about 30 mm compared with 1982–1993. The decreasing trend of
the NDVImax up to 2009 was presumably due to decreased precipitation. However, the
peak value of the NDVImax was only 0.39 in 1994, less than the average value of 0.4 in
zones 2 and 3.
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Figure 7. Annual changes (1981–2020) of the NDVImax in August over Mongolia. Dashed lines show
the trends from 1981–1994, 1994–2009, and 2009–2020.

In contrast, an increasing trend of the NDVImax after 2009 can be found clearly. Since
there have been few analyses of precipitation trends from 2001 to 2020 over Mongolia ([45]
from 2000 to 2017; [23] from 2000 to 2016), we reexamined those trends at Ulaanbaatar,
Mandalgovi, and Tsogt-Ovoo (Figure 8). At all three locations, annual rainfall increased
after 2009, and those trends corresponded to an increase of the NDVImax, which reached
an averaged value of 0.4 in zones 2 and 3 (Figure 7). Based on an analysis of precipitation
anomalies, the authors in [23] and [45] have also indicated that Mongolia became wetter
from 2009 to 2017 compared with 2000–2008.

3.3. Trends of NDVImax and SbAI in Zones 10 and 11 during 2001–2020

We examined in detail the water retention of the land surface using the trends of the
SbAI (averaged value in August and annual averaged value) and the NDVImax in August.
In zone 10, the NDVImax decreased by a small amount from 2001 to 2009, and it increased
very obviously after 2009 (Figure 9a). The average SbAI in August varied inversely with
the NDVImax, and the correlation between the two was high (R2 = 0.64, p < 0.001). The
averaged NDVImax from 2001 to 2010 was less than the limiting value of 0.2, below which
land is considered to be degraded [27], but it increased after 2009. However, the NDVImax
was smaller than the average value of 0.26 in Ar regions (zone 2). When the NDVImax
exceeded 0.24, the averaged SbAI in August was lower than the limiting value of 0.025,
below which land is considered to be degraded [27], but it was higher than 0.025 in many
years. The annual averaged SbAI exceeded 0.03 in many years, and thus the environment
of zone 10 appeared to be stressed in terms of water retention by the land surface through
the year.
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Figure 8. Annual changes (2001–2020) of annual rainfall in (a) Ulaanbaatar, (b) Mandalgovi, and (c)
Tsogt-Ovoo. Black and blue dashed lines represent the normal values and trends during 1981–2010.

In zone 11, the NDVImax increased by a small amount from 2001 to 2009, and it
increased very obviously after 2009 (Figure 9b). The averaged SbAI in August varied
inversely with the NDVImax, and the correlation between the two was high (R2 = 0.54,
p < 0.001). The NDVImax from 2001 to 2010 was lower than the general value of 0.54 in the
SAr regions (zone 3), but it increased after 2009. The averaged SbAI in August from 2001
to 2009 was slightly lower than the limiting value of 0.025, below which land is considered
to be degraded. However, the averaged SbAI in August after 2009 was substantially lower
than 0.025, and it was even lower than 0.022, which is the upper bound for classification of
a region as SAr (Figure 3). Although summers became wetter after 2009, water retention
throughout the year was still low, because the annual averaged SbAI was 0.025–0.03.

The annual averaged SbAI was not necessarily correlated with the NDVImax (R2 = 0.31,
p < 0.05) (Figure 9b). For example, the NDVImax was lower in 2017 than in 2019, but the
annual averaged SbAI was lower (wet) in 2017. There were similar relationships between
the NDVImax and SbAI in 2010 and 2011. The authors in [45] indicated that water storage
after summer in 2010 was higher than in 2011. It is inferred that precipitation in seasons
other than summer affected water retention throughout the year. Numerical simulation
results have shown that annual rainfall, especially rainfall during the winter, will increase
over Mongolia from 2016 to 2035 and from 2081 to 2100 [37]. At the present time, it cannot
definitively be concluded that the increasing trend of annual rainfall since 2009 (Figure 8)
is in agreement with the simulation results. If the amount of precipitation increases enough
that the annual averaged SbAI in zones 10 and 11 decreases to 0.025 and 0.022, respectively,
the aridity in zones 10 and 11 will be close to climatically stable conditions.
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Figure 9. Annual changes (2001–2020) of the NDVImax in August, averaged SbAI in August, and annual averaged SbAI. (a)
zone 10, (b) zone 11. Dashed lines show the trends of respective indices.

The annual averaged SbAI during the years shown in Figure 9b is the averaged value
in zone 11, and thus there were wet regions with SbAIs below 0.022. For example, the
distribution of annual averaged SbAIs in 2013 (the lowest SbAIs from 2001 to 2020) revealed
wet regions with SbAIs below 0.022 (colored orange in Figure 10). The authors in [46] have
indicated that although a large proportion of Mongolia’s rangelands are not providing
their potential ecosystem services, few have crossed an irreversible threshold of ecological
change caused by current levels of grazing pressure. For the sustainable development of
stock farming, continuous monitoring should be conducted to conserve the relatively wet
regions (colored orange in Figure 10) and to prevent land degradation in nearly degraded
regions (colored green in Figure 10).
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Figure 10. Spatial distribution of annual averaged SbAI values in zone 11 for 2003.

3.4. Detection of Drought Using SbAI

According to PDSI values, drought occurred frequently in all parts of Mongolia from
2000 to 2013 [7,16,37]. Since occurrences of dzud during the winter were strongly affected by
drought conditions (low pasture production) during the preceding summer, understanding
and predicting the characteristics of drought are of particular concern in Mongolia [15,37].
The authors in [15] have assessed drought frequency, duration, and severity over Mongolia
from 2000 to 2010 using the PDSI and the standardized precipitation index (SPI). They
have shown that droughts occurred in 2000, 2001, 2002, 2004, 2006, 2007, 2008, and 2009.
Droughts therefore occurred in most years from 2000 to 2009 (red arrows in Figure 11).
Figure 11 shows the yearly change in the NDVImax, the averaged SbAI in August, and
the annual averaged SbAI over Mongolia; the broken lines are the average values for the
drought years. Both of the SbAI values equaled or exceeded these broken line averages
during 2001–2009, but they have fallen below the broken lines in many years since 2009.

 

Figure 11. Annual changes (2001–2020) in the NDVImax in August, averaged SbAI in August, and annual averaged SbAI
over Mongolia. Red arrows indicate drought years.
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Drought years can be simply detected as follows:
NDVImax ≤ 0.33
averaged SbAI in August ≥ 0.025
annual averaged SbAI ≥ 0.030.
The correct identification of drought (presence or absence) was higher for the SbAI

than for the NDVI during 2001–2009. In particular, the identification accuracy was 100%
for the averaged SbAI in August. The primary reason for this accuracy is that the droughts
during 2001–2010 were summer droughts that led to a reduction in water retention [15].

The years 2014 and 2017 have recently been drought years [28,38,45,47], and they
could be detected by the annual averaged SbAI. Drought is more strongly correlated with
soil moisture anomalies [36,48], and thus the annual averaged SbAI might be appropriate
for monitoring drought during seasons other than summer.

Degraded land area, defined as annual NDVImax < 0.2 and annual averaged SbAI > 0.025,
has decreased (R2 = 0.24, p < 0.05), especially since 2009 (Figure 12). Degraded land area
was small in 2003, 2012, 2016, and 2018 but large in 2001, 2002, 2004, 2005, and 2009,
which corresponded to the major drought years shown in Figure 11. Degraded land area
can recover form one year to the next, as in 2017 to 2018. Since degraded land area was
defined as areas including existing desert and land with both permanent and temporal dust
erodibility [27], factors like an ecological processes and human impacts are also important
in recovering degraded land [7].

Figure 12. Annual changes of areas of degraded land and percentage of total land area in Mongolia. Dashed line represents
the average extent of degraded land for 2001 to 2009.

The defined degraded land area should have been in zones 1 and 10 in Figure 3.
Therefore, this method will be useful for general detection in very severe drought condition
with a possibility of dust occurrences over Mongolia, particularly in zone 10 of Figure 5
(Figure 13). The spatial distribution of degraded land indicates that droughts have occurred
frequently in southern-east Mongolia, that is, in Dundgovi, Omnogovi, and Dornogovi
aimags (aimag is the first-level administrative subdivision). The authors in [49] also exhibited
high risks of dzud in these provinces using social data from 1944 to 1993.
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Figure 13. Spatial distribution of degraded land from 2001 to 2020.

4. Discussion

This study examined the reasons why the land surface in Mongolia has recently
become drier across a range of AIs by examining the trends of the NDVI and SbAI. We
then proposed a method to monitor drought conditions using only satellite data. Among
explanations for why the SbAIs have been large within Mongolia are the following:

• The NDVImax was small compared with the NDVImax values in other Ar and SAr regions.
• Did Mongolia become drier climatically? Although the AI distribution was almost

unchanged compared with 1981–2010, annual rainfall during 1994–2010 was about
30 mm less than during 1982–1993. There is a possibility that the amount of vegeta-
tion was sensitive to a rainfall decrease of 30 mm. In fact, the NDVImax had been
decreasing up to 2010 after peaking in 1994. The NDVImax was small even at its peak
value of 0.39 in 1994, and it did not reach its averaged value of 0.4 in zones 2 and 3.

• The SbAI during the summer was relatively small (wet). However, the SbAI through
the year was large (dry). In Mongolia, most of the annual rainfall occurs from April to
July, and that rainfall is reflected by the NDVImax in August. After August, vegetation
is dried or eaten by livestock, and the land surface wetness decreases (large SbAI). At
the same time, there is less rainfall during seasons other than summer.

• Under the current conditions, the capacity of the land surface to retain water leads to a
large SbAI because the concentrated summer rainfall affects the growth of vegetation.

In contrast, the SbAI decreases when the annual rainfall and/or amount of rainfall
increases during seasons other than summer. If the amount of precipitation, including
precipitation during the winter, increases enough that the annual averaged SbAI decreases,
the aridity of Mongolia will approach climatically stable conditions, and drought occur-
rences that are correlated with soil moisture anomalies will be less frequent. Since 2009, the
NDVImax in August over Mongolia has tended to reach an average value of 0.4 in zones 2
and 3, and the frequency of drought years when SbAI values are over the threshold has
also decreased.

For sustainable development in Mongolia, where 30% of the workforce is engaged in
stock farming, continuous monitoring should be conducted to detect drought and prevent
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land degradation. The remote sensing techniques proposed in this study, in addition
to other drought indices that make use of meteorological or satellite data, will facilitate
this monitoring. We hope that the usefulness of our method will be confirmed by other
researchers and in other arid countries, and that our method will serve as the basis for
an improved system based on remote sensing techniques that will promote sustainable
development in arid regions throughout the world.

5. Conclusions

The purpose of this study was to examine the trends of the NDVI and SbAI to deter-
mine why the land surface of Mongolia has recently become drier; that is, when the SbAIs
were plotted against the AIs, actual aridity in most of Mongolia was more severe than
climatic aridity. The main reasons were that the NDVImax was lower than the NDVImax
found in the other drylands of the world, and the SbAI throughout the year was large.
Under the current conditions, the capacity of the land surface to retain water throughout
the year caused the SbAI to be large because rainfall in Mongolia is concentrated in the
summer, and the conditions of grasslands reflect summer rainfall.

A method was proposed to monitor land-surface dryness or drought using satellite
data. The correct identification of drought was higher for the SbAI than for the NDVI.
Drought is more strongly correlated with soil moisture anomalies, and thus the annual
averaged SbAI might be appropriate for monitoring drought during seasons other than
summer. Degraded land area, defined as annual NDVImax <0.2 and annual averaged SbAI
> 0.025, has decreased. Degraded land area was small in 2003, 2012, 2016, and 2018 but
large in 2001, 2002, 2004, 2005, and 2009, which corresponded to the major drought years in
Mongolia. However, it must be noted that degradation is not caused by not only drought
events but also ecological processes and grazing pressure in Mongolia [7].
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Abstract: Drought severity and impact assessments are necessary to effectively monitor droughts
in semi-arid contexts. However, little is known about the influence land use-land cover (LULC)
has—in terms of the differences in annual sizes and configurations—on drought effects. Coupling
remote sensing and Geographic Information System techniques, drought evolution was assessed
and mapped. During the growing season, drought severity and the effects on LULC were exam-
ined and whether these differed between areas of land change and persistence. This study used
areas of economic importance to Botswana as case studies. Vegetation Condition Index, derived
from Normalised Difference Vegetation Index time series for the growing seasons (2000–2018 in
comparison to 2020–2021), was used to assess droughts for 17 constituencies (Botswana’s fourth
administrative level) in the Central District of Botswana. Further analyses by LULC types and land
change highlighted the vulnerability of both human and natural systems to drought. Identified
drought periods in the time series correspond to declared drought years by the Botswana government.
Drought severity (extreme, severe, moderate and mild) and the percentage of land areas affected
varied in both space and time. The growing seasons of 2002–2003, 2003–2004 and 2015–2016 were
the most drought-stricken in the entire time series, coinciding with the El Niño southern oscillation
(ENSO). The lower-than-normal vegetation productivity during these growing seasons was evident
from the analysis. With the above-normal vegetation productivity in the ongoing season (2020–2021),
the results suggest the reversal of the negative vegetation trends observed in the preceding growing
seasons. However, the extent of this reversal cannot be confidently ascertained with the season
still ongoing. Relating drought severity and intensities to LULC and change in selected drought
years revealed that most lands affected by extreme and severe drought (in descending order) were
in tree-covered areas (forests and woodlands), grassland/rangelands and croplands. These LULC
types were the most affected as extreme drought intersected vegetation productivity decline. The
most impacted constituencies according to drought severity and the number of drought events
were Mahalapye west (eight), Mahalapye east (seven) and Boteti west (seven). Other constituencies
experienced between six and two drought events of varying durations throughout the time series.
Since not all constituencies were affected similarly during declared droughts, studies such as this
contribute to devising appropriate context-specific responses aimed at minimising drought impacts
on social-ecological systems. The methodology utilised can apply to other drylands where climatic
and socioeconomic contexts are similar to those of Botswana.

Keywords: Normalised Difference Vegetation Index (NDVI); Vegetation Condition Index (VCI);
drought; land use-land cover; remote sensing; Botswana

1. Introduction

Drought as a slow-onset event is increasingly an environmental hazard due to its
negative impacts on natural and human systems, including livelihoods [1–4]. Drought
conditions are initiated by precipitation shortfall in comparison to the climatological normal
in the focus context and amplified by concurrent heatwaves and extreme high-temperature

Remote Sens. 2021, 13, 836. https://doi.org/10.3390/rs13050836 https://www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 836

events [5,6]. Impacts relate to insufficient availability of water to meet human and nature’s
needs, seasonal moisture deficit including soil moisture and extensive evaporation resulting
in a decline in vegetation greenness and health, plant mortality, reduced water levels in
dams and other adverse ecological and/or socioeconomic conditions [7–10]. Studies have
found and are forecasting increasing drought duration, severity and frequency in different
world regions [11–16].

Drylands, which by their very nature are water deficient due to limited rainfall and
water supplies [17], are particularly vulnerable to droughts. In African drylands, the
occurrence of droughts is not unusual. Some studies have found increasing drought events
in African drylands [4,18], whereas other studies project future increases in droughts and
other high-temperature events [19,20]. In the arid regions of South Africa, extreme high-
temperature events in parks are increasing in frequency [18]. In Botswana, where this study
was conducted, there is public awareness on issues relating to drought due to its negative
impacts, particularly on agriculture, which is largely rainfed [21]. Studies have found
observable changes of varying magnitudes in rainfall, temperature trends and drought
over Botswana [21–24]. With future global warming, droughts are projected to increase in
frequency and severity in this region based on regional climate model simulations [5,25]. In
the face of climate variability and change, it is increasingly important to assess and monitor
droughts because of the need to adapt and minimise impacts on the social-ecological
systems in African drylands.

The need to monitor and assess droughts in drylands calls for the use of Remote
Sensing (RS)-based data and methods as complementary to meteorological gauge data
and climatological indices due to the drawbacks of using only ground-based data, such as
inadequate spatial and temporal coverage of meteorological station data. RS image data
and vegetation indices are widely used in drought monitoring [26–29]. With the increasing
availability of free satellite image datasets of good temporal and spatial resolution, RS
affords rapid and cost-effective assessment and monitoring of droughts. Drought effects on
vegetation and ecosystem services were examined in the Bobirwa sub-district, Botswana
using RS-based indices [30]. Although the drought situation is increasingly assessed in
Botswana, the use of RS in examining droughts in Botswana is still very limited. Moreover,
how drought severity differs between land systems to further exacerbate impacts in this
region is not clear.

Using Normalised Difference Vegetation Index (NDVI) image time series datasets, this
study contributes to the understanding of the spatial and temporal variations of droughts
and the effects across LULC types and change. It integrated remote sensing with spatial
statistics in Geographic Information System (GIS) for the analysis and mapping of drought.
Variability and vegetation trends over 18 years for the growing seasons between 2000–2001
to 2017–2018 were assessed and afterwards compared to the ongoing growing season
(2020–2021). Thus, this study better captured the seasonality of vegetation growth when
considering drought severity as this relates to rainfall in dryland contexts. The spatial and
temporal evolution of drought severity was assessed and mapped for each year in the time
series. We provided an improved methodology for the examination of drought evolution
and severity by incorporating indices of LULC change. Transitions in areas of LULC change
and persistence, i.e., areas where no changes occurred, are useful indices to understand the
processes, especially anthropogenic, driving the observed trends in vegetation productivity
and how these relate to drought severity. Most RS-based studies on drought have not
evaluated the effects according to LULC types and change. For the examination of drought
severity by LULC and change to be meaningful, we further considered the differences
in annual LULC configurations and sizes. Considering that both configuration and size
differ from year to year, we utilised the annual LULC time series for analysis in each year
identified as drought-stricken. Moreover, drought impacts on land-based resources upon
which much of livelihoods are dependent would either be exacerbated or ameliorated
depending on how the land is put to use and the land management practices. To better
demonstrate RS capabilities for assessing drought severity at a finer, sub-national scale, the
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assessment was conducted in 17 constituencies (a constituency is the fourth administrative
level in Botswana).

2. Materials and Methods

2.1. Description of the Study Location

Seventeen constituencies in the Central District of Botswana (CDB) in the eastern
part of the country were used as case studies (Figure 1). The CDB is the largest amongst
the nine districts of Botswana both in terms of population and geographic size (Table S1
details the population and geographic area of the 17 constituencies). The district has
576,064 inhabitants (29% of Botswana’s population) as of the 2011 census. With 26% of
Botswana’s land area, it covers an area of approximately 147,730 km2. With a semi-arid,
hot steppe climate (Koppen’s BSh classification), rains occur in the summer months with
peak rainfall in January (71–142 mm). Annual average rainfall at the constituencies ranged
from 321 mm to 430 mm. Temperature ranges from 32 to 39 ◦C and can occasionally exceed
40 ◦C [21]. As in most parts of Botswana, the annual evaporation rate of about 2000 mm
year−1 far exceeds that of the rainfall (475–525 mm year−1) [4].

Figure 1. Study location: (a) Central District in eastern Botswana; (b) Land use-land cover for 2018; (c) Peak distribution of
rainfall in the 17 constituencies examined in the study.

The district is of great economic importance to Botswana, with 23% (31,634 holdings)
of all traditional agricultural holdings in Botswana [31]. Moreover, the majority of the mines
in Botswana are located in the CDB, such as the Morupule coal mine and the diamond
mines in Lerala, Orapa and Letlhakane.

2.2. Data Sources

Variability in vegetation condition and drought severity in the CDB were examined
over 18 years using the 1 km Normalised Difference Vegetation Index (NDVI) decadal
(i.e., 10-day composite) image time series from the Copernicus Land Monitoring Service

215



Remote Sens. 2021, 13, 836

(https://land.copernicus.eu/global/products/ndvi, accessed on 8 January 2021). These
images were made available through the European Union–African Union-funded project on
Monitoring for environment and security in Africa (MESA). The MESA was implemented
for the Southern African Development Community (SADC) region comprising 15 countries
and included Madagascar and the Democratic Republic of Congo. The dekadal NDVI
datasets from October 2000 to 2014 were derived from SPOT VGT, and data from June 2014
to 2018 are from the PROBA-V [32]. These long-term, 1-km NDVI datasets from the two
sensors have been pre-processed at the source to ensure compatibility and continuity [33].

The land cover datasets were from the European Space Agency (ESA-LC) Climate
Change Initiative (CCI-LC v.2.0.7) ESA CCI and Copernicus Climate Change Service (C3S-
LC Mv52 https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=
form, accessed on 8 January 2021). These datasets are a consistent series of multi-sensor an-
nual maps from 1992 to 2018 [34]. The land categories in the ESA-LC were aggregated into
six categories for compatibility with previous studies in Botswana [35]—tree-covered areas,
grassland, cropland, water bodies, artificial surfaces (settlement including infrastructure)
and otherland (Table S2). Tree-covered areas comprise forests and woodlands. In Botswana,
forested areas are defined as comprising multi-layered tree canopies with over 10% cover,
a minimum size of 0.5 ha and heights of more than 5 m [36]. Grassland incorporated
shrubland and other sparse vegetation, whereas the otherland category combines bareland,
rock outcrops and dunes [35].

2.3. Methods
2.3.1. Indicators of Vegetation Variability

Indices used for measuring vegetation variability and drought severity are based on
the NDVI. NDVI is widely utilised for assessing and monitoring vegetation greenness,
net primary productivity, plant phenology and land degradation in natural and human
systems [35]. NDVI is calculated as in Equation (1), where NIR and R are the near infrared
and visible red portions, respectively, of the electromagnetic spectrum. Photosynthetically
active plants absorb more incident radiation in the visible red portion but reflect more in
the near infrared portion [37].

NDVI =
NIR − R
NIR + R

(1)

Three indicators of vegetation variability utilised in this study were derived from
NDVI—NDVI difference, NDVI anomaly and NDVI trends. Other derived metrics to gauge
seasonal vegetation productivity include the NDVI mean, maximum and cumulative values
computed for each month in the growing season within the time series.

NDVI Difference

To analyse the variability of vegetation during the vegetation growing season over
the 18-year study period, the NDVI Difference (NDVIdiff) function implemented in the
MESA Drought Monitoring Services (DMS) software was utilised. NDVIdiff is widely used
to get an indication of vegetation state over a specific period by comparing vegetation
productivity between two dekads or relative to the long-term average for the same period.
This indicator highlights areas where vegetation is under stress as well as those performing
well. For this study, seasonal NDVIdiff was calculated for every growing season (i.e.,
annually) as the difference between the start dekad (i.e., first 10-day period) in October (D1)
in a certain year i to the end dekad (i.e., last 10-day period) in March (D3) of the following
year i + 1 in the time series data of 2000 to 2018 (Equation (2)):

NDVIdiff (i,i+1) = NDVID1i − NDVID3i+1 (2)

Standardised NDVI Anomalies

NDVI anomaly captures how vegetation productivity for a certain period deviates
from the long-term average dynamics. It is calculated by subtracting the considered

216



Remote Sens. 2021, 13, 836

month NDVI from the month’s long-term average and dividing it by the monthly standard
deviation for that period. By distinguishing areas that are normal from those that are above
or below normal vegetation productivity, NDVI anomaly is helpful to identify outliers,
isolate the variability in the vegetation signal and consider the reviewed period within a
meaningful historical context [26].

NDVI Trend

Using the NDVI time series of 2000 to 2020 as input, we computed vegetation change
as trends and their significance based on the Mann-Kendall (MK) non-parametric test.
Non-parametric approaches estimate trends in a time series by quantifying the rate of
change in vegetation greenness for each pixel and characterises trends in the data using the
median slope [38]. MK tau (τ) coefficient ranges from −1 to +1 with values greater than 0
indicating a continually increasing (greening) trend, and values less than 0 indicating a
continually decreasing (browning) trend [39]. NDVI trends were reclassified into increase
(>0), decrease (<0) and stable (0). The MK is useful to determine the significance of changes
in vegetation productivity over time and is robust to outliers [40]. The reclassified NDVI
trends were afterwards assessed by LULC type. In conjunction with LULC types, NDVI
trends are useful in detecting land areas that are potentially degraded if significant negative
trends are found over time [35].

2.3.2. Drought Indicators
Vegetation Condition Index

Drought severity during the growing season was measured using the NDVI-based
Vegetation Condition Index (VCI) as in Equation (3) [27]. VCI compares the NDVI of a
given period j (NDVIj) with the long-term minimum NDVI (NDVIltmin) and long-term
maximum NDVI (NDVIltmax) computed over a 10-year time series for the same period.

VCIj =

(
NDVIj − NDVIltmin

NDVIltmax − NDVIltmin

)
× 100 (3)

VCI is particularly useful for agriculture, as it assesses changes in NDVI through time
since vegetation is water-stressed due to water deficiency such as during drought. VCI for
the vegetation growing season was calculated between 2000–2001 and 2017–2018 starting
with the first dekad of October in the previous year to the third dekad in March of the
following year. VCI is measured as a percentage with values ranging between 0 (lowest)
and 100 (highest), with values equal to or below 40% considered as drought to varying
degrees of severity (Table 1). The two VCI-based indicators used for characterising drought
are drought intensity and drought frequency.

Table 1. Vegetation Condition Index (VCI) -based drought severity classes (Adapted from [41]).

Drought Severity VCI

Extreme 0 ≤ VCI < 10
Severe 10 ≤ VCI < 20

Moderate 20 ≤ VCI ≤ 30
Mild 30 ≤ VCI ≤ 40

No drought 40 < VCI ≤ 100

Drought Intensity

Drought intensities for each growing season were calculated through the 18-year
study period. These are percentages of pixels (a proxy for the surface land area) whose
VCI values fell within the different drought severity and non-drought categories [41]. The
evolution of the drought hazard was examined for each year in the time series based on
the VCI.
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Drought Frequency

To relate the pixel-level VCI to each of the 17 constituencies in the CDB, the zonal
statistics function in GIS was used. The median VCI value within each constituency was
utilised because there is the tendency for more years in drylands to have rainfall below the
mean, with the median value deviating more from the mean. Due to the sensitivity of the
mean to outliers, the median is a better data distribution measure to gain further insight
regarding the frequency of droughts in each constituency. Drought severity was compared
to the official declarations of drought years by the government. Drought frequency was
computed as the count of the number of drought years in the entire time series (growing
seasons 2000–2001 to 2017–2018). A year with an annual VCI value of 40 or less is identified
as drought-stricken and the sum of such drought years per constituency in the entire time
series amounts to the frequency of drought [26].

2.3.3. Land Use-Land Cover Change

In addition to vegetation trends, drought severity was examined according to LULC
types. It was also examined at the constituency level, to take into cognisance the environ-
mental and administrative basis of drought impacts, respectively. For each drought year,
drought severity effects on each LULC type were assessed based on the intersection of VCI
and LULC values for that particular year. Drought intensity is expressed as a percentage
of the area under each LULC type affected by varying drought severity and non-drought
conditions. Percentages of the surface land area affected were then normalised by the
size of the LULC type for each year. Since LULC configurations and sizes vary from one
year to another, the annual LULC map for each identified drought year was utilised. Only
for the land change analysis aspect was the maps of the years 2000 and 2018 used for
post-classification change detection.

3. Results

3.1. Vegetation Variability and Trend

The spatial and temporal variations in vegetation productivity were presented based
on analyses during the growing seasons, i.e., October to March, of the 18 years. Providing
insights regarding each growing season throughout the entire time series, NDVIdiff maps
(Figure 2) depict limited vegetation productivity in the CDB in years 2000–2001, 2003–
2004, 2005–2006, 2007–2009, 2013–2014 and 2015–2018. In other years, such as 2002–2003
and 2010–2011, vegetation productivity was low mostly in the northern and the eastern
parts of the district. Improvement in vegetation performance occurred during 2005–2006,
2009–2010, 2010–2011 and 2014–2015.

Figure 3a,b compared maximum, mean and cumulative NDVI in the entire time series
(2000–2018) with those of the drought years (2002–2003 and 2003–2004) and non-drought
year (2009–2012). Vegetation productivity for 2020–2021 as the ongoing growing season is
also depicted. Vegetation productivity during the 2009–2010 non-drought growing season
was higher than the mean of the entire time series for most months, except in mid-February
to March, whereas, for this current growing season (2020–2021), vegetation productivity
is well above the mean of the entire time series from mid-October 2020 to February 2021.
NDVI anomalies (Figure 3c) captured lower or higher than normal vegetation productivity
in the time series. There were some extended periods of very low vegetation productivity
over multiple growing seasons. Examples are the period from the middle of the 2002–2004
growing seasons and 2004–2005 to the start of 2005–2006 growing seasons. The improved
vegetation productivity during the growing seasons of 2005–2006, 2009–2010, 2010–2011
and 2014–2015 was further confirmed by the NDVI anomaly (Figure 3c). NDVI anomalies
(Figure 3c) captured lower or higher than normal vegetation productivity in the time series.
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Figure 2. Variability in vegetation productivity based on the seasonal NDVI difference for the growing seasons (October to
March) in the time series.

The NDVI trend was analysed as an indicator of vegetation productivity change.
Areas of negative trends amounted to about 90% of the land area in the CDB (Figure 4).
Decreasing NDVI trends mostly occurred in the north-east (Nkange, Shashe west, Tonota)
and to the south (e.g., Sefhare-Ramokgonami, Mahalapye east). Decreasing vegetation
trends imply that these areas experienced an overall decline in vegetation cover and
biomass. Increasing NDVI trends (4% of CDB’s land area), implying an improvement in
vegetation productivity, were most pronounced in the north-west (e.g., Boteti west) and the
eastern tip along the Motloutse River (Bobonong). Areas of stable vegetation productivity
(6%) were mostly in the western parts around Serowe west, Shoshong, Palapye and Serowe
north. The direction of these trends and the extent of land area affected are generally in
line with the overall national vegetation productivity dynamics [35].
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Figure 3. Profiles of NDVI metrics for the growing seasons: (a) Mean and maximum NDVI in the time series compared to
multi-drought seasons (2002–2003 and 2003–2004), non-drought season (2009–2010) and 2020–2021 as the current growing
season; (b) Seasonal cumulative NDVI for these metrics as in Figure 3a; (c) NDVI anomaly. Grey circles indicate when
the anomaly occurred and sizes interpreted as follows: small circle = a part of the growing season was affected (indicated
either as start or mid), medium circle = entire growing season was affected, large circle = multi-year growing seasons
were affected.

3.2. Spatio-Temporal Evolution of Drought Severity during Vegetation Growing Seasons

Drought negatively impacts vegetation growth, the supply of water for nature’s
needs (e.g., to sustain wildlife) and human needs (e.g., for livelihoods and food security).
Seasonal maps depicting spatial and temporal variations in drought severity for the CDB
were produced (Figure 5a). The growing seasons of the years 2002–2004 and 2015–2016
were the worst drought periods in the entire series. The growing seasons of 2004–2007,
2012–2013 and 2016–2018 were also affected but to a lesser extent. During droughts, the
most affected areas were towards the west, south and the eastern tip of the district except
for 2002–2004, when the entire district was affected by drought. Land areas most affected
by drought were in Mahalapye west and east, Boteti west, Shoshong, Shashe west, Palapye
and Bobonong. The magnitude of the drought hazard varied between the years considered
in the time series (Figure 5b). The highest percentages of extreme, severe, moderate and
mild droughts were recorded during 2002–2005. These years corresponded to drought
years declared by the government [31]. Drought severity ranged from extreme to mild
as lower than normal, erratic rainfall amounts were recorded in the CDB, similar to most
parts of Botswana during these years.
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Figure 4. Spatial patterns of vegetation productivity change between 2000–2001 and 2020–2021 (Makgadikgadi salt pans in
the north is indicated as white using the waterbody mask): (a) Vegetation trends; (b) Significance of trends.

Figure 5. Evolution of VCI drought severity and intensity through the time series in the Central District: (a) Growing season
VCI (October to March); (b) Percentage of land area affected by varying drought severity and non-drought conditions based
on the VCI by years.
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3.3. Area of Land Use-Land Cover Change and Persistence

In the CDB, areas of LULC persistence, i.e., unchanged, between 2000 to 2018 amounted
to 88% (130,166 km2). Figure 6a depicts the spatial distribution of areas of persistence
as well as losses where LULC types have been displaced, i.e., transitioned to other land
uses. Figure 6b shows the share of land under each persistent and transitioned land uses
between the year 2000 and 2018 as a percentage of the surface land area (Table S3 provides
the LULC transition matrix in km2 between 2000–2018). Land transitions in the matrix
are to be interpreted as ‘from-to’ changes, whereby a particular LULC type in 2000 (initial
year) transitions to another LULC type in 2018 (target year). For example, 37% and 2%
of tree-covered areas were derived from grasslands and croplands, respectively. Thus,
tree-covered areas increased from 11.5% of the total land area of the CDB in 2000 to 14.5%
in 2018. Other notable transitions are the expansion of artificial surfaces such as settlements,
with 60% derived from grassland, 1.6% from tree-covered, 1.4% from cropland and 1.8%
from otherland areas. Thus, artificial surfaces increased from 0.05% in 2000 to 0.13% in
2018. The main gains by grassland were from tree-covered areas (2.8%) and cropland (1%).
The main gains by cropland were derived from tree-covered (8%) and grassland (~28%).
Although cropland expanded over time (increased from 6.3% of the total land area in 2000
to 8% in 2018), it lost 2.3% through its conversion to tree-covered areas, 1% to grassland
and 1.4% to artificial surfaces.

 

Figure 6. Changing land use-land cover conditions between 2000 and 2018: (a) Areas of land use-land cover loss and
persistence; (b) Land use-land cover transitions from the year 2000 to 2018 in percentages (areas of persistence for each land
use-land cover class are in bold, that is, areas of no change that remained in the same land class over the 18 years).

3.3.1. Land Change and Associated Vegetation Trends

With about 90% of the land area in the CDB experiencing negative vegetation trends,
we investigated how changes in vegetation productivity (i.e., increasing, stable and de-
creasing) are associated with land change. The focus is on major LULC types (tree-covered
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area, cropland, otherland and grassland), as these made up over 95% of the study area
as of 2018. Figure 7a–d depict the spatial distribution of vegetation trends found in these
major LULC types. Figure 7e shows the percentage of land area by vegetation productivity
change (direction and magnitude). By LULC categories as of 2018, vegetation productivity
decreased in about 98% and 94% of tree-covered areas (such as forests and woodlands)
and croplands, respectively, and 94% of grasslands. In other words, the majority of tree-
covered, cropland and grassland areas experienced decreasing vegetation productivity as
of 2018. Seventeen percent (17%) of wetlands and settlement areas, respectively, and 12%
of otherland experienced increasing trends, signifying improved vegetation productivity.

 

Figure 7. Distribution of vegetation trends for major land use-land cover categories for the year 2018: (a) Tree−covered area;
(b) Cropland; (c) Otherland; (d) Grassland; (e) Vegetation change as percent area of land in (i) 2018 land categories, (ii) areas
of land change between 2000 and 2018 and (iii) areas of land persistence where no change occurred between 2000 and 2018.

Between years 2000 and 2018 in the loss areas, the greatest percentage of decreasing
vegetation productivity (above 90%) were found in tree-covered, settlement and cropland
areas. Areas with increasing trends in loss areas are otherland (34%), wetlands (137%) and
grasslands (2%). In areas of persistence, vegetation productivity declined mostly in the
same LULC types as in loss areas, whereas it improved in 27% of settlement areas, 17%
of wetlands, 11% of otherlands and 4% of grasslands. Minimum and maximum values of
NDVI trends in areas of land loss varied between forests (−0.3, 0.21), grassland (−0.28,
0.70), cropland (−0.27, 0.24), wetland (−0.26, 0.54), settlement (−0.24, 0.02) and otherland
(−0.23, 0.35).

3.3.2. Drought Severity by Land Use-Land Cover Type

Focusing on the drought years identified earlier in the time series analysis of vegetation
variability and drought severity (refer to Figures 2 and 5), we examined how drought
severity differed between the major LULC types. The 2002–2003 drought-stricken growing
season was used as an example because it was the worst drought experienced in the entire
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time series (Figure 8a–d). For example, land areas most impacted by extreme and severe
droughts, respectively, in 2003–2004 are: over otherland (32%, 31%), grassland (19%, 39%)
and cropland (12%, 37%). Drought intensities for areas under each LULC type for the
identified drought years are shown in percentages alongside drought severity classes
(Figure 8e).

Figure 8. Distribution of drought severity for major land use-land cover types: (a) Tree-covered area;
(b) Cropland; (c) Otherland; (d) Grassland, during the growing season of 2002–2003 (a drought year);
(e) Percentage of land area under varying drought severity and non-drought conditions based on
VCI for selected drought years by land use-land cover types (T = Tree-covered areas, G = Grassland,
C = Cropland, W = Wetlands/Waterbodies, S = Settlement, O = Otherland).
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4. Characterising Drought in the Constituencies

Drought Severity in Constituencies in Comparison with Drought Declaration

Drought and household food security vulnerability assessments are conducted annu-
ally during the mid-growing season in Botswana [42]. Since assessment and interventions
are conducted at local levels, we further examined the severity of the drought in the 17 con-
stituencies (Figure 9). The drought frequency and heatmap reveal how the constituencies
were affected by droughts of differing magnitudes throughout the entire time series.

Figure 9. Heatmap of drought severity at constituency level during the growing seasons of 2000–2001 to 2017–2018. The
years with dashed lines across were declared drought years by the Botswana government [31].

Figure 9 depicts drought intensities for each year’s growing season and drought
frequency per constituency in the entire time series. This heatmap is based on the median
VCI value for each constituency (heatmaps of drought severity using the minimum and
mean VCI values are shown in Figures S1 and S2, respectively). The prolonged drought
during the multiple seasons of 2002–2004 is evident in the heatmap. Based on the count of
drought occurrences, irrespective of severity classes between 2000–2018, constituencies with
the most frequent droughts in descending order are Mahalapye west (eight), Mahalapye
east (seven), Boteti west (seven), Shoshong (six), Bobonong (five), Boteti east (five) and
Palapye (five). Other constituencies experienced between two and four drought occurrences
with lesser severity. Of the 16 declared drought years by the government (the years with
dashed lines in Figure 9), eight were evident in the time series, whereas the other years
were favourable for the CDB.
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5. Discussion

5.1. Vegetation Condition Change and Drought Severity

There was high spatial and temporal variability in vegetation productivity during the
growing seasons in the 18-year study period. This is typical of dryland ecosystems which
are often non-equilibrium and dynamic in response to both climatic and anthropogenic
perturbations [43]. Recovery of vegetation during the start of the time series (2000–2001)
after the prolonged droughts of the 1990s was evident. This finding is corroborated by [21],
which noted above-normal rainfall in the CDB in the year 2000. For example, analysing
rainfall amount between 1960–2015 for Palapye, the authors in [32] noted that vegetation
condition improved in 1999–2000 after 649 mm rainfall was recorded that year, which was
well above the long-term average of 351 mm.

Comparing vegetation productivity in the CDB during drought and non-drought
years with the mean for the entire time series revealed the impacts droughts have on
vegetation. For example, when compared to the mean, vegetation productivity was very
limited in 2002–2003 (the worst drought episode in the time series). Drought occurrence
was evident during the growing seasons of eight declared drought years in line with [21,30].
FAO special alert for Southern Africa in 2015 noted the retarded growth of early-planted
crops as soil moisture was very low at the beginning of the growing season in most parts
of the southern African region, including Botswana [44]. The drought and household food
security outlook report of 2017 [45] attributed the decrease in vegetation productivity in
most parts of Botswana to negative drought impacts on vegetation.

The lower than normal vegetation productivity during some of the drought-stricken
growing seasons can be attributed to droughts linked to El Niño southern oscillation
(ENSO). For example, the prolonged droughts in the growing seasons of 2002–2004 and
2015–2016 coincided with the El Niño years in the recent records [4]. Relating the association
of ENSO to drought severity during the growing season as utilised in this study, the authors
of [4] found the highest statistically significant correlations in January, February and March
in Botswana, whereas they found negative non-significant correlations at the start of the
season in October. At the regional level in southern Africa, the authors of [46] associated
droughts with anomalies of negative Standardised Precipitation Evaporation Index and
positive Sea Surface Temperature. At the global level, studies have also documented the
effects of ENSO on drought severity, such as [46].

Comparing the ongoing growing season (2020–2021) with the mean for the entire
time series, we found above-normal vegetation productivity after mid-October 2020 until
February 2021. Thus, this suggests the full recovery of vegetation productivity during
this season from the impacts of the prolonged droughts in the last couple of growing
seasons. However, this observation is somewhat fraught with uncertainty judging from
the below-normal vegetation productivity at the start of the season. Moreover, the growing
season has not ended yet. The growing season spanning the first dekad in October to the
third dekad in March was chosen to align the cropping and the raining season in Botswana,
which enabled the exclusion of the dry season from the drought analyses.

5.2. Vegetation Trend and Drought Severity by Land Use-Land Cover and Change

Many studies on droughts have not examined how drought effects differ between
LULC types. For those that have land use incorporated, little is known of the influence of
drought severity on LULC—in terms of the differences in annual sizes and configurations—
either in changing and/or persistent areas. Processes driving decreasing vegetation trends,
either climatic or anthropogenic, are better identified when LULC and change are incorpo-
rated in the examination of drought severity. For example, in CDB between 2000 and 2018,
vegetation productivity declined in most forests, woodlands, croplands and grasslands.
In land change areas, the trend of declining vegetation was equally high. In areas of
persistence, the greatest percentage of improved vegetation productivity was in wetlands,
settlements, and otherlands. Minimal improvement of vegetation trends in forested areas
can be attributed to the overall increase in tree-covered areas during the study period.
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Previous studies in dryland contexts such as Botswana and elsewhere associate the im-
provement in vegetation productivity partly to bush-encroachment which remote sensing
vegetation indices capture as vegetation greening but bush-encroachment is undesirable in
cattle-based systems [32,47,48].

Relating LULC change to land degradation, conversion of tree-covered areas to grass-
land, otherland and cropland, is degrading. This is because these land transitions drive
the removal of vegetation cover and contribute to land degradation processes. Similarly
considered as degrading land transitions are those involving the conversion of grasslands
into croplands, artificial surface areas and otherlands. For example, in Palapye, the au-
thors of [32,49] found increases in barelands and rock outcrops with limited vegetation
growth because of prolonged droughts. This bareland condition due to drought-induced
vegetation decline is further exacerbated by human activities, such as overgrazing. In
some instances, such as in Bobonong, researchers [30] found increases in bareland patches
in communal grazing areas. Despite declining vegetation conditions during a four-year
prolonged drought (2002–2005), livestock overgrazed and natural pastures degraded, as
pastoralists had no incentive to destock or sell their cattle because of the slump in prices due
to the prevalence of Foot-and-Mouth cattle disease during the drought. In other dryland
instances, such as in the Sahel, bareland areas with minimal vegetation growth alternate
with grasslands in response to rainfall variability and drought [50].

Drought impacts on grasslands, forests and wetlands imply negative impacts on
the cattle system and biodiversity, including wildlife in savannas with the associated
tourism and hospitality sector, whereas effects on croplands impact food production. For
example, the water crisis of 2015–2016 resulting from relatively low, erratic rainfalls reduced
water levels and water inflows into dams drastically across the country [51]. Regarding
drought impacts on agriculture, for example, maize production in Botswana declined
from 35,322 tons in 2011 to 13,911 tons in 2017 mainly due to drought constraints. This
necessitated an expenditure of about P389 Million (~36 Million American Dollars) on
maize import to meet cereal requirements not met through domestic crop production [31].
Other changes in LULC, such as the changes in the extent of settlements, as observed
between 2000 and 2018 in this study, are not drought-related. Settlement expansion is more
a reflection of the increasing land demand for human habitation and infrastructure due to
the population growth experienced in the CDB.

5.3. Drought Severity in the Constituencies

Relating drought severity to the years declared as drought-stricken by the government,
the results reveal that not all constituencies were equally affected by drought, as severity
differed from severe to mild drought. Moreover, drought severities in some declared
drought years were not as widespread in the CDB as in other parts of the country. For
example, the growing season of the year 2009–2010 had improved vegetation productivity
in response to above-normal rainfall recorded in previous months, which resulted in flood-
ing events in five sub-districts in the CDB (Serowe/Palapye, Tutume, Boteti, Mahalapye
and Bobirwa) [52]. In other drought-prone contexts in southern Africa, such as Zimbabwe,
researchers [53] found that a drought’s distribution and effects differed geographically and
from season to season.

Drought severity was further gauged by the frequency at the constituency level.
Over the study period, the constituencies experienced between eight to two drought
events. Examples are Mahalapye west and east, with eight and seven drought occurrences,
respectively, ranging from moderate to mild drought. Boteti west experienced seven
drought events with severity ranging from severe to mild. Confirming these drought
frequencies in the CDB, the authors of [30] found an average drought frequency of two to
four (depending on the index) in the Bobonong region between 2000 and 2015. This is in
line with our finding of five drought occurrences in Bobonong as our time series extending
up to 2018 captured more drought events.
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Drought effects on land-based resources and livelihoods will vary depending on the
drought severity, the land use as well as the land management practices. For example,
water use strategy adopted as part of land management practices was found to have
impacted the responses of tree plantations to drought in China [54]. Droughts cannot be
avoided, since these are an integral part of the climate cycle; however, the impacts on
social-ecological systems are better minimised with monitoring as input for the use of both
proactive and reactive measures [4,21].

6. Conclusions

This study proposed a spatial and temporal analysis of drought evolution in the Cen-
tral District in eastern Botswana from 2000 to 2018. The results highlight the usefulness of
incorporating land use-land cover and change in assessing the spatio-temporal variability
of drought severity in drylands. Remote Sensing-based vegetation time series metrics were
used, as complementary to climatological indices. Indicators characterising changes in
vegetation conditions and drought severity during the growing seasons (October to March)
from 2000–2001 to 2017–2018 were used. These indicators are NDVI difference—NDVIdiff,
NDVI anomaly, NDVI trends, Vegetation Condition Index—VCI, Drought intensity and
frequency. The use of these different NDVI-based indicators, which might seem redundant,
are useful as complementary measures since they differ computation-wise. The NDVI
difference as utilised in this study captured the in-season variability in vegetation pro-
ductivity, whereas the VCI compared each growing season with the long-term minimum
and maximum conditions. For example, limited vegetation productivity found during the
growing seasons of 2002–2004 and 2015–2016, which was based on both NDVI difference
and NDVI anomalies, agreed with the heightened levels of drought severity over the same
periods as derived from the VCI.

Results further showed high temporal and spatial variability in vegetation produc-
tivity between drought and non-drought conditions in our case studies. The associated
negative impact of droughts on vegetation resulting in limited vegetation productivity was
further confirmed by results from this study. Drought effects on vegetation productivity
during the study period were characterised by decreasing vegetation trends in most parts
of the district. Although varying intensities of drought severity (severe, moderate and
mild) occurred in the constituencies, the 2002–2003 and 2003–2004 growing seasons were
found to be the worst drought periods in the entire series, as most parts of the district
were affected. Assessing drought severity and intensities by LULC in selected drought
years revealed varying drought effects. We found that drought effects differed between
LULC types as well as whether these were areas of land change or persistence. Further
examination of drought impacts in areas of no change is required, as our understanding
of drought effects in areas with no change is still limited. More empirical studies in this
regard will provide useful insights. Using the example of the 2002–2003 drought-stricken
growing season, the highest percentage of land impacted by extreme and severe droughts
were found in tree-covered areas, croplands and grasslands, whereas improved vegetation
trends were found mostly in wetlands and some instances in otherland areas including
barelands. Moreover, the results suggest that even in declared drought years, droughts
severity varied, and the effects differed between constituencies. A further insight provided
is that the magnitude of drought severity in some declared drought years was not as
widespread in the CDB. For example, no other severe drought levels were recorded in the
CDB after the extended drought which affected the growing seasons of 2002–2004.

Differences in spatial resolution of the datasets utilised and the coarse spatial resolu-
tion of the 1 km NDVI datasets compared to 300 m annual LULC are limitations identified
in this study. With the increasing availability of images of higher spatial resolution, such as
from SENTINEL-2, results from RS-based analysis of drought can be improved. However,
methodological challenges ensue with the need to incorporate the newer images into the
existing NDVI archives. For example, consideration ought to be given on parameterising
across sensors and balancing the trade-offs between taking advantage of the superior
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spatial resolution of the newer satellite missions (e.g., Sentinel-1, 2 and 3) and the temporal
resolution of images from the older missions (e.g., SPOT VGT and PROBA-V). As the 1 km,
NDVI time series datasets extend way back to the 1990s, their use is indispensable for
drought analysis at the current time. Moreover, as drought years were easily detected in
the time series analyses, this is proof of the usefulness of the 1 km NDVI time series. For
example, the lower than normal vegetation productivity during the prolonged drought
periods that negatively impacted the 2002–2004 and 2015–2016 growing seasons coincided
with strong El Niño years. With the above-normal vegetation productivity in the ongoing
season (2020–2021), results suggest the reversal of the negative vegetation trends observed
in the preceding growing seasons. How much these negative trends have been reversed
remain uncertain, as the season is still ongoing. For clarity, future studies should examine
the usefulness of RS-based indices for understanding the ongoing season’s phenology in
dryland contexts such as the CDB.

Remote Sensing-based time series enabled us to extend the analysis up to the ongoing
season, demonstrating its usefulness for better characterisation of drought events. Remote
Sensing-based results such as those obtained in this study, when provided at multiple
administrative scales in a timely and cost-effective manner, have the potential to aid
decision-makers to better plan and respond to drought situations. Scientific evidence is
needed as input into the decision-making process to aid national resource mobilisation
for drought management. Botswana requires both proactive and reactive approaches for
drought management, for which remote sensing-based assessment and monitoring foster
the implementation of drought early warning systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-4
292/13/5/836/s1, Table S1: Geographic and socioeconomic characteristics of the constituencies
in the Central District, Table S2: Land cover classification scheme, Table S3: Land use-land cover
transition matrix in km2 (2000–2018), Figure S1: VCI minimum value heatmap of drought severity
at constituency level during the growing seasons of 2000–2001 to 2017–2018. The years in bold are
declared drought years by the Botswana government (Source: [41]), Figure S2: VCI mean value
heatmap of drought severity at constituency level during the growing seasons of 2000–2001 to
2017–2018. The years in bold are declared drought years by the Botswana government (Source: [41]).
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Abstract: The availability of aerial and satellite imageries has greatly reduced the costs and time
associated with gully mapping, especially in remote locations. Regardless, accurate identification
of gullies from satellite images remains an open issue despite the amount of literature addressing
this problem. The main objective of this work was to investigate the performance of support vector
machines (SVM) and random forest (RF) algorithms in extracting gullies based on two resampling
methods: bootstrapping and k-fold cross-validation (CV). In order to achieve this objective, we
used PlanetScope data, acquired during the wet and dry seasons. Using the Normalized Difference
Vegetation Index (NDVI) and multispectral bands, we also explored the potential of the PlanetScope
image in discriminating gullies from the surrounding land cover. Results revealed that gullies had
significantly different (p < 0.001) spectral profiles from any other land cover class regarding all bands
of the PlanetScope image, both in the wet and dry seasons. However, NDVI was not efficient in gully
discrimination. Based on the overall accuracies, RF’s performance was better with CV, particularly
in the dry season, where its performance was up to 4% better than the SVM’s. Nevertheless, class
level metrics (omission error: 11.8%; commission error: 19%) showed that SVM combined with
CV was more successful in gully extraction in the wet season. On the contrary, RF combined with
bootstrapping had relatively low omission (16.4%) and commission errors (10.4%), making it the
most efficient algorithm in the dry season. The estimated gully area was 88 ± 14.4 ha in the dry
season and 57.2 ± 18.8 ha in the wet season. Based on the standard error (8.2 ha), the wet season was
more appropriate in gully identification than the dry season, which had a slightly higher standard
error (8.6 ha). For the first time, this study sheds light on the influence of these resampling techniques
on the accuracy of satellite-based gully mapping. More importantly, this study provides the basis
for further investigations into the accuracy of such resampling techniques, especially when using
different satellite images other than the PlanetScope data.

Keywords: satellite imagery; gully mapping; machine learning; random forest; support vector
machines; South Africa; semi-arid environment

1. Introduction

Defined as the detachment, transportation, and deposition of soil particles by the
erosive forces of raindrop and runoff [1,2], soil erosion by water represents one of the most
typical forms of land degradation affecting many countries around the world [3]. While
soil erosion has many negative effects, the most concerning one include the decline in
soil fertility, resulting in limited food production [4,5]. This, in turn, contributes to food
insecurity in several developing countries, particularly in those ones where a considerable
segment of their population strongly relies on agriculture for their survival [6]. South

Remote Sens. 2021, 13, 2980. https://doi.org/10.3390/rs1315298 https://www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 2980

Africa, with approximately six million people deriving a livelihood from agriculture [7],
is extremely exposed to soil erosion. Formal agriculture provides employment to about
930,000 farm workers, including seasonal and contract workers [7]. Given the geomor-
phological conditions coupled with the strongly seasonal nature of rainfall across South
Africa, it is not surprising that the country is predisposed to soil erosion, a serious threat
to sustainable agriculture and natural environments [8]. Soil erosion in South Africa, es-
pecially in rural communities, has been further aggravated by human activities such as
inappropriate agricultural practices and overstocking [9–12].

Although various types of water-borne erosion exist in the country, gully formation
has been recognized as the major form of erosion in South Africa, accounting for consider-
able volumes of soil loss [13,14]. Accordingly, the Department of Agriculture, Forestry, and
Fisheries (DAFF) in South Africa has identified the need to determine the spatial extent
of gullies and their severity at a national scale [15]. Gullies occur when the soil and its
parent material are scored and destroyed by surface runoff, resulting in the formation of
v-shaped incised channels [16]. Gullies can either be classified as ephemeral or classical
(also called permanent) based mainly on their depth. Unlike ephemeral gullies, classical
gullies are deeper than 0.5 m and cannot be easily filled in by normal tillage [17], especially
in highly dissected terrains [18]. Gullies also result from piping and tunneling due to
the influence of soil chemistry on hydrological pathways [19]. The prevalence of erodi-
ble duplex and dispersive soils in certain parts of South Africa, especially the Eastern
Cape where the subsurface (piping) erosion mostly occur, considerably facilities the for-
mation and development of gullies [9,14]. Land use type and changes also trigger gully
initiation [19]. In the context of South Africa, gullies are more prominent on gently sloping
lands suitable for cultivation [15]. The spatial extent and severity of gully erosion vary
from one province to another because of the differences in land use, soil types, vegetation,
rainfall, and topography existing in different provinces. The Eastern Cape is one of the
most gully-affected provinces in South Africa, with about 161,500 ha of land covered by
gullies [15]. For this reason, most gully erosion studies in the country have been conducted
in this province [9,14,20–22].

Accurate mapping of gullies is essential for monitoring gully erosion and understand-
ing the associated environmental and socio-economic impacts [23], thereby supporting the
implementation of practical erosion control measures [24,25]. Manual field-based assess-
ments using tapes, rulers, and topographic profilers have been used for years to obtain
gully information [26], but over the last few decades, rapid developments had been wit-
nessed in digital aerial photography, and more recently, satellite images with different
imaging capabilities [23]. Following the availability of such remotely sensed data, gully
information has either been obtained through visual interpretation or automatic classifi-
cation of remotely sensed data. Remote sensing related mapping, either based on visual
interpretation or automatic method, is presently the only practical approach for mapping
gully features over large areas, in arid or semi-arid regions, given the complexity of gully
appearance (i.e., variability in size, shape, and occurrence) [27]. Although nowadays visual
interpretation is regarded as the most traditional and time consuming method, some re-
searchers still prefer it over the automatic method [15,28] because automatically-classified
results are still subject to the characteristics of the selected training samples, algorithms,
and satellite image, among other factors [29]. However, the low efficiency, uncertainty
and high subjectivity associated with visual interpretation have made most researchers to
investigate automatic methods [29].

The automatic extraction of gully information from satellite earth observation data
takes two forms: pixel-based and object-based analysis [23,30]. The pixel-based analysis is
relatively simple, and is the most frequently used and direct approach for image classifica-
tion, using only the spectral information [31]. Such spectral information can be extracted
using various image classification algorithms such as random forest (RF) and support vec-
tor machines (SVM), which thus far, are arguably the most commonly used algorithms due
to their classification efficiency in relation to other algorithms, including k-nearest neighbor
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(kNN), maximum likelihood (ML), artificial Neural Network (ANN), convolutional neural
networks (CNN), discriminant analysis (DA), and minimum distance (MD). One study
mapped the areas susceptible to gully erosion using RF and ANN [32], and found that
RF performed better than ANN. Noi and Kappas [33] compared SVM, RF, and kNN in
land cover classification, and found that SVM, followed by RF, were better than kNN.
Phinzi et al. [34] reported that both SVM and RF outperformed linear discriminant analyst
(LDA) in a study on gully detection. Although deep learning methods such as CNNs
have shown better performance over SVM and RF [35], like most deep learning methods,
CNNs also strongly rely on the availability of abundant high-quality training/ground truth
data [36]. While CNNs perform well in detecting and differentiating active gullies from
other forms of surface erosion (e.g., sheet and rills), they have errors in detecting complex
gully systems [37]. For these reasons, SVM and RF still attract most researchers’ attention,
because of their low computational complexity and higher interpretability capabilities
compared to deep learning algorithms [36].

The wide usage of these machine learning algorithms in remote sensing proved that
learning features from dataset is more efficient and practical than merely defining the
features [38]. Although the application of machine learning in soil erosion research is
not new, previous investigations commonly use coarser spatial imagery such as Landsat,
ASTER and Sentinel/Sentinel-SAR (Synthetic Aperture Radar), which from an economic
point of view makes sense, given that such images are obtainable at no cost. Besides, these
sensors are good for wide area mapping of soil erosion. However, what has become appar-
ent from previous studies, is that such sensors cannot identify individual gullies (especially
small discontinuous gullies) with sufficient detail, this limitation is attributable to their low
spatial resolution [15]. Whereas other optical sensors such as IKONOS, WorldView, and
RapidEye with relatively higher spatial resolution exist for gully mapping, these sensors are
not readily or freely available, as such, their high acquisition costs limit their application for
gully mapping. Similarly, the use of LiDAR-derived elevation data from airborne surveys
including Unmanned Aerial Vehicles (UAVs) is limited by a lack of financial resources.
Depending on the availability of data and objective of a given study, multi-source and
multi-sensor data fusion are common in remote sensing since this provides synthetic data
that have the combined advantages of different sensors [39]. Multi-sensor or pixel level
data fusion are mainly applied to optical images, for example, the fusion of high resolution
panchromatic and low resolution multi-spectral images [40], was successfully applied in
gully feature extraction [34]. Multi-source data fusion concerns feature level and decision
level fusion of data from various sources such as SAR, optical images, LiDAR, geographic
information system (GIS) data, and in-situ data [40]. In our case, we did not perform any
data fusion due to lack of data (including the panchromatic band) with suitable spatial
resolution necessary for detecting individual gullies.

Despite the unavailability of a higher spatial resolution panchromatic band, the 3 m
PlanetScope image, which is available free of charge for research purposes, offers a great
potential for detecting individual gullies. However, the capability of PlanetScope image in
classifying gullies in different seasons (dry and wet) in an arid or semi-arid environment
had been investigated only in areas of large forms (1–5 km length, 100–600 m width) [41].
While machine learning algorithms such as the SVM and RF have been frequently applied,
little efforts have been made to investigate the influence of resampling techniques, par-
ticularly, bootstrapping and k-fold cross-validation (CV), on the accuracy relations. We
identified gullies from PlanetScope images based on these resampling methods. Our aim
was (i) to compare the satellite’s bands reflectance values from the aspect of gullies, (ii)
to reveal which classifier (RF or SVM) and resampling technique (CV or bootstrapping)
perform better regarding the overall and class level accuracy metrics, and (iii) which season
is more appropriate to identify the gullies.
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2. Materials and Methods

2.1. Study Area

The study area was located in the rural part of eastern South Africa, characterized by
extensive erosion where permanent gully erosion was the most prominent erosion type [42].
Geographically, the study area lies between 30◦42′30′′–30◦43′55′′S 28◦46′22′′–28◦48′47′′E,
covering a surface of about 10 km2 (Figure 1). Subsistence agriculture (e.g., crop farming
and livestock rearing) and settlement were the main land use types. Grassland was the
most common vegetation type throughout the area, with some forest patches found in the
north-western section of the study area. The topography ranges from 1213 m–1658 m, with
the north-western and south-western sections being steeper than other parts of the area.
Steep mountain slopes with gently undulating footslopes characterize the geomorphology
of the area [14]. The climate is semi-arid with temperatures ranging from 7–30 ◦C. Winters
are cold and dry, with less vegetation due to limited rainfall. Rainfall mostly occurs during
the summer season reaching approximately 670 mm on average per year. Although the
study area has limited annual rainfall, it experiences high-intensity rainfall events. Gully
development in the area was further fostered by the predominance of highly erodible soils
such as duplex and dispersive soils [9,43], predominantly underlain by mudstone and
sandstone of the Beaufort Group [44]. Although vegetation exists in the wet season, its
effectiveness in protecting soil against erosion and inappropriate land-use practices such as
overgrazing usually reduces vegetation cover, making the area susceptible to soil erosion.
The study area features both continuous and discontinuous gully networks with distinct
occurrences and appearances, i.e., narrow, wide, vegetated, shallow, deep with shadows,
etc. [14,42]. Additionally, some gullies resemble the unpaved road network in appearance.
Such complexity of gullies within the area makes the area particularly suitable for study.

 

Figure 1. Location of the study area (PlanetScope false-color images).

2.2. Data Acquisition and Pre-Processing

Two cloud-free PlanetScope orthorectified products (Level 3B) for the wet and dry
seasons acquired on 23 January 2017 and 25 June 2017, respectively, were used in this
study. The images were downloaded from the Planet explorer website (https://www.
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planet.com/explorer (accessed on 30 July 2020)). The orthorectified scenes had already
been radiometrically and geometrically corrected and projected to the Universal Traverse
Mercator (UTM) projection, referenced to the world geodetic system (WGS84) datum.
With a spatial resolution of 3 m and temporal resolution of 1 day, the PlanetScope image
is comprised of 4 spectral bands: red, green, blue (RGB), and near-infrared (NIR). The
flowchart summarizing the workflow followed in this study is presented in Figure 2.

2.3. Gully Classification

Classification of gullies from the PlanetScope image was conducted in Python soft-
ware using random forest (RF) and support vector machines (SVM). These were the
most widely applied algorithms and their detailed description has been provided in
the literature [10,34,36,45–47]. The RF, developed by Breiman [48], is a robust machine
learning algorithm that is increasingly becoming more popular in remote sensing of soil
erosion. The algorithm has several parameters that need to be tuned, amongst which the
ntree (number of trees) and mtry (number of features in each split) are the most important
that should be considered when training the algorithm [49]. The models were built using
only 4 variables (e.g., four multispectral bands of the PlanetScope image), thus we tested
all possible values of the mtry parameter. For the ntree parameter, we tested different
values ranging from 50 to 1000. After ntree = 100, the accuracies stagnated while the com-
putational time kept increasing [50]; thus, the final model was trained with 100 individual
decision trees, selecting 2 random variables at each split.

The support vector machine (SVM) model was capable of overcoming both classifica-
tion and regression problems [51,52]. To achieve this, SVM searched for the flat boundary
(hyperplane) in some feature space that best separated the classes into homogeneous par-
titions where each partition contained only data points of a given class [34,49]. In reality,
however, it was difficult to find a hyperplane that perfectly separated the classes using
just the original features [49]. SVM overcomes this problem in 2 ways: first, loosen what
is meant by “perfectly separates,” and second, use the so-called kernel trick to expand
the feature space to the extent that perfect separation of classes is more likely [49]. The
radial basis function (RBF) was chosen for the kernel type. For RBF, a C penalty parameter
against misclassifications and a kernel coefficient (γ) as a decision boundary have to be
specified, which greatly affects the performance of the model [53]. Hyperparameter tuning
was performed with the grid search method.

2.4. Reference Data Collection and Accuracy Assessment

The reference data were collected through field surveys and visual interpretation
of high-resolution Google Earth images. We delineated the study area into 7 land cover
classes, of which all were identifiable both in the field and in images (Google Earth and
PanetScope): forest, built-up, agriculture, gully, bare soil, and mixed bare soil (i.e., exposed
rocks, unpaved roads/dirty roads, and exposed soil mostly in ploughed fields). A total of
966 points were collected using stratified random sampling in ArcMap. Each land cover
class was assigned a number of points proportional to its size.
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Figure 2. Workflow followed in this study (CV: cross-validation; boot: bootstrapping; SVM: support
vector machines; RF: random forest).

We evaluated the overall performance of the RF and SVM algorithms using CV
and bootstrapping. Kappa coefficients and overall accuracy (OA) were among the most
commonly used metrics to evaluate classification accuracy [54]. However, the use of
kappa in remote sensing classification accuracy is becoming less common [33,55]. Pontius
and Millones [56], Flight and Julious [57], and more recently, Delgado and Tibau [58],
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recommend against using kappa because of its inherent limitations. A major limitation of
kappa was that it is highly sensitive to the distribution of the marginal totals, potentially
producing unreliable results [57]. Thus, we used OA to assess the overall performance
of the models. Contrary to the conventional error matrix, which used all of the available
data to test the model, CV splits the reference dataset into training and testing data. It
used the majority of the data for training and the remainder, often called the holdout
sample, was used to test the model, ensuring that the model was robust [49]. In total,
we used 17,757 pixels for the wet season and 30,597 pixels for the dry season, generated
from PlanetScope. We repeated the 5-fold CV 20 times, meaning that final accuracies were
computed from 100 models. Before each repetition, the dataset was randomly shuffled
and new folds were generated to increase the robustness of the models. Unlike CV, in
bootstrapping, the original data were randomly sampled with replacement, meaning
that, after a data point (bootstrap sample) was selected for inclusion in the subset, it was
still available for further selection [49]. Two parameters must be chosen before running
bootstrapping: sample size and the number of repetitions. In our case, the sample size was
the same as the original dataset [59], and we applied 100 repetitions. The models were
validated on the samples that were not included in the bootstrap sample.

We used the traditional error matrix to assess the model performance at class level as
bootstrapping and CV do not provide class accuracies. An error matrix compared reference
data to the classified map using various accuracy indices [54], but in this study, we only
focused on class level accuracies/errors: producer’s accuracy (PA) and user’s accuracy
(UA); PA was also known as sensitivity or recall while UA was sometimes referred to
as precision. The difference of the possible 100% accuracy and the PA represented the
omission error, which occurred when a pixel was excluded from the class to which it
belonged. A difference of 100% and UA represented a commission error, which occurred
when a pixel was incorrectly included in the class where it did not belong. We computed
unbiased area-based PAs and UAs, following “good practice” recommendations for accu-
racy assessment [60]. The F1-score was also reported as the harmonic mean of UA and
PA [61]. Additionally, we computed unbiased areal coverages (ha) of gullies along with
their standard errors (ha) and associated ± 95% confidence intervals (ha). We generated
6 algorithms based on the combination of the classifiers: svm and rf, seasons: dry (d) and
wet (w), and resampling methods: bootstrapping (b) and cross validation (cv), i.e., rf-d-b,
rf-d-cv, rf-w-cv, rf-w-b, svm-d-cv, svm-d-b, svm-w-cv, and svm-w-b.

2.5. Statistical Analysis

NDVI values of the images, and specifically focusing on the gullies, were compared
by the 2 seasons with the robust Mann–Whitney test using the Monte Carlo p (pMC) with
9999 permutations. We applied the General Linear Model (GLM) to determine the effects
of spectral bands (4 bands; RGB + NIR), seasons (wet and dry), and the LULC classes
(7 classes). Furthermore, we also determined the statistical interactions to reveal if factorial
variables had a common effect (e.g., effects of spectral bands differed by LULC classes
or were different in the dry or wet seasons). Besides, we also determined the effect size
(ω2) as a standardized measure of the variables’ contribution in the model (higher values
indicate larger contribution, ω2 > 0.14 was considered as a large effect [62].

The Dunnett test [63] was used to determine if gullies had significant differences
from other land cover types (H0: mean reflectance values of gullies was identical with the
other land cover types). The Dunnett test was developed to perform multiple comparisons
against 1 control group; in this case, gullies’ land cover type was chosen as the control.
As in the Dunnett test, the number of comparisons was limited (related to a full factorial
approach; i.e., 6 instead of 21). Furthermore, the test compared the factor groups’ means
with the control group’s mean (unlike other tests, which compare group means to the
grand mean); thus, it can reveal small significant differences [64], and our intent was to
find all overlaps in the reflectance with the gullies.
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3. Results

3.1. Spectral Bands, Land Cover Classes and Seasons as Determinants of Reflectance

The difference of NDVI values was significant between the two seasons (U = 35303,
z = 19.102, pMC < 0.0001). The NDVI for the wet season had relatively higher values rang-
ing from −0.36 to 0.81, while the values for the dry season lay in the range −0.41 to 0.59.
The dry season had bimodal distribution while the wet season had multimodal distribu-
tion (Figure 3). Such bimodal distribution in the dry season represents non-vegetation
(first mode) and vegetation pixels (second mode). Like in the dry season, the first mode
in the wet season was indicative of non-vegetation pixels denoted by lower NDVI values
compared to the last two modes, represented by relatively higher NDVI values. These last
two modes represent vegetated areas: vegetation and forest pixels, respectively.

Figure 3. Distribution of NDVI reflectance values in the dry and wet season.

We also compared the NDVIs’ of the gullies in the dry and wet seasons. Accordingly,
the difference was significant (U = 162, z = 9.5534, p < 0.0001). The mean difference was
0.08 in the wet season, green vegetation was also present in gullies, thus, NDVI was larger.
According to the results of the GLM we found that the spectral bands, LULC classes, and
the seasons, as factorial variables and the interactions, were significant (p < 0.001) and
explained 92.3% of the variance. Among the factors, the difference of dry and wet seasons
had the largest effect on the reflectance (0.868). The bands and LULC classes had almost the
same effect with a bit lower value (~0.6), however, also indicating a large effect. Regarding
the interactions, we confirmed that reflectance by the band was different by LULC classes
and seasons. The contribution of these interactions was large (Table 1). Furthermore, the
effect size of the interaction between the seasons and the LULC classes was the lowest,
being only third related to the interactions with the bands (0.141), but it still indicated a
large effect. The interaction of all factors (spectral bands, seasons, LULC classes) also had a
large effect but only with a smaller value (0.185).
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Table 1. Results of General Linear Modelling (GLM) performed with reflectance as an independent
variable (SS: Sum of Squares, df: degree of freedom, F: F-statistic, p: significance, ω2p: effect size;
p < 0.05: significance level).

Variables SS df F p ω2p

Model 6.99 × 109 55 860.4 <0.001 0.923
Bands 1.00 × 109 3 2256.1 <0.001 0.633
Season 3.80 × 109 1 25,715.0 <0.001 0.868
Class 9.79 × 108 6 1104.2 <0.001 0.629

Bands × Season 4.48 × 108 3 1010.0 <0.001 0.436
Bands × Class 5.30 × 108 18 199.3 <0.001 0.477
Season × Class 9.62 × 107 6 108.5 <0.001 0.141

Bands × Season × Class 1.34 × 108 18 50.3 <0.001 0.185
Residuals 5.70 × 108 3860

Total 2.96 × 1010 3916

The post hoc test performed with the Dunnett test revealed significant differences
(p < 0.001) between the gullies and other LULC classes in the dry season (Figure 4). The
difference was not significant between the gullies and the agricultural areas (blue band),
the vegetation and agricultural areas (green band and red band) in the wet season. Table 2
ranks the original band’s importance in terms of discriminating gullies. We also studied
the differences of NDVI and found that this spectral index was not as successful in dis-
criminating the gullies as the original bands. It did not differ from the mixed bare soil and
the vegetation in the dry season. Although NDVI performed better in the wet season, the
difference was not significant with the built-up class.

 
Figure 4. Differences of gullies and other land cover types’ reflectance by bands and seasons (G: gully; F: forest; Bu: built-up;
BS: bare soil; MBS: mixed bare soil; V: vegetation; A: agriculture; mean ± 95% confidence intervals; the difference was not
significant if confidence range intersects the dashed line).

Table 2. PlanetScope bands ranking in discriminating gullies against the surrounding land cover.

Dry Season Wet Season

Band Importance Ranking (%) Band Importance Ranking (%)

NIR 31 NIR 35
Red 26 Red 32

Green 25 Green 21
Blue 17 Blue 12
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3.2. Accuracy Assessment of Gully Mapping

Using machine learning algorithms (RF and SVM), the cross-validation (CV) resam-
pling method yielded better OA compared to bootstrapping for both the wet and dry
seasons (Figure 5). Two apparent trends can be observed from these results based on OA:
(i) RF consistently performed better than SVM irrespective of the season or resampling
methods: bootstrapping and cross-validation; (ii) dry season had better OAs than the wet
season, but this was not reflected in class level accuracy indices for gully classification.
Based on the unbiased UA, all algorithms showed good performance in gully classification,
recording UA above 70% (Figure 6). In particular, the best performance belonged to the
svm-d-b (93.4%), whereas the worst UA belonged to the rf-w-b model (77%). For most
models, PA was generally low relative to UA. Only half of the models recorded a PA greater
than 70%, with the best performance belonging to svm-w-cv (89.2%), while the other half
fell below 70%, with the svm-d-b model recording the lowest PA (32.5%).

An unbiased area estimate of gullies (ha) is presented in Table 3. With the highest PA
(89.2%) and lowest standard error (3.7 ha), svm-w-cv provided the most accurate gully
areal coverage (57.2ha). The highest standard error (11.5 ha) belonged to rf-w-b model,
which had a gully area of 55.2 ± 25ha. However, in the F1-score ranking, rf-d-b and rf-d-cv
algorithms achieved the best results (>0.90), but RF algorithms belonging to the wet season
had relatively low score (0.82). On the other hand, all SVM algorithms (svm-d-cv, svm-d-b,
svm-w-cv, and svm-w-b) recorded lower F1-scores, ranging 0.85–0.88. The two resampling
techniques recorded the same omission error (85.1%), but slightly different commission
errors, e.g., bootstrapping had 40.8% error of commission compared to 37.8% error for
k-fold CV (Table 4).

Figure 5. Accuracy assessment based on overall accuracy (OA) by the classification algorithm
(RF: random forest, SVM: support vector machine), resampling method (boot: bootstrapping, CV:
cross-validation), and season (wet and dry).
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Figure 6. Unbiased user’s accuracy and producer’s accuracy (rf: random forest, svm: support vector
machine, w: wet season, d: dry season, cv: cross-validation, b: bootstrapping, blue dashed line is
70% accuracy benchmark).

Table 3. Estimated gully area (ha) with associated standard error (ha) at ± 95% CI (ha) for each
algorithm (rf: random forest, svm: support vector machine, d: dry, w: wet, b: bootstrapping, cv:
cross-validation, CI: confidence interval).

Algorithm Area (ha) Standard Error (ha) ± 95% CI (ha) PA (%) UA (%) F1-Score

rf-d-b 88 6.1 14.4 83.6 90.6 0.92
rf-d-cv 91.3 7.6 17.1 76.3 89.3 0.91
rf-w-cv 54.6 11.3 24.3 47.9 77.9 0.82
rf-w-b 55.2 11.5 25.0 46.8 77 0.82

svm-d-cv 32.6 10.1 21.1 35.4 92.3 0.86
svm-d-b 31.1 10.5 21.8 32.5 93.4 0.85

svm-w-cv 57.2 3.7 18.8 89.2 81 0.88
svm-w-b 57.4 6.4 19.3 74.1 79.4 0.86

The two resampling techniques recorded the same omission error (85.1%), but slightly
different commission errors, e.g., bootstrapping had 40.8% error of commission compared
to 37.8% error for k-fold CV.

Table 4. Summary of average error for resampling techniques, classifier, and season (RF: random
forest, svm: support vector machine, CV: cross-validation).

Resampling Technique Classifier Season

Error Bootstrap k-Fold CV RF SVM Dry Wet

Commission (%) 40.8 37.8 36.4 42.2 43.1 35.5
Omission (%) 14.9 14.9 16.3 13.5 8.6 21.2

Standard error (ha) 8.6 8.2 9.1 7.7 8.6 8.2

3.3. Gully Distribution

Results indicated that gullies can be spectrally discriminated from other land cover
classes, both in the dry and wet season; although there were observable differences in the
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distribution of the extracted gullies in these two seasons (Figure 7). In the wet season,
there seem to be more gullies than there are in the dry season. This difference in gully
areal coverage between the two seasons is more pronounced in Figure 7a, corresponding
to rf-d-b and Figure 7b, representing the svm-w-cv model.

Differences in gully reflectance among the two seasons also had a bearing on gully
classification. The underlying statistical test revealed that the difference was significant
(U = 162, z = 9.5534, p < 0.0001), and the mean difference was 0.08. The wet season had
more vegetation covering bare surfaces, and because of this, spectral differences were more
pronounced during the wet season (Figure 8). On the contrary, in the dry season, most
gullies spectrally resembled the bare surfaces they dissect. Consequently, the algorithms
were less efficient in extracting gullies occurring on bare soil surfaces in the dry season.
This probably explains the high commission error (43.1%) and standard error (8.6 ha) in
the dry season.

 

Figure 7. Spatial distribution of gullies: (a) rf-d-b and (b) svm-w-cv correspond to the best models
for gully mapping in the dry and wet seasons, respectively (rf: random forest, svm: support vector
machine, w: wet season, d: dry season, cv: cross-validation, b: bootstrapping).
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Figure 8. An example of a vegetated gully (dashed yellow ellipse) in the dry and wet seasons.

4. Discussion

Remotely sensed data are inherently subject to errors, hence, error assessment is
essential for data assimilation, one of the primary uses of satellite data products [65]. In
this section, we discuss errors associated with the derived gully maps, offering a possible
explanation for such error sources. Different resampling methods undoubtedly play an
important role in classification accuracy, hence, the final model selection. Specifically,
we explored the influence of bootstrapping and k-fold cross-validation techniques in
gully classification, considering different seasons (dry and wet) and classifiers (SVM and
RF). Results revealed that k-fold CV performs slightly better than bootstrapping in terms
of commission error. Kohavi et al. [66], in his study of CV and bootstrap for accuracy
estimation and model selection, also reported k-fold CV as the best method to use over
bootstrapping. Kim [67] estimated classification error rate, comparing repeated k-fold CV,
repeated hold-out and bootstrap, and found that the repeated k-fold CV was better than
bootstrap. The author further reported that bootstrapping had bias problems for both large
and small samples, despite its small variance, hence, the expectation for better performance
for small samples.

Although the results of our study are generally in agreement with previous studies, it
is worth noting that the performance of the bootstrapping and k-fold CV varied consid-
erably at class level with algorithm and season. There are instances where bootstrapping
performed better than k-fold CV in gully classification. For instance, the best model, namely,
svm-d-b, based on UA, belonged to bootstrapping. Such results are important because most
studies using either bootstrapping or k-fold CV rarely focus on class level accuracy when
evaluating the performance of these resampling techniques. More importantly, even at the
class level, different accuracy metrics ought to be considered. This increases the robustness
and reliability of the accuracy results, making it possible for researchers to draw correct
deductions on the behavior of the algorithms under investigation [61]. However, various
class accuracy metrics (UA, PA, standard error, and F1-score) used in the current study,
all derived from the confusion matrix, disagreed with one another in some instances. For
example, some algorithms that obtained high PA values had low corresponding UA values
or vice-versa. This is also true with F1-score vs. either PA or UA. Based on the F1-score, the
best algorithms belonged to RF (e.g., rf-d-b and rf-d-cv). Given the disagreement amongst
various accuracy metrics, we relied on the standard error as a reliable measure to judge the
accuracy of the algorithms.

In the wet season, the algorithms proved to be more efficient in gully classification
on bare soil surfaces due to the existence of vegetation cover in bare soil surfaces, making
it possible to discriminate gullies. Such findings are comparable or similar to those of
previous studies. For example, one study automatically identified gullies based on ASTER
images acquired during the dry and wet seasons [68]. The study concluded that the wet
season-acquired image performed better than the dry season one. It is worth noting that
the wet season is not always appropriate for gully identification in all situations. The
success of gully identification depends on the complexity of gully appearance as influenced
by their morphological characteristics (shape, size, length, depth, etc.) [42], sensor type
and/or resolution, and classification algorithms [69], amongst other factors. For example,
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Sentinel and Landsat images performed relatively well in the dry season than in the wet
season [70]. Although gully classification was successful in the wet season relative to the
dry season, there were few locations where gullies were filled up with vegetation. Such
gullies could not be automatically classified, in which case we relied on visual interpretation
of high-resolution aerial photographs and/or dry season PlanetScope images.

Gully appearance also played an important role in gully classification. Consistent with
previous studies [42,71], the classification algorithms were efficient in detecting continuous
gullies mostly in linear shape. Conversely, the algorithms proved to be less efficient in
areas with high gully density, often surrounded by transitional zones to non-gully [71], but
these areas form a relatively small portion of the study area and had negligible influence on
the accuracy. The SVM combined with CV (e.g., svm-w-cv) reflected the best performance
in the wet season with the least standard error (3.7 ha) and highest PA (89.2%), followed
by a RF model (rf-d-b), recording slightly different standard error (6.1 ha) and PA (83.6%).
Nevertheless, 50% of the models obtained a PA that is below 70%. Despite this discrepancy,
the estimated gully areas (ha), based on area-weighted metrics, are unbiased and can be
relied upon.

From a practical point of view, the identification of gullies from satellite images with
reasonable accuracies is of paramount importance to gully rehabilitation. Like all remote
sensing-derived products, gully maps are subject to errors, and hence, accuracy assessment
is a prerequisite [54]. However, most remote sensing-based gully studies tend to rely
on accuracy indices, such as PA and UA, without taking into account the uncertainty of
the estimated gully areas. Although it is not a requirement, it is often recommended to
provide not only PA and UA but also unbiased quantitative area estimates such as the
area-weighted metrics and confidence intervals [60]. In this study, we quantified gullied
areas (ha) together with their associated levels of uncertainties, such as standard errors (ha)
and confidence intervals (ha).

RF combined with bootstrapping resampling provided the best gully area (88 ± 14.4 ha)
estimate with the least standard error (6.1 ha) in the dry season. In the wet season, SVM
combined with CV resampling estimated gully area (57.2 ± 18.8 ha) with the lowest
standard error (3.7 ha). These findings shed light on the influence of these resampling
techniques on the accuracy of satellite-based gully mapping but also provides the basis
for further investigations into the accuracy of such resampling techniques, especially
when using different satellite images other than the PlanetScope data, preferable, freely
available ones, with higher spatial resolution. Initially, we planned to use both PlanetScope
and SPOT-7 images, also obtainable free of charge for the test area, but SPOT-7 image
scenes acquired in the wet and dry season months were not available for the test area.
Nevertheless, given that we only mapped gullies in a small part of the problem area, we are
planning to test the method in other areas with wider spatial coverage. However, mapping
gullies over large areas, particularly using automatic methods, is still a challenge due to
the complexity of gullies over such large areas [14]. Thus far, even advanced methods
such as CNNs have errors in detecting complex gully systems [37]. It is worth noting that
the detection of gullies mainly depends on the spatial resolution of the image used. For
example, at larger scales, gullies have only been mapped at a spatial resolution of up to
2.5 m in South Africa [14,15]. To overcome this challenge, the future implementation of
our method, will in part, require the use of a high spatial resolution (<2 m) image, for
instance, pansharpened SPOT-7 image (1.5 m) or WorldView (0.5 m), which can detect
individual gullies. Another limitation of this method relates to climate. The method is
suitable for application in arid/semi-arid regions where gullies are often not covered by
trees [42]. Our study demonstrated that gullies could be better identified in the dry season
with RF combined with bootstrapping, whereas SVM combined with k-fold CV is best for
identifying gullies in the wet season. Therefore, we recommend the use of RF and SVM
for mapping gullies in the dry and wet seasons, respectively. Provided that PlanetScope
provides global spatial coverage with daily revisit time, we particularly recommend it for
continuous monitoring of gullies at any location.
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5. Conclusions

The aim of this study was to assess the efficacy of cross-validation and bootstrap-
ping in gully classification and also to reveal how well the PlanetScope images perform
in gully extraction in the dry and wet seasons of a semi-arid climate. We found the
following outcomes.

• Gullies were spectrally different in all bands of the PlanetScope images, both in the
dry and the wet seasons.

• NDVI values did not differ from all land cover classes regarding the reflectance values;
thus, it was not involved in gully classification.

• Dry and wet seasons ensured different classification accuracy, but gully extraction was
successful. RF outperformed the SVM algorithm in terms of OA, but the differences of
the OAs were < 4%. Differences were larger in the dry season (3.5%) and smaller in
the wet season (~1%).

• Generally, based on the OAs, CV performed better with the RF algorithm than the
bootstrapping (with ~1.0–1.5% differences), but on a class level, bootstrapping pro-
vided the most accurate gully extraction with the RF in the dry season, whereas CV
was efficient with SVM in the wet season.

Accordingly, both resampling techniques were efficient, but RF with bootstrapping
resampling technique in the dry season can be suggested to map gullies. In the future,
we plan to extend the mapping in larger areas to help landowners and managers to fight
against erosion and to plan the interventions at the hot spot areas.
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Abstract: A lack of long-term soil wind erosion data impedes sustainable land management in
developing regions, especially in Central Asia (CA). Compared with large-scale field measurements,
wind erosion modeling based on geospatial data is an efficient and effective method for quantitative soil
wind erosion mapping. However, conventional local-based wind erosion modeling is time-consuming
and labor-intensive, especially when processing large amounts of geospatial data. To address this
issue, we developed a Google Earth Engine-based Revised Wind Erosion Equation (RWEQ) model,
named GEE-RWEQ, to delineate the Soil Wind Erosion Potential (SWEP). Based on the GEE-RWEQ
model, terabytes of Remote Sensing (RS) data, climate assimilation data, and some other geospatial
data were applied to produce monthly SWEP with a high spatial resolution (500 m) across CA
between 2000 and 2019. The results show that the mean SWEP is in good agreement with the
ground observation-based dust storm index (DSI), satellite-based Aerosol Optical Depth (AOD),
and Absorbing Aerosol Index (AAI), confirming that GEE-RWEQ is a robust wind erosion prediction
model. Wind speed factors primarily determined the wind erosion in CA (r = 0.7, p < 0.001), and the
SWEP has significantly increased since 2011 because of the reversal of global terrestrial stilling in
recent years. The Aral Sea Dry Lakebed (ASDLB), formed by shrinkage of the Aral Sea, is the most
severe wind erosion area in CA (47.29 kg/m2/y). Temporally, the wind erosion dominated by wind
speed has the largest spatial extent of wind erosion in Spring (MAM). Meanwhile, affected by the
spatial difference of the snowmelt period in CA, the wind erosion hazard center moved from the
southwest (Karakum Desert) to the middle of CA (Kyzylkum Desert and Muyunkum Desert) during
spring. According to the impacts of land cover change on the spatial dynamic of wind erosion,
the SWEP of bareland was the highest, while that of forestland was the lowest.

Keywords: wind erosion modeling; RWEQ; GEE; central Asia; spatial-temporal variation;
land degradation

1. Introduction

During the past few decades, global climate change and human disturbance have meant that
land degradation has become one of the most serious environmental problems of the 21st century [1].
Despite the lack of strong political will, the land degradation problem has attracted much attention
throughout the world [2]. As of today, over 120 countries have committed to the Land Degradation

Remote Sens. 2020, 12, 3430; doi:10.3390/rs12203430 www.mdpi.com/journal/remotesensing
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Neutrality (LDN) Target Setting Programme, which strives to achieve a land degradation neutral
world before 2030 [2]. Soil erosion is the major global soil degradation threat to land, freshwater,
and oceans [3]. More than 83% of the global extent of land degradation is caused by soil erosion [4].
Because of human activities and climatic variations, the soil erosion can cause topsoil loss, which leads
to land degradation requiring centuries to recover, such as soil productivity loss and the thinning out
of vegetative cover [5,6].

In the arid land, wind plays a more important role than water in removing the fertile topsoil,
which requires centuries to build up [1]. The escalating loss of topsoil by wind erosion is a potential
threat to sustainable agriculture, which is closely related to food security [7]. The soil organic matter
and several other soil nutrients in the topsoil easily blow away due to strong near-surface wind, and in
turn, the soil fertility and plant productivity are decreased. According to a report from the European
Soil Data Center (ESDAC), about 28% of the global land degradation area suffers from the wind-driven
soil erosion process [8]. Therefore, wind erosion is considered a significant threat to food security and
human health, especially in arid and semi-arid regions of the world [9,10]. In addition, the hazard of
sand and dust storms is one of the most severe consequences of wind erosion. Wind-blown soil particles
and chemicals that lead to air pollution can affect the human respiratory system [11]. Therefore, the
ability to accurately simulate and predict soil wind erosion is essential for land degradation control,
suitable agricultural management, and sandstorm prevention, especially in arid regions.

As one of the largest land-locked arid regions, Central Asia (CA) has a critical need to combat
desertification [12]. Moreover, CA has suffered from the most frequent sandstorms due to the frequent
strong wind, limited rainfall, low vegetation coverage, and intense human disturbance [13]. Among
those factors, it is generally accepted that the near-surface wind speed plays a vital role in wind
erosion dynamics [14]. The need to investigate the soil wind erosion potential over CA is of great
importance and brings unique challenges of large-scale wind erosion modeling and insufficient ground
measurements [15,16]. Researches on the near-surface wind speed have revealed that there has been
a global declining trend of the near-surface wind speed since the 1970s, which is known as global
terrestrial stilling [14,17–19]. Affected by global terrestrial stilling, Li, et al. [20] found that the soil
wind erosion modulus exhibited a declining trend across CA between 1986 and 2005. However, recent
studies found a reversal in global terrestrial stilling around 2010 [21–23]. Furthermore, little is known
about the wind speed variability across CA after 2010, let alone the impact of the reversed stilling on
the wind erosion dynamic [20,24]. Additionally, existing researches cannot produce continuous high
spatial-temporal resolution near-real-time (NRT) wind erosion products of the entire CA, especially for
recent years [20,25]. These kinds of wind erosion maps are critical for ecological protection and land
use practice in CA.

Wind erosion is a complex physical process controlled by both natural factors and human
activities, and normally includes the wind speed, soil characteristics, surface roughness, vegetation
cover, agricultural activities, and so on [14,26–30]. It is well-established that three conditions including
strong enough wind, susceptible soil surface, and no surface protection by vegetation cover or snow
cover, are required for soil wind erosion to occur [31]. The measurement of wind erosion has always
been a major obstacle in wind erosion research. According to the literature, two categories of prominent
methods, including the 137Cs tracing technique and wind tunnel experiment, can estimate wind
erosion more precisely [32,33]. However, they have limitations in that the measurement involves
labor-intensive work and hardly describes the spatial variation of wind erosion. Additionally, due to
the complex physical processes and driving mechanisms of wind erosion, it is still difficult to monitor
the process and conduct quantitative measurements on wind erosion on a large-scale. Over the past
few decades, substantial efforts have been made in terms of investigating the mechanism and driving
factors of wind erosion. Based on small-scale regional field studies and wind tunnel experiments,
several quantitative assessment models of wind erosion have been developed [34–38]. Since the
scientific investigations of Bagnold [38] on the wind erosion prediction technology in 1941, soil wind
erosion models ranging from empirical-based to physics-based models, have been put forward.
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The most accepted models developed to quantify soil wind erosion include Wind Erosion Equation
(WEQ) [39], Revised Wind Erosion Equation (RWEQ) [37], Wind Erosion Prediction System (WEPS) [40],
Single-event Wind Erosion Evaluation Program (SWEEP) [41], Erosion Productivity Impact Calculator
(EPIC) [42], Agricultural Policy/Environmental eXtender (APEX) [43], Texas Erosion Analysis Model
(TEAM) [44], and Wind Erosion on European Light Soils (WEELS) [45]. Due to the limited parameters
and data that can be obtained, it is difficult for this kind of wind erosion model to simulate soil loss
by wind erosion at a larger geographic scale. In contrast with others, the RWEQ model proposed
by Fryrear, et al. [37] employs a set of mathematical equations to input weather, soils, crops, and
tillage data. Additionally, the RWEQ model has been validated with filed erosion data from 45 site
years in several US states [37]. Due to the limitations of RWEQ input data acquisition, the original
RWEQ was designed to calculate wind erosion loss at a field scale [36]. Zobeck, et al. [46] evaluated
the feasibility of scaling up from fields to regions to estimate the soil wind erosion potential by a
geographic information system (GIS)-based field scale wind erosion model in Texas, US. Chi, et al. [47]
used the RWEQ model to calculate the soil wind erosion modulus based on field sampling point data
regression and remote sensing data over China. Borrelli, et al. [48] developed the GIS-RWEQ model to
evaluate the soil loss potential due to wind erosion in the European Union (EU). Although the RWEQ
model has achieved some success in large-scale applications, a large amount of detailed local geodata
and field work are still required [46–50]. With the development of Remote Sensing (RS) technology and
cloud computing, Near Real-Time (NRT) wind erosion data have become more valuable for guiding
agricultural production in specific areas. The challenge is to integrate global climate reanalysis data
and remote sensing data into the RWEQ model so that it can provide essential knowledge about where
and when wind erosion occurs. Another challenge is to consider processing terabyte geospatial data in
continent-wide wind erosion quantitative mapping. Moreover, considering the limited computing
resources and big data scenarios, it is difficult to use conventional software or programming languages
to conduct computation.

The Google Earth Engine (GEE) platform, which has cloud computing capabilities and a
multi-petabyte catalog of geospatial data, is a perfect tool for executing wind erosion models [51].
In this platform, the open-source geospatial data include RS data, ground observation data, model
simulation data, assimilation data, and so on [52]. GEE’s public data archive includes more than
40 years of historical imagery and scientific datasets, which almost cover the geospatial data needed to
build the RWEQ model; for example, climate data (wind speed, snow depth, soil moisture, and so
on), vegetation cover, soil characters, elevation, etc. These datasets are easily accessible and can
be processed and computed in the Cloud, which means that it is not necessary to download data
locally. In fact, GEE has shown great potential in change detection, mapping trends, and quantifying
differences over the past few years [52]. To date, several studies have been conducted on the GEE
platform from regional scales to global scales, such as large-scale land cover classification, vegetation
monitoring, soil salinity mapping, disaster management, and so on [53–56].

As we discussed above, GEE is a novel and powerful tool for the quantitative mapping of wind
erosion. However, to the best of our knowledge, almost no research has been done to simulate the
soil wind erosion potential by using GEE, especially in CA. Additionally, in the context of the global
terrestrial stilling reversal, it is important to figure out the wind speed variability in CA for the study
of wind erosion in recent years. In view of this, the purposes of this study are (1) to evaluate the
near-surface wind speed trend in CA from 2000–2019, based on multiple source climate data; (2) to
quantify mapping the soil wind erosion potential (SWEP) in CA based on the RWEQ model by using
the GEE platform; and (3) to analyze the monthly and seasonally change of soil wind erosion and the
response of soil wind erosion dynamics to land cover change (LCC). This is the first study to execute
the wind erosion model on the GEE platform. This provides new ideas for the construction and use
of empirical models based on batch geospatial data and high-performance computing. The main
conclusions could be beneficial for desertification control and land resource management in CA.
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2. Study Area and Dataset

2.1. Study Area

The most common definition of CA is the official one of the Soviet Union, which includes the
five former Soviet republics of Kazakhstan (KZ), Uzbekistan (UZ), Turkmenistan (TK), Kyrgyzstan
(KG), and Tajikistan (TJ). The total area of CA is nearly 4 × 105 km2, which is mainly covered with
bareland and sparse vegetation. The landform types of CA are mainly plains and hills. Additionally,
the mountains (Tianshan Mountain, Pamir Mountain, and Altai Mountain), which are known as the
“Water Tower of Central Asia”, are mainly distributed in the southeast [57]. As the Tianshan Mountain
and Pamir Mountain block rain clouds that should enter CA from the east and south, CA is one of
the largest land-locked arid regions in the world [58]. Most of CA lies in an arid climatic zone, which
has low annual precipitation (less than 300 mm), a high air temperature, and strong evaporation.
Five large temperate deserts (Karakum Desert, Kyzykum Desert, Muyunkum Desert, Sarresi-Atyray
Desert, and Aralkum Desert) are distributed from the southwest to middle east (Figure 1). Additionally,
desertification caused by large-scale agriculture practices has been an issue since 1960 and enhanced
climate change presents many economic, social, and environmental problems in CA [15,24,59,60].
The most notorious example is the Aral Sea Crisis, which has been considered to be one of the planet’s
worst environmental disasters of the 21st century [59]. The large-scale construction of irrigation canals
has reduced runoff from Syr Darya river and Amu Darya river into the Aral Sea, which in turn reduced
the Aral Sea surface area from 68,000 square kilometers in 1960 to less than 7000 square kilometers
in 2016 [60]. Meanwhile, a new anthropogenic desert known as Aralkum Desert in the eastern dry
basin appeared in 1960. Salt and dust storms, which are caused by wind erosion occurring in Aralkum
Desert, represent one of the most serious problems for human health and agricultural activities in
CA [16].

 

Figure 1. The study area (background image: Moderate-Resolution Imaging Spectroradiometer
(MODIS) NDVI in 2019). It consists of the five former Soviet republics of Kazakhstan (KZ), Uzbekistan
(UZ), Turkmenistan (TK), Kyrgyzstan (KG), and Tajikistan (TJ).

254



Remote Sens. 2020, 12, 3430

2.2. Data Collection and Source

The meteorological data included the wind speed, soil moisture, and snow depth, which were
derived from Global Land Data Assimilation System 2.1 (GLDAS2.1) integrating satellite and
ground-based observational products [61]. Three other sets of climate assimilation data, including The
Fifth Generation ECMWF Atmospheric Reanalysis Data (ERA5), NCEP Climate Forecast System
Reanalysis (CFSR), and the Famine Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS), were used to investigate the wind speed variability across CA (Table 1).
The soil mechanical composition, soil organic matter, and several other soil properties were obtained
from the Harmonized World Soil Database (HWSD) and OpenLandMap (OLM), which are based on
machine learning predictions from a global compilation of soil profiles and samples. A total of six
standard depths (0, 10, 30, 60, 100, and 200 cm) were divided in the OLM dataset (Table 1), due to the
lack of soil calcium carbonate content data in GEE datasets and based on the finding that a nonlinear
positive correlation exists between the soil pH and soil calcium carbonate [62,63]. Huang, et al. [62]
found that the relationship between the calcium carbonate content and pH value of surface soil in
East Central Asia has the highest R2 when they simulated the factors with an exponential equation.
Liu, et al. [63] found that the soil pH and CaCO3 content have a non-linear positive correlation during
a study conducted in China. Based on more than 15,000 different soil mapping units, we proposed an
exponential equation (Equation (1)) to quantify the relationship between the soil pH and soil calcium
carbonate (CaCO3).

pH = 4.576×CaCO3
0.09089 + 2.378, (1)

where pH is the soil pH of different soil types in HWSD and CaCO3 is the soil calcium carbonate content
in HWSD (%).

Table 1. Data collection and sources.

Data Source Time
Spatial

Resolution
Temporal

Resolution

Wind Speed

NOAA GSOD ground
measurement wind speed

(GMWS)
2000–2019 - Daily

GLDAS2.1 * 2000–2019 0.25 degrees 3 h
ERA5 * 2000–2019 0.25 degrees Daily
CFSR * 2000–2019 0.2 degrees Monthly

FLDAS * 2000–2019 0.1 degrees Monthly
Visibility NOAA GSOD 2000–2019 - Daily

Soil
Properties

OLM * - 250 m -

HWSD - 30 arc
seconds -

NDVI MODIS Vegetation Indices
(MOD13Q1) * 2000–2019 250 m 16 days

AOD MODIS MAIAC Land Aerosol
Optical Depth (MCD19A2) * 2000–2019 1000 m Daily

AAI Sentinel-5 Precursor
NRTI/L3_AER_AI * 2019 0.01 arc

degrees Daily

DEM NASA-SRTM * - 90 m -
Land Cover ESA_CCI 2000–2018 300 m Yearly

Note: * means that the dataset can be accessed on GEE.

NDVI was derived from the NASA Terra Moderate-Resolution Imaging Spectroradiometer
(MODIS) Vegetation Indices (MOD13Q1). The National Aeronautics and Space Administration Shuttle
Radar Topographic Mission (NASA-SRTM) provided Digital Elevation Model (DEM) data, which
were used to calculate the slope data. The land cover data were provided by the European Space
Agency (ESA)-based Climate Change Initiative (CCI) 300 m global land cover data products developed
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using the GlobCover unsupervised classification chain and by merging multiple available Earth
observation products.

Ground observation wind speed data (2 m height) were derived from NOAA Global Surface
Summary of Day (GSOD), which includes global data obtained from the United States Air Force (USAF)
Climatology Center. We collected the daily ground measurement wind speed data from more than
400 weather stations in CA. Due to political or other reasons, weather stations in the former Soviet
Union were abandoned and several new weather stations were established between 1990 and 2010 [60].
Most weather stations currently working were established in the 1960s. Therefore, we integrated
ground observations of the wind speed based on 204 weather stations from 2000 to 2019 (Figure 1).
The average wind speed data of all-weather stations were used to study the temporal variation
characteristics of the wind speed in CA. The visibility, data which could be employed to calculate the
Dust Storm Index (DSI), were derived from GSOD. Additionally, the RS technique has provided a
new perspective on the validation of soil wind erosion. Aerosol data included the Aerosol Optical
Depth (AOD) and Absorbing Aerosol Index (AAI), which were used to compare and validate the wind
erosion in this research. AOD was derived from MODIS based on the Multi-angle Implementation of
Atmospheric Correction (MAIAC). Moreover, AAI was derived from the Sentinel-5 Precursor, which
launched on 13 October 2017. Details on the research data are listed in Table 1.

3. Methodology

3.1. GEE-RWEQ

The comprehensive assessment of wind erosion in a large-scale region like CA is complex and
challenging. Dozens of parameters are employed to calculate the soil wind erosion modulus by
using field-scale models, such as WEPS. GEE is a cloud computing platform specially designed to
process raster data, including satellite images, climate assimilation grids, and other geospatial data.
The advantage of the GEE platform lies in the instant access, manipulation, visualization, and real-time
analysis of large amounts of geospatial data [52]. Therefore, the advent of GEE made it possible to
launch global-scale environmental mapping and monitoring programs [53]. This is of great potential for
integrating an environmental model on the GEE platform to build a GEE-based production framework.
Furthermore, most developing countries where resources are limited have suffered from various
environmental problems, including droughts, flooding, deforestation, soil degradation, and dust
storms caused by wind erosion [16,53,64,65]. These countries often lack monitoring sites and networks
for environmental problems, making these problems more serious [64–67]. In this study, by using
multisource geospatial data, we present a fully automated algorithm for mapping NRT monthly wind
erosion dynamics at a global scale using the GEE platform.

Although the computational efficiency should not be a concern in the GEE platform, the limited
ground observation data present a big challenge for simulating soil wind erosion. Therefore, it is
necessary to build a simplified and more practical model that can estimate the SWEP at a large scale
on the GEE platform. Although it has a lower accuracy than mechanistic wind erosion models, this
relatively simple model is not limited by the input data, location, and scale of the study area. RWEQ
has been extensively tested, and good agreements between model results and field measurements
were found in previous studies. In this study, a GEE cloud computing-based RWEQ model was
developed to conduct quantitative mapping of soil wind erosion in a ground measurement limited
area. As mentioned above, based on the progress of Earth observation and numerical modeling,
several parameters that used to be filed, measured, or calculated can be easily acquired on the GEE
platform. Although most of the input parameters are retained in GEE-RWEQ, the soil roughness
factor (K’) is difficult to estimate during farming production on a regional scale. Ouyang, et al. [68]
replaced the soil ridge roughness with the roughness caused by topography, and it was calculated
by the Smith–Carson equation. Because this equation has been widely used in many regions [68–71],
it can applied when the study area is scaled up from a field to a region. Due to the limitations of wind
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erosion estimation based on RS on regional scales, the combined crop factor (C) was simplified based
on previous findings [48–50,68,72].

The GEE-RWEQ involved basic equations, as follows [37]:

SWEP =
2x
s2 Qmaxe−( x

s )
2
, (2)

Qmax = 109.8×WF× EF× SCF×K′ ×C, (3)

s = 150.71× (WF× EF× SCF×K′ ×C)−0.3711, (4)

where SWEP is the amount of soil wind erosion potential per unit area (kg/m2); Qmax is the maximum
transport capacity (kg/m); x is the distance from the upwind edge of the field (m), set to 55 m for
the study area; s is the critical field length (m); WF is the weather factor (kg/m); EF is the erodible
fraction (dimensionless); SCF is the soil crust factor (dimensionless); K′ is the soil roughness factor
(dimensionless); and C represents combined crop factors (dimensionless).

The weather factor can be calculated as

WF =
SW × SD×∑N

i−1 u2(u2 − ut)
2 ×Nd × ρg

500
, (5)

where SW is the soil wetness (dimensionless), SD is the snow cover factor (dimensionless), u2 is the
wind speed at 2 m (m/s), ut is the threshold wind speed at 2 m (assumed 5 m/s), N is the number of
wind speed observations (u2 > ut) in the period, Nd is the number of days in the period, ρ is the air
density (kg/m3), and g is the acceleration due to gravity (m/s2).

The erodible fraction (EF) and soil crust factor (SCF) can be calculated as

EF =
29.09 + 0.31Sa + 0.17Si + 0.33 Sa

Cl − 2.59OM− 0.95CaCO3

100
, (6)

SCF =
1

1 + 0.0066(Cl)2 + 0.021(OM)2 , (7)

where Sa is the sand content (%), Si is the silt content (%), Sa/Cl is the sand to clay ratio (%), OM is the
organic matter (%), CaCO3 is the calcium carbonate (%), and Cl is the clay content (%).

The soil roughness factor (K′) can be calculated as [70]

K′ = cosα, (8)

where α is the slope gradient (degree), which can be calculated by the Digital Elevation Model (DEM).
The combined crop factor (C) can be calculated as [70,73]

C = e−0.0483(SC), (9)

SC = (NDVI −NDVIsoil)/(NDVImax −NDVIsoil), (10)

where SC is the vegetation coverage (%), NDVIsoil is the NDVI value of a bare soil pixel, and NDVImax

is the maximum NDVI value of the study area.

3.2. Model Performance Evaluation

Because of the diverse land cover types and large area, it is extremely difficult to measure wind
erosion for a whole region. Additionally, in the past two decades, almost no research has conducted
field measurements on wind erosion in CA. Therefore, validation methods that can evaluate the
reliability of wind erosion model results need to be proposed. Considering that the ground observed
dust storm can indicate the frequency and intensity of wind erosion events, DSI was used to validate
the spatial variation of SWEP.
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DSI was calculated based on the meteorological record-visibility, which can represent the frequency
and intensity of wind erosion events. DSI was first proposed by McTainsh [74] in the National
Collaborative Project on Indicators for Sustainable Agriculture (NCPISA). Based on the relationship
between meteorological records and DSI, O’Loingsigh, et al. [75] used daily visibility data acquired
from 180 long-term meteorological stations to investigate a long-term national wind erosion record
(1965–2011) in Australia. DSI is a methodology employed for monitoring wind erosion based on
long-term daily meteorological observations. At present, it is generally accepted as an indicator of
broad-scale wind erosion rates in Australia, Iran, and Northeast Asia [75,76]. Based on weather codes
relating to wind erosion or visibility, wind erosion events were divided into three categories: (a) Severe
Dust Storms (SDS); (b) Moderate Dust Storms (MDS); (c) Local Dust Events (LDE). The DSI was
calculated using the following equation [75]:

DSI =
n∑

i=1

[(5× SDS) + MDS + (0.05× LDE)]
i

, (11)

where i is ith value of n stations for i = 1 to n, SDS is a severe dust storm (visibility < 200 m), MDS is a
moderate dust storm (200 m < visibility < 1000 m), and LDE is a local dust event (1000 m < visibility <
20,000 m).

Due to the lower population and urban density, soil mineral particles produced by wind erosion
are the main source of atmospheric aerosols in CA [24]. Therefore, the satellite-derived AOD data were
used to evaluate the reliability of SWEP simulated by the RWEQ model. There are several satellite-based
aerosol products, which have different spatial and temporal resolutions, such as CALIPSO Lidar
Tropospheric Aerosol Profiles All sky data, VIIRS/SNPP Deep Blue L3 daily aerosol data, OMI/Aqua
Multi-wavelength AOD Daily data, MODIS MO(Y)D08_M3 Terra (Aqua) Atmosphere Monthly data,
MODIS MCD19A2 Terra & Aqua MAIAC Land Aerosol Optical Depth Daily data, and Sentinel-5P
NRTI AER AI. However, most satellite-based aerosol products have a low spatial resolution and
cannot meet the requirements of quantitative spatial comparisons [77–79]. In this study, we used the
MODIS MCD19A2 dataset at the 0.47 μm blue band, along with the parameter Optical_Depth_047,
which has a spatial resolution of 1 km [79]. Another aerosol dataset named the Absorbing Aerosol
Index (AAI), with a 0.01-degree spatial resolution, was extracted from the Sentinel-5P NRTI AER AI
product. Because the Sentinel-5P was launched on 13 October 2017, the aerosol dataset was released in
10 July 2018 [80]. Therefore, we used the 2019 annual average AAI to compare with the 2019 SWEP in
this study.

3.3. Technical Flowchart of this Study

The Land Cover Change (LCC), which is influenced by both climate change and human activity,
usually affects wind erosion on surface roughness and soil physical and chemical characteristics.
Therefore, we studied the SWEP of different land cover types and SWEP changes caused by the
conversion of different land cover types. In this study, we chose ESA-CCI 300 m global land use
land cover data products developed using the GlobCover unsupervised classification chain and by
merging multiple available Earth observation products. Based on the United Nation Land Cover
Classification System’s (LCCS) plant functional types (PET), the CCI-LC map is classified into 22
land types. According to the study area land characteristics, the land cover types are reclassified into
nine categories based on the look-up table-conversion of CCI-LC classes to PET in the product user
guide [81].

Based on the objective of this study, this manuscript is organized as presented in the technical
flowchart (Figure 2). The research consists of four main steps: First, based on a time-series decomposition
model, the wind speed variability of ground measurement data and reanalysis data was explored;
second, by using multi-source geospatial data, the monthly SWEP across CA was generated based on
GEE-RWEQ, and we explored the spatiotemporal variation of SWEP between 2000 and 2019; third,
based on DSI and satellite-based AOD, validation was conducted to test the reliability of annual SWEP;
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and finally, we investigated the responses of wind erosion to ground measurement wind speed change
and land cover change.

  

Figure 2. The technical flowchart of this study.

The ArcGIS10.6 software was implemented for land cover type reclassification in this research.
The Pearson correlation coefficient (r) was calculated in R 3.6.3. The time-series decomposition model
based on the “tseries” package was also run in R 3.6.3. The exponential fitting of the soil pH and soil
calcium carbonate was performed in MATLAB 2018a.

4. Results, Analysis, and Validation

4.1. Variability of the Daily Average Wind Speed across CA

As the key factor of wind erosion, wind speed variability plays a vital role in wind erosion
dynamics. A host of studies have reported that there was a declining trend in the global near-surface
wind speed from 1970 to 2010 [14,17–19]. However, a recent study described an increase in the
global wind speed during a particular year. Zeng, et al. [22] found that, after several decades of
global terrestrial stilling, the wind speed has increased rapidly across the globe since 2010. Although
Zeng, et al. [22] have investigated the global temporal variation of the wind speed, further studies are
required because of the sensitivity of CA to global climate change [60].

To better understand the temporal variations of wind speed, it is possible to decompose wind
speed time series data into sub-components by a time-series decomposition model. In this study,
we used a multiplicative decomposition model, which is more effective when a seasonal value changes
over time [82]. The calculation of this model included the following three steps [83]. The trend
component was first determined and removed from time series by using the moving averages method.
Secondly, the seasonal component was calculated and centered by averaging all periods for each
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time unit. In this study, a time-series decomposition multiplicative model was applied to Ground
Measurement Wind Speed (GMWS) data. Figure 3 shows that the time series data were decomposed
into various sub-components (the trend component, seasonal component, and random component).
According to the trend component of the GMWS time series, we found that there was a significant
decrease during the time period of 2000–2009 and a significant increase trend in the time period of
2009–2014. Moreover, GMWS exhibited steady fluctuations or a slight upward trend after 2014. From
the perspective of quantitative analysis, we calculated the decade change rate of GMWS in these three
time periods based on a linear regression analysis of ordinary least squares (OLS). The analysis shows
that the daily average GMWS decreased significantly at a rate of−0.16 m s−1 decade−1 during the period
of 2000–2009 (p < 0.001). After the turning point of 2009, the increasing rate of 0.42 m s−1 decade−1 was
significantly higher than the decreasing rate during the period of 2009–2014 (p < 0.001). Although the
GMWS shows a slight trend in recent years, the result is not statistically significant (p > 0.05). The time
series of seasonal components indicated that the highest values for the daily average wind speed
occurred during the spring, while the lowest values occurred during the autumn. The relationship
between the daily average wind speed in different seasons is spring >winter > summer > autumn.

 
Figure 3. The time series decomposition of the average Ground Measurement Wind Speed (GMWS) in
Central Asia (CA) from 2000 to 2019. Note: The different colors in the graph on the seasonal component
indicate different seasons (blue: Winter (Dec., Jan., Feb.), green: Spring (Mar., Apr., May), red: Summer
(Jun., Jul., Aug.), and yellow: Autumn (Sept., Oct., Nov.)).
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In order to ensure the consistency of the reanalysis data input by the model and the actual
observation data in CA, the trends of four reanalysis data (GLDAS2.1, ERA5, CFSR, and FLDAS)
were introduced to conduct comparisons with GMWS. The comparison result showed that the daily
average derived from GLDAS2.1 has the highest correlation with the ground measurement wind
speed (Supplementary Materials Figure S1). Furthermore, in order to better compare the relationship
between the wind speed in trend and seasonal components, we decomposed the GLDAS2.1 wind
speed time series into trend component, seasonal component, and random component. Additionally,
we calculated the correlation coefficient (r) of the daily average wind speed and components between
ground measurement data and reanalysis data. The trend component had the highest correlation
coefficient (r = 0.829), followed by the seasonal component (r = 0.552), daily average wind speed
(r = 0.125), and random component (r = −0.007). On the other hand, according to the trend component,
the turning point for the GLDAS wind speed (GLDASWS) time series occurred around 2011 (Figure 4).
Moreover, the changing rate of the daily average wind speed is more significant. The result of linear
regression shows that the daily average GLDASWS decreased significantly at a rate of −0.34 m s−1

decade−1 during the period of 2000–2010 (p < 0.001). The increasing rate of 1 m s−1 decade−1 is
significantly higher than the decreasing rate during the period of 2010–2014 (p < 0.001) after the
turning point of 2010 (Figure 4). The seasonal components of two wind speed data have a broadly
similar pattern.

 

Figure 4. The time series decomposition of the average Global Land Data Assimilation System wind
speed (GLDASWS) in CA from 2000 to 2019. Note: The different colors in the graph on the seasonal
component indicate different seasons (blue: Winter (Dec., Jan., Feb.), green: Spring (Mar., Apr., May),
red: Summer (Jun., Jul., Aug.), and yellow: Autumn (Sept., Oct., Nov.)).
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4.2. The Spatiotemporal Variation of Wind Erosion across CA

Figure 5 shows the distribution of the annual mean SWEP in CA over the most recent 20 years
(2000–2019). SWEP exhibits significant spatial variation, which has a range of 0–256 kg/m2. The SWEP
in the southwest CA is higher than that in the southeast and north CA, where the vegetation coverage
and soil moisture are higher. During the past 20 years, the Aral Sea dry lake bed (ASDLB), which is
one of the most active dust sources, was the most severe wind erosion area in CA (47.29 kg/m2/y),
followed by Kyzylkum Desert (10.64 kg/m2/y), Karakum Desert (10.58 kg/m2/y), and Muyunkum
Desert (6.81 kg/m2/y). Due to the dramatic shrinkage of Aral Sea from the second half of the 20th
century, the ASDLB, also known as the Aral Sea Desert, was covered with the original salts and
chemicals of the water [24]. The toxic sediments of the Aral Sea were blown away by strong winds and
formed white sandstorms. These toxic particles from the dry Aral Sea lake bed had been found in
Japan, Norway, Greenland, and even in the South Pole [84].

 

Figure 5. The spatial variation of the Soil Wind Erosion Potential (SWEP) over CA between 2000
and 2019.

From 2000 to 2019, the annual mean value of SWEP was 3.45 kg/m2, with the lowest value
occurring in 2010 and the highest value occurring in 2015. As mentioned above, the wind speed
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exhibited a significant increase around 2011, and the area and intensity of wind erosion have also
increased significantly since 2011. However, the SWEP gradually decreased by −6.85 kg/m2/y, over
ASDLB, from 2011 (Figure 5). This reversal may have been caused by the recovery of the water body of
the Aral Sea since 2010 [85]. This means that more dry lake beds are covered by water bodies and less
bareland suffers from wind erosion. The Amu Darya River (ADR) and Syr Darya River (SDR), which
are the two largest rivers across CA, are the principal water suppliers of the Aral Sea. Since the 1960s,
many irrigation canals have been constructed in the middle and lower reaches of ADR and SDR [60].
Therefore, according to ESA land cover data, more than 43% of the irrigation cropland of CA survived
on these canals, especially in Amu Darya Delta (ADD) and Syr Darya Delta (SDD). The main land
cover type of these two deltas is irrigated cropland, which accounts for more than 20% of the total
irrigated cropland in CA. Because of the high vegetation coverage, according to Figure 5, the ADD and
SDD regions have a lower SWEP than the surrounded area. Similarly, on the edge of the Kyzylkum
Desert, oasis agriculture that relies on irrigation also greatly reduces SWEP.

The seasonal variation characteristics of SWEP in CA are shown in Figure 6. Although it is usually
consistent with the spatial distribution of the annual mean SWEP, the spatial pattern of SWEP varies
in different seasons. As we can see in Figure 6, more land suffered from severe wind erosion in CA
during the spring than in other seasons (spring: 1.48 kg/m2 > summer: 0.70 kg/m2 >winter: 0.69 kg/m2

> autumn: 0.59 kg/m2). Additionally, obvious wind erosion exists in several famous desert regions,
such as the Karakum Desert, Kyzylkum Desert, and Aralkum Desert during spring. Due to the impact
of snow cover, less wind erosion exists in north CA during the winter. However, the wind speed of
the Aral region in winter markedly exceeds that in other seasons, especially in December. Therefore,
the ASDLB region has higher SWEP in the winter. Figure 6 shows that the north Kazakhstan region,
Kyrgyz, Tajikistan, has been slightly affected by wind erosion. Additionally, in summer, SWEP shows a
significant high value in the middle reaches of Amu Darya (Figure 6). As shown in Figure 7, the SWEP
displays significant monthly temporal variability, especially in ASDLB. March is the most severe month
of wind erosion in the ASDLB. Alternatively, due to strong winds and dry surface soil in December,
January, and February, sandstorms frequently occurred in ASDLB. We can confirm this from the true
color image of MODIS (Supplementary Figure S2). Due to the difference in the solar radiation energy
received by different latitudes, the melting time of snow cover varies in different regions. Figure 6
shows that the center of wind erosion moves from southwest to northeast during the spring (March,
April, and May). These factors can explain why significant wind erosion in other famous deserts
occurs in different months. The most severe month of wind erosion in Karakum is April, and that in
Kyzylkum Desert and Muyunkum Desert is May. However, in general, Central Asia has suffered from
the most severe wind erosion in April and the most widespread wind erosion in May.
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Figure 6. The seasonal variation of SWEP in (a) spring (Mar., Apr., May), (b) summer (Jun., Jul., Aug.),
(c) autumn (Sept., Oct., Nov.), and (d) winter (Dec., Jan., Feb.) during the period of 2000–2019.

 

Figure 7. The monthly average variation of SWEP during the period of 2000–2019.
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4.3. Responses to Wind Speed Change and Land Cover Change

4.3.1. Impacts of Ground Measurement Wind Speed Changes on the SEWP

Based on the research results mentioned above, the wind speed was found to be the dominant
factor of wind erosion. Therefore, in this study, we analyzed the influence of wind speed as a factor of
climate change on wind erosion. Based on the ground measurement wind speed data, we investigated
the influence of wind speed changes on wind erosion. Figure 8 shows the strong and significant positive
correlation (r = 0.700, p < 0.001) between the average GMWS and average ground SWEP. According to
the trend line of these two sets of time-series data, the turning point roughly occurred between 2010
and 2011. The average GMWS showed a slowly decreasing trend (−0.07 ms−1 decade−1) before the
turning point in 2011, while it displayed a significant increasing trend during the period of 2011–2019
(+0.6 ms−1 decade−1, p < 0.001). The recent increasing rate is almost tenfold the decreasing rate in the
first decade. The average ground SWEP also showed a slightly decreasing trend during the period of
2000–2010 (−0.027 kgm−2 decade−1), while it displayed a significant increasing trend (+0.37 kgm−2

decade−1, p < 0.001). Shao, et al. [86] found that the global monthly mean dust concentration decreased
from 2000 to 2012. This shows that the end of the quiet period of dust activities in Central Asia or
globally marks the beginning of an active period of dust activities. Based on current research, it seems
reasonable to relate the dust trend to the climate trend, especially the reversal in global terrestrial
stilling [22].

 
Figure 8. Average GMWS and average SWEP across CA from 2000 to 2019.

Additionally, the highest monthly average SWEP, which appeared in May 2014, was more than
2.4 kg/m2. The seven months with the strongest wind erosion (SWEP > 1.5 kg/m2) were March (2), April
(2), May (2), and December (1). There were nine months (May: 3, March: 3, April: 2, Decembeer: 1)
with an average wind speed greater than 3.5 m/s. Moreover, the highest monthly average wind speed,
with a value of 3.79 m/s, appeared in Decembr 2015. Overall, a similar tendency of wind speed and
wind erosion was observed for the past two decades. Both show a distinguishable declining trend,
and then a sudden remarkable increase, and before slowly declining or finally stabilizing. During the
study period, the wind speed (+0.38 ms−1 decade−1, p < 0.001) and SWEP (+0.34 kgm−2 decade−1,
p < 0.001) increased very quickly from 2000 to 2019, indicating a more serious soil degradation and air
pollution problem in CA.
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4.3.2. Divergence of SWEP from Different Land Cover Types

According to the land characteristics of the study area, the ESA CCI land cover types can be
reclassified into nine categories (cropland irrigated, cropland rain-fed, forestland, shrubland, grassland,
sparse vegetation land, bareland, urbanland, and waterbody). The last subplot of Figure 9 shows
the areas of different land cover types across CA in 2018. Figure 9 shows that the monthly average
SWEP and its change rate of different land cover types were substantially different. The monthly
average SWEP of bareland was more than 0.836 kg/m2, followed by shrubland (0.572 kg/m2), sparse
vegetation land (0.203 kg/m2), grassland (0.073 kg/m2), irrigated cropland (0.043 kg/m2), rainfed
cropland (0.033 kg/m2), and forestland (0.017 kg/m2). This relationship is basically consistent with
previous research conducted in CA and surrounding regions [20,87]. We also compared the soil wind
erosion modulus with respect to regions with similar conditions or the use of different methodologies
(Table 2). Li, et al. [20] assessed the soil wind erosion modulus variation in CA (including Xinjiang,
China) between 1986 and 2005. Zhang, et al. [87] investigated the RWEQ-based soil wind erosion,
which was validated by 137Cs in Inner Mongolia (IM), during the time period of 1990–2015. Compared
to other arid or semiarid regions, CA has relatively higher rates of soil wind erosion, which may be the
result of the widespread distribution of deserts and wind speed increase in the past decade. Grassland
has a relatively lower soil wind erosion rate, because it is mainly distributed in northern CA, which has
a more humid climate and less erodible underlying surface condition [12]. Although the time periods
and dataset sources were different, from the perspective of the wind erosion diversity of land cover,
the wind erosion result of our research is reliable.

 

Figure 9. Monthly change of the average SWEP of different land cover types and the area of different
land cover types across CA in 2018.

There was a significant increase in SWEP in CA in the past two decades. However, the change rate
of wind erosion varied among regions with various types of land cover. Specifically, the change rate of
wind erosion was the highest for bareland (0.0978 kg/m2/y), followed by shrubland (0.0730 kg/m2/y),
sparse vegetation land (0.0206 kg/m2/y), grassland (0.0062 kg/m2/y), irrigated cropland (0.0045 kg/m2/y),
rainfed cropland (0.0038 kg/m2/y), and forestland (0.0016 kg/m2/y). Combined with the areas of different
land covers, we could calculate the total amount of soil wind loss for different land covers in the period
of 2000–2019. More than 2.8255 × 1011t soil was eroded by the wind across CA during the past few
decades. The soil wind erosion of bareland (1.838 × 1011t) contributed more than 65% soil loss by the
wind in CA, followed by shrubland (0.3907 × 1011t), sparse vegetation land (0.3380 × 1011t), grassland
(0.1812 × 1011t), rainfed cropland (0.0517 × 1011t), irrigated cropland (0.0223 × 1011t), and forestland
(0.0028 × 1011t).
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Table 2. Soil wind erosion rate studies in CA and other regions with similar conditions.

Authors Locations Method
Study
Period

Soil Wind Erosion Rate (×10−1 kg/m2/y)

Bareland Grassland Forestland Cropland

This Study CA RWEQ 2000–2019 103.56 8.76 2.04 5.16(3.96)

Li, et al. [20] CA (Included
Xinjiang, China) RWEQ 1986–2005 45.08 15.56 3.44 4.74

Zhang, et al.
[87] IM, China RWEQ 1990–2015 101.96 24.21 2.96 11.31

Lin, et al. [50] Hexi, China RWEQ 1982–2015 85.19 40.07 9.48 21.43

Chi, et al. [47] Arid land,
China RWEQ 2000–2010 57.61 6.73–28.07 16.03 17.66

Hu, et al. [32] IM, China 137CS 2003 NA 18.08–42.7 NA 79.90
W. Cole, et al.

[42]
New Mexico,

USA WEE/EPIC 50-years NA NA NA 0.13–71.3

Hagen [88] Arid land, USA WEPS 1989–1997 NA NA NA 0–39.8

According to the continuous changes in the land cover area in CA during the period of 2000–2018,
the cropland, forestland, urbanland, and shrubland showed an increased trend, while bareland and
grassland showed a decreased trend (Supplementary Table S1). More than 2.67 × 10 km2 land had
undergone land cover change, including from bareland to grassland, sparse vegetation land to grassland,
grassland to cropland (rain-fed), sparse vegetation land to cropland (rain-fed), and waterbody to
bareland. In order to remove wind speed variability effects on SWEP, we calculated the annual SWEP
of 2018 based on the wind speed data of 2000 to compare it with the annual SWEP of 2000. We found
that the LCCs with the strongest inhibitions of wind erosion activity were bareland into shrubland
(−0.782 kg/m2), sparse vegetation land into forestland (−0.106 kg/m2), and grassland into forestland
(−0.073 kg/m2). In comparison, the conversions of land cover which accelerated wind erosion the most
were waterbody into bareland (+3.784 kg/m2), sparse vegetation land into bareland (+1.124 kg/m2),
and grassland into bareland (+0.490 kg/m2).

4.4. Validation of the GEE-RWEQ Model

Due to lack of long time series and wide range of ground-measured wind erosion data in CA,
validation of the GEE-RWEQ model is challenging. Furthermore, due to the large area and complex
terrain conditions, almost no previous research has conducted wind erosion field measurements in
CA. Considering that most of the local dust storms are caused by surface wind erosion in CA [24],
the dust storm index (DSI) can be used as a proxy to evaluate the wind erosion model performance [75].
Therefore, we used the DSI based on weather station visibility records to evaluate the reliability of
the SWEP spatial distribution. Figure 10 displays the annual mean DSI across CA from 2000 to 2019.
This map was interpolated by the annual average DSI of more than 200 weather stations based on
Natural Neighbor Interpolation method. From Figure 10, we can see that the southwest desert region
of CA has a high DSI, which means very frequent dust storms. However, there are some high values
in the southeastern parts of CA, where there is a lower wind erosion risk. According to the research
of Liu, et al. [89], affected by the strong southwest winds, the dust particles were transported from
the western desert to eastern mountains and valley. Moreover, dust episodes were observed in these
regions. Additionally, the southeastern parts of CA are the most densely populated areas in CA. Most
of the weather stations across CA are located around densely populated cities. The anthropogenic
pollutants will also be recognized as dusty weather due to reduced visibility. The spatial distribution
of DSI is generally consistent with the spatial pattern of the annual SWEP. Although visibility records
based on weather stations are a valuable and useful data resource for wind erosion monitoring, several
limitations still exist. The low spatial density of weather stations is a challenge for conducting highly
accurate wind erosion mapping, especially in the southeastern part of CA. Therefore, we need to
obtain higher spatial resolution and more continuous SWEP verification data. It should be pointed out
that satellite-based atmospheric aerosols, which refer to solid and liquid particles suspended in the
atmosphere, have strong spatial correlations with wind erosion.
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Figure 10. The location of weather stations that provide visibility records and the annual mean Dust
Storm Index (DSI) for the period 2000 to 2019 across CA.

Figure 11 shows the spatial pattern of the annual AOD (a) and average AAI in 2019 (b), as well as
the comparisons with SWEP in the Aral Sea region (ASR). From Figure 11, we can see that the Aral Sea
region and its southwest surrounding area has the highest value in CA. This is because the dust of the
Aral Sea is transported to the southwest under the action of the dominant wind-northeast wind [90].
Therefore, we chose ASDLB as a research hotspot area to compare with SWEP. Linear relationships
between SWEP and aerosol parameters (AOD and AAI) were found, as shown in Figure 11. The results
show that they had moderate positive linear relationships, with r values of 0.5623 (p < 0.001) and 0.5660
(p < 0.001), respectively. Ultimately, although it is difficult to verify the SWEP value, the comparison
results obtained from the perspective of spatial and temporal distribution patterns showed that the
RWEQ-based SWEP data in CA were reliable.

 
Figure 11. The spatial distribution of the annual average MODIS Aerosol Optical Depth (AOD) (a) and
Sentinel-5P Absorbing Aerosol Index (AAI) of 2019 (b), and the comparisons of the average SWEP and
AOD and AAI in the Aral Sea region.
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5. Discussion

In this study, our results show that there are significant spatial and temporal differences in the
wind erosion in CA. Controlled by the latitude zonality and vertical zonality, higher SWEP values are
primarily distributed in the southwestern part of CA, which has low vegetation coverage and more
fragile surface soil [91], while lower SWEP is mainly concentrated in the northern part of CA. Based on
the land cover map of 2018, more than 89% of rain-fed cropland and 78% of forestland are distributed
in these regions. Furthermore, due to latitude zonality and vertical zonality, the precipitation in these
areas is higher than in other places of CA, and the temperatures in these areas are lower. Therefore,
the higher soil moisture caused by lower evapotranspiration will reduce the wind erosion to a certain
degree. Affected by the restoration of the Aral Sea in recent years, the vegetation coverage and
other underlying surface factors of ASDLB are getting better [85]. Although the SWEP showed a
decreasing trend in ASDLB (−6.85 kg/m2/y), this region was still the most severe wind erosion area in
CA. In addition, our results show that the SWEP has a clear seasonal and monthly variation. The land
threatened by wind erosion has the largest range in spring, especially in May. Due to the difference
in solar radiation heat at different latitudes and altitudes, the snowmelt period varies in different
regions of CA [92]. The higher soil moisture caused by snowmelt and the snow cover both affected
the movement of the wind erosion center across CA during spring [37]. Therefore, considering the
major deserts of CA are located in different latitudes and altitudes, the severe wind erosion regions
in CA will also migrate over time. The severe wind erosion regions move from the southwest CA
(Karakum Desert) to the middle CA (Kyzylkum Desert and Muyunkum Desert) during the spring
(MAM). However, due to the special meteorological conditions in certain areas of CA, such as the
middle reaches of the ADR, severe wind erosion occurs in summer, but not spring, respectively [24].
We calculated the monthly average wind speed of four weather stations in this region. A comparison
was made for the monthly average wind speed of all the weather stations in CA and the four weather
stations in this region (Supplementary Figure S3). The most extreme value of the surface wind speed
in CA appeared in March, while the most extreme value of the wind speed in the middle reaches of
the ADR appeared in July. This result demonstrates that wind speed plays the key role in the spatial
distribution of SWEP.

As the most dominant factors of wind erosion, wind speed variability, such as wind stilling or
wind stilling reversal, account for the majority of the spatial-temporal variation of wind erosion in CA.
Although global terrestrial stilling has been confirmed by many pieces of research, most studies have
only looked at global or regional wind speed changes from the 1980s to 2010, and few have involved
recent (after 2010) wind speed changes [14,17–19]. According to several climate assimilation datasets
(GLDAS, ERA5, CFSR, and FLDAS) and a ground measurement dataset (GSOD), we found a turning
point of wind speed stilling during the period of 2009–2012 in CA. This finding is supported by other
studies that have reported that global terrestrial stilling has rebounded over the past few decades and
has increased rapidly since 2010 [21–23]. Our research proves that the increase rate of the average
wind speed in CA (0.6 m s−1 decade−1) is higher than the increase rate of the average global wind
speed (0.24 m s−1 decade−1) over the same period, which means that stronger wind erosion occurred
in CA. Indeed, the result shows a strong and significant positive correlation (r = 0.7) between the
average GMWS and average SWEP (p < 0.001). A number of studies have demonstrated that CA is
more sensitive to climate change compared to the global average [12,20,57,60,91,93]. While it is widely
acknowledged that the global wind speed rebound is beneficial to the wind power industry for the
near future [22], this study suggests that more severe wind erosion activity happened in CA.

According to the significant differences in natural conditions, such as the air temperature and
precipitation, and the disturbance of human activities such as irrigation, the land cover in CA exhibited
strong spatial differentiation. We found that SWEP differs greatly in different land cover types.
This result is roughly consistent with a previous study on wind erosion in CA and surrounding
regions [20,87]. Most of the shrubland in CA is made up of deserts and xeric shrublands in which
Haloxylon ammodendron, Calligonum aphyllum, and Ephedra lomatolepis, as well as grasses such as
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Agropyron fragile, grow [94–96]. These kinds of vegetation have good windproof and sand fixing
functions in CA. In addition, LCCs are closely related to wind erosion activity and affect each other.
From 2000 to 2018, more than 2.6 × 105 km2 of land has changed land cover types (Supplementary
Table S1). We compared the SWEP for the land with the LCC from 2000 to 2018, in which the effect
of the wind speed variability was removed. The conversion of bareland to shrubland helped reduce
wind erosion by −0.782 kg/m2/y. Furthermore, due to the shrinkage of the Aral Sea, the conversion of
waterbody to bareland increased wind erosion by +3.784 kg/m2/y. The restoration of the Aral Sea has
not only superficially reduced the possibility of wind erosion in ASDLB, but also increased the increased
vegetation coverage of ASDLB caused by the higher groundwater level, making the long-distance
transport of dust difficult. Although the wind speed has shown an increasing trend in the past 10 years,
the wind erosion risk in the Aral Sea area is gradually decreasing due to the continuous recovery of the
Aral Sea area. In the past 30 years, a large number of engineering projects have attempted to improve
the Aral Sea environment, directly or indirectly. Although Aral sea restoration is the most effective
way to restrain wind erosion in ASDLB, the complex political relations among countries in the Aral Sea
basin make cross-border water management difficult [84]. Besides, in other parts of CA, more effective
measures should be taken for wind erosion artificial control, for example, increasing the grassland area
in regions with a suitable temperature and precipitation, developing cropland by using limited water
resources, and planting cold- and drought-resistant shrub vegetation in bareland.

In this study, the RWEQ model was adopted as a wind erosion model in the GEE cloud computing
platform. Compared with the local computing platform, GEE can process large amounts of geospatial
data in a short time, which means that its processing power is completely unconstrained by time and
space. Therefore, we do not need to spend a lot of time on downloading, preprocessing, and model
running of a large amount geo-spatial data, which can greatly shorten the time required for long-term
wind erosion mapping. As mentioned above, GEE-RWEQ provides the possibility of wind erosion
monitoring in developing regions lacking on-site monitoring data. Meanwhile, the GEE platform
makes it easier for researchers to publish their results for decision makers, and even the public [55].
Therefore, our research has a broader application value for decision makers than previous studies on
wind erosion. In the future, we will interactively develop Earth Engine App to explore our result,
which can then be used by experts and non-experts alike.

The RWEQ is a process-based, field-scale, empirical model that can quantitatively estimate wind
erosion. However, the RWEQ was initially developed for the middle western area of the United
States [37]. Therefore, it still presents some limitations in other regions [37,50,72,97]. Although the most
important input parameters were retained in this study, the dataset required by some parameters was
unavailable on GEE platforms. Therefore, several factors were simplified to simulate the global-scale
wind erosion more effectively and more accurately. The soil moisture data were used to simulate how
the surface wetness influences the wind speed required to erode the soil. Additionally, the cosine of
the slope gradient which was calculated by DEM represented the soil roughness factor. On the other
hand, we only used wind erosion-related data such as visibility data and remote sensing data for the
verification of wind erosion in CA, but this still has uncertainties on a global scale. Central Asia, which
is one of the most severe wind erosion regions, is restricted in terms of wind erosion modeling studies
due to the lack of wind erosion measurement data for this region. Therefore, more ground soil loss
measurement data on a global scale should be acquired to conduct more verification studies.

6. Conclusions

In this study, we developed a fully automated algorithm for quantitatively mapping wind erosion
based on the Google Earth Engine, processed terabytes of geo-spatial data, and retrieved spatial and
temporal patterns of monthly SWEP in CA, over 20 years (2000 to 2019). Several conclusions were
reached in our study, as follows:

(1) With respect to the conventional methods, GEE-RWEQ does not require any ground
measurement data, which need lots of manpower and resources, especially in developing countries
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or sparsely populated regions. However, based on the Cloud computing platform, GEE-RWEQ uses
climate assimilation data, soil property data, vegetation data, terrain data, and other underlying data
to automatically generate high spatial resolution NRT soil wind erosion potential products. After
verification using ground observation-based DSI and satellite-based AOD, the results still reach an
acceptable accuracy and can be used for quantitative wind erosion mapping. This methodology
provides new ideas for the construction and use of empirical models based on batch geospatial data
and high-performance computing;

(2) According to the comparison of GMMS and SWEP, the wind speed is the main driving factor of
wind erosion (r = 0.7, p < 0.001). Affected by the wind speed variability, the SWEP decreased first and
increased remarkably during 2011. From the perspective of the temporal and spatial distribution, due
to the sparse vegetation distribution and special meteorological conditions, the deserts in southwestern
Central Asia are most affected by wind erosion, especially in ASDLB (47.29 kg/m2/y). The severe wind
erosion period of CA occurred in spring (MAM), especially in May. We also found that the SWEP
distribution has obvious latitude zonality due to the distribution of snow cover and the start time of
snow melt, and the wind erosion hot spot in spring moves from the southwest to central area across CA;

(3) Land cover change has strong effects on the soil wind erosion in CA, with the most obvious
being the conversion of bareland into the water body in ASDLB. Affected by the restoration of the Aral
Sea, the SWEP in this area has shown a downward trend (−6.85 kg/m2/y) since 2011. Additionally,
the conversion of bareland to shrubland helped reduce wind erosion by −0.782 kg/m2/y. According
to the SWEP variation based on LCC, more effective measures should be taken to maintain wind
erosion artificial control, for example, restoring the Aral Sea water area to prevent more bareland from
being exposed to wind erosion, increasing the grassland area in regions with a suitable temperature
and precipitation, developing cropland by using limited water resources, and planting cold- and
drought-resistant shrub vegetation in bareland.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/20/3430/s1,
Figure S1: Comparisons of the wind speed trend for different datasets (FLDAS, CFSR, ERA5, GLDAS2.1, and
GMMS); Figure S2: Dust events in the Aral Sea during winter captured by MODIS; Figure S3: Monthly average
wind speed of CA and the other four weather stations in the middle reaches of Amu Darya; and Table S1: The
areas of different land cover types in Central Asia during the period of 2000–2018.
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Abstract: Land degradation poses a critical threat to the stability and security of ecosystems, es-
pecially in salinized areas. Monitoring the land degradation of salinized areas facilitates land
management and ecological restoration. In this research, we integrated the salinization index (SI),
albedo, normalized difference vegetation index (NDVI) and land surface soil moisture index (LSM)
through the principal component analysis (PCA) method to establish a salinized land degradation
index (SDI). Based on the SDI, the land degradation of a typical salinized area in the Central Asia
Amu Darya delta (ADD) was analysed for the period 1990–2019. The results showed that the pro-
posed SDI had a high positive correlation (R2 = 0.89, p < 0.001) with the soil salt content based on
field sampling, indicating that the SDI can reveal the land degradation characteristics of the ADD.
The SDI indicated that the extreme and strong land degradation areas increased from 1990 to 2019,
mainly in the downstream and peripheral regions of the ADD. From 1990 to 2000, land degradation
improvement over a larger area than developed, conversely, from 2000 to 2019, and especially, from
2000 to 2010, the proportion of land degradation developed was 32%, which was mainly concentrated
in the downstream region of the ADD. The spatial autocorrelation analysis indicated that the SDI
values of Moran’s I in 1990, 2000, 2010 and 2019 were 0.82, 0.78, 0.82 and 0.77, respectively, suggesting
that the SDI was notably clustered in space rather than randomly distributed. The expansion of
unused land due to land use change, water withdrawal from the Amu Darya River and the discharge
of salt downstream all contributed to land degradation in the ADD. This study provides several
valuable insights into the land degradation monitoring and management of this salinized delta and
similar settings worldwide.

Keywords: land degradation; salinization; remote sensing index; salinized land degradation index
(SDI); Amu Darya delta (ADD)

1. Introduction

Land degradation can lead to reduced land productivity, population displacement,
food insecurity and the destruction of ecosystems [1]. The report from the National Forestry
and Grassland Administration of China (http://www.forestry.gov.cn/, accessed on 24 June
2021) shows that 197 countries have signed the United Nations Convention to Combat
Desertification (UNCCD) as of January 2019; the problem has not been alleviated in recent
decades and has instead progressively worsened [2,3]. Monitoring land degradation and
revealing its characteristics is essential for the management and restoration of land quality.
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Salinization induces land degradation, and this ecological problem is more prevalent
in drylands [4]. In particular, in most irrigated areas of Central Asia, high-salinity water
is used for irrigation, resulting in secondary salinization, which exacerbates land degra-
dation [5]. Moreover, a severe ecological disaster was initiated with the gradual retreat of
the Aral Sea due to the massive expansion of agricultural practices [6]. Consequently, the
ecosystem around the Aral Sea has been almost destroyed, especially in the Amu Darya
delta (ADD) [7–9], which has become one of the most severely degraded areas worldwide
due to salinization [10]. The land degradation of the ADD caused by high levels of soil
salinization has led to ecological and socio-economic problems, such as the withering of
vegetation [5] and reduced agricultural yields [8]. Moreover, the ecology of the ADD is
vulnerable to hydrological changes due to its dry climate. With the expansion of agricul-
tural land, the structure of the water systems in the ADD has changed dramatically [8].
Numerous natural lakes and wetlands have disappeared and transformed into sparse
vegetation or bare land [10,11]. The increasing land degradation is threatening the stability
of ADD ecosystems [10]. However, the characteristics of land degradation in such a saline
region remain unclear.

In recent decades, land degradation has attracted considerable research attention
worldwide. Different indicators (e.g., vegetation index [12], desertification index [13],
etc.) and methods (e.g., Analytic Hierarchy Process (AHP) [14], Entropy Weighting and
Delphi [15], etc.) have been used to monitor land degradation. These studies have facili-
tated the understanding of the mechanism of land degradation at the regional and global
scales. However, the characteristics of land degradation are different for each region (e.g.,
rocky desertification [16], sandy [17], salinization [18], etc.) These studies do not take
into account the main characteristics of regional land degradation when establishing a
land degradation assessment framework or index, which may affect the accuracy of the
monitoring results. Previous studies have confirmed that the factors affecting land degrada-
tion vary region-wise [10,19]. Therefore, selecting indicators that are representative of the
ecological characteristics of the region during the assessment can increase the rationality
of the land degradation assessment. Then, in saline areas, the salinization index (SI) [20],
which reflects information on soil salinity, should be considered when monitoring land
degradation. In addition, indicators such as the normalized difference vegetation index
(NDVI) [21], albedo [22,23] and soil moisture [13,24], extracted from remote sensing data,
have been widely used to monitor regional land degradation. The NDVI is one of the
most widely used indicators to monitor the land degradation, as it can accurately reflect
the vegetation greenness and biomass information [25,26]. The surface albedo is closely
related to the soil exposure. The increase in albedo can be used as an indirect indicator to
detect the soil degradation in drylands [12,27]. Moreover, the land surface soil moisture
index (LSM) can reflect the soil water content and is a key indicator to monitor the land
degradation in drylands [28,29].

The combination of the aforementioned (NDVI, LSM, SI and albedo) indicators can
provide a comprehensive understanding of land degradation in salinized areas for the
reference of regional land management [10,12,30]. Thereby, a salinized land degradation
index (SDI), including information on the salinity, vegetation, soil moisture and bareness,
needs to be constructed to reflect the land degradation characteristics of salinized areas.
Recently a method based on the principal component analysis (PCA) was developed to
assess the regional ecological conditions [31–33]. The PCA method is a multidimensional
data compression technique. This method allows the characteristics of the indicators to
be coupled, and the weights of each factor are automatically and objectively assigned
according to the contribution of each factor to the principal component [31,34]. In contrast
to weighting methods such as AHP and Delphi, PCA prevents variations or errors in the
definitions of weights caused by individual subjective experience [35,36]. Therefore, in this
study, we attempted to (1) construct the SDI based on the PCA, (2) assess the reliability
of the SDI in monitoring land degradation in salinized areas and (3) explore the spatial
and temporal patterns of land degradation. Finally, the potential driving factors related
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to land degradation were discussed. Understanding the spatiotemporal characteristics of
land degradation can likely contribute to the management of ADD land and sustainability
of the ecosystem and provide guidance for future studies.

2. Materials and Methods

2.1. Study Area

The ADD is located south of the Aral Sea, downstream of the Amu Darya River
(Figure 1). The region runs through Turkmenistan and Uzbekistan and covers an area of
6.3 × 104 km2. The runoff from large permanent glaciers in the mountains and melting
snow are the main water sources of the Amu Darya River [37]. The ADD has a typical con-
tinental climate characterised by extreme dryness throughout the year. The average annual
temperature is approximately 13 ◦C [37]. The potential annual evapotranspiration can be
as high as 1600 mm, and the average annual precipitation is less than 100 mm [37]. Such a
dry climate makes the ADD one of the most ecologically fragile regions worldwide [9].

 
Figure 1. Location of the Amu Darya delta (ADD). Colour composite map of Landsat-8 OLI images
in the ADD for 2019 in a colour combination of shortwave-infrared band 1, near-infrared and red
band. Green represents vegetation, and brown represents bare soil.

However, as the main grain-producing region of the Aral Sea basin, dry climate and
land use changes due to agricultural expansion have further exacerbated the salinization
of the ADD [38]. Moreover, the changes in the political system after the disintegration
of the Soviet Union have led to intensified conflicts in the use of water resources among
different countries in the region, resulting in land degradation and a decline in the sta-
bility of the ecological system [39]. In this regard, a series of ecological conservation and
restoration projects have been implemented or are about to be launched to mitigate the
land degradation caused by salinization of the ADD [40]. Within this context, it is essential
to investigate the spatial and temporal characteristics of the land degradation in the ADD,
a typical salinized region, to provide reference for the ecosystem management of the delta.
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2.2. Data and Pre-Processing

The datasets used in this study included satellite images, field soil salinity, temper-
ature and precipitation, land use and water withdrawal and salt discharge data. The
satellite images from the United States Geological Survey (http://earthexplorer.usgs.gov/,
accessed on 5 June 2020), acquired on 19 July and 26 July 1990, July 21 and 30 July 2000,
10 July and 17 July 2010 (Landsat-5 TM) and 4 August and 11 August 2019 (Landsat-8
OLI/TIRS) were used. The selected images were in the growing season, and the time
phase was similar, and there was basically no cloud coverage, which ensured the accuracy
of the remote sensing index calculations [41,42]. The images were first radiometrically
corrected with ENVI 5.1 software to convert the digital numbers to irradiance values
and later atmospherically corrected using the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) module to eliminate the effects of noise generated during
the imaging process [43,44]. The images acquired at different times were geometrically
corrected using the two polynomials, and the root mean square error was controlled within
0.5 pixels [33]. Finally, the images were clipped based on the ADD boundary, and the water
bodies were masked using the modified normalised difference water index (MNDWI) [45].

The salinity data sampled in the field on 18 March 2019 (see Figure S1 and Table S1 for
details) were used to explore the feasibility of the SDI in assessing the land degradation in
salinized areas. The average annual precipitation and temperature records during 1980–
2016 were derived from Nukus Station in the ADD. The annual statistical data on water
withdrawal and salt discharge data for 1990–2015 were obtained from the Amu Darya
River basin database of the Inter-State Commission for Water Coordination of Central
Asia (ICWC, http://www.cawaterinfo.net/, accessed on 10 June 2020). The land use data
were obtained from the Xinjiang Institute of Ecology and Geography, Chinese Academy of
Sciences and interpreted based on the Landsat images from 1990, 2000, 2010 and 2019 that
have been applied in related studies in the ADD [10,46]. Following this dataset, the land
use types were divided into five categories: cropland, forest, grassland, built-up land and
bare soil.

2.3. Construction of the SDI
2.3.1. SI

Salinization is the major factor influencing the land degradation of the ADD. The
SI extracted from the remote sensing image has been shown to be able to assess the
characteristics of regional salinization [47–49]. In this work, an inversion model that has
been proved to be applicable in the ADD [10,50] was selected to construct the SI. The model
was derived using the following equation [20]:

SI =
√
ρBlue × ρRed (1)

where ρBlue and ρRed are the blue and red bands of the Landsat TM and OLI
imagery, respectively.

2.3.2. Albedo

The albedo is a key physical parameter related to the soil exposure [51]. In general,
the albedo is higher in desert areas due to the sparse vegetation and soil exposure, and
areas with high vegetation cover exhibit a lower albedo [23,52]. Therefore, the albedo was
chosen to represent the surface exposure, and it was calculated as follows [51]:

Albedo = 0.356 ρBlue + 0.130 ρRed + 0.373 ρNIR + 0.085 ρSWIR1
+0.072 ρSWIR2 − 0.018

(2)

where ρBlue, ρRed, ρNIR, ρSWIR1 and ρSWIR2 denote the blue, red, near-infrared and
two shortwave-infrared bands of the Landsat TM and OLI imagery, respectively. These
bands are the same as those referred to in the following text.

280



Remote Sens. 2021, 13, 2851

2.3.3. NDVI

The NDVI is based on the structure absorbed by the plant leaf surface that reflects the
parameters of the plant biomass and vegetation coverage [53]. This parameter has been
successfully used to monitor land degradation at different scales [54], and its expression is
as follows:

NDVI = (ρNIR – ρRed)/(ρNIR + ρRed) (3)

2.3.4. LSM

The LSM is crucial to regulate the vegetation productivity, and it directly affects
the regional land degradation [55]. The LSM can be calculated using the tasselled cap
transformation through the following formulas [56,57]:

LSMTM = 0.0315 ρBlue + 0.2021 ρGreen + 0.3102 ρRed + 0.1594 ρNIR
–0.6806 ρSWIR1–0.6109 ρSWIR2

(4)

LSMOLI = 0.1511 ρBlue + 0.1972 ρGreen + 0.3283 ρRed + 0.3407 ρNIR
–0.7117 ρSWIR1–0.4559 ρSWIR2

(5)

where ρ denotes the corresponding bands of the Landsat TM and OLI imagery.

2.3.5. Constructing SDI Based on PCA

In this study, based on previous studies [33,58,59], the PCA method was used to
synthesize the four selected indicators (SI, albedo, NDVI and LSM) to construct the SDI.
Before using the PCA method to couple the SDI for 1990, 2000, 2010 and 2019, respectively,
it is necessary to normalise the four indicators in the range of 0 to 1 [58] by Equation (6).
The SDI obtained using Equation (7) and higher values of the SDI revealed more severe
land degradation. Figure 2 illustrates the processing for SDI.

Inormal = (I − Imin)/(Imax − Imin) (6)

SDI = PC1[f(SI, Albedo, NDVI, LSM)] (7)

where Inoraml is the index value after standardisation, I is the numerical value of this index,
and Imax and Imin are the maximum and minimum values of the relevant
index, respectively.

2.4. Spatial Autocorrelation Analysis

A spatial autocorrelation analysis is an effective way to test whether the values of
adjacent samples of a spatial variable are correlated [60]. In this study, the global Moran’s I
index and the local indicator of spatial association (LISA) were used to analyse the spatial
correlation of the SDI.

Moran’s I generates a global assessment for spatial autocorrelation, with Moran’s I
values ranging from −1 to 1 [61,62]. Moran’s I value > 0 means that the SDI has a positive
spatial autocorrelation, while Moran’s I value < 0 means that the SDI has a negative spatial
autocorrelation. The closer the value to 1, the stronger the positive spatial autocorrelation,
and the closer the value to −1, the stronger the negative spatial autocorrelation. Moran’s
I = 0 means that there is no spatial autocorrelation, and the SDI has a random spatial
distribution. The global Moran’s I index was calculated using the following equations:

I =
∑n

i ∑n
j �=i Wij(xi − x)(xj − x)

S2∑n
i ∑n

j �=i Wij
(8)

S2 =
1
n

n

∑
i
(xi − x)2 (9)

x =
1
n

n

∑
i(j)

xi(j) (10)
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ZScore =
1 − E(I)√

Var(I)
(11)

where xi and xj are the values of the SDI at spatial locations i and j, respectively, x is the
mean value of the SDI, S2 is the mean squared deviation of the SDI, Wij is the spatial weight
value, which is expressed by the n-dimensional matrix W(n×n), var(I) is the variance of
Moran’s I, and E(I) is the expected value of Moran’s I.

 

Figure 2. Flowchart of construction salinized land degradation index (SDI). MNDWI: modified
normalised difference water index; NDVI: normalised difference vegetation index; LSM: land surface
soil moisture index; SI, salinization index; PCA: principal component analysis; SDI: salinized land
degradation index.

LISA is a local statistical method for spatial variables that reveals the spatial clustering
characteristics of observations within spatially adjacent regions [33,60]. A positive LISA
value indicates that the SDI is similar to the adjacent value and reveals a spatial pattern of
high–high clustering (H–H, high values are near other high values) or low–low clustering
(L–L, low values are near other low values). A negative LISA value indicates that the SDI
is a spatial outlier and can include a high–low outlier value (H–L, a high value is near a
low value) and a low–high outlier value (L–H, a low value is near a high value).

3. Results

3.1. Integration of the Remote Sensing Indexes Based on PCA

The SDI of the ADD was calculated by the PC1 of the four indicators. The PC1 results
shown in Table 1 indicated that, during the studied years, the percent eigenvalues of PC1
were higher than 78%, revealing that PC1 integrated most of the information of the four
indictors. Therefore, PC1 was chosen to construct the SDI in this study. The loading values
of the four variables in PC1 were divided into two types according to their signs. The
albedo and SI comprised one type with loading values that were positive, and the NDVI
and LSM comprised the second type with loading values that were negative. The opposite
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signs of the two variables indicated that the corresponding contributions to the SDI value
were opposing.

Table 1. Loadings of the four selected variables on the first principal component (PC1) and associated
contributions in different study years.

1990 2000 2010 2019

Loading of the SI 0.58 0.64 0.57 0.61
Loading of albedo 0.23 0.43 0.23 0.26

Loading of the NDVI –0.32 –0.16 –0.46 –0.24
Loading of LSM –0.71 –0.62 –0.64 –0.71

Eigenvalue contribution
percentage (%) 78.61 83.24 86.35 87.67

SI: salinization index (SI); NDVI: normalised difference vegetation index; LSM: land surface soil moisture index.

The descriptive statistics of the PC1 indicated that the average PC1 value increased
from 0.42 in 2010 to 0.43 in 2000, and the medium value of PC1 also increased from 0.38
to 0.40 (Table 2). From 2010 to 2019, on the contrary, the average PC1 value decreased
from 0.41 to 0.30, and the medium value of PC1 also decreased from 0.38 to 0.28. The
positive skewness in 1990, 2000, 2010 and 2019 indicated that the tail on the right side of the
probability density function was longer or fatter than the left side. Overall, the statistical
results of PC1 showed that land degradation accelerated from 1990 to 2000 and weakened
from 2010 to 2019.

Table 2. Description statistics of PC1.

Minimum Maximum Mean Median Skewness Kurtosis
Standard
Deviation

1990 0.04 1.15 0.42 0.38 0.48 −0.33 0.19
2000 0.04 1.21 0.43 0.40 0.31 0.14 0.16
2010 0.03 1.12 0.41 0.38 0.49 −0.71 0.18
2019 0.04 1.12 0.30 0.28 0.42 −0.80 0.18

Furthermore, the correlation coefficient between each indicator and the SDI and that
among the indicators are shown in Figure 3 (at the 0.01 level of significance). For four
years, the SDI exhibited a high correlation with each single indicator. In general, the SDI
exhibited a positive correlation with the SI and albedo and a negative correlation with
the NDVI and LSM (Figure 3). The SI exhibited the highest correlation with the SDI, and
the positive correlations were 0.971, 0.983, 0.973 and 0.972 in 1990, 2000, 2010 and 2019,
respectively. The albedo exhibited the highest negative correlation with the SDI in 2000,
and the correlation was 0.915. The NDVI exhibited the highest correlation with the SDI
in 2019 (−0.885). The correlation coefficients between the LSM and SDI were greater than
−0.72, and the highest correlation with the SDI was observed in 2000 (−0.911).

 

Figure 3. Correlations between pairs of the four selected indicators and their correlations with the
SDI in different study years. SI: salinization index; NDVI: normalised difference vegetation index;
LSM: land surface soil moisture index; SDI: salinized land degradation index. The blue and red
colours represent negative and positive correlations, respectively (the darker the colour, the stronger
the correlation).
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3.2. Spatiotemporal Changes in the Land Degradation

To analyse the spatiotemporal characteristics of the land degradation during the
different periods in the ADD, the SDI values were normalised by Equation (6) (range of
0 to 1). As the SDI approximates a normal distribution, we divided it into five categories
by equal intervals to indicate the different land degradation levels [36,58]—namely, no
degradation (0–0.2), slight degradation (0.20–0.4), moderate degradation (0.4–0.6), strong
degradation (0.6–0.8) and extreme degradation (0.8–1). In summary, the land degradation
level distribution was not uniform in space and varied over space and time. As shown
in Figure 4, in terms of the land degradation level distribution, the extreme and strong
degradation areas were clustered in the west and north of the ADD during the studied
years. Areas with moderate degradation corresponded to a sporadic distribution in the
middle and south of the ADD. Most areas in the middle of the ADD exhibited a slight
degradation. The spatial distribution of the not-degraded areas in the study area showed a
difference in the 4 years: in 1990 and 2000, the not-degraded areas were mainly distributed
along the Amu Darya River, and a small portion appeared in the northwest and northeast
corners of the ADD; in contrast, the not-degraded areas were mainly distributed in the
middle of the study area in 2010 and 2019 and formed a “V” shape.

Figure 4. Spatial distribution of the land degradation levels in the ADD in each study year. Ex-
treme: extreme degradation; Strong: strong degradation; Moderate: moderate degradation; Slight:
slight degradation.

Figure 5 shows the percentage of the study area occupied by the five land degradation
levels in 1990, 2000, 2010 and 2019. In general, the largest areas in the ADD were slight
degradations in the years 1990–2019, which accounted for more than 26% of the total area
covered by the Landsat images. From 1990 to 2000, the areas with extreme, strong and no
degradation decreased, whereas the areas with slight and moderate degradations increased.
From 2000 to 2010, the areas with extreme, strong and no degradation expanded; among
which, the expansion of the no degradation regions was significant. In contrast, the areas

284



Remote Sens. 2021, 13, 2851

with slight and moderate degradations exhibited a decreasing trend; in particular, for the
areas with a slight degradation, the dynamic degree was 7%. From 2010 to 2019, a small
increase from 13.30% to 15.56% of the total area was observed in the area with moderate
degradation, and the areas of the other four levels did not change considerably.

 

Figure 5. Proportion of land degradation levels in different study years. Extreme: extreme degrada-
tion; Strong: strong degradation; Moderate: moderate degradation; Slight: slight degradation.

Using a spatial analysis, the land degradation spatial distribution changes from 1990
to 2000, 2000 to 2010, 2010 to 2019 and 1990 to 2019 were mapped (Figure 6). We defined
the figure elements as follows: development of land degradation across levels 1 or 2 corre-
sponded to “Developed” (e.g., a change from “No degradation” to “Slight degradation” or
“Moderate degradation”), a development across levels 3 or 4 corresponded to “Seriously
developed” (e.g., a change from “No degradation” to “Strong degradation” or “Extreme
degradation”), an improvement of the land degradation across levels 1 or 2 corresponded
to “Improvement” (e.g., a change from “Extreme degradation” to “Strong degradation” or
“Moderate degradation”), an improvement across levels 3 or 4 corresponded to “Significant
improvement” (e.g., a change from “Extreme degradation” to “Slight degradation” or “No
degradation”), and no change during the study periods corresponded to “Stable”. The
areas of land degradation dynamics for the four periods are shown in Table 3.

Table 3. Area and proportion of land degradation developed or an improvement of the ADD during
different time periods.

Type
1990–2000 2000–2010 2010–2019 1990–2019

km2 % km2 % km2 % km2 %

Seriously
developed 130.0 1.1 110.1 0.9 40.3 0.3 217.8 1.8

Developed 2687.5 22.5 3728.8 31.3 2438.0 20.5 2901.7 24.3

Stable 5291.8 44.4 5094.0 42.7 7061.7 59.2 5385.8 45.2
Improvement 3653.8 30.6 2886.0 24.2 2354.3 19.7 3314.7 27.8

Significant
improvement 160.5 1.4 104.8 0.8 29.8 0.3 103.4 0.9
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Figure 6. Spatial distribution of land degradation developed or improvement in the ADD in different
time periods.

Overall, the stable areas accounted for a large proportion (more than 42%) during
the four study periods (Table 3), and these areas were mainly located west and southeast
of the ADD. From 1990 to 2000, the improvement areas covered 3653.78 km2 (30.6%),
and these areas were mainly clustered north of the ADD (Figure 6). Additionally, the
developed areas covered 2687.53 km2 (22.5%), and these areas mainly occupied the south
and middle regions of the ADD. A smaller proportion (1.4%) of significant improvement
areas was observed in the northern part of the ADD. In comparison, the proportion of
the seriously developed areas was smaller (1.1%), and these areas were mainly located
in the northwest corner of the ADD. From 2000 to 2010, the developed areas covered
3728.76 km2 (31.3%), and the areas were mainly concentrated in the northern part of the
study area. The improvement areas covered 2886.02 km2 (24.2%) from 2000 to 2010 and
were mainly located in the eastern and central parts of the ADD. The areas of seriously
developed and significant improvement exhibited smaller proportions—0.92% and 0.88%,
respectively—and the seriously developed areas were mainly observed downstream of the
ADD. Compared with those in 2000–2010, during 2010–2019, the areas with developed,
and the improvements exhibited decreasing trends and occupied 20.5% and 19.7% of the
total area, respectively. Moreover, these regions were mainly clustered in the downstream
of the ADD. The seriously developed and significant improvement areas occupied less
than 0.4% of the total area. From 1990 to 2019, the developed areas covered 2901.65 km2

(24.3%) and were mainly concentrated north of the ADD and in the downstream region of
the Amu Darya River. The improvement regions, which occupied 27.8% of the total area,
were mainly observed in the west and east of the ADD. The seriously developed regions,
with an area of approximately 217.75 km2, were mainly concentrated in the north of the
ADD, and the areas with significant improvement were smaller, accounting for only 0.9%
of the total area.
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3.3. Spatial Autocorrelation Analysis of the SDI

To further clarify the spatial and temporal variabilities in the land degradation, the
spatial autocorrelation of the SDI was examined.

The mapping of the global spatial autocorrelation of the SDI is shown in Figure 7.
Most of the SDI values are distributed in the first and third quadrants, with H–H and L–L
clustered in the first and third quadrants, respectively, indicating a strong positive spatial
correlation between the spatial units in these two quadrants. The Moran’s I values in 1990,
2000, 2010 and 2019 were 0.888, 0.856, 0.891 and 0.851, respectively, which were high values
greater than zero. The results showed that the SDI of the ADD exhibited significant spatial
clustering, which indicated a strong positive spatial correlation. The Moran’s I values of the
SDI decreased, increased and later decreased again in 1990, 2000, 2010 and 2019, exhibiting
an overall decreasing trend during the study period.

Figure 7. Moran scatter plot of the SDI in the ADD for each study year.

3.4. Spatial and Temporal Changes in Land Use and Salinization

Figure 8 displays the land use maps for 1990, 2000, 2010 and 2019. These land use
maps indicated that croplands were the dominant land use type in the ADD. Grassland
and forest were distributed in the north of the ADD and bare soil mainly in the edge
and north of the ADD. Figure 8b displays the spatial variations in the land use types.
The combinations with no land use type transformations, smaller conversion areas and
built-up land transformations were merged into “Stable and others”. From 1990 to 2010,
the conversion of land use categories was mainly between grasslands and croplands. The
conversion from grassland to cropland (GL to CL) was prominent in the northern part
of the ADD, where the area of grassland decreased by 158.74 km2 and 338.93 km2 from
1990 to 2000 and 2000 to 2010, respectively (Table 4). However, the conversion of land use
categories from 2010 to 2019 was mainly cropland to grassland (CL to GL), which was
distributed in the northern and western parts of the ADD. The area of cropland decreased
by 602.26 km2, and the area of grassland increased by 492.37 km2 during this period. In
addition, there was partial degradation of grassland to bare soil (GL to BS) in the northern
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part of the ADD from 2010 to 2019. The conversion of land use categories throughout the
study period was mainly from grassland to cropland and cropland to grassland.

Figure 8. Land use change maps from 1990 to 2019. CL: cropland; GL: grassland; FR: forest; BS: bare
soil. (a) land use maps for 1990, 2000, 2010 and 2019; (b) changes between different periods.

Table 4. Areas and percentages of different land use types from 1990 to 2019 in the ADD.

1990 2000 2010 2019

Type km2 % km2 % km2 % km2 %

Bare soil 2165.71 18.42 1968.62 16.74 1946.80 16.56 1989.45 16.92
built-up land 205.52 1.75 528.64 4.50 570.81 4.85 588.47 5.00

Cropland 6593.86 56.08 6624.91 56.34 6952.42 59.13 6350.16 54.01
Grassland 2412.67 20.52 2253.93 19.17 1915.46 16.29 2407.83 20.48

Forest 380.66 3.24 382.32 3.25 372.93 3.17 422.51 3.59

Figure 9 reveals the spatial distribution (Figure 9a) and variation (Figure 9b) of the
SI over the study time period. The values of the SI were larger at the edges and north
of the ADD and smaller in the centre. The SI in the northern part of the ADD decreased
from 1990 to 2000, while it increased significantly from 2000 to 2010. From 2010 to 2019,
the SI increased slightly in the central part of the ADD and decreased in the northeast.
Throughout the study period (1990–2019), the SI increased significantly in the northern
part of the ADD and decreased at the edges. To reveal the relationship between land use
change and salinization, the mean SI values for each land use type (built-up land and water
were excluded) were calculated in Figure 10. The mean value of the SI for the land use type
was the largest in 2000 compared to the other three years, indicating higher soil salinization.
The mean value of the SI for the land use type was the largest in 2000 compared to the
other three years, indicating higher soil salinization, with a decreasing trend in the SI from
2000 to 2019. Within each year, bare soil had the largest mean value of the SI, followed by
grassland and forest.

The dynamic characteristics of salinization during land use change were illustrated in
Figure 11. The ΔSI represents the difference in the SI over the study period (the following
year minus the previous year). We counted a percentage of areas with ΔSI < 0 and ΔSI < 0
over the course of each land use type transfer. The SI increased during all land use type
changes from 1990 to 2000 (more than 50% of the area with ΔSI > 0), which was related to
the maximum SI value in 2000 mentioned earlier. The 2000–2010 SI values decreased for
BS-CL and GL-CL (ΔSI < 0 over 80% of the area). The area with ΔSI < 0 dominated the
land use change process from 2010 to 2019. During the conversion of bare soil to cropland
(BS-CL), forest (BS-FR) and grassland (BS-GL) from 1990 to 2019, the area with ΔSI < 0
exceeded 50%, indicating a decrease in the SI.
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Figure 9. Spatial distribution of soil salinization from 1990 to 2019 (a) and spatial distribution of the
salinity index (SI) changes between different periods (b).

Figure 10. Mean values of the salinity index (SI) for land use types over the study period.
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Figure 11. The percentage of ΔSI area for the land use categories that changed during the study
period. ΔSI: the salinity index (SI) of the next year minus the SI of the previous year. BS–CL: bare
soil to cropland; BS–FR: bare soil to forest; CL–GL: cropland to grassland; FR–BS: forest to bare soil;
GL–BS: grassland to bare soil; GL–CL: grassland to cropland; BS–GL: bare soil to grassland.

4. Discussion

4.1. Effectiveness of the Proposed SDI

In this study, we established a new SDI by integrating the SI, albedo, NDVI and LSM
indices based on the PCA method. The SDI was used to explore the land degradation
characteristics for a typical salinized area, i.e., the ADD. We found that the regions with
extreme land degradation were mainly distributed downstream and at the periphery of the
ADD (Figure 4). The SDI-based results supported previous findings that the ecological risks
and vulnerabilities are higher in the downstream and peripheral regions of the ADD [10,46],
thereby demonstrating that the SDI can reflect the land degradation conditions of the ADD.
To further evaluate the effectiveness of the proposed SDI, we evaluated its effectiveness by
field survey data (Figure S1 and Table S1). The relationship between the SDI and soil salt
content shown in Figure 12 indicates that the soil salt content was significantly positively
correlated with the SDI (R2 = 0.89, p < 0.001). The relationships between the four indices
derived from Landsat imagery in 2019 and field-measured soil salinity are also presented
in Figure S2. There was a positive correlation between the SI, albedo and measured soil
salinity (R2 = 0.41 and 0.43, respectively) and a negative correlation between the NDVI,
LSM and measured soil salinity (R2 = 0.29 and 0.19, respectively). In contrast to the single
indices, the SDI showed a stronger agreement with the measured soil salinity. In general,
although the land degradation is influenced by multiple aspects of the environment, this
positive correlation suggests that the SDI can capture the salinity features pertaining to the
land degradation, which provides potential evidence for the effectiveness of the index in
monitoring the land degradation in salinized areas. In addition, the SI extracted from the
remote sensing data exhibits a positive correlation with the SDI (Figure 3). The reliability of
the SDI is also reflected in the other three indicators. High vegetation cover and sufficient
soil moisture reduce the risk of land degradation, and this finding is supported by the
negative correlation between the SDI and NDVI and LSM in our study (Figure 3). An
increase in the albedo values leads to a higher SDI, which is related to the exposure
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information represented by the albedo and may be attributed to a strong coupling between
the soil salinity information and albedo (Table 1 and Figure 3). These characteristics have
also been reported previously [33]. These results indicate that the SDI can help reliably
and efficiently monitor the land degradation of salinized areas. In addition, the SDI is
composed of accessible remote sensing indicators and can thus be extended to other similar
ecological environments [35,59,63].

 
Figure 12. Relationship between the SDI and field-measured soil salt content.

4.2. Factors Influencing the Land Degradation in the ADD

Climate variables mainly affect the land degradation through changes in the precipi-
tation and temperature [10,64]. The annual mean precipitation (AMP) and annual mean
temperature (AMT) of Nurkus Weather Station are shown in Figure 13. It can be noted that
the AMP decreased and AMT increased in the ADD in the past 40 years. From 1990 to 2019,
land degradation developed over an area of more than 3000 km2 (Table 3). Previous studies
have raised concerns regarding the withering of grasslands and sparse vegetation caused
by warming and dry climates in the ADD, warning that these aspects could accelerate land
degradation [10,65].

Figure 13. Changes in the annual mean precipitation and temperature measured at Nurkus
Station from 1980 to 2016.
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Amu Darya River is the main source of water for ADD living and irrigation. Over-
watering has disrupted the water system of the ADD, leading to the disappearance of
an amount of lakes, followed by local climate change, which has reduced the ecosystem
stability of the ADD, particularly in the downstream region [7,10]. The widespread use of
diffuse irrigation has caused individuals to compensate for inefficient irrigation by collect-
ing large amounts of water, resulting in a reduction in the ecological water that sustains the
ecosystems and the gradual withering of vegetation without sufficient water to support
growth [9,66,67], exacerbating the land degradation. The extent of the land degradation
followed the same trend as that of the water withdrawal from Amu Darya River. With
the decline in the water withdrawal in 1990–2000 (Figure 14), the improvement in ADD
land degradation was most pronounced, while, in 2000–2019, as the water withdrawal
increased, the land degradation developed in a larger area than the improvement area. A
more critical situation is that the reservoir built in the upper reaches of the Amu Darya
River intercepted a large amount of the water [66], resulting in a decrease in the supply
of ecological water downstream. The ecological effects caused by these factors were con-
firmed by our research: The land degradation downstream of the ADD was significantly
degraded compared with the region in the study period (Figures 4 and 6). In addition, the
higher levels of land degradation in the outer delta, farther from Amu Darya River, were
likely caused by the lack of water supply to the ecosystem and the difficulties in the land
management in the transboundary area [46,68]. This finding indicates that, to alleviate the
ADD land degradation and the ecological crisis in the Aral Sea basin, further effort and
cooperation is necessary in the rational allocation of water resources.

Figure 14. Annual changes in the water withdrawal and salt discharge in the ADD from 1990 to 2015.

In addition, the impacts of land-use changes on the land degradation cannot be ig-
nored [10,69,70]. The consolidation and management of croplands can contribute to the
mitigation of land degradation, and our research supports this perspective. We demon-
strated that the area with no degradation occupied a larger proportion of cropland during
most of the study period, while the area with extreme land degradation was mainly dis-
tributed on bare soil (Figure 15). In general, the risk of land degradation was reduced when
land with sparse vegetation and bare soil was reclaimed as cropland, as crops contribute
to higher ecosystem productivity and stability. Land degradation is more severe in the
northern part of the ADD, where part of the cropland has been abandoned and converted
into grassland or bare soil (Figure 8). Previous studies have indicated that the ADD is
facing an ecological threat posed by the degradation of grasslands and croplands to bare
soil [10,46]. Compared to the other land use categories, bare soil has a higher soil salinity
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(Figure 10), and the conversion of land use types to bare soil not only reduces the biomass
but also increases the risk of soil salinization.

 

Figure 15. Percentage graphs showing the proportion of each land degradation level in different
land use types. Extreme: extreme degradation; Strong: strong degradation; Moderate: moderate
degradation; Slight: slight degradation.CL: cropland; FR: forest; GL: grassland; BS: bare soil.

However, to reduce the salt content of croplands, a large amount of water is acquired
from Amu Darya River to rinse the cropland soil, which further aggravates the water deficit
of other ecosystems. In addition, the excess salinity from croplands is discharged by widely
distributed channels to the Amu Darya River, as well as to the lakes downstream of the
delta, resulting in increased salinity in the river water and a significant accumulation of
salinity downstream (Figure 9) [10]. The increase in the discharge was the most significant
after 2000 (Figure 14). The extreme land degradation distribution patterns were noted to be
clustered downstream of the ADD (Figures 4 and 6). These ecological effects caused by the
large accumulation of salt in the downstream region were confirmed by our research. In
addition, with the disintegration of the Soviet Union, the socialist economy turned into a
market economy, and the gradual influx of the rural population into cities led to certain
croplands eventually transforming into unused lands with a low biodiversity [71], thereby
accelerating land degradation.

The 15th initiative of the Sustainable Development Goals (SDGs) aims to achieve land
degradation neutrality by 2030. To effectively alleviate land degradation of the ADD and
promote the further realisation of SDGs, based on the abovementioned factors influencing
the SDI, the following corresponding measures and countermeasures are proposed. First,
salinization treatment technology should be implemented to alleviate the promotion of
land degradation caused by salinity, and reservoirs for storing salt can be built to reduce
the ecological pressure caused by the transportation of salt from the alkali drainage canal
that discharges into the downstream area of the ADD. Second, a drip irrigation system can
be promoted to achieve precision irrigation and enhance the irrigation efficiency to relieve
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the pressure of water resources required to maintain the stability of the land degradation.
Furthermore, farmers are encouraged to maintain the stability and biodiversity of croplands
through agricultural subsidy policies. In addition, ecological conservation projects can be
considered to mitigate the impacts of climate change on the land degradation.

5. Conclusions

We coupled multiple remote sensing indices (SI, NDVI, albedo and LSM) to construct
a new SDI by using the PCA method. The proposed index integrated the soil salinity,
soil bareness, soil moisture and vegetation coverage and made it possible to identify the
characteristics of the regional land degradation, especially in salinized areas. To test the
reliability of the SDI, the index was applied to the typical ADD region to monitor the spatial
and temporal dynamics of the land degradation.

The results indicated that the NDVI and LSM adversely influenced the land degrada-
tion, while the SI and albedo had positive effects. The SI was strongly positive correlated
with the SDI, with an average correlation coefficient of 0.97. Regions with extreme and
strong land degradation were mostly clustered west and north of the ADD. The temporal
and spatial dynamics of the SDI indicated that the land degradation in the ADD developed
by approximately 26% (including seriously developed and developed areas) from 1990
to 2019, and the degradation was mainly concentrated in the downstream region of the
ADD. The areas exhibiting improvement accounted for approximately 28% of the total
area of the ADD and were mainly centred in the eastern and central parts. Among them,
the area of land degradation developed from 2000 to 2010 was the largest (approximately
32%), while the improvement area was 25%. The results of spatial autocorrelation analysis
showed that the SDI values of Moran’s I in 1990, 2000, 2010 and 2019 were 0.89, 0.86, 0.89
and 0.85, respectively, which showed that the SDI was clearly clustered in space rather
than randomly distributed.

The drying climate and excessive water withdrawal from the Amu Darya River exac-
erbated the land degradation in the ADD, especially in 2000–2019; as the water withdrawal
increased, the land degradation developed into a larger area than the improvement area.
The expansion of unused land increases the risk of land degradation, with higher levels of
land degradation on unused land than on other types during the study period. In addition,
a large amount of salt discharged from croplands downstream of the ADD results in the
downstream being the most degraded area of land.

Clarifying the characteristics of land degradation of salinized areas is conducive to the
restoration and promotion of sustainable terrestrial ecosystems. Our study revealed land
degradation characteristics at the interannual scale of the ADD based on the SDI, which
provided an efficient decision-making basis for regional land management. Nevertheless,
some limitations still exist in this research. For example, the seasonal and continuous
dynamics of land degradation have not been taken well into consideration due to the
limited temporal resolution of the Landsat satellites. Constructing a SDI with the high
temporal resolution MODerate resolution Imaging Spectroradiometer (MODIS) has the
potential to enable the seasonal and continuous temporal monitoring of land degradation
on a large scale, which is further work that deserves to be advanced.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13152851/s1: Figure S1: Soil sampling sites of the ADD. Table S1: Field sampling data of
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Author Contributions: T.Y. and G.J. designed the research. T.Y. processed the data and wrote the
manuscript. A.B. and G.Z. revised the manuscript. L.J., Y.Y. and X.H. provided the analysis tools and
technical assistance. All authors contributed to the final version of the manuscript by proofreading
and offering constructive comments. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Strategic Priority Research Program of Chinese
Academy of Sciences (Grant No. XDA19030301) and the Open Foundation of State Key Laboratory

294



Remote Sens. 2021, 13, 2851

of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of
Sciences (G2019-02-03).

Data Availability Statement: The data is available upon request.

Acknowledgments: We thank the journal’s editors and reviewers for their kind comments and
valuable suggestions to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gisladottir, G.; Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 2005, 16, 99–112.
[CrossRef]

2. Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [CrossRef]
3. Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015, 6,

166–171. [CrossRef]
4. D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour.

2013, 51, 326–344. [CrossRef]
5. Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A. Satellite Thermography for Soil Salinity Assessment of Cropped Areas in

Uzbekistan. Land Degrad. Dev. 2017, 28, 870–877. [CrossRef]
6. MICKLIN, P.P. Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union. Science 1988, 241, 1170–1176.

[CrossRef]
7. Dubovyk, O.; Menz, G.; Khamzina, A. Land Suitability Assessment for Afforestation with Elaeagnus AngustifoliaL. in Degraded

Agricultural Areas of the Lower Amudarya River Basin. Land Degrad. Dev. 2014, 27, 1831–1839. [CrossRef]
8. Khamzina, A.; Lamers, J.P.A.; Vlek, P.L.G. Tree establishment under deficit irrigation on degraded agricultural land in the lower

Amu Darya River region, Aral Sea Basin. For. Ecol. Manag. 2008, 255, 168–178. [CrossRef]
9. Schlüter, M.; Khasankhanova, G.; Talskikh, V.; Taryannikova, R.; Agaltseva, N.; Joldasova, I.; Ibragimov, R.; Abdullaev, U.

Enhancing resilience to water flow uncertainty by integrating environmental flows into water management in the Amudarya
River, Central Asia. Glob. Planet. Chang. 2013, 110, 114–129. [CrossRef]

10. Jiang, L.; Jiapaer, G.; Bao, A.; Li, Y.; Guo, H.; Zheng, G.; Chen, T.; De Maeyer, P. Assessing land degradation and quantifying its
drivers in the Amudarya River delta. Ecol. Indic. 2019, 107, 105595. [CrossRef]

11. Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events
and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [CrossRef]

12. Mariano, D.A.; Santos, C.A.C.D.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote
sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil.
Remote. Sens. Environ. 2018, 213, 129–143. [CrossRef]

13. Jiang, L.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Gafforov, K.; Kurban, A.; De Maeyer, P. Monitoring land sensitivity to
desertification in Central Asia: Convergence or divergence? Sci. Total Environ. 2019, 658, 669–683. [CrossRef]

14. Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and
assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [CrossRef]

15. Cheng, W.; Xi, H.; Sindikubwabo, C.; Si, J.; Zhao, C.; Yu, T.; Li, A.; Wu, T. Ecosystem health assessment of desert nature reserve
with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert. Ecol. Indic. 2020, 119, 106843.
[CrossRef]

16. Pei, J.; Wang, L.; Wang, X.; Niu, Z.; Kelly, M.; Song, X.-P.; Huang, N.; Geng, J.; Tian, H.; Yu, Y.; et al. Time Series of Landsat
Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sens. 2019,
11, 2044. [CrossRef]

17. Li, J.; Xu, B.; Yang, X.; Qin, Z.; Zhao, L.; Jin, Y.; Zhao, F.; Guo, J. Historical grassland desertification changes in the Horqin Sandy
Land, Northern China (1985–2013). Sci. Rep. 2017, 7. [CrossRef]

18. Jin, Z.; Guo, L.; Wang, Y.; Yu, Y.; Lin, H.; Chen, Y.; Chu, G.; Zhang, J.; Zhang, N. Valley reshaping and damming induce water
table rise and soil salinization on the Chinese Loess Plateau. Geoderma 2019, 339, 115–125. [CrossRef]

19. Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan
Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [CrossRef]

20. Khan, N.M.; Sato, Y. Environmental land degradation assessment in semi-arid Indus basin area using IRS-1B LISS-hII data. In
Proceedings of the Igarss 2001: Scanning the Present and Resolving the Future, Sydney, Australia, 9–13 July 2001; Volume 5,
pp. 2100–2102.

21. Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234.
[CrossRef]

22. Zhao, Y.; Wang, X.; Novillo, C.J.; Arrogante-Funes, P.; Vázquez-Jiménez, R.; Berdugo, M.; Maestre, F.T. Remotely sensed albedo
allows the identification of two ecosystem states along aridity gradients in Africa. Land Degrad. Dev. 2019, 30, 1502–1515.
[CrossRef]

295



Remote Sens. 2021, 13, 2851

23. Houspanossian, J.; Giménez, R.; Jobbágy, E.; Nosetto, M. Surface albedo raise in the South American Chaco: Combined effects of
deforestation and agricultural changes. Agric. For. Meteorol. 2017, 232, 118–127. [CrossRef]

24. Kumar, S.; Singh, A.K.; Singh, R.; Ghosh, A.; Chaudhary, M.; Shukla, A.K.; Kumar, S.; Singh, H.V.; Ahmed, A.; Kumar, R.V.
Degraded land restoration ecological way through horti-pasture systems and soil moisture conservation to sustain productive
economic viability. Land Degrad. Dev. 2019, 30, 1516–1529. [CrossRef]

25. Holm, A. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of
Western Australia. Remote. Sens. Environ. 2003, 85, 145–158. [CrossRef]

26. Symeonakis, E.; Karathanasis, N.; Koukoulas, S.; Panagopoulos, G. Monitoring Sensitivity to Land Degradation and Desertification
with the Environmentally Sensitive Area Index: The Case of Lesvos Island. Land Degrad. Dev. 2016, 27, 1562–1573. [CrossRef]

27. Liu, F.; Chen, Y.; Lu, H.; Shao, H. Albedo indicating land degradation around the Badain Jaran Desert for better land resources
utilization. Sci. Total Environ. 2017, 578, 67–73. [CrossRef] [PubMed]

28. Ibrahim, Y.; Balzter, H.; Kaduk, J.; Tucker, C. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g,
Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [CrossRef]

29. Yang, C.; Li, Q.; Chen, J.; Wang, J.; Shi, T.; Hu, Z.; Ding, K.; Wang, G.; Wu, G. Spatiotemporal characteristics of land degradation
in the Fuxian Lake Basin, China: Past and future. Land Degrad. Dev. 2020, 31, 2446–2460. [CrossRef]

30. Sommer, S.; Zucca, C.; Grainger, A.; Cherlet, M.; Zougmore, R.; Sokona, Y.; Hill, J.; Della Peruta, R.; Roehrig, J.; Wang, G.
Application of indicator systems for monitoring and assessment of desertification from national to global scales. Land Degrad.
Dev. 2011, 22, 184–197. [CrossRef]

31. Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious
surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [CrossRef]

32. Guo, B.; Fang, Y.; Jin, X.; Zhou, Y. Monitoring the effects of land consolidation on the ecological environmental quality based on
remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [CrossRef]

33. Jing, Y.; Zhang, F.; He, Y.; Kung, H.-T.; Johnson, V.C.; Arikena, M. Assessment of spatial and temporal variation of ecological
environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 2020, 110, 105874. [CrossRef]

34. Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate
variability. Nature 2016, 531, 229–232. [CrossRef]

35. Hu, X.S.; Xu, H.Q. A new remote sensing index based on the pressure-state-response framework to assess regional ecological
change. Sci. Pollut. Res. 2019, 26, 5381–5393. [CrossRef]

36. Hu, X.S.; Xu, H.Q. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from
Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [CrossRef]

37. Lee, S.O.; Jung, Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin. Agric. Water Manag.
2018, 207, 80–90. [CrossRef]

38. Kumar, N.; Khamzina, A.; Tischbein, B.; Knöfel, P.; Conrad, C.; Lamers, J.P.A. Spatio-temporal supply–demand of surface water
for agroforestry planning in saline landscape of the lower Amudarya Basin. J. Arid Environ. 2019, 162, 53–61. [CrossRef]

39. Schettler, G.; Oberhänsli, H.; Stulina, G.; Mavlonov, A.A.; Naumann, R. Hydrochemical water evolution in the Aral Sea Basin. Part
I: Unconfined groundwater of the Amu Darya Delta—Interactions with surface waters. J. Hydrol. 2013, 495, 267–284. [CrossRef]

40. Ablekim, A.; Ge, Y.; Wang, Y.; Hu, R. The Past, Present and Feature of the Aral Sea. Arid Zone Res. 2019, 36, 7–18.
41. Shen, H.; Abuduwaili, J.; Ma, L.; Samat, A. Remote sensing-based land surface change identification and prediction in the Aral

Sea bed, Central Asia. Int. J. Environ. Sci. Technol. 2018, 16, 2031–2046. [CrossRef]
42. Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z.; et al. Monitoring and analysis of grassland

desertification dynamics using Landsat images in Ningxia, China. Remote. Sens. Environ. 2013, 138, 19–26. [CrossRef]
43. Bi, S.; Li, Y.; Wang, Q.; Lyu, H.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; Lei, S.; et al. Inland Water Atmospheric Correction Based

on Turbidity Classification Using OLCI and SLSTR Synergistic Observations. Remote Sens. 2018, 10, 1002. [CrossRef]
44. Nazeer, M.; Nichol, J.E.; Yung, Y.-K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an

urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [CrossRef]
45. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.

Int. J. Remote Sens. 2007, 27, 3025–3033. [CrossRef]
46. Yu, T.; Bao, A.; Xu, W.; Guo, H.; Jiang, L.; Zheng, G.; Yuan, Y.; Nzabarinda, V. Exploring Variability in Landscape Ecological Risk

and Quantifying Its Driving Factors in the Amu Darya Delta. Int. J. Environ. Res. Public Health 2019, 17, 79. [CrossRef] [PubMed]
47. Whitney, K.; Scudiero, E.; El-Askary, H.M.; Skaggs, T.H.; Allali, M.; Corwin, D.L. Validating the use of MODIS time series for

salinity assessment over agricultural soils in California, USA. Ecol. Indic. 2018, 93, 889–898. [CrossRef]
48. Yu, R.; Liu, T.; Xu, Y.; Zhu, C.; Zhang, Q.; Qu, Z.; Liu, X.; Li, C. Analysis of salinization dynamics by remote sensing in Hetao

Irrigation District of North China. Agric. Water Manag. 2010, 97, 1952–1960. [CrossRef]
49. Zhang, T.-T.; Zeng, S.-L.; Gao, Y.; Ouyang, Z.-T.; Li, B.; Fang, C.-M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to

monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [CrossRef]
50. Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study

from Turkey. Ecol. Indic. 2017, 74, 384–391. [CrossRef]
51. Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238.

[CrossRef]

296



Remote Sens. 2021, 13, 2851

52. Kuusinen, N.; Stenberg, P.; Korhonen, L.; Rautiainen, M.; Tomppo, E. Structural factors driving boreal forest albedo in Finland.
Remote Sens. Environ. 2016, 175, 43–51. [CrossRef]

53. Easdale, M.H.; Bruzzone, O.; Mapfumo, P.; Tittonell, P. Phases or regimes? Revisiting NDVI trends as proxies for land degradation.
Land Degrad. Dev. 2018, 29, 433–445. [CrossRef]

54. Zhumanova, M.; Mönnig, C.; Hergarten, C.; Darr, D.; Wrage-Mönnig, N. Assessment of vegetation degradation in mountainous
pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecol. Indic. 2018, 95, 527–543. [CrossRef]

55. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of
Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [CrossRef]

56. Baig, M.H.A.; Zhang, L.F.; Shuai, T.; Tong, Q.X. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite
reflectance. Remote Sens. Lett. 2014, 5, 423–431. [CrossRef]

57. Crist, E.P. A tm tasseled cap equivalent transformation for reflectance factor data. Remote. Sens. Environ. 1985, 17, 301–306.
[CrossRef]

58. Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment
based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [CrossRef]

59. Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI)
Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [CrossRef]

60. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
61. Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover

change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [CrossRef]
[PubMed]

62. Li, H.F.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model.
Geogr. Anal. 2007, 39, 357–375. [CrossRef]

63. He, C.Y.; Gao, B.; Huang, Q.X.; Ma, Q.; Dou, Y.Y. Environmental degradation in the urban areas of China: Evidence from
multi-source remote sensing data. Remote. Sens. Environ. 2017, 193, 65–75. [CrossRef]

64. Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy,
S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land
degradation and restoration. Ecol. Model. 2016, 319, 190–207. [CrossRef]

65. Asarin, A.E.; Kravtsova, V.I.; Mikhailov, V.N. Amudarya and Syrdarya Rivers and Their Deltas. In The Aral Sea Environment;
Kostianoy, A.G., Kosarev, A.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–121.

66. Shi, H.; Luo, G.; Zheng, H.; Chen, C.; Hellwich, O.; Bai, J.; Liu, T.; Liu, S.; Xue, J.; Cai, P.; et al. A novel causal structure-based
framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya
river basins. Hydrol. Earth Syst. Sci. 2021, 25, 901–925. [CrossRef]

67. Sun, J.; Li, Y.P.; Suo, C.; Liu, Y.R. Impacts of irrigation efficiency on agricultural water-land nexus system management under
multiple uncertainties-A case study in Amu Darya River basin, Central Asia. Agric. Water Manag. 2019, 216, 76–88. [CrossRef]

68. Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.P.A.; Tischbein, B. Remote sensing and hydrological measurement based irrigation
performance assessments in the upper Amu Darya Delta, Central Asia. Phys. Chem. Earth Parts A B C 2013, 61–62, 52–62.
[CrossRef]

69. Zhang, K.; Yu, Z.; Li, X.; Zhou, W.; Zhang, D. Land use change and land degradation in China from 1991 to 2001. Land Degrad.
Dev. 2007, 18, 209–219. [CrossRef]

70. Nababa, I.; Symeonakis, E.; Koukoulas, S.; Higginbottom, T.; Cavan, G.; Marsden, S. Land Cover Dynamics and Mangrove
Degradation in the Niger Delta Region. Remote Sens. 2020, 12, 3619. [CrossRef]

71. Zhou, Y.; Zhang, L.; Xiao, J.; Williams, C.A.; Vitkovskaya, I.; Bao, A. Spatiotemporal transition of institutional and socioeconomic
impacts on vegetation productivity in Central Asia over last three decades. Sci. Total Environ. 2019, 658, 922–935. [CrossRef]
[PubMed]

297





remote sensing 

Article

Soil Salinity Assessment in Irrigated Paddy Fields of
the Niger Valley Using a Four-Year Time Series of
Sentinel-2 Satellite Images

Issaka Moussa 1,2, Christian Walter 1,*, Didier Michot 1, Issifou Adam Boukary 3, Hervé Nicolas 1,

Pascal Pichelin 1 and Yadji Guéro 2

1 SAS, INRAE, Institut Agro, 35000 Rennes, France; issakam1968@gmail.com (I.M.);
didier.michot@agrocampus-ouest.fr (D.M.); herve.nicolas@agrocampus-ouest.fr (H.N.);
pascal.pichelin@agrocampus-ouest.fr (P.P.)

2 Faculty of Agronomy, University Abdou Moumouni, Niamey PO Box 10896, Niger; yadjidjibril@yahoo.fr
3 Institut National de la Recherche Agronomique du Niger (INRAN), Niamey 8001, Niger;

adamboukar@gmail.com
* Correspondence: christian.walter@inrae.fr; Tel.: +33-223485439

Received: 31 August 2020; Accepted: 8 October 2020; Published: 16 October 2020

Abstract: Salinization is a major soil degradation threat in irrigated systems worldwide. Irrigated
systems in the Niger River basin are also affected by salinity, but its spatial distribution and intensity
are not currently known. The aim of this study was to develop a method to detect salt-affected soils
in irrigated systems. Two complementary approaches were tested: salinity assessment of bare soils
using a salinity index (SI) and monitoring of indirect effects of salinity on rice growth using temporal
series of a vegetation index (NDVI). The study area was located south of Niamey (Niger) in two
irrigated systems of rice paddy fields that cover 6.5 km2. We used remote-sensing and ground-truth
data to relate vegetation behavior and reflectance to soil characteristics. We explored all existing
Sentinel-2 images from January 2016 to December 2019 and selected cloud-free images on 157 dates
that covered eight successive rice-growing seasons. In the dry season of 2019, we also sampled 44
rice fields, collecting 147 biomass samples and 180 topsoil samples from January to June. For each
field and growing season, time-integrated NDVI (TI-NDVI) was estimated, and the SI was calculated
for dates on which bare soil conditions (NDVI < 0.21) prevailed. Results showed that since there
were few periods of bare soil, SI could not differentiate salinity classes. In contrast, the high temporal
resolution of Sentinel-2 images enabled us to describe rice-growing conditions over time. In 2019,
TI-NDVI and crop yields were strongly correlated (r = 0.77 with total biomass yield and 0.82 with
grain yield), while soil electrical conductivity was negatively correlated with both TI-NDVI (r = −0.38)
and crop yield (r = −0.23 with total biomass and r = −0.29 with grain yield). Considering the TI-NDVI
data from 2016–2019, principal component analysis followed by ascending hierarchical classification
identified a typology of five clusters with different patterns of TI-NDVI during the eight growing
seasons. When applied to the entire study area, this classification clearly identified the extreme
classes (i.e., areas with high or no salinity). Other classes with low TI-NDVI (i.e., during dry seasons)
may be related to areas with moderate or seasonal soil salinity. Finally, the high temporal resolution
of Sentinel-2 images enabled us to detect stresses on vegetation that occurred repeatedly over the
growing seasons, which may be good indicators of soil constraints due to salinity in the context of the
irrigated paddy systems of Niger. Further research will validate the ability of the method developed
to detect moderate soil salinity constraints over large areas.

Keywords: salinization; irrigated systems; Niger River basin; salinity index; vegetation index;
TI-NDVI; Sentinel-2 images; high temporal resolution
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1. Introduction

Irrigated agriculture covers 275 million ha worldwide (i.e., 20% of cultivated land) and accounts
for 40% of world food production [1]. In the semi-arid area of the middle Niger valley (Niger) (Figure 1),
irrigation techniques have been developed to respond to aridity and an increasing population [2].
Three factors have contributed to the rapid development of irrigation: (i) successive droughts from 1972
to 1973 and 1983 to 1984, which made people aware of serious risks to rainfed production; (ii) the high
yields rapidly obtained in irrigated rice (Oryza sativa) and vegetable production; and (iii) commitment
of the national government, farmers’ organizations and several donors to irrigated agriculture. The first
irrigated systems in Niger were constructed during the colonial period in the 1930s. From 1934 to 2011,
36 irrigated rice-growing systems were built along the middle Niger valley in Niger. Irrigation has
improved the country’s food security but has led to serious soil degradation by salinity. Irrigation
facilities in many of these irrigated systems have aged and have not been renovated, and their drainage
systems are not functioning. Excessive irrigation of less drained soil leads to waterlogging and soil
salinization. The absence of a drainage network in clayey soils, which is characteristic of the study
area [3], increases the concentration and precipitation of soluble salts at the soil surface but also in the
subsoil and groundwater. Salt precipitates appear as white spots, mainly in the bright red oxidized clay
horizons and in association with yellow iron spots. This salinization process threatens the sustainability
of crop production in the study area by decreasing yields or reducing them to zero. The mechanisms
by which soil salinity affects plant growth are generally known and have been summarized by many
researchers [4–6]. In the middle Niger valley, rice is the main crop grown in irrigated fields. Rice can
tolerate salinity without a reduction in yield up to a threshold of 3.0 dS/m of electrical conductivity
of saturated paste (ECe) [7]. To preserve soil as a natural resource and maintain sustainable crop
production in the study area, the spatial extent and level of salinity must be known. This can be done
by performing field surveys to measure soil EC or electrical resistivity. Due to the large size of the
Niger River basin (>85 km2), however, doing so would require large amounts of time, labor and money.
Using the potential of remote sensing along with other data sources is currently a promising method to
map salinity at a large scale with high accuracy.

Figure 1. Location of the study area and aerial view of the experimental fields in the Sébéri and
Tchagriré irrigation systems south of Niamey (Niger).
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The use of remote sensing to monitor and map soil salinity dates to the 1990s [8]. Many researchers
have used remote-sensing and ground-truth data (i.e., direct or indirect measurements of soil) to assess
and monitor salinity [9,10]. A variety of remote-sensing data have been used to identify and monitor
salt-affected areas: aerial photographs, visible and infrared multispectral images, video images, infrared
thermography, microwave images and data collected by airborne geophysics and electromagnetic
induction [11]. Two remote-sensing methods exist to identify soil salinity: (i) observing surface
conditions of bare soil (i.e., salt efflorescence) and (ii) monitoring the behavior of vegetation affected by
salinity over time [8]. Before the most recent generation of satellites was developed, many researchers
used a classic single-date approach [12] because most older satellites passed over a given location too
infrequently to enable monitoring. However, this single-date approach has some limits: although
highly saline and non-saline soils can be detected easily, intermediate salinity classes are difficult to
differentiate. Moreover, if vegetation is present, bare soil cannot be seen, and vegetation behavior
cannot be monitored with a single-date approach.

The most recent generation of satellites (Sentinel-2, Landsat 8, SPOT 6 & 7) offers high spatial
resolution and frequent passes over a given location, which makes identifying salinity variations and
monitoring vegetation behavior appear possible. A variety of remote-sensing indices, such as the
salinity index (SI) [13], brightness index, normalized difference salinity index and normalized difference
vegetation index (NDVI) [14], have been developed to estimate the salinity of bare soil and monitor
vegetation behavior in saline environments. These indices have been combined with ground-truth
data. For instance, soil salinity was measured by electromagnetic induction and then combined with
multi-year Landsat 7 reflectance data to map salt-affected soils in the western San Joaquin Valley,
California, USA [9]. Electrical conductivity (EC) ground-truth measurements and various Sentinel-2
spectral parameters were used to create more reliable soil salinity maps in the Ebinur Lake region,
Xinjiang, China [15]. To monitor salt-affected areas in Turkey, researchers performed multi-temporal
monitoring of salinity using field EC measurements and spectral indices derived from multi-year
Landsat 5 and 8 satellite images [16]. In practice, most studies have focused more on detecting severely
salt-affected areas than on detecting and monitoring slightly or moderately affected areas.

This study aimed to develop a method to detect potential areas of soil salinity using multi-spectral
and high-resolution Sentinel-2 satellite images combined with field data using two complementary
approaches: (i) observing salinity of bare soil using the SI and (ii) monitoring vegetation behavior from
2016–2019 (eight growing seasons) in the arid zone of the Niger River basin. The study involved a
four-year time series of Sentinel-2 remote-sensing images and field measurements of biomass and
topsoil characteristics of cultivated rice fields.

2. Materials and Methods

2.1. Study Area

The study area corresponded to the irrigated systems of Sébéri and Tchagriré (6.5 km2), located in
the Niger River basin 50 km southeast of Niamey, the capital of Niger (13◦16′35.32′′ N, 2◦21′31.81′′ E)
(Figure 1). The climate of the area corresponds to the dry tropical zone of the Sudano–Sahelian type.
Annual precipitation has high spatial, temporal and interannual variability and a general trend towards
a southward shift of isohyets over the past 30 years. Mean annual precipitation is ca. 510 mm/year
(standard deviation (SD) = 100 mm/year) (National Meteorological Service of Niger). Precipitation
is irregularly distributed in space and time: it peaks in August (150 mm) and is lowest in October
(22 mm) and May (20 mm). Mean monthly temperature is 36 ◦C during the hottest period (April),
with a maximum temperature of 47 ◦C. Minimum mean monthly temperatures are 25 ◦C and are
observed from December to January. Evaporation varies from 1700 to 2100 mm/year. The water deficit
is thus large during the dry season and is accentuated by the Harmattan, a dry continental trade wind
from the Sahara. Consequently, the study area has two seasons: a dry season from October to May and
a wet season from June to September [17].
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Paddy fields in Sébéri and Tchagriré are located on the lowest alluvial terrace of the Niger Valley
(Figure 1). The soils are Vertisols (60–74% clay in topsoil and 52–85% in subsoil) but also acidic, with a
pH in water of 4.0–6.2 (SD = 0.5), an EC of 0.01–7.20 dS.m−1 (SD = 2.3 dS.m−1), and they have low
hydraulic conductivity at water saturation, which ranges from 2.8 × 10−8 in the topsoil horizon to
1.5 × 10−8 m s−1 at a depth of 50 cm [18,19]. In Sébéri, EC generally increases from the areas next to the
sand dunes to the river’s floodwater protection dike [19]. The types of salts found are hexahydrite,
gypsum, epsomite and, secondarily, wattevilleite and sodium carbonate hydrate [19].

The observed long-term downward trend in rice yields can be explained by several factors: poor
management of agricultural equipment, lack of technical supervision, soil degradation due to salinity
and failure to respect the cropping calendar. Implementing a fixed and common cropping calendar
for all rice-growing systems would create two growing seasons per year during optimal climatic
conditions. It provides for two harvests, one in the dry cropping season (mid-November to mid-May)
and the other in the wet cropping season (mid-June to mid-December) (Figure 2).

Figure 2. Double-cropping calendar for rice in the middle Niger valley (adapted from [20]).

2.2. Field Data Collection Strategy

In the Niger River basin, rice is grown in 0.25 ha (25 m × 100 m) fields. We selected 44 and 20
fields in the Sébéri and Tchagriré irrigated systems, respectively, for data collection on two dates in the
2019 dry season, each of which corresponded to a date when the Sentinel-2 satellite passed over the
study area. We chose the 64 fields based on the level of salinity in the study area and whether they
were cultivated with rice or bare. Three sampling plots of 1 m2 each were set up on one diagonal of
each of the 0.25 ha fields selected to collect soil and phenological parameters.

The first data collection campaign was performed on 8 February 2019, near the start of the growing
season, when fields were already flooded and covered by a layer of irrigation water a few centimeters
thick. The phenology of rice plants was assessed in a quarter (0.25 m2) of each 1 m2 plot. Then, all aerial
biomass of this quarter was cut, weighed and dried under laboratory conditions to determine dry
matter. The topsoil (0–30 cm) was sampled in each plot using an auger, and one composite sample
per field was obtained by carefully mixing the three elementary plot samples. Given the rapidity
of auger sampling and the very low hydraulic conductivity of these clay soils, sampling under a
water layer did not significantly change the EC and pH values of the soil, as shown in previous
studies performed in these irrigated systems [19]. Consequently, salt losses during soil sampling are
very low, ensuring good reliability of collected samples and good representativeness of soil salinity
measurements. The composite samples were air-dried and ground to pass through a 2-mm sieve. Then,
pH in water (pH1:5) and EC in water (EC1:5) were analyzed in the laboratory following ISO 10390 and
ISO 11265, respectively.

The second data collection campaign was performed on 4 May 2019, during the harvest period,
when fields were not flooded. Phenological assessment and soil sampling were identical to those
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during the first campaign. Moreover, rice grain was collected from an undisturbed 0.25 m2 quarter to
estimate grain yield. Soil and phenological parameters were analyzed statistically for each field.

2.3. Remote-Sensing Data Collection

Remote-sensing data and in situ observations were processed in multiple steps (Figure 3). First,
optical images were obtained from Sentinel-2 satellites. The Sentinel-2 mission is a constellation of two
satellites that are 180◦ out-of-phase on the same orbit, which increases the frequency of passes over a
given location (i.e., every five days). Each satellite records 13 bands, with three spatial resolutions:
blue, green, red and near-infrared bands at 10 m resolution; red-edge and mid-infrared bands at 20 m
resolution; and aerosol and water-vapor bands at 60 m resolution. Sentinel-2′s utility thus lies in its
high revisit frequency and high spatial resolution.

Figure 3. General data-processing flowchart.

All existing pre-processed Sentinel-2 images from January 2016 to December 2019 were
downloaded. Pre-processing was performed by the MACCS (Multi-sensor Atmospheric Correction
and Cloud Screening) processing chain, which consists of three successive steps: (i) cloud detection
(using the satellite cirrus band), (ii) aerosol-thickness estimation and (iii) atmospheric correction.
This processing chain, developed by CESBIO and CNES, provides ortho-rectified atmospheric-corrected
surface reflectance images of 100 km × 100 km as a final product [21].

Overall, 157 preprocessed Sentinel-2 images were downloaded and then resampled at a spatial
resolution of 10 m. Reflectance values that were missing due to cloud cover were estimated as the
mean reflectance value of the two dates before and after the missing date. Finally, the study area of the
irrigated systems of Sébéri and Tchagriré was extracted from the entire image.
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A second step consisted of distinguishing the periods during which a plot was bare or covered
with vegetation. To do this, the NDVI was first calculated per pixel (Table 1) [22], and then the mean
and standard deviation of the NDVI of each plot’s pixels was calculated. A pixel was considered to
be part of a plot if its centroid fell within the plot’s polygon. Since the plots measured 25 m × 100 m,
each contained ca. 25 pixels. Based on the literature [23,24], plots with a mean NDVI ≤0.21 or >0.21
were considered as bare soil or vegetation, respectively.

Table 1. Characteristics and equations of the bare soil and vegetation indices selected. RED and NIR
indicate red and near-infrared bands of the Sentinel-2 images.

Spectral Index Equation Characteristics

Salinity index (SI) SI = (RED/NIR) × 100 in [25] Created to detect saline soils.

Normalized difference
vegetation index (NDVI)

NDVI = (NIR − RED)/(NIR + RED) [22]
Varies from −1.0 to +1.0.For vegetation,

NDVI varies from 0.2–0.8.

A standardized index for
vegetation cover and chlorophyll
activity. Used to monitor drought

and monitor and predict
agricultural production.

Means and standard deviations of NDVI were used to create a 4-year time series of NDVI for
each plot. For the periods when the plots were estimated to be bare, we calculated an SI [25] (Table 1).
Otherwise, for the periods when vegetation was dominant, we created a time series of NDVI over the
four years of study.

A few days before rice planting and during the first part of the vegetation development cycle,
a water layer covers the soil. This layer is thin, no more than a few centimeters thick, and has high
turbidity. The NDVI of this water layer ranges from 0.10–0.21 before planting and then decreases as
the rice is transplanted and the vegetation canopy develops. In comparison, NDVI values of the river
near the plots are negative and close to −0.3.

The last step consisted of calculating the time-integrated NDVI (TI-NDVI) [26,27] for each growing
season for fields with vegetation. TI-NDVI for a given growing season was calculated as follows:

TI −NDVI =
de∑

t=d1

⎡⎢⎢⎢⎢⎢⎣1n
n∑

i=1

((
NDVIi,t + NDVIi,t+1

2

)
− 0.21

)
× (d(t + 1) − d(t))

⎤⎥⎥⎥⎥⎥⎦ (1)

where d1 and de are the day of the year of the start and end (harvest) of the growing season (the same
for all fields), respectively; d(t) is the day of the year of date t for the set of days for which Sentinel-2
images are available during the growing season; n is the number of pixels within the field; and NDVIi,t
is the NDVI of pixel i on date t. Units of TI-NDVI are expressed as NDVI.days.

Figure 4 illustrates the calculation of TI-NDVI for two successive growing seasons in 2019 derived
from NDVI estimates based on existing Sentinel-2 images.
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Figure 4. Example of normalized difference vegetation index (NDVI) dynamics for a given field for the
dry and wet seasons of 2019 (derived from 42 cloud-free images among 60 existing Sentinel-2 images)
and time-integrated NDVI (TI-NDVI) calculation for the two growing seasons.

2.4. Multidimensional Analysis of the Data

Principal component analysis (PCA) was performed using the FactoMiner package in R
software [28] to analyze the multidimensional space of the remote-sensing and field data from
2019. Field data were pH and EC at the start and end of the growing seasons, aerial biomass and grain
yields of the 64 fields. Qualitative variables were added: pH class, salinity class, land use and position
in relation to the direction of river flow. Remote-sensing data were the mean SI of each field, TI-NDVI
of each of the eight growing seasons and the number of seasons that each field was used to produce
rice in dry and wet seasons. Remote-sensing data were considered as active variables and field data as
illustrative variables.

PCA was followed by hierarchical clustering analysis (HCA) using the module HCPC (hierarchical
clustering on principal components) [29] in R software [30] to create clusters of fields that behaved
similarly. Finally, supervised classification for grids (SCG) was applied to 10-m resolution grids of the
entire area that described the remote-sensing variables used in the PCA-HCA analysis (i.e., 8 grids
with the TI-NDVI of each pixel for the 8 seasons and 1 grid with the SI of each pixel) to represent the
spatial distribution of the clusters. Each pixel is assigned to the cluster with the shortest Mahalanobis
distance, and the distance to the nearest cluster is analyzed to assess the quality of assignment to
a cluster. SAGA-GIS 2.3.2 [31], implemented in QGIS 3.4.3, was used to perform the SCG with a
maximum-likelihood algorithm.

3. Results

3.1. NDVI Dynamics over the Eight Growing Seasons

Figure 5 shows the dynamics of mean NDVI estimated from the 25 pixels within each of the three
fields. The threshold of NDVI = 0.21 was selected to identify periods without live vegetation, and it
enabled the identification of the short intercropping period after harvest when field irrigation was
stopped, the soil plowed and irrigation started again before transplanting the next rice crop.
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Figure 5. Example of dynamics of mean NDVI for three fields over eight growing seasons from January
2016 to December 2019: (a) Field CP3_1, cultivated in season 2 but not in the other seasons; (b) Field
CP11-1, always cultivated but with lower NDVI in dry seasons than wet seasons; and (c) Field TVP7,
always cultivated and with high NDVI in both dry and wet seasons. For each field, mean NDVI and its
95% confidence interval were estimated from the field’s ca. 25 pixels.

Non-cultivated fields had NDVI dynamics below the threshold or slightly above due to weed
growth (Figure 5a). When cultivated during a growing season, some fields had lower NDVI due
to constrained plant growth, which could have been due in part to soil salinity. Among the fields
cultivated during both dry and wet seasons, two groups of cultivated fields were identified: (i) those
with lower NDVI during the dry seasons than wet seasons (Figure 5b) and (ii) those with smaller
differences between dry and wet seasons and generally high NDVI (Figure 5c).

3.2. Spatial Variation in TI-NDVI over the Eight Growing Seasons

For the 8 seasons and 44 irrigated fields monitored in Sébéri, TI-NDVI was always significantly
lower during dry seasons than wet seasons (Figure 6a): mean TI-NDVI per season ranged from 15
to 19 NDVI.days during the four dry seasons and 29 to 34 NDVI.days during the four wet seasons.
TI-NDVI also varied greatly among fields for a given season and showed systematic trends, with values
frequently lower in some fields in the south and northwest of the irrigation system and significantly
higher in fields in the center (Figure 6b). This spatial variation was lower in some seasons (e.g., seasons
2 and 6) but higher in others, e.g., season 7 in 2019, when field data were collected.
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Figure 6. Temporal and spatial variations in the time-integrated normalized difference vegetation index
(TI-NDVI) for the 44 fields of the Sébéri irrigation system: (a) mean and standard deviation of TI-NDVI
for each season; (b) maps of TI-NDVI estimated for the eight growing seasons.

3.3. Salinity Measured in the Field in 2019

For the 64 fields monitored in 2019 during the dry season, EC1:5 ranged from 0.01 to 5.36 dS/m
at the start of the season and 0.44 to 6.19 dS/m at the end of the season (SD = 1.16 and 1.33 dS/m,
respectively) (Table 2). The pH ranged from 5.52 to 6.68 in January and 5.29–6.25 in June (SD = 0.44
and 0.52, respectively). Differences between means and SDs for the two dates were not significant for
EC1:5 or pH. Total aerial biomass and grain yield at harvest varied greatly (Table 2), and 18 fields had
no rice production.

Table 2. Statistics of field data for the dry growing season in 2019 (i.e., season 7) (n = 64, including 18
non-cultivated fields).

Soil EC1:5 (dS/m) Soil pH1:5
Total Aerial

Biomass (g/m2)
Grain Yield

(g/m2)

Statistic
Start of
Season

At
Harvest

Start of
Season

At
Harvest

At
Harvest

At
Harvest

Mean 0.40 0.44 5.52 5.29 914.2 389.5
Median 0.03 0.04 5.56 5.33 1048.5 420

SD 1.16 1.33 0.44 0.52 687.8 309.0
Min 0.01 0.01 4.45 4.00 0 0
Max 5.36 6.19 6.68 6.25 2269 1249
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3.4. Correlation between Remote-Sensing Data and Field Data during the 2019 Dry Season

A strong and significant (p < 0.05) positive correlation was observed between TI-NDVI in season 7
and both total aerial biomass (r = 0.77, p < 2 × 10−14) and grain yield (r = 0.82, p < 2.2 × 10−16) (Table 3),
which confirms that TI-NDVI is a good indicator of rice vegetation growth and its final yield. Soil EC1:5

was negatively correlated with TI-NDVI at the start and end of the season (r = −0.38, p = 0.002 for the
start, p = 0.002 for the end), with total biomass (r = −0.23, p = 0.062) and, significantly, with grain yield
(r = −0.29, p = 0.019).

Table 3. Pearson correlations between the TI-NDVI indicator derived from Sentinel-2-images and soil
(EC1:5, pH1:5) and crop indicators (total biomass, grain yield). Data were collected for 64 fields during
the dry season of 2019 (i.e., season 7). SS and ES indicate the start and end of the growing season,
respectively. Bold values indicate significant (p < 0.05) correlations.

TI-NDVI
Soil EC1:5

SS
Soil EC1:5

ES
Soil pH

SS
Soil pH

ES
Total Aerial

Biomass
Grain
Yield

TI-NDVI 1.00
Soil EC1:5_SS −0.38 1.00
Soil EC1:5_ES −0.38 0.99 1.00

Soil pH SS 0.35 −0.63 −0.63 1.00
Soil pH_ES 0.16 −0.62 −0.62 0.74 1.00

Total Aerial Biomass 0.77 −0.23 −0.23 0.35 0.1 1.00
Grain Yield 0.82 −0.29 −0.28 0.34 0.07 0.72 1.00

3.5. PCA and HCA Analysis of Remote-Sensing Data over the Eight Growing Seasons

The first axis of the PCA was positively correlated with all of the TI-NDVI variables (Figure 7),
which indicates that the spatial variability in TI-NDVI among fields was the main factor that influenced
variations in the dimensional space. The second axis was correlated with SI but also distinguished the
TI-NDVI estimates of the dry seasons (1, 3, 5 and 7) from those of the wet seasons (2, 4, 6 and 8).

While soil pH was little represented in the first PCA plane, soil EC1:5 measured at the start
and end of season 7 was negatively correlated with the first axis and thus with TI-NDVI variables.
More surprisingly, neither soil EC1:5 variable was correlated with SI. Following PCA, HCA identified
five clusters of fields that behaved similarly during the eight growing seasons according to the
remote-sensing data (Figure 8).
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Figure 7. First plane of principal component analysis with variables derived from remote sensing as
active variables (black) and soil and vegetation variables as illustrative variables (blue). Abbreviations:
TI-NDVI_SN: time-integrated normalized difference vegetation index for season N; Mean_SI: mean
salinity index; biom_yield: biomass yield at harvest; grain yield: grain yield at harvest; Soil EC_start_s:
soil electrical conductivity at the start of the season; soil EC_end_s: soil electrical conductivity at the
end of the season; soil pH_start_s: soil pH at the start of the season; Soil pH_end_season: soil pH at the
end of the season; Nbr_dry_s: number of dry growing seasons during the time series; and Nbr_wt_s:
number of wet growing seasons during the time series.

Figure 8. Representation on the first plane of principal component analysis (PCA) of the five clusters of
fields defined by ascending hierarchical classification applied to the first three axes of the PCA. Points
are labeled with field codes starting with S or T respectively for Seberi or Tchagrire irrigation system,
while squares indicate barycenters of clusters.
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3.6. Description of the Field Clusters

The five clusters differed in their remote-sensing and field data (Table 4):

• Cluster 1 had low TI-NDVI in both dry and wet seasons. In 2019, EC1:5 was highest in this cluster,
soil pH was very acidic and total biomass and grain yield were zero. The maximum EC1:5 of some
fields in this cluster (5.36 dS/m) indicates that this cluster had the highest salinity.

• Cluster 2 had low TI-NDVI in dry seasons, due to rare cultivation, and a higher TI-NDVI in
wet seasons, but one that was still lower than those of clusters 3–5. In 2019, soil EC1:5 was
not significantly higher than those of clusters 3–5, but total biomass and grain yield were
significantly lower.

• Cluster 3 had moderate TI-NDVI in dry and wet seasons and a significantly higher SI. In 2019, soil
EC1:5 was low, pH was relatively high, and mean total biomass and grain yield were the second
highest among the clusters.

• Cluster 4 had low TI-NDVI in dry seasons due to frequent non-cultivation but high TI-NDVI in
wet seasons. In 2019, soil EC1:5 and pH were low, and the fields were not cultivated.

• Cluster 5 had extremely high TI-NDVI in both dry and wet seasons. In 2019, soil EC1:5 was low,
pH was relatively high and total biomass and grain yield were the highest.

Table 4. Mean (and standard deviation) per cluster of fields defined by ascending hierarchical clustering
for the variables derived from Sentinel-2 images (TI-NDVI, SI) and from field data collected in 2019
(EC1:5, pH, total biomass, grain yield). For each variable, different letters indicate significant differences
in the mean among clusters according to a p < 0.05 Tukey test at a 95% confidence level.

2016–2019 Dry Season 2019

Cluster
No. of
Fields

Dry Season
TI-NDVI

(NDVI.Days)

Wet Season
TI-NDVI

(NDVI.Days)
Mean SI

Soil EC1:5

(dS/m)
Soil pH

Total
Biomass
(g/m2)

Grain Yield
(g/m2)

1 7 1.0 (1.2) a 12.8 (4.4) a 72.9 (3.0) ab 2.6 (2.4) b 5.0 (0.6) a 0 (0) a 0 (0) a

2 9 5.2 (6.1) b 25.5 (3.1) b 72.5 (2.4) a 0.6 (1.1) a 5.5 (0.2) bc 314 (572) a 109 (217) a

3 14 19.7 (3.6) d 30.6 (1.8) c 74.8 (1.3) b 0.1 (0.0) a 5.7 (0.2) c 1308 (319) b 527 (179) b

4 6 10.1 (4.0) c 44.6 (5.0) e 70.1 (0.9) a 0.1 (0.0) a 5.2 (0.3) ab 0 (0) a 0 (0) a

5 28 25.4 (1.9) e 35.9 (3.1) d 75.0 (1.7) b 0.05 (0.1) a 5.6 (0.4) bc 1335 (414) b 592 (205) b

3.7. Mapping the Clusters over the Entire Study Area

Using the eight grids with the TI-NDVI of each pixel for the eight seasons and the grid with the
SI of each pixel, SCG enabled each pixel to be attached to one of the five clusters defined from the
64 study fields considered as training areas. Figure 9 shows the distribution of the five clusters over
the entire study area, with the associated distance to the nearest cluster, which indicates when the
cluster represents a given pixel well (i.e., small distance) or poorly (i.e., large distance). Clusters 1
and 2, both of which had low TI-NDVI during the dry seasons since they were often not cultivated,
were located mainly in the north and south of the Sébéri system (Figure 9). Cluster 5, with the highest
TI-NDVI in both dry and wet seasons, predominated in the north of the Tchagriré system and the
center of the Sébéri system. Cluster 3, with moderate TI-NDVI in both seasons, represented large areas
in Sébéri in intermediate positions between clusters 1 or 2 and 5, but also in non-agricultural areas
(e.g., paths, natural areas), which had large distances to the nearest cluster. Cluster 4 occupied small
areas in Sébéri and the south of Tchagriré, often near fields of cluster 2.
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Figure 9. Mapping of the five clusters over the entire study area of the irrigated systems of Sébéri and
Tchagriré using supervised classification that assigned each pixel to the nearest cluster.

4. Discussion

This study continuously monitored spatio-temporal dynamics of SI and NDVI in paddy fields
using Sentinel-2 satellite images over eight growing seasons from 2016 to 2019. Based on field data
collected (biomass, EC and pH) during the 2019 dry growing season, a relation between spectral indices
(NDVI and SI) and field data was established to understand the behavior of rice crops and relate the
spatio-temporal variation and pattern of spectral indices to salinity.

4.1. Variation in Spectral Indices among Crop Seasons

In the 2016–2019 time series, the spectral indices used (SI and NDVI) varied in different ways. First,
SI was estimated at dates when bare soils prevailed according to an NDVI threshold (NDVI <0.21). SI
averaged over the 4 years of study varied in a narrow range and was weakly correlated with soil EC1:5;
only highly saline areas, generally not cultivated, had higher SI values, due to the presence of salt
crusts at the surface. These results may be explained by the short periods during which bare soil can
be observed in irrigated paddy field systems; they generally last less than a month between successive
crops, which corresponded to 3–5 dates when Sentinel-2 images were available. Thus, only a few
dates when SI could be estimated were available. The soil may also be covered by crop residues or
change drastically in water content due to the stopping or starting of irrigation after harvest or before
preparatory work for planting rice. These factors may interfere with the estimation of SI and limit its
ability to distinguish soil salinity.

In contrast, NDVI dynamics could be followed at a fine temporal resolution since cloud-free
images were available at 133 dates during the eight growing seasons, with a mean of 21 dates per
season since the end of 2017. We observed significant differences in TI-NDVI among the fields and
eight growing seasons. TI-NDVI, which differed greatly between fields in a given season and over
time, was used to differentiate areas with constraints to vegetation growth in the irrigated systems.
In a given season, non-cultivated or cultivated areas with constraints had low TI-NDVI in dry and wet
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seasons (clusters 1 and 2) (Table 4). Areas cultivated throughout the year with few constraints had high
TI-NDVI in wet seasons and moderate TI-NDVI in dry seasons (cluster 3), while zones cultivated in
dry and wet seasons without any constraints had high TI-NDVI in both seasons (cluster 5) (Figure 8).
Nonetheless, there were areas near the main drainage channel with salinity constraints and moderate
TI-NDVI that were cultivated only in wet growing seasons. They may have occurred because they are
always wet and wild grasses grow there in the dry seasons, which influences the NDVI. TI-NDVI also
differed significantly between dry and wet seasons (Figure 5a,b). Wet growing seasons had higher
mean TI-NDVI than dry ones. TI-NDVI varied from 29 to 34 NDVI.days in wet seasons and 15 to 19
NDVI.days in dry seasons. This result is due to the climatic conditions in the study area in dry seasons
(hot, dry wind, high temperature) that limit crop growth. In addition, high temperature favors the rise
of salt from lower horizons to the rooting zone of crops, which damages their roots. In wet seasons,
conditions are more favorable for crop growth. Over the time series, wet and dry seasons varied among
years, again due to climatic conditions (temperature in dry seasons and precipitation in wet seasons).

4.2. Temporal and Spatial Patterns of NDVI

Soil salinity influences vegetation density and crop growth, as explained by NDVI. TI-NDVI
was used in this study to indicate constraints to crop growth and density, as in previous studies [32].
Five clusters were obtained to differentiate areas with constraints to rice growth in the two irrigated
systems. Non-cultivated areas had the lowest TI-NDVI and were considered likely to be areas with high
salinity constraints (cluster 1) (Figure 9). Areas cultivated only in wet seasons because of constraints
had low TI-NDVI and may be considered to have moderate salinity constraints that limit crop growth
(clusters 2 and 4) (Figure 9). Areas cultivated in both seasons with few constraints had high TI-NDVI
and may be considered to have few salinity constraints (cluster 3) (Figure 9). Finally, areas cultivated
without constraints had the highest TI-NDVI (cluster 5) (Figure 9) and were considered zones without
salinity constraints. Our results show that the spatial pattern of TI-NDVI corresponds to the spatial
distribution of problematic patches in the study area. The main constraint may be salinity, while other
constraints could be explained by soil type, microtopography and farming practices. Mean ECe
measured during ground truthing was calculated for each cluster and assigned to the respective
TI-NDVI of the clusters to validate the four salinity classes obtained from the classification of TI-NDVI.
Based on EC measurements, visual observations and knowledge of the terrain [33], mean TI-NDVI
of the clusters were classified into four classes of soil salinity [34]: non-saline, slightly, moderately
and very saline (i.e., ECe < 2, 2–4, 4–8 and 8–16 dS/m, respectively). Measured soil EC alone could
not explain the level of salinity of the clusters (Table 4); however, integrated interpretation using the
EC, mean TI-NDVI, total biomass and grain yield with visual observations of the study area could
be used. Cluster 1, consisting of abandoned fields with low mean TI-NDVI in dry and wet seasons,
no rice biomass or grain yield, maximum EC of 5.36 dS/m2 and white efflorescence on the soil surface,
can be considered saline soil. Clusters 2 and 4, consisting of fields cultivated only in wet seasons and
rarely in dry seasons, despite having a lower level of surface salinity, have low TI-NDVI in dry seasons,
low biomass and grain yield in the few fields cultivated in dry seasons and no yield in non-cultivated
fields. Salt efflorescence is present in these fields. The maximum EC was 2.59 dS/m2, which may not
reflect the true EC of the clusters. These two clusters can be considered moderately saline. Clusters 3
and 5 consisted of cultivated fields in both dry and wet seasons. Based on measured EC, they were
classified as non-saline, but since cluster 3 has lower TI-NDVI, biomass and grain yields than cluster
5, cluster 3 has few salinity constraints. Thus, cluster 3 can be considered slightly saline and cluster
5 non-saline.

4.3. Field EC Variation and Salinity

In the Sébéri irrigated system, EC generally increased from the areas next to the sand dunes to
the river’s floodwater protection dike, perhaps because the dike has modified the functioning of the
soils next to it [18]. In the Tchagriré irrigated system, EC generally increased from the areas next to the
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river to the main drainage ditch, likely due to topography. Areas at lower elevations had higher EC
than those at higher elevations. Overall, the pattern of EC followed those of TI-NDVI, biomass and
grain yield. EC measured in the two systems does not reflect the real situation in the field. Areas that
showed signs of salinity (i.e., abandoned fields, low NDVI, low yields) had low measured EC, which
indicates that a salt stock may lie in the lower horizons. To map salinity in this situation, measured EC
should be compared to other maps (e.g., TI-NDVI, yield, soil, elevation) of the same site with similar
sampling patterns or resolution. Doing so may provide useful insights into other parameters that
could explain salinity.

5. Conclusions

This study developed a step-by-step method to estimate constraints on the growth of rice, the most
important of which is salinity. Dense time series of Sentinel-2 images over eight growing seasons
enabled us to describe the behavior of rice biomass and to differentiate fields where rice is subjected to
stress during growing seasons. In irrigated systems, periods of bare soil were brief, and the SI derived
from Sentinel-2 images could not differentiate soil salinity of fields. Monitoring vegetation behavior
over four years by deriving the NDVI from Sentinel-2 images and calculating the TI-NDVI was able to
differentiate fields based on constraints that limit rice growth. Several constraints can occur in areas
subjected to stresses but can be related locally to soil salinity and verified by field sampling, which can
be guided by TI-NDVI classification. This approach is particularly adapted to irrigated rice systems in
which monoculture prevails and differences in TI-NDVI are not caused by different crops.
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Abstract: The United Nations’ expanded program for Reducing Emissions from Deforestation and
Forest Degradation (REDD+) aims to mobilize capital from developed countries in order to reduce
emissions from these sources while enhancing the removal of greenhouse gases (GHGs) by forests.
To achieve this goal, an agreement between the Parties on reference levels (RLs) is critical. RLs have
profound implications for the effectiveness of the program, its cost efficiency, and the distribution
of REDD+ financing among countries. In this paper, we introduce a methodological framework for
setting RLs for REDD+ applications in tropical forests in Xishuangbanna, China, by coupling the
Good Practice Guidance on Land Use, Land Use Change, and Forestry of the Intergovernmental
Panel on Climate Change and land use scenario modeling. We used two methods to verify the
accuracy for the reliability of land classification. Firstly the accuracy reached 84.43%, 85.35%, and
82.68% in 1990, 2000, and 2010, respectively, based on high spatial resolution image by building a
hybrid matrix. Then especially, the 2010 Globeland30 data was used as the standard to verify the
forest land accuracy and the extraction accuracy reached 86.92% and 83.66% for area and location,
respectively. Based on the historical land use maps, we identified that rubber plantations are the main
contributor to forest loss in the region. Furthermore, in the business-as-usual scenario for the RLs,
Xishuangbanna will lose 158,535 ha (158,535 × 104 m2) of forest area in next 20 years, resulting in
approximately 0.23 million t (0.23 × 109 kg) CO2e emissions per year. Our framework can potentially
increase the effectiveness of the REDD+ program in Xishuangbanna by accounting for a wider range
of forest-controlled GHGs.

Keywords: reference levels; REDD+; greenhouse gas emissions; Xishuangbanna; monitoring and re-
porting

1. Introduction

Forests account for almost half of the global terrestrial carbon pool, and the vegetation
within them alone (excluding soils) holds approximately 75% of all living carbon. The
total carbon content in forest ecosystems is estimated to be 638 Gt [1–5]. Tropical forests
play a particularly important role in the global carbon budget because they contain as
much carbon in their vegetation and soils as all the temperate-zone and boreal forests
combined [6–12]. Per unit area, tropical forests store, on average, approximately 50%
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more carbon than their nontropical counterparts. Scientists agree that to achieve the goals
of the United Nation’s Framework Convention on Climate Change (UNFCCC), namely
avoiding irreversible damage to the climate system, global warming must not exceed
2 ◦C [13–16]. However, concentrations of CO2 in the atmosphere are already so high that
global emissions will likely peak before they start to decline. Thus, in order to remain under
the above-mentioned threshold, emissions from all major sources (i.e., from developed
countries, major developing country emitters, and deforestation) must begin to decline
within the next decade [17–19].

The Conference of the Parties (COP) agreed that Reducing Emissions from Deforesta-
tion and Forest Degradation (REDD+) with the enhancement of the removal of greenhouse
gas (GHG) emissions by forests in developing countries could support the goals of the
framework through the positive incentives provided by the UNFCCC. The general con-
sensus at Doha in 2012 following last year’s COP17 was that the results of financing,
safeguards, measurements, and reporting and verification for REDD+ were mixed. In
addition, significant progress has been widely recognized as having been made only within
the technical arena relating to reference levels (RLs). The 19th Conference of the Parties
to the UNFCCC (COP19) and the 9th Conference of the Parties to the Kyoto Protocol
(CMP9) were jointly held on the topic of REDD+ funding in Warsaw, Poland, and in-depth
discussions on the action points were conducted.

GHG-based compensation for REDD+ requires an agreement on emission RLs. Key
elements for setting these RLs include the ability to measure changes throughout all
forested areas, the use of consistent methodologies at repeated intervals to obtain accurate
results, and the verification of results with ground-based or very high-resolution obser-
vations [20–24]. RLs have profound implications for the effectiveness of climate-related
policies, cost efficiency, and distribution of REDD+ financing, and they involve a number
of tradeoffs [25–30]. In this paper, referring to the business-as-usual scenario, we introduce
a methodological framework for setting RLs for REDD+ applications in tropical forests
in Xishuangbanna, China, by coupling the Good Practice Guidance (GPG) on Land Use,
Land Use Change, and Forestry published by the Intergovernmental Panel on Climate
Change (IPCC) and land use scenario modeling. This study contributes to the literature by
highlighting key challenges for setting RLs as part of the REDD+ program.

2. Data and Methodology

2.1. Research Area

Not only is the forest in the Xishuangbanna region (Figure 1) the world’s largest
preserved area located in the northernmost part of the Earth, but it is home to the majority of
tropical forest ecosystems in China as well. The geology, climate, and soil of Xishuangbanna
are suitable for the growth and reproduction of various organisms. Moreover, 4500 species
of higher plants have been recorded in Xishuangbanna, accounting for about one-seventh
of the total number of higher plants in China. The native vegetation types include those
found in tropical rain forests, montane rain forests, tropical monsoon forests, subtropical
evergreen broad-leaved forests, deciduous broad-leaved forests, warm coniferous forests,
and bamboo forests as well as shrubs and grasses [31–34]. In recent years, due to the
increase in the population, intensification of anthropogenic activities, the enabling climate,
and suitable terrain conditions in the area, the cultivation of rubber and other tropical and
economically important crops has risen rapidly. Thus, the changes to the forest have been
very dramatic.
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Figure 1. Landscape of the Xishuangbanna, China.

2.2. IPCC’s Good Practice Guidance

The IPCC’s existing GPG for Land Use, Land Use Change, and Forestry provides
the recommended approach to account for fluctuations in carbon stocks resulting from
changes in the use and management of forests. This framework has been accepted by all
Parties in the Bali Action Plan of COP13 [35–37]. The IPCC’s GPG framework refers to
two basic inputs for forest carbon accounting, namely activity data and emission factors.
Activity data in the REDD+ context refer to the areal extent of emissions. For example,
in the context of deforestation, activity data refer to the area of deforestation, presented
in hectares (104 m2) over a known time period. Emission factors refer to the emission or
removal of GHGs per unit activity. The emission or removal of GHGs resulting from land
use conversion ultimately alters ecosystem carbon stocks.

2.2.1. Emissions Factors

To estimate emissions factors, the required number of sample plots was determined
to the necessary accuracy using the size of the forest area and other available resources.
Provisional surveys and/or existing data can be utilized to establish sample sizes, and tools
also exist to calculate sample sizes based on fixed precision levels or given fixed inventory
costs [38–41]. In the event carbon stocks and flows are to be monitored over the long term,
permanent sites should be considered in order to reduce between-site variability and to
capture actual trends as opposed to short-term fluctuations [42].

In the study, the aboveground biomass density map was sourced from Global Forest
Watch (http://www.globalforestwatch.org/). This map is a global aboveground biomass
density map produced in 2000 according to the method devised by Baccini [43]. Based
on the improved methodology, the resolution can be increased to as much as 30 m. The
aboveground biomass density map of Xishuangbanna region was extracted using the mask
extraction method.

More recently, Maurizio Santoro [44] have proposed an integration methodology for
estimation of aboveground biomass density for around the year 2010 by combining SAR,
LiDAR, and optical observations together with other datasets such as auxiliary datasets
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from forest inventories, additional remote sensing observations, climate variables, and
ecosystems classifications. We compared with the latest biomass map developed by Santoro
against Global Forest Watch product.

2.2.2. Activity Data

Estimation of activities associated with national-level deforestation monitoring is
practically possible only via remote sensing [45–49]. Since the early 1990s, changes in
forest area have been monitored from space with confidence. Some countries have had
well-established operational systems for over a decade.

Taking into account the availability of the data and their matching, this study used the
Enhanced Thematic Mapper Plus/Thematic Mapper (ETM+/TM) remote sensing images
related to Path number 130 and Row number 044, Path number 131 and Row number 045,
Path number 130 and Row number 045, Path number 129 and Row number 045 in the
study area in 1990, 2000, and 2010 to interpret land use changes(Table 1). The TM/ETM+
remote sensing images and normalized difference vegetation index (NDVI) data were
sourced from the US Geological Survey (USGS, http://earthexplorer.usgs.gov/). We
mosaiced the TM/ETM+ remote sensing images of the same year, used ENVI to perform
geometric correction and radiometric correction, converted all the map data projections
to WGS84/UTM Zone47N (EPSG: 32647), used the Xishuangbanna administrative vector
map for mask extraction, and performed cropping to obtain the images of Xishuangbanna.

Table 1. Landsat imagery used in this study.

Satellite (Sensor) Path Number and Row Number Time Resolution/m Cloudiness/%

Landsat5 TM 130/044 1990-01-06 30/120 3.8
Landsat5 TM 131/045 2000-03-13 30/60/15 0.02

Landsat7 ETM+ 129/045 2010-04-04 30/60/15 1.59

The vegetation in the study area changes obviously with the seasons, and the NDVI
values at different times, thus, have a greater influence on the research results. Thus, this
study synthesized the maximum value of the NDVI data in multiple phases of the same
year and also eliminated the influence of cloud cover on the research results.

According to the characteristics of land use cover in the study area (Table 2), we
divided the land use cover into eight types: forestland, shrubland, grassland, cultivated
land, rubber forest, tea gardens, construction land, and water. The training samples
were determined using QuickBird images in Google Earth. The terrain of the study
area is relatively complex, and many “homogeneous spectrum” phenomena occur in the
interpretation of remote sensing images. To avoid this phenomenon, it is necessary to
select as many training samples as possible. Different band combinations of Landsat7
ETM images have different characteristics. The selection of the training samples was
carried out according to these characteristics. The ETM541 band combination is helpful for
distinguishing different vegetation types when supplemented by NDVI data. The training
samples of natural forests, shrubs, rubber plantations, and tea gardens were selected. The
ETM453 band combination was used to select the cultivated land and water, while the
construction land was extracted through the ETM743 band combination, and the remainder
was categorized as other land. Supervised classification was performed using the selected
training samples to obtain the preliminary classification results, and the accuracy test was
conducted. If the results did not agree, the training samples were reselected, and the
supervised classification and accuracy tests were reperformed until they were ideal. Finally,
the classification results were recoded, clustered, and eliminated, and the broken patches
were merged into the adjacent largest classification to unify the smallest unit.
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Table 2. Land use classification followed for this study.

Type Code Land Use Type Land Use Type Interpretation

1 Forestland Primary and secondary forests
2 Shrubland Forest coverage is less than 20%
3 Grassland Less than 20% is covered by shrub, and grass is predominant
4 Cultivated land Paddy fields and irrigated land
5 Rubber plantations Man-made rubber plantations
6 Tea gardens Man-made tea plantations
7 Construction land Residential building land in urban and rural areas
8 Water Water body

The Land Use Dynamic Index considers the transfer of land use types during the
study period, and reflects the intensity of regional land use changes during this time. It
is essential to find hot spots of land use changes at different spatial scales. It is one of the
important parameters to analyze the dynamic changes in land use space [50]. Equation (1)
was used to calculate the index.

Ki =
Ut1 − Ut2

Ut1

× 1
t2 − t1

× 100% (1)

Ki is the land use dynamic degree for land use type i in a certain period of time, Ut1

and Ut2 are the number of certain land use types at the start of the period t1 and its end t2,
respectively, and t2 − t1 is the research duration.

S =

[
n

∑
i=1

(ΔSi−j

Si

)]
× 100 × 1

t
× 100% (2)

S is the comprehensive land use dynamic degree in the study area corresponding to
t time period. ΔSi−j is the area of land use type converted i converted to other land use
types in the study period; Si is the area of type i land use type at the beginning of the study;
t is the time period of land use change.

2.3. Land Use Scenario Modeling for Reference Levels

Land use simulation is based on years of known land use changes. It predicts future
land use changes. Most land use models used to simulate the process of land use change
typically need to solve two problems: the quantity problem and the distribution problem.
The quantity problem refers to how much of the land area has changed, while the distribu-
tion problem involves pinpointing where those land changes occurred. This study applied
the Land Change Modeler (LCM) [51–53], which uses the Markov chain model to predict
the number of future land use changes, and then calculates the distribution location of
these changes according to the Multilayer Perceptron (MLP) model.

Markov chain is a kind of “no after-effect” random stored procedure, as it assumes
that the state of the current variable is only related to its previous state, not to its states at
other moments. Therefore, it has good operability and is used in the simulation of various
land use changes. In Equation (3) of Markov chain, for any positive integer n and possible
states i0, i1, ..., in of the random variables,

P(Xn = in|Xn−1 = in−1) = P(Xn = in|X0 = i0, X1 = i1, . . . . . . , Xn−1 = in−1) (3)

As the land use change conforms to the basic characteristics of the Markov process, it
can be regarded as a Markov process. Therefore, the Markov chain analysis can describe
the land use change process and predict the future land use change trend. It is an important
transformation tool in land use change modeling. However, the following prerequisites
must be fulfilled [54–56]: (1) In a certain area, different types of land use should be
transformable into each other, (2) the conversion between different types of land use can
include many events, which are difficult to describe with a specific formula, and (3) within
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the time limit of the study, the conversion status of the land use structure is relatively stable,
which meets the requirements of the Markov chain. Moreover, the area ratio of the mutual
conversion between the types of land uses equals the state transition probability.

MLP is a very widely used neural network in remote-sensing image processing,
especially remote sensing image classification. MLP was used in the model primarily to
calculate the land use change potential, that is, the future conversion probability between
each land use type. The process involved analyzing future land use by establishing a land
use driving force model and the quantitative relationship between each land use type to
assess the probability of change. Based on the calculated potential distribution of soil use
changes, the location of possible future land use changes can be determined. The back
propagation algorithm used in MLP consists of two parts, namely the forward propagation
of information and the backward propagation of errors. In the forward propagation process,
the input information is calculated from the input layer through the hidden layer to the
output layer, and each layer for the state of a neuron only affects the state of the next layer
of neurons [57,58]. If the expected output is not obtained in the output layer, the error
change value of the output layer is calculated, and then turned to reverse propagation, and
the error signal is returned back along the original connection path through the network to
modify the weights of neurons in each layer until the desired target is reached. During the
forward propagation process, the state of the activated neuron is updated layer-by-layer
from the input layer to the output layer, as shown in Equation (4):

xj = ∑
i

aiwji. (4)

xj represents the total input received by neuron j, wji represents the weight between
neurons j and i, αi denotes neuron i once xj is calculated. The most commonly used
mapping function is the S (sigmoid) function, as shown in Equation (5).

aj = f
(

xj
)
=

1
1 + 1

exp
( xj

T

) . (5)

It is crucial to check the accuracy and effect of the model to determine whether the
model needs to be adjusted. The Receiver Operating Characteristic (ROC) curve test
evaluates the model by comparing the predicted land change probability distribution
map with the actual changed 0–1 map (the changed land value is 1, and the unchanged
land value is 0) [59–61]. This step converts the simulated and reference images into a
2 × 2 table, with each table corresponding to a different threshold. The number of pixels
within the thresholds of A, B, C, and D create the statistical figure for each ROC curve
threshold. The following data are produced; x and y form the point (x, y), where x is the
ratio of classifications labeled as true−, namely D/(B + D), and y is the proportion of true+
classifications, that is, A/(A + C). In order to be expressed as a positive value on the x
axis, the opposite part of true− is generally represented by B/(B + D). Thus, the ROC
curve test provides the Area Under the ROC Curve (AUC), which is obtained using the
following formula:

AUC =
n

∑
i=1

(xi − xi+1)×
{

yi +
yi+1 − yi

2

}
(6)

where xi refers to x for each threshold i, that is, B/(B + D), and y is calculated using
D/(B + D).

3. Results and Discussion

3.1. Analysis of Historical Land Use

The land use maps in 1990, 2000, and 2010 and the accuracies are shown in Figure 2
and Appendix A. Firstly we randomly generated 2866, 2549, and 2481 sample points in 1990,
2000, and 2010 through hierarchical random sampling method. There were 1520 sample
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points, 1227 sample points, and 1008 sample points in forest area in 1990, 2000, and 2010,
respectively. Then we evaluated the accuracy of classification for sample points based on
Google earth.

 

Figure 2. Land use maps and the accuracies in 1990, 2000, and 2010.

GlobeLand30, which was developed by the National Geomatics Center of China, is an
open-access 30m resolution global land cover data product with an overall classification
accuracy of over 80% [62,63]. We compared the area and spatial location of the forest
land in 2010 extracted by Globeland30 with those in this study (Figure 3). Firstly, about
600 sample points are randomly generated within Xishuangbanna administrative region.
Then these sample points are overlapped with Globeland30 and land use map respectively.
Finally we evaluate the accuracy of land use map based on the consistency of forest land
and nonforest land in Globeland30.
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Figure 3. (a) Forest area in 2010 from Globeland30 and this study; (b)spatial distribution of the
validation samples in Globeland30; (c) spatial distribution of the validation samples in this study.
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In terms of the forest land area, the forest land area extracted from Globeland30 was
1.21× 106 ha, and that from this study is 1.05×106 ha, with the accuracy 86.92%. In terms of
spatial location of the forest land, among 600 randomly generated sample points, 376 were
the forest land and 230 were nonforest land in Globeland30; in comparison, 331 sample
points were the forest land and 275 sample points were nonforest land in this study. The
overall accuracy is 83.66%, and the kappa coefficient is 0.657.

The areas, changes, and dynamics of the three types of land use in 1990, 2000, and
2010 are shown in Figure 4.
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Figure 4. Cont.
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(c) 

Figure 4. (a)Land use areas in 1990, 2000, and 2010, (b) changes in land use type, and (c) land use change degree in
Xishuangbanna between 1990 to 2000, 2000 to 2010, and 1990 to 2010.

As shown in Figure 4, the areas under cultivated land, forested land, and water
bodies in Xishuangbanna showed a downward trend from 1990 to 2010. Among them,
the decrease in forest area is the most obvious, with a total reduction of 360,819 ha
(360,819 × 104 m2) over the past 20 years, a dynamic land use change degree of −1.42%, a
decrease of 265,491 ha (265,491 × 104 m2) from 1990 to 2000, and a reduction of 95,328 ha
(95,328 × 104 m2) from 2000 to 2010. The area of cultivated land showed an increasing
trend in the previous 10 years, marked by a rise of 18,153 ha (18,153 × 104 m2) and a
dynamic land use change degree of 1.24%. The area of cultivated land decreased by a total
of 21,456 ha (21,456 × 104 m2) in the latter 10 years, with a dynamic land use change degree
of −1.31%. The area under water bodies declined continuously for the two decades, with a
total reduction of 3996 ha (3996 × 104 m2) and a dynamic degree of −2.17%. Grasslands,
rubber plantations, shrubland, tea gardens, and construction land in Xishuangbanna region
showed increasing trends from 1990 to 2010. Among them, the area of rubber plantations
showed the most obvious growth, with a total increase of 249,948 ha (249,948 × 104 m2)
in 20 years, and a dynamic land use change degree of 9.87%. Moreover, the area under
tea gardens increased by 43,686 ha (43,686 × 104 m2) in the past 20 years, the dynamic
land use change degree being 6.26%. Although the areas under grassland, shrubland, and
construction land increased, the changes were relatively insignificant.

In summary, the economic development of the Xishuangbanna region and the im-
provement in people’s quality of life led to a rise in the cultivation of cash crops such as
rubber and tea in the region in the past 20 years, resulting in a large number of forests
being felled.

During the period 1990–2000, carbon emissions for Global Forest Watch and Santoro
datasets were 7.85 million t CO2e and 5.63 million t CO2e, respectively, with a difference
of 28.30%. During the period 2000–2010, carbon emissions for Global Forest watch and
Santoro datasets were 2.82 million t CO2e and 2.00 million t CO2e, respectively, with a
difference of 28.81%. Carbon emissions for the period 1990–2000 were about 2.8 times as
much as those for the period 2000–2010 (Figure 5).
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Figure 5. Carbon emissions for the period 1990–2000 and the period 2000–2010.

3.2. Influencing Factors of Land Use Change

There are many drivers that lead to deforestation and forest degradation within
REDD+. Direct drivers are human activities or immediate actions that directly impact forest
cover and loss of carbon such as agriculture expansion (both commercial and subsistence),
infrastructure extension, and wood extraction. Indirect drivers are complex interactions
of social, economic, political, cultural, and technological processes to cause deforestation
or forest degradation. They act at multiple scales: international (markets, commodity
prices), national (population growth, domestic markets, national policies, governance), and
local circumstances (subsistence, poverty) [64–67]. Since RLs refer to the business-as-usual
scenario, which means without any change in REDD+ drivers (situation, government,
socio-economic forces, etc. that occur over time), this study only considered seven factors
influencing land use change, namely distance to a road, distance to a river, elevation, slope,
aspect, distance to an administrative center, and nature reserves (Table 3 and Figure 6).

Table 3. Factors influencing land use change and data acquisition methods.

No. Influencing Factor Data Acquisition Method

1 Elevation Using the Shuttle Radar Topography Mission (SRTM) data, the topographic data
of Xishuangbanna region were extracted through the mask

2 Slope A slope map was generated from the extracted elevation data

3 Aspect An aspect map was generated through the Digital Elevation Model (DEM)

4 Distance to a road
Using the traffic map, roads classified as level 3 and above in Xishuangbanna

region were vectorized, and distance analysis was used to obtain the distribution
map of the roads nearest to the studied areas in the region

5 Distance to a river
The main rivers in Xishuangbanna region were vectorized, and distance analysis
was used to obtain the distribution map of the rivers closest to the studied areas in

Xishuangbanna region

6 Distance to an administrative center Distance analysis was conducted for all such centers in Xishuangbanna region

7 Nature reserves (limiting factors) The distribution map showing Xishuangbanna’s nature reserves was analyzed as
land transfer within reserves is restricted
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Figure 6. Influencing factors of land use change in Xishuangbanna region.

Cramer’s V coefficients (Table 4) were calculated to measure the correlation between
the above-mentioned factors impacting land use change and land distribution. The larger
the value, the stronger the correlation.
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Table 4. Cramer’s V coefficients indicating correlations between the influencing factors of land use change and land distribution.

Distance to a Road Distance to a River Elevation Slope Aspect Distance to an Administrative Center

Overall 0.1334 0.0905 0.2539 0.1608 0.0431 0.1252
Woodland 0.0001 0.0001 0.3482 0.0001 0.0001 0.0001
Shrubland 0.2735 0.1809 0.1192 0.2131 0.0729 0.1871

Grass 0.0795 0.0815 0.1289 0.0406 0.0560 0.0933
Cultivated land 0.0462 0.0347 0.1355 0.0210 0.0216 0.0455

Rubber plantations 0.1550 0.0708 0.5297 0.1984 0.0570 0.1542
Tea gardens 0.2148 0.1277 0.1230 0.1665 0.0308 0.1516

Construction land 0.1411 0.0893 0.0451 0.1076 0.0294 0.1025
Other land 0.0492 0.0217 0.2130 0.0256 0.0199 0.0361

3.2.1. Distance to a Road

Besides playing a very important role in the economic and social development of a
region, traffic conditions impact the land use status of a region. The overall correlation
between the land type and distance from a road is 0.1334. Firstly, compared with the
overall value, Cramer’s V coefficient for shrubland and tea gardens is 0.2735 and 0.2148,
respectively, which is much higher than the overall value. Thus, the distance from a road
is a relative important factor affecting shrubland and tea gardens. Secondly, Cramer’s V
coefficient of the impact of the distance from a road on rubber plantations and construction
land is 0.1550 and 0.1411, respectively, quite similar to the overall value. Thus, the affected
land types dominated by road traffic in the Xishuangbanna region are shrubland, tea
gardens, rubber plantations, and construction. It is evident that these land types are
affected by anthropogenic activity. The reason of highest correlation between the shrubland
and road is that it is very common in Xishuanbbanna to have roads built across shrubland
rather other areas.

3.2.2. Distance to a River

The precipitation in Xishuangbanna region is abundant and evenly distributed. The
dependence of most land use types on rivers is not obvious, except for shrubland and tea
gardens. Among them, the influencing factor, namely the overall correlation value of the
distance from a river to the land type is 0.0905, and the Cramer’s V coefficients for tea
gardens (0.1277) are higher than this overall value. This result indicates that the distance
from a river is the main factor affecting tea gardens.

3.2.3. Terrain-Related Factors

Topographic factors play a very important limiting role in various production activities.
The study area is mainly mountainous, and, thus, the topographic factors of elevation,
slope, and aspect cannot be ignored. Firstly, the overall value of the correlation is 0.2539,
and woodland and rubber plantations alone show higher correlation coefficients than this
overall value (the corresponding Cramer’s V coefficients are 0.3482 and 0.5297). During the
period 1990–2010, the rubber plantation in Xishuangbanna continuously expanded from
low-altitude flat valleys to mountainous areas in high altitudes due to high rubber price
from the international market, population pressure, and economic development. This is the
reason for the highest correlation between the elevation and rubber plantation. Cramer’s V
coefficients of elevation for shrubland, grassland, cultivated land, tea gardens, construction
land, and other land are 0.1192, 0.1289, 0.1355, 0.1230, 0.0451, and 0.2130, respectively,
indicating that their correlation coefficients are lower than the overall value.

Secondly, the slope affects the water distribution, wind speed, and soil texture required
for crop growth. The overall value of the correlation for the slope is 0.1608, while Cramer’s
V coefficients for shrubland, rubber plantations, and tea gardens are 0.2131, 0.1984, and
0.1665, respectively, higher than the overall value. Thus, this factor can be regarded as the
main factor impacting these land uses. However, in overall terms, Cramer’s V coefficient is
less than the corresponding values for grassland, cultivated land, construction land, and
other land (0.0406, 0.0210, 0.1076, and 0.0256, respectively).

328



Remote Sens. 2021, 13, 416

Finally, the aspect primarily affects the length of time and temperature for the growth
and final yield of crops. The overall value in this case is 0.0431, while Cramer’s V coefficients
for shrubland, grassland, and rubber plantations are all greater than the overall value
(0.0729, 0.0560, and 0.0570, respectively).

3.2.4. Distance to an Administrative Center

Governmental administrative organizations are typically located in townships. Given
the increasingly strict forest protection policies being applied to Xishuangbanna region,
areas closer to governmental administrative organizations can be conveniently supervised
and regulated, resulting in a certain deterrent effect on forest destruction and illegal mining
of local resources. The overall value of the distance from a township is 0.1252. The
corresponding Cramer’s V coefficients for rubber plantations, and tea gardens (0.1542,
and 0.1516, respectively) are higher than the overall value. However, the coefficients for
grassland, cultivated land, construction land, and other land (namely, 0.0933, 0.0455, 0.1025,
and 0.0361, respectively) are less than the overall value. Therefore, rubber plantations and
tea gardens are clearly (and expectedly) impacted by distance to a township, whereas this
is not so for the remaining land use types.

3.2.5. Limiting Factor (Nature Reserve)

Xishuangbanna Nature Reserve is a national nature reserve consisting of five small sub-
reserves, namely the Mengyang, Menglun, Mengla, Shangyong, and Manzhang Reserves.
These sub-reserves are not geographically connected to each other and cover a total area
of 242,500 ha (242,500 × 104 m2). Notably, 12.68% of the total area of the Prefecture is
allocated to nature conservation, namely the protection of the tropical forest ecosystem and
its rare wildlife. Relatively little land change has been observed in the protected area, and
man-made damage has also been effectively contained. In this study, the conversion rate of
certain land use types, such as forestland, in the protected area was set to 0; in other words,
anthropogenic activities in these areas are completely restricted.

3.3. Future Land Use Simulation Results and Inspection

The expansion of rubber and other cash crops has caused massive forest loss and
fragmentation in Xishuangbanna. The region experienced the most severe forest losses
and degradation particularly for the period 1990 to 2010. Therefore, we chosen the period
1990 to 2010 for REDD+ in Xishuangbanna as the baseline, which is crucial to measure the
emission reduction performance and consequently to negotiate meaningful deforestation
emission reduction targets. As a result, the land use change data for 1990 and 2000 were
used as inputs to the model of the Markov chain and MLP, and the 2010 land use change
data were used as the verification values to simulate future land use. The validation of
AUC value from the ROC curve method is 0.8, indicating that the results provided by the
model are ideal. The land use prediction results for the Xishuangbanna region in the next
20 years of 2016–2035 are shown in Figure 7.

Area under forestland shows a downward trend and is the largest change over the
20 years, with the areal reduction amounting to 158,535 ha (158,535 × 104 m2). Conversely,
the areas under rubber plantations, tea gardens, and cultivated land increase, with rub-
ber plantations showing the highest increase (by 108,450 ha (108,450 × 104 m2)). The
areas under tea gardens and cultivated land also increase, but only slightly (by 39,204 ha
(39,204 × 104 m2) and 31,707 ha (31,707 × 104 m2), respectively). The areas under shrub-
land, grassland, construction land, and water bodies remained stable. Thus, in the next
20 years, the Xishuangbanna region will undergo further deforestation; simultaneously,
given its improved economic development and the rising human demand for resources,
the cultivation of cash crops such as rubber and tea will continue to increase, which will
add pressure on the region’s forests.
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Figure 7. Land use forecast for Xishuangbanna region for the next 20 years (unit: ha or 104 m2).

3.4. Reference Levels in Xishuangbanna

According to IPCC’s Good Practice Guidance, the source/or sink estimates were
determined by multiplying the activity data by a carbon stock coefficient (i.e., emission
factor) at two points in time. In this study, the combination of the IPCC method and
the land use change model showed that the carbon emissions from the study region
obviously increased year by year over the 20 years of this study (Figure 8); the simulated
growth trend provides an estimate of 0.35 million t CO2e of annual carbon emissions
on average. Simultaneously, the large increase in rubber plantations facilitated a rise
in carbon absorption, resulting in average annual carbon sequestration of 0.13 million t
CO2e. Although the total amount of carbon sequestration attributable to cultivated land,
grassland, shrubland, and tea gardens changed, the overall increase was not large. In
general, the total carbon emissions in Xishuangbanna rose year by year during the past two
decades. The average annual carbon emissions in the past two decades were estimated to
be 0.23 million t CO2e, while the total carbon emissions in the same time period amounted
to 4.6866 million t CO2e, indicating an obvious increase.

 

Figure 8. Reference levels in the Xishuangbanna region.
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4. Conclusions

A careful assessment of RLs for REDD+ in Xishuangbanna, China provides significant
insights to REDD+ project. The implications that emerge from this study are as follows.

1. We developed a methodological framework to estimate carbon emissions for the
REDD+ program in the tropical forests of Xishuangbanna, China. By coupling IPCC’s
GPG and land use scenario modeling, we could successfully estimate the RLs. Within the
framework, the Enhanced Thematic Mapper Plus/Thematic Mapper(ETM+/TM) remote
sensing images in the study area were used to interpret land use changes in 1990, 2000, and
2010. The Land Use Dynamic Index was used for the transfer of land use types during the
study period to identify that rubber plantations were the main contributor to forest loss
in this region. The Markov chain model was used to predict the number of future land
use changes and the Multilayer Perceptron model was applied to calculate the distribution
location of these changes.

2. According to Paragraph 71 of Decision 1/CP.16, forests RLs are one of the elements
to implement REDD+ activities for developing country parties. Moreover, the COP recog-
nizes the importance and necessity of adequate and predictable financial and technology
support for developing such RLs. Identifying these RLs is, therefore, a critical step in the
provision of financial incentives and/or creation of carbon markets. Furthermore, they
guide the design of the REDD+ strategy. In this study for the business-as-usual scenario
of the RLs, Xishuangbanna will lose 158,535 ha (158,535 × 104 m2) of forest area in next
20 years, resulting in approximately 0.23 million t (0.23 × 109 kg) CO2e emissions per year.
This is due to the improved economic development and the rising human demand for
resources, such as the cultivation of rubber and tea.

5. Future Scope

Estimating carbon emissions based on RLs is a multidisciplinary task. It requires
expertise in forestry science, ecological modeling, statistics, remote sensing, and field
techniques. Undertaking this exercise is demanding given global geographical diversity,
and, thus, building technical capacity to this end is essential. Modeling future emissions
based on historical trend rates and understanding the relationships between deforestation
patterns and the drivers of deforestation are essential for RL estimation [68–70].

Remote sensing technology using optical sensors is capable of measuring the carbon
content of different forest types when supported by field information from, for example,
sample plots used to calibrate the technology. Using this methodology, a multitemporal set
of remotely sensed data can be used to detect forest changes over time [71–73]. Thus, freely
available Landsat images can provide reliable measurements of forest change, especially
when complemented with high-resolution satellite imagery from sensors such as QuickBird,
which provide data for image analysis training and validation.
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Appendix A

Table A1. The accuracies in 1990.

Reference Date (1990)

Total UA
Classification

Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations

Water GrassLand Constructionland
Tea
Gardens

Forest land 1350 67 0 45 0 30 0 28 1520 88.82%
Shrub land 55 320 11 25 0 13 0 0 424 75.47%
Cultivated land 0 0 245 0 15 0 12 0 272 90.07%
Rubber plantations 24 12 0 277 0 10 0 0 323 85.76%
Water 0 12 0 0 40 13 0 0 65 61.54%
Grassland 15 0 15 0 0 65 0 0 95 68.42%
Construction land 0 0 10 0 0 0 45 0 55 81.82%
Tea gardens 0 12 15 11 0 0 0 74 112 66.07%
Total 1444 423 296 358 55 131 57 102 2866
PA 93.49% 75.65% 82.77% 77.37% 72.73% 49.62% 78.95% 72.55% OA = 84.30%
Omissionerror 0.065 0.243 0.172 0.226 0.273 0.504 0.211 0.275 Kappa = 0.770
Commission error 0.120 0.043 0.012 0.018 0.009 0.011 0.004 0.014

Table A2. The accuracies in 2000.

Reference Date (2000)

Total UA
Classification

Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations

Water Grassland Constructionland
Tea
Gardens

Forest land 1100 54 20 31 0 0 0 22 1227 89.65%
Shrub land 27 385 0 29 0 15 0 0 456 84.43%
Cultivated land 0 0 260 0 15 0 11 0 289 90.91%
Rubber plantations 15 12 0 163 0 10 0 0 200 81.50%
Water 0 12 0 0 30 13 0 0 55 54.55%
Grassland 0 0 15 0 0 57 0 0 72 79.17%
Construction land 0 0 14 0 0 0 45 0 59 76.27%
Tea garden 0 11 0 13 0 0 0 80 104 76.92%
Total 1142 474 309 236 45 95 56 102 2459
PA 96.32% 81.22% 84.14% 69.07% 66.67% 60.00% 80.36% 78.43% OA = 86.21%
Omission error 0.037 0.188 0.159 0.309 0.333 0.400 0.196 0.216 Kappa = 0.805
Commission error 0.096 0.036 0.014 0.017 0.010 0.006 0.006 0.010

Table A3. The accuracies in 2010.

Reference Date (2010)

Total UA
Classification

Forest
Land

Shrub
Land

Cultivated
Land

Rubber
Plantations

Water Grassland Constructionland
Tea
Gardens

Forest land 856 54 0 45 0 25 0 28 1008 84.92%
Shrub land 16 275 15 25 0 0 0 0 331 83.08%
Cultivated land 0 0 245 0 15 0 12 0 272 90.07%
Rubber plantations 38 12 0 390 0 10 0 0 450 86.67%
Water 0 14 0 0 40 0 0 0 54 74.07%
Grassland 20 0 25 0 0 80 0 0 125 64.00%
Construction land 0 0 14 0 0 0 45 0 59 76.72%
Tea gardens 0 20 17 13 0 0 0 132 182 72.53 %
Total 930 375 316 473 55 115 57 160 2481
PA 92.04% 77.33% 77.53% 82.45% 72.73% 69.57% 78.95% 82.50% OA = 83.15%
Omission error 0.080 0.267 0.225 0.175 0.273 0.304 0.211 0.175 Kappa = 0.781
Commission error 0.098 0.027 0.014 0.030 0.006 0.019 0.006 0.022
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Abstract: Monitoring land degradation (LD) to improve the measurement of the sustainable develop-
ment goal (SDG) 15.3.1 indicator (“proportion of land that is degraded over a total land area”) is key
to ensure a more sustainable future. Current frameworks rely on default medium-resolution remote
sensing datasets available to assess LD and cannot identify subtle changes at the sub-national scale.
This study is the first to adapt local datasets in interplay with high-resolution imagery to monitor
the extent of LD in the semiarid Kiteto and Kongwa (KK) districts of Tanzania from 2000–2019.
It incorporates freely available datasets such as Landsat time series and customized land cover
and uses open-source software and cloud-computing. Further, we compared our results of the LD
assessment based on the adopted high-resolution data and methodology (AM) with the default
medium-resolution data and methodology (DM) suggested by the United Nations Convention to
Combat Desertification. According to AM, 16% of the area in KK districts was degraded during
2000–2015, whereas DM revealed total LD on 70% of the area. Furthermore, based on the AM, overall,
27% of the land was degraded from 2000–2019. To achieve LD neutrality until 2030, spatial planning
should focus on hotspot areas and implement sustainable land management practices based on these
fine resolution results.

Keywords: land degradation neutrality; SDG; land productivity; land cover; NDVI; Landsat;
vegetation-precipitation relationship; soil organic carbon; Google Earth Engine

1. Introduction

Land degradation (LD) is defined as the “continuous reduction or loss of the pro-
ductivity of the land due to a combination of natural and anthropogenic causes” [1]. It
is a global problem and affects people, their livelihoods and nature. Studies suggest that
up to 3.2 billion people live and depend on degraded lands [2] and that approximately
a quarter of the world’s lands are affected by LD [3,4]. Poor people, who often rely on
agriculture, are most vulnerable to LD [5,6]. Lost ecosystem services due to land use and
land cover (LULC) change and LD account for up to USD 10.5 trillion loss per year, which
is about a sixth of the world’s gross domestic product (GDP) [7]. Furthermore, biodiversity
is declining globally, with tremendous losses in sub-Saharan Africa because of LD [6].
Projections suggest that lower productivity in the face of climate change will drive LULC
change globally. Moreover, the population growth, combined with a changing diet, will
have an enormous influence on agriculture and thus LD [8]. It is for these reasons that the
world community introduced the sustainable development goal (SDG) 15.3, which aims to
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“restore degraded land and strive to achieve an LD-neutral world”, highlighting the global
importance of this issue [9,10].

Tanzania is a hot spot of LD, with more than half its area showing signs of
degradation [2,11]. It has the highest annual forest area net loss in East Africa and the fifth-
highest worldwide [12]. The cost of LD has been summed up to USD 2.3 billion annually
in the first decade of the new millennium [13]. Seventy-five percent of the total labor force,
mostly rural people, work and depend on the agricultural sector, which is accountable
for about 30% of the GDP [14]. Although the cultivated area increased in the last years,
the output per hectare (ha) decreased, both in annual and perennial crops, even though
fertilizer consumption quadrupled at the same time [15]. The number of undernourished
people is growing and is currently more than 30% [16]. The population is increasing while
agricultural productivity is stagnating, and the economic dependency on natural goods is
still high. The consequences of this dilemma area persisting pressure on land and, thus, a
probable conversion of natural into cultivated land in the coming years. The poor people’s
food security is also at risk, and in the coming years, in the face of climate change, new
insecurities are likely to arise [17]. This holds especially true for the rural semiarid central
districts of Kiteto and Kongwa (KK).

Agricultural intensification and sustainable land management (SLM) are keys to halt
and reverse LD [18–20]. One major constraint that prevents action is the lack of spatial
information on the extent and magnitude of LD [18]. In contrast to the laborious fieldwork,
remote sensing offers the unique opportunity to consistently assess vast areas over a long
period [2–4]. Unfortunately, the existing LD maps have a coarse spatial resolution and
provide inconsistent estimates of the affected area [8]. For example, previous estimates of
the extent of LD in Tanzania range from 41% to half of the country [2,3,11]. These variations
emanate from differences in definitions of LD, monitoring methods and lack of appropriate
data [6,21]. In the course of SDG 15.3 implementation, standard methods for assessing LD
were introduced, making reports more comparable.

This new standard methodology, recommended by the United Nations Convention
to Combat Desertification (UNCCD), includes the usage of three sub-indicators for the
complimentary assessment of LD [22]. The first sub-indicator, land cover (LC), reports
changes in vegetation cover. The second, land productivity (LP), captures changes in
ecosystem functions. The last, soil organic carbon (SOC), indicates slower changes resulting
from biomass alterations [20]. The three sub-indicators are aggregated to form the land
degradation indicator. Improvements in one indicator cannot compensate losses in others,
as they are complementary and not additive. Thus, the “one-out, all-out” approach is
applied whereby even if one indicator shows signs of decline and the others are positive,
the land is deemed to be degraded [23].

The recent Tanzanian national LD-neutrality (LDN) report follows these guidelines [24].
However, it only assesses LD for the first ten years of the 21st century and mainly uses
global default data with a coarse spatial resolution. The 1 km coarseresolution is inadequate
to monitor LD in small mountainous and highly fragmented landscapes, as it may miss
out on smaller than pixel size LD areas [25].

Overall, only a few studies have been published on the subject of SDG 15.3.1 mon-
itoring and assessment. Gichenje and Godinho [26], for example, conducted a baseline
assessment of the SDG indicator 15.3.1 for the years 1992 to 2015 using the Advanced
Very High Resolution Radiometer (8 km, AVHRR) Normalized Difference Vegetation In-
dex (NDVI) time series and the European Space Agency (ESA) Climate Change Initiative
(CCI) LC map in Kenya. In Mozambique, Frederique et al. [27] analyzed only the LD
sub-indicator LP trend using the Moderate Resolution Imaging Spectroradiometer (250 m,
MODIS) NDVI from 2001 to 2016.

However, these studies share the common disadvantage of applying only default
methodology and global datasets for national and subnational LD assessments. Though
Akinyemi et al. (2020) used a customized 30m resolution LC map to assess the LC sub-
indicator of SDG 15.3.1 in Botswana, this study relied on AVHRR time-series assessment
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for the LP sub-indicator. Furthermore, no studies exist in Africa that used high-spatial-
resolution datasets the assessment of more than one sub-indicator of SDG 15.3.1. Therefore,
it is vital to overcome the existing research gaps and use high-resolution spatial data to
provide improved information on the SDG 15.3 [28].

In this light, the main aim of our study was to assess the SDG 15.3.1 indicator based
on the newly adopted approach based on the higher resolution (compared to default
UNCCD datasets) 30m Landsat time series and 30m LC maps and compare our results to
the estimates of the SDG 15.3.1 based on the default UNCCD data and methods.

Our study addressed the following research questions:

• How much land is degraded, and where are the hotspots of LD in KK?
• How do the individual sub-indicators affect LD?
• Does using higher resolution data (30 m) improve the delineation of LD compared to

moderate-resolution data (250 m)?

2. Materials and Methods

2.1. Study Area

The study site is situated in Kiteto and Kongwa districts, located in Dodoma and
Manyara regions of Central Tanzania, respectively (Figure 1). The elevation ranges between
850 and 2100 m above sea level. The study area has a hot arid steppe climate [29]. The
average monthly temperature stays between 19 and 25 ◦C all year, and the precipitation
is roughly 600 mm a year, with interannual differences of 500 to 800 mm. Large parts of
northern Kiteto and more minor areas of the mountainous region in Kongwa are protected
areas for nature and landscape conservation.

2.2. Materials

The SDG 15.3.1 indicator and its three LDN sub-indicators were computed using the
recommended default method (DM) with Trends.Earth [30] and the adapted methods (AM)
using high-resolution Landsat (and other) datasets (Table 1).

Figure 1. Location of the study area in Central Tanzania (A,B) and protected areas (C).
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The DM (LC) map provided by the UNCCD is based on the 300 m ESA CCI LC map
(Table 1). The AM utilized 30 m LC maps for 2000–2018 in the study area that the Regional
Centre for Mapping of Resource for Development (RCMRD) developed. Both datasets were
disaggregated into the six LC classes as defined by Intergovernmental Panel on Climate
Change (IPCC), i.e., forestland, grassland, cropland, wetland, urban, and otherlands [31].

The recommended global default dataset uses the MOD-13Q1-coll6 (250 m) MODIS-
NDVI products [30]. In contrast, the AM was calculated based on a 30 m resolution NDVI
from a combination of Landsat 5, 7 and 8 (Table 1). The Landsat time series were accessed
and analyzed using Google Earth Engine [32], based on atmospherically corrected surface
reflectance collections (Table 1). The Landsat 5 and 7 data were spectrally harmonized with
Landsat 8 series using linear transformation [33]. As a further step to improve the image
quality, the fmask was adopted to mask out clouds and cloud shadows [34,35]. Generally,
the images with cloud cover scores higher than 80% were removed. Finally, the NDVI
was calculated for each image, and then the images of the same admission time were
merged and clipped to the extent of the study area. As it is recommended to constrain
the observation period to the growing season to reduce the number of irrelevant assets
for the computation and enhance the quality of the time series [22], we used the imagery
from November to June. When using Trends.Earth, there is no possibility to apply the
computation to the growing season, so the DM uses the whole calendar year. In order to
integrate the rainfall information, data from Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) were used (Table 1).

Table 1. The datasets used for land degradation neutrality (LDN) reporting. For the land cover, the European Space Agency
Climate Change Initiative (ESA-CCI) and the Regional Center for Mapping of Resources for Development (RCMDR) were
used. Land productivity is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat. The
precipitation is based on the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Lastly, the soil
organic carbon content is derived from SoilGrids250m.

LDN
Sub-Indicators

Method Data Resolution/Year Reference

Land Cover
Default Method (DM) ESA-CCI 300 m (2000–2015) [36]

Adapted Method (AM) RCMRD 30 m (2000–2018) [37]

Land Productivity

DM MOD-13Q1-coll6 250 m (2000–2015) [38]

AM
Landsat 5 30 m (2000–2013)

[39]Landsat 7 30 m (2000–2019)
Landsat 8 30 m (2013–2019)

DM/AM CHIRPS 0.05 arc◦ (2000–2019) [40]

Soil Organic Carbon DM/AM SoilGrids250m 250 m [41]

The SOC metrics were derived from the SoilGrids250m dataset [41] for the DM and
the AM, as there is no national SOC database for Tanzania. SOC is measured at a depth of
30 cm and is stated as mass per area (e.g., tons per hectare (t/ha)) [22].

2.3. Methods

The calculation of the SDG 15.3.1 indicator is based on the “one out, all-out” approach
(Ref. [23] and Figure 2). The three LD sub-indicators (LC change, LP decline and loss of
SOC) are estimated, and if one indicator signals degradation, the LD indicator will reflect
this as well. A baseline is needed to compare the progress of LDN. The baseline year (t0)
was set to be 2015 and is computed as the average of the period leading up to t0 (2000–2015).
The indicators are then remeasured in regular time intervals leading to 2030, and change is
used to monitor the progress to accomplish LDN [20].

340



Remote Sens. 2021, 13, 1754

Figure 2. Steps to derive the sustainable development goal (SDG) indicator 15.3.1 from the sub-indicators. I represents
Improvement, S represents Stable and D represents degraded (based on [31]).

To calculate the indicator for the reporting year 2019 (t1), it is necessary first to assess
the baseline util t0 and then calculate the change from the baseline to t1 (Figure 2). As a final
step, combine both results. The details of the calculation of each indicator are explained in
the following section. The three LD sub-indicators were created from satellite images using
cloud-based geospatial computing. The indicators were calculated using Trends.Earth [30]
and Google Earth Engine [32] for the DM and AM, respectively. As Trends.Earth currently
only enables the computation for the baseline period (BP), the DM is only available from
2000 to 2015.

2.3.1. Sub-Indicator 1: Land Cover Transitions and Degradation

The first SDG 15.3.1 indicator is the LC change. To assess the LC degradation, the
transitions between 2000–2015 and 2015–2018 were analyzed for the baseline and the first
monitoring period (MP), respectively. To determine whether changes from one LC class to
another are interpreted as degradation, a change matrix can help visualize the transitions
(Table 2) based on the Good Practice Guidance by the UNCCD [31]. It is recommended
to adopt this matrix for the national context. Therefore, transitions from grasslands to
croplands were not considered LD for the AM to avoid tradeoff between ecosystems and
food security and between nomadic and sedentary living.

2.3.2. Sub-Indicator 2: Loss of Land Productivity

LP is described as “the biological productive capacity of the land”. It is closely
associated with net primary productivity [42], which can be measured directly with earth
observation methods [22]. NDVI is a widely used index detecting LP [26,43,44]. The LP
sub-indicator consists of three distinct components, namely trend, state and performance.

The LP trend component measures the trajectory of change in productivity over time.
It is calculated at the pixel level using linear regression and the Mann Kendall significance
test [22,45,46]. Positive and negative changes in NDVI indicate increasing and decreasing
productivity associated with vegetation recovery and degradation, respectively. The eight
most recent years of data were used to create a new distinct and significant time series
that is more responsive to present land conditions. Further, following [47], we accounted
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for the effect of rainfall variability on vegetation productivity trends by using the rain use
efficiency (RUE) method.

The LP state component represents recent changes in LP compared to the BP. The
yearly NDVI mean images of the shortened BP (2000–2012) were normalized and assigned
to classes from 1 to 10 based on their percentiles. To avoid annual fluctuations, contem-
porary values of the three-year anteceding t0 and t1 were classified in this scheme. Areas
with a reduction of two or more classes were classified as degraded, while the rise by two
categories was interpreted as an improvement [31].

The LP performance component examines local productivity compared to similar
ecoregions defined by the unique combination of SoilGrids [41], soil taxonomy great groups
and LC classes (Table 1). The 90th percentile in each ecoregion was calculated as a proxy
for the maximum productivity level. The LP performance was then calculated based on
the ratio of the observed mean NDVI value per pixel and the NDVImax (90th). Values below
0.5 indicate regions where the LP is low and LD may prevail [31].

The overall LP sub-indicator is calculated based on the three components mentioned
earlier. As the LP trend is based on a statistically significant test, it is most influential, and
its status determines LP degradation. Only if both LP status and LP performance show
negative results, does the LP indicator also show degradation [22]. If only the LP state
component shows degradation, this could indicate “early signs of decline” because the
other indicators may not have detected the most recent LD. Further, if only performance
shows degradation, there is no temporal trend, and the land is classified as “stable but
stressed” [22]. In contrast to the Good Practice Guidance by UNCCD, Trends.Earth (DM)
also incorporates the “early signs of decline” state component into the LP degradation [30].

Table 2. Land cover transition matrix (2000–2015) based on the adapted methods (AM). Green, beige and brown colors
indicate improving, stable and declining conditions of land cover categories, respectively. The area in km2 and the possible
cause of the land cover transition are indicated in the matrix. The change is based on the high-resolution land cover dataset.

AM Land Cover Category in 2015 (km2)
2000 Total (km2)

Forestland Grassland Cropland Wetland Urban Otherland

A
M

la
nd

co
ve

r
ca

te
go

ry
in

20
00

(k
m

2 )

Forestland Stable
1969.4

Vegetation loss
226.8

Deforestation
237.5

Inundation
9.2

Deforestation
3

Vegetation loss
72.7 2519

Grassland Afforestation
36

Stable
6932.4

Agricultural
expansion

806

Inundation
26.4

Urban
expansion

40.4

Vegetation loss
253.5 8094.6

Cropland Afforestation
24.1

Withdrawal of
agriculture

221.8

Stable
3622.3

Inundation
10.3

Urban
expansion

14.7

Vegetation loss
76.2 3969.3

Wetland
Woody

encroachment
3.1

Waterbody
drainage

53.4

Waterbody
drainage

77.3

Stable
131.4

Waterbody
drainage

3.4

Waterbody
drainage

28.5
297.1

Urban Afforestation
0.4

Vegetation
establishment

11.4

Agricultural
expansion

32.8

Wetland
establishment

0.5

Stable
141.5

Withdrawal of
settlements

7.3
193.8

Otherland Afforestation
7.6

Vegetation
establishment

118.2

Agricultural
expansion

149.7

Wetland
establishment

15.1

Urban
expansion

8.1

Stable
1718.9 2017.5

2015 total (km2) 2041 7563.9 4925.6 192.9 211 2157 17,091.4

2.3.3. Sub-Indicator 3: Degradation of Soil Organic Carbon

The Good Practice Guidance for the SOC sub-indicator is based on the maximum
equilibrium SOC content at a location that is controlled by environmental factors such as
rainfall, evaporation, solar radiation, and temperature [22]. The content can change based
on three distinct change factors: First, the land-use factor represents SOC stock changes
based on the type of land use. Second, the management factor reflects the management
practice of the land use (e.g., grazing intensity on grasslands). Third, the input factor
represents the different amounts of carbon input into the soil [22,48,49]. While the LULC
change factor can be used with LC as a proxy, there are presently no sufficient datasets
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available to provide information about the management or the input for the other two
indicators. Thus, the only indicator to assess SOC changes is the second LD indicator LC
change [22].

3. Results

Three sub-indicators, namely LC transitions, LP decline, and SOC loss, were estimated
to derive the SDG 15.3.1 indicator using the default and adapted methods. The patterns of
each sub-indicator based on DM and AM are described in the following sections starting
with the BP from 200 to 2015 for both DM and AM. The first monitoring period from 2015
to 2019 is only assessed using the AM, as the data necessary for this period are currently
not available in Trends.Earth.

3.1. Sub-Indicator 1: Land Cover Transitions and Degradation

According to the DM based on the medium-resolution 300 m LC maps, over 99% of
the study area remained stable in the BP (2000–2015) (Table A1). Urban areas covering
less than 0.1% of the study area experienced the highest relative expansion (56%). The
forestlands were the only other LC class that increased in area significantly (4.4%) in the BP.

In contrast to the DM, the AM with high-resolution (30 m) LC data revealed that
6.7% of the total area changed to a less desirable LC class, signifying LD, and only 2.3%
of analyzed areas improved. The area of (semi)natural LC, such as forestlands (−19%),
grasslands (−6.6%) and wetlands (0.1%), mostly declined, whereas the croplands recorded
the highest spatial gain (24.2%) (Figure 3 and Table 2).

Figure 3. Sankey plot describing the land cover transitions between the years 2000, 2015 and 2018 using high-resolution
land cover data. Bands represent the actual proportion of land that changed class over time.
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The trend observed in the BP continued in the first years of the MP (Figure 3 and
Table A2). Overall, from 2015 to 2018, 3.3% of the total area was degraded during the MP,
while 1.2% of the area changed to a more desirable LC. Grass- and forestlands continued to
decline by 3 to 9%, respectively, while anthropogenic(-influenced) covers such as cropland
and urban areas expanded. Compared to about 3000 ha forests lost per year (a) in the BP,
the rate doubled to 6000 ha/a in the MP. Similarly, the changes in croplands increased from
6000 ha/a in 2000–2015 to 7500 ha/a in 2015–2018.

3.2. Sub-Indicator 2: Loss of Land Productivity

The DM revealed that the LP sub-indicator showed degradation in 71.1% of the
area during the BP from 2000 to 2015 (Table 3). The LP component trend showed “de-
cline” in 26.8% of the area (Figure A1A). Another 44.3% of the study area showed “early
signs of decline” (LP component state, Figure A2A), and the rest (28.9%) remained stable
(Figure 4A). According to DM, croplands were most affected (48.4%) by LP decline in
2000–2015 (Figure 5). Forestlands with only about 11.7% marked as degraded were less
affected compared to their actual LC share (Figure 5).

Table 3. The land productivity (LP) status in percent for the default (DM) and adapted methods
(AM) for the baseline period from 2000 to 2015, as well as for the first monitoring period of 2015-2019.
Furthermore, the land cover share of the degraded area in the target year is depicted.

DM
2000–2015

AM
2000–2015

AM
2015–2019

LP Status (%)
Degraded 71.1 8.2 12.2

Stable 28.9 91.3 87.7
Improved 0 0.5 0.1

Figure 4. The land productivity sub-indicator generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adapted approach with Landsat imagery for
the monitoring period 2015–2019.
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Figure 5. The bar chart showing the distribution of land productivity (LP) decline sub-indicators over the land cover classes
using the default (DM) and adapted methods (AM). The dashed lines show the actual land cover share.

Based on the AM applied between 2000 and 2015, the final composite indicators of LP
decline revealed that 8.2% of the study area was degraded between 2000 and 2015 (Table 3).
This is nearly entirely based on the 8.2% “decline” of the LP trend component (Figure A1B).
Further, 9.1% and 1.4% of the study area were marked as showing “early signs of decline”
(Figure A2B) and “stable but stressed” areas (Figure A3B), respectively (Figure 4B). Grass-
and croplands accounted for 43.5% and 42% of the degraded area (Figure 5). The decline in
forestlands was, in turn, detected only on 2.6% of the total degraded area.

LP declined over 12.2% of the study area during the MP from 2015 to 2019 (Figure 4C).
With an increase from 9.1% up to 17% of the area, the share of areas with “early signs of
decline” (state component) was higher than during the BP (Figure A2). The area where LP
was improving was reduced from 855 to 171 km2 compared to the BP.

3.3. Sub-Indicator 3: Degradation of Soil Organic Carbon

Soil organic carbon was not directly computed but rather assessed through LC classes’
alteration and the related change factors [49]. SOC did not change significantly with the
DM during the BP from 2000 to 2015: 99.9% of the land did not change the in SOC content
by more than 10% (Table 4). Changes in the individual LC classes were also neglectable.

In contrast to DM, the AM approach revealed that during the BP of 2000–2015, 8.4%
of the land was degraded due to SOC diminishment, while 2.1% increased in SOC content
(Figure 6). The average SOC stock declined from 51.2 to 50.2 t/ha in 2015, losing 1,592,423 t
of carbon over 16 years (Table 4). Forestlands had significantly higher SOC stocks (62.2 t/ha)
at t0 than the other LC classes. Based on the transitions in LC, the amount of SOC in forests
dropped by 19%, while SOC under agricultural use increased by 25.1%.
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Figure 6. The soil organic carbon sub-indicator generated using the adapted approach with SoilGrids250m for the (A)
baseline and (B) monitoring period.

In the MP, the SOC content experienced significant losses on 3.7% of the land. The
same trend was observed in other LC classes (forest-, grass- and wetlands) that gradually
lost SOC in the MP (Table 4).

Table 4. The soil organic carbon (SOC) content for the default (DM) and adapted methods (AM) for
the baseline period from 2000 to 2015 as well as for the first monitoring period of 2015–2018.

DM SOC AM SOC AM SOC

2000 2015 2000 2015 2018

Status (%)
Degraded 0.1 8.1 3.7

Stable 99.9 90 94.7
Improved 0 2 1.7

SOC (t/ha)

Study area 51.2 51.2 51.2 50.2 49.9
Forestland 54.7 54.7 63.2 62.2 62
Grassland 55 55 50.7 49.7 49.5
Cropland 46.2 46.2 46.5 46.9 46.9
Wetland 45.1 45.1 49.2 47 46.7
Urban 36.2 36.2 39.5 42.8 42.8

Otherland 0 0 46.2 47.6 47.6
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3.4. Combined Sustainable Development Indicator 15.3.1 for the Baseline and First
Monitoring Period

During the BP from 2000 to 2015, the DM method identified 71.1% of KK’s area as
degraded and only as 0.5% improved (Figure 7A). This result is mainly caused by the sub-
indicator LP, while the two other indicators LC and SOC showed nearly no degradation.
The LP degradation was mainly driven by the state component of LP in 70.3% of the
total area.

Figure 7. The sustainable development goal (SDG) 15.3.1 indicator “proportion of land that is degraded over total land
area” for the baseline period with the (A) default and (B) adapted methods, and (C) for the first monitoring period using
the adapted method.

On the contrary, during the BP, the AM showed that 16.4% of the area was degraded
and 2.7% improved (Figure 7B). The distinct sub-indicators influenced the final indicator
more evenly with 52.4%, 50% and 31.7% by SOC, LP and LC, respectively, compared to
the DM.

The AM for the first MP (2015–2019) showed that 16% of the total area was degraded,
1.5% improved and more than 82% remained stable (Figure 7C). Forests and grasslands
were the least affected among LC classes. Croplands (38%) and wetlands (7%) experienced
the most degradation between 2015 and 2019. Over three-fourths of the degradation was
driven by the LP sub-indicator, whereas LC and SOC only contributed 20% and 23% to
LD, respectively.

3.5. Combined Sustainable Development Indicator 15.3.1 over 20 Years Using the AM

Over the whole period of 20 years (2000–2019), which results in the SDG 15.3.1
indicator at timestep t1, 27.7% of KK was degraded, and 2.8% of KK improved (Figure 8A).
Thus, the LD was widespread across the two studied districts and formed several LD
clusters (Figure 7B,C). The degradation was not equally distributed over the study area:
the biggest LD hotspots were Central and Western Kiteto, as well as Western Kongwa
(Figure 8A). Even though the land covered by forests decreased and the land covered by
crops increased from 2015 to 2018, the degraded proportion changed conversely as follows:
The degraded area covered by forests increased to 3.9%, while the area covered by crops
sank to 41.9%. While SOC’s degraded area only changed slightly, the relative contribution
sank from 50 to 30% (Figure 8B). The degraded area, which is solely influenced by LP, rose
over 50% and interplayed with others over 70%.
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Figure 8. (A) The sustainable development goal (SDG) 15.3.1 indicator “proportion of land that is degraded over total land
area” for the years 2000–2019 and (B) the contribution to the SDG 15.3.1 indicator by its three sub-indicators land cover (LC)
change, land productivity (LP) decline and soil organic carbon (SOC) loss.

4. Discussion

The presented study is the first in Africa to support the monitoring of the SDG 15.3.1
indicator using fine-spatial-resolution (30 m) satellite time series data for LD assessment.
This is a key contribution considering that previous studies used 250 m to 8 km resolution
data [24,26,50] for LP sub-indicator monitoring, unlike our study that utilized long-term
Landsat time series for SDG 15.3.1 monitoring. Furthermore, it is the first sub-national
study that assesses the SDG 15.3.1 indicator in Tanzania for the BP and includes the MP
until 2019. The first 4 out of 15 years of the SDG time frame are assessed and could
help identify hotspot areas for targeting the appropriate measures to combat LD in the
study area.

The presented LD assessment in KK districts confirmed that the LD problem is acute
in Tanzania. The Tanzanian target is to achieve LDN by 2030 [24]. Both KK are part
of declared LD hotspot regions, which need to improve 25% of the area based on the
status at t0. According to our analysis, only 2.7% of the land area has improved and
27.7% is degraded. Next to the (sub)national targets, there are also specific targets to avoid,
minimize and reverse LD in Tanzania [24]. Among others, about half of the current national
forest area should be restored, 50% of the national croplands should improve LP and the
SOC content in croplands should rise to 54.5 t/ha [51]. Despite these more specific and
ambitious targets, our results show a negative trend in all LD sub-indicators analyzed,
suggesting that more efforts are needed to combat LD in the study area.
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Precisely, instead of restoring forest areas, even more trees were cut over 19 years
(14.7% to 10.9% tree cover). In croplands, LP degradation was above average, while the
SOC content in croplands improved marginally. A possible explanation could be that
restoration attempts using SLM practices had not yet shown effects, because it takes several
years for the change to be monitored remotely [52,53]. Moreover, it takes decades for
SOC to change [49,54]. Hence, it is of paramount importance to prioritize the detected LD
hotspots for rehabilitation and SLM practices to reverse LD processes.

There are currently no sub-national studies for KK districts. With around 27% of the
area in KK being degraded, it is less affected by LD compared to national assessments
found in [2,3] or [11]. However, the comparison with these studies is difficult, as they
used different monitoring periods (ending in the 2000s and 2016) and only a subset of
the methodology (LP trend) and coarse resolution imagery (i.e., 8 km AVHRR data). This
suggests that our study brought LD assessment in Tanzania one step further by assessing
three components of LD according to the SDG 15.3.1 indicator. Further, using significantly
higher spatial resolution, spatial datasets allowed us to reveal spatial patterns of LD beyond
pixel sizes of 8 km [2,3,11] or 1 km [24].

Our study compared the results of the LD assessments based on default UNCCD-
suggested datasets (250 m MODIS data used for LP sub-indicator and 300 m ESA CCI
LC maps) and customized relatively high-resolution datasets (30 m Landsat data used for
the LP sub-indicator and 30 m RCMRD LC maps). The resulting differences between LD
estimates based on DM and AM were striking and could be primarily attributed to the
difference in the pixel size of 6.25 ha (MODIS) versus 0.09 ha (Landsat), which could be
critical in specific areas where fine LD patterns prevailed. This finding is confirmed by
several studies highlighting the importance of using high-resolution imagery to detect LD,
especially on heterogeneous landscapes, such as KK districts, dominated by heterogenous
small-scale farms [50,55,56]. Recent studies that used ground-truth data for validation
showed that using Landsat data for the LC sub-indicator captured LD better than using
ESA-based 300 m datasets [50]. Nevertheless, certain factors could have impacted the
AM, such as the scan-line failure in Landsat ETM+ data. To reduce the potential negative
influence of this on our analysis, we applied several preprocessing steps confirmed to be
effective in similar studies [56].

NDVI was applied in this study, although it was affected by soil brightness in areas
with low vegetation cover. Other vegetation indices, such as MSAVI or MSAVI2, are less
sensitive to soil optical properties in less vegetated areas and, therefore, can be used to
detect a decline in vegetation productivity [57]. However, the alternative indices have
significantly better results than NDVI only in areas where bare soils prevail. Further,
Tüshaus et al. [58] compared NDVI with the Soil-Adjusted Vegetation Index (SAVI) and
MERIS-based Terrestrial Chlorophyll Index (MTCI). The results indicated only little dif-
ferences between the different vegetation indices. Nevertheless, the impact of different
vegetation indices on the estimated LDN sub-indicators can be further tested.

Furthermore, our results pointed out that the ESA CCI LC did not reflect significant
LC changes during the BP in KK districts. Other local estimates, such as the National Forest
Resources Monitoring and Assessment of Tanzania Mainland [21] or Tanzanian Forest
Reference Emission Level [59], suggest a change rate that is three to twenty times higher,
respectively, for a similar period analyzed. Our result is in line with the study of Kimaro
et al. [60], who investigated the LC change for the study area from 1987 to 2010. Their
study indicated that the LC change was already in progress over 30 years ago with heavy
declines in (semi)-natural landscapes. This suggests that our research offers advancement
of sub-national assessment of LD in heterogeneous landscapes.

Our study revealed that the LP sub-indicator impacted LD in the study area the most
(by 50%) using the AM. The remaining half is affected by SOC, LC, or by the combination
of more than one sub-indicator. On the other hand, the LD indicator using the DM is
nearly solely affected by the LP sub-indicator, which is primarily driven by the state
component. This suggests two things: First, our AM is better suited to reflect the ongoing
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multidimensional degradation in KK districts. Second, even if the ongoing LULC change
stops, the degradation will not halt because of the decline in LP.

This is well reflected in croplands, which were the worst affected land cover class, not
only in LP decline but also in SOC loss. Due to the continuous cultivation of the agricultural
lands combined with overgrazing and little fertilizer inputs, the crop yields in the study
area are reportedly low, caused by the limited availability of soil nutrients and organic
matter content [18]. Another study that assessed LD in Kenya in similar environmental and
land use settings found that croplands experienced the highest decline in LP, indicating that
unsustainable farming practices are widespread throughout Eastern Africa [26]. This has
serious consequences, as already 30% of the Tanzanian population are undernourished [16],
and the yield gap for the main crops needs to be closed for the population to sustain itself
in the coming decades [61].

The soils in KK districts lost 1.6 million t of SOC due to LULC change from 2000–2018,
according to our study. This is especially dire, as SOC is vital for soil quality and is a
key ecosystem indicator [62]. The study by van der Esch et al. [63] suggests that due to
LULC change, 27 Gt of SOC will be further lost globally by 2050, mainly in sub-Saharan
Africa. Studies conducted in Tanzania found that higher SOC values on the farm level
resulted in financial benefits for the farmers [64]. Thus, increasing SOC via SLM practices
would not only improve farmers’ living conditions but also allow slowing down ongoing
SOC degradation.

In contrast to the LP and LC sub-indicators, which have a continuous basis with
Landsat and Sentinel missions [65] and for which there are also further high-resolution
maps available [66], the SOC sub-indicator still lacks good spatial and temporal coverage.
Further, there are currently no sufficient datasets available to provide information about the
management or the input for the SOC indicator. Thus, the SOC change is only approximated
by the LC change sub-indicator, leading to a misbalance towards the LULC change in the
overall SDG 15.3.1 indicator. At the moment of the analysis, the high spatial resolution
SOC data by Innovative Solutions for Decision Agriculture (iSDA) based on [67] were not
available. Further work should thus address this limitation and incorporate per availability
high-resolution SOC data in the analysis, as well as conducting field validation of both
approaches. At the beginning of 2021, the UNCCD updated the first version of the SDG
15.3.1 good practice guidance and innovated the methodology [68]. Future studies should
therefore adopt this new approach in conjunction with newly available datasets.

The improvement of the subnational analysis with freely available data, the use of
cloud computing platforms, and the source code’s availability to perform LD assessment
present an opportunity to upscale the analysis further and transfer the methods to other
study areas.

5. Conclusions

The presented study demonstrates the potential of earth observation for LD monitor-
ing with high spatial resolution data and uses cloud computing approaches with Google
Earth Engine, and it improves the measurement of the SDG 15.3.1 indicator in the study
area in Tanzania up until 2015 and 2019 at two different levels of spatial detail. Our study
thus offers advancement of sub-national assessments of land degradation (LD) in hetero-
geneous landscapes. The improvement of the sub-national analysis with high-resolution
data, the use of cloud computing platforms and the provision of the source code used here
to perform LD assessment should encourage a transfer of the here presented approach to
other study areas and/or the upscaling of the results of this study to the national level.

For this, we compared two approaches of assessing the SDG indicator 15.3.1 in Kiteto
and Kongwa districts of Tanzania. The first method applied the global default (DM)
medium resolution datasets proposed by the UNCCD for monitoring LD for the baseline
period (BP, 2000–2015). The second method, the adapted method (AM), applied local land
cover 30 m maps and 30 m Landsat to monitor LD for the baseline and the first monitoring
period (MP, 2015–2019). The LD assessment for the BP reveals large differences between
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the DM and AM. Using the DM, nearly all degraded area stems from the LP sub-indicator
based on 250 m MODIS imagery. In contrast, the degradation was less than 1% for the LC
and SOC change sub-indicators, calculated based on ESA CCI LC (300 m) maps. The LD
captured by the AM based on Landsat time series and 30 m LC data was evenly distributed
between the three sub-indicators and revealed LD on 27.7% of the area. We, therefore,
concluded that the results derived from medium-resolution datasets are likely to over- and
underestimate the LD for different sub-indicators and, thus, might misinform policy- and
decision-makers and land managers if used operationally. Further, our study concluded
that the local datasets and high-resolution imagery are essential to capture subtle changes
within the heterogeneous landscape in semiarid central Tanzania.

Our results confirmed that LD is currently ongoing in the study area. The LD did
not halt after 2015 but spread further across the districts and formed several severe LD
clusters. Therefore, to achieve the national LDN targets, it is crucial to address the most
important LD causes, such as overgrazing and unsustainable farming in the study area.
The application of SLM practices would enhance the low LP in croplands and prevent
LULC change in KK districts.

Further work should incorporate high-resolution SOC data in the analysis and conduct
field validation of LD assessments resulting from both approaches.
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Appendix A

Table A1. Land cover transition matrix (2000–2015) based on the default methods (DM). Green, beige and brown colors
indicate improving, stable and declining conditions of land cover categories, respectively. The area in km2 and the possible
cause of the land cover transition are indicated in the matrix. The change is based on the moderate-resolution land
cover dataset.

DM Land Cover Category in 2015 (km2)

Forestland Grassland Cropland Wetland Urban Otherland 2000 Total (km2)

D
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r
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go

ry
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2 )

Forestland Stable
2810.18

Vegetation
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3,83

Deforestation
0.68

Inundation
0

Deforestation
0.49

Vegetation
loss

0
2815.19

Grassland Afforestation
127.43

Stable
6976.03

Agricultural
expansion

18.72

Inundation
0.74

Urban
expansion

0

Vegetation
loss

0
7122.92

Cropland Afforestation
3.09

Withdrawal
of agriculture

4.2

Stable
6606.86

Inundation
0

Urban
expansion

0.25

Vegetation
loss

0
6614.40

Wetland
Woody en-
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0

Waterbody
drainage

0

Waterbody
drainage

0

Stable
537.22

Waterbody
drainage

0.12

Waterbody
drainage

0
537.34

Urban Afforestation
0

Vegetation es-
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0

Agricultural
expansion

0

Wetland
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ment
0
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Withdrawal
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0

1.54
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0

Vegetation es-
tablishment

0

Agricultural
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0

Wetland
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ment
0

Urban
expansion

0

Stable
0 0

2015 total (km2) 2940.71 6984.06 6626.25 537.96 2.41 0 17,091.40

Table A2. Land cover transition matrix in km2 (2015–2018) based on the adapted methods (AM). Green, beige and brown
colors indicate improvement, stable and decline of land cover category, respectively. The area and the possible cause of the
land cover transition are indicated in the matrix. The change is based on the high-resolution land cover dataset.

AM Land Cover Category in 2018 (km2)

Forestland Grassland Cropland Wetland Urban Otherland 2015 Total (km2)
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2018 total (km2) 1858.4 7321.4 5151.7 352.2 258.7 2149.1 17,091.4
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Figure A1. The land productivity component trend generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery for
the monitoring period 2015–2019.

Figure A2. The land productivity component state generated using (A) the default approach with MODIS imagery, (B) the
adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery for
the monitoring period 2015–2019.
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Figure A3. The land productivity component performance generated using (A) the default approach with MODIS imagery,
(B) the adapted approach with Landsat imagery for the baseline period, and (C) the adopted approach with Landsat imagery
for the monitoring period 2015–2019.
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M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.
PLoS ONE 2017, 12, e0169748. [CrossRef] [PubMed]

41. Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht,
G.I.; Minelli, S.; et al. Land in Balance: The Scientific Conceptual Framework for Land Degradation Neutrality. Environ. Sci. Policy
2018, 79, 25–35. [CrossRef]

42. Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J. Measuring Net Primary Production in Forests:
Concepts and Field Methods. Ecol. Appl. 2001, 11, 356. [CrossRef]

43. Ivits, E.; Cherlet, M. Land-Poductivity Dnamics Twards Itegrated Asessment of Land Degradation at Global Scales; EUR, Scientific and
Technical Research Series; Publications Office: Luxembourg, 2016; Volume 26052, ISBN 978-92-79-32354-6.

44. Landmann, T.; Dubovyk, O. Spatial Analysis of Human-Induced Vegetation Productivity Decline over Eastern Africa Using a
Decade (2001–2011) of Medium Resolution MODIS Time-Series Data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 76–82. [CrossRef]

45. Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [CrossRef]
46. Kendall, M.G. Rank Correlation Methods; C. Griffin: Glasgow, UK, 1948.
47. Le Houerou, H.N. Rain Use Efficiency: A Unifying Concept in Arid-Land Ecology. J. Arid Environ. 1984, 7, 213–247.
48. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S.; Miwa, K.; Srivastava, N.; Tanabe, K. (Eds.)

Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2008.
49. Mattina, D.; Erdogan, H.E.; Wheeler, I.; Crossman, N.; Minelli, S.; Cumani, R. Default Data: Methods and Interpretation: A Guidance

Document for the 2018 UNCCD Reporting; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2018.
50. Akinyemi, F.O.; Ghazaryan, G.; Dubovyk, O. Assessing UN Indicators of Land Degradation Neutrality and Proportion of

Degraded Land over Botswana Using Remote Sensing Based National Level Metrics. Land Degrad. Dev. 2020. [CrossRef]
51. URT. URT Voluntary Land Degradation Neutrality Targets and Associated Measures of the United Republic of Tanzania; The United

Republic of Tanzania (URT): Dar es Salam, Tanzania, 2018.
52. GEF Value for Money Analysis for the Land Degradation projects of the GEF; Independent Evaluation Office, Global Environment

Facility: Washington, DC, USA, 2016.
53. Gonzalez-Roglich, M.; Zvoleff, A.; Noon, M.; Liniger, H.; Fleiner, R.; Harari, N.; Garcia, C. Synergizing Global Tools to Monitor

ProgressTtowards Land Degradation Neutrality: Trends.Earth and the World Overview of Conservation Approaches and
Technologies Sustainable Land Management Database. Environ. Sci. Policy 2019, 93, 34–42. [CrossRef]

54. Bernoux, M.; Feller, C.; Cerri, C.C.; Eschenbrenner, V.; Cerri, C.E.P. Soil carbon sequestration. In Soil Erosion and Carbon Dynamics;
Advances in Soil Science; Roose, E., Lal, R., Feller, C., Barthes, B., Stewart, B., Eds.; CRC/Taylor & Francis: Boca Raton, FL, USA,
2006; pp. 13–22, ISBN 978-1-56670-688-9.

55. Fiorillo, E.; Maselli, F.; Tarchiani, V.; Vignaroli, P. Analysis of Land Degradation Processes on a Tiger Bush Plateau in South West
Niger Using MODIS and LANDSAT TM/ETM+ Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 56–68. [CrossRef]

56. Venter, Z.S.; Scott, S.L.; Desmet, P.G.; Hoffman, M.T. Application of Landsat-Derived Vegetation Trends over South Africa:
Potential for Monitoring Land Degradation and Restoration. Ecol. Indic. 2020, 113, 106206. [CrossRef]

57. Montandon, L.M.; Small, E.E. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI.
Remote Sens. Environ. 2008, 112, 1835–1845. [CrossRef]

58. Tüshaus, J.; Dubovyk, O.; Khamzina, A.; Menz, G. Comparison of Medium Spatial Resolution ENVISAT-MERIS and Terra-MODIS
Time Series for Vegetation Decline Analysis: A Case Study in Central Asia. Remote Sens. 2014, 6, 5238–5256. [CrossRef]

59. URT. URT Tanzania’s Forest Reference Emission Level Submission to the UNFCCC; The United Republic of Tanzania (URT): Dar es
Salam, Tanzania, 2017.

60. Kimaro, A.A.; Weldesmayat, S.G.; Mpanda, M.; Swai, E.; Kayeye, H.; Nyoka, B.I.; Majule, A.E.; Perfect, J.; Kundhlade, G. Final
Technical Report for the Jumpstrat Projects: Evidence-Based Scaling-up of Evergreen Agriculture for Increasing Crop Productivity, Fodder
Supply and Resilience of the Maize-Mixed and Agro-Pastoral Farming Systems in Tanzania and Malawi; World Agroforestry Centre:
Nairobi, Kenya, 2012.

61. van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.;
Mason-D’Croz, D.; et al. Can Sub-Saharan Africa Feed Itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964–14969. [CrossRef]
[PubMed]

62. Chotte, J.-L.; Aynekulu, E.; Cowie, A.L.; Campbell, E.; Vlek, P.; Lal, R.; Kapovic-Solomun, M.; von Maltitz, G.P.; Kust, G.; Barger,
N.; et al. Realising the Carbon Benefits of Sustainable Land Management Practices: Guidelines for Estimation of Soil Organic Carbon in the
Context of Land Degradation Neutrality Planning and Monitoring: A Report of the Science-Policy Interface; United Nations Convention
to Combat Desertification (UNCCD): Bonn, Germany, 2019.

63. van der Esch, S.; ten Brink, B.; Stehfest, E.; Bakkenes, M.; Sewell, A.; Bouwman, A.; Meijer, J.; Westhoek, H.; van den Berg, M.; van
den Born, G.J.; et al. Exploring Future Changes in Land Use and Land Condition and the Impacts on Food, Water, Climate Change and
Biodiversity: Scenarios for the UNCCD Global Land Outlook; Policy Report; PBL Netherlands Environmental Assessment Agency:
The Hague, The Netherlands, 2017.

64. Bhargava, A.K.; Vågen, T.-G.; Gassner, A. Breaking Ground: Unearthing the Potential of High-Resolution, Remote-Sensing Soil
Data in Understanding Agricultural Profits and Technology Use in Sub-Saharan Africa. World Dev. 2018, 105, 352–366. [CrossRef]

356



Remote Sens. 2021, 13, 1754

65. Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; Garcia-Santos, G.; Fernandes, R.; Berger, M. Sentinels for Science: Potential
of Sentinel-1, -2, and -3 Missions for Scientific Observations of Ocean, Cryosphere, and Land. Remote Sens. Environ. 2012, 120,
91–101. [CrossRef]

66. ESA CCI LAND COVER—S2 Prototype Land Cover 20 m Map of Africa. 2016. Available online: http://2016africalandcover20m.
esrin.esa.int/ (accessed on 30 March 2021).

67. Hengl, T.; MacMillan, R.A. Predictive Soil Mapping with R; OpenGeoHub Foundation: Wageningen, The Netherlands, 2019;
ISBN 978-0-359-30635-0.

68. Sims, N.C.; Newnham, G.J.; England, J.R.; Guerschman, J.; Cox, S.J.D.; Roxburgh, S.H.; Viscarra-Rossel, R.A.; Fritz, S. Wheeler
Good Practice Guidance. SDG Indicator 15.3.1, Proportion of Land That Is Degraded Over Total Land Area. Version 2.0; United Nations
Convention to Combat Desertification (UNCCD): Bonn, Germany, 2021.

357





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Remote Sensing Editorial Office
E-mail: remotesensing@mdpi.com

www.mdpi.com/journal/remotesensing





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-4228-7 


	Land cover
	Land Degradation Assessment with Earth Observation.pdf
	Land cover.pdf
	空白页面

