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Robot Shape and Location Retention in Video Generation Using
Diffusion Models

Peng Wang, Zhihao Guo, Abdul Latheef Sait, Minh Huy Pham

Abstract— Diffusion models have marked a significant mile-
stone in the enhancement of image and video generation 
technologies. However, generating videos that precisely retain 
the shape and location of moving objects such as robots remains 
a challenge. This paper presents diffusion models specifically 
tailored to generate videos that accurately maintain the shape 
and location of mobile robots. The proposed models incorporate 
techniques such as embedding accessible robot pose information 
and applying semantic mask regulation within the scalable and 
efficient ConvNext backbone network. These techniques are 
designed to refine intermediate outputs, therefore improving 
the retention performance of shape and location. Through ex-
tensive experimentation, our models have demonstrated notable 
improvements in maintaining the shape and location of different 
robots, as well as enhancing overall video generation quality, 
compared to the benchmark diffusion model. Codes will be 
open-sourced at: https://github.com/PengPaulWang/diffusion-
robots.

I. INTRODUCTION

Diffusion models have achieved remarkable advancements 
in recent years, and have achieved better or on-the-par 
performance with generative adversarial networks in image

and video generation [1], [2]. Compared to image generation,

video generation remains a challenge in terms of model com-

plexity, dependence on data and computational resources, 
consistency of generated videos, generation efficiency, and 
shape and location retention of dynamic objects in generated 
videos [3], [4]. Despite all the challenges, the potential of dif-

fusion models to generate dynamic and appealing content has 
driven the research and application forward, and they have 
been applied in generating high-quality videos [4], carrying 
out video prediction and infilling [3], control movements 
in the generated video [5], directly process and manipulate 
a real input video [6], and human feature refinement [7].

Another promising application of diffusion models is that 
they can be used to generate data for robotic applications

like human-robot collaboration, where collecting real data 
for model training faces legal and ethical challenges.

The foundational technology behind many of the appli-

cations mentioned is the Denoising Diffusion Probabilistic 
Model (DDPM), which is trained to understand Gaussian

noise patterns added to input images throughout the training

process. Once sufficiently trained, the DDPM can start with

noisy images or images that consist purely of Gaussian noise

original arm broken arm

Fig. 1: The original and generated frames of a robot. Left: the

original frame; Middle: the frame generated by a proposed

model; Right: the frame generated by the benchmark model.

The robot arm is broken in the frame generated by the

benchmark model.

and, through iterative denoising, produce outputs that adhere

to a specific empirical distribution [4], [8]–[10].

The evaluation of diffusion models’ performance often

relies on metrics like the Peak Signal-to-Noise Ratio (PSNR),

which measures the overall quality of frames or videos by

computing pixel-to-pixel differences between the generated

frames and the reference frames if any. However, relying

solely on PSNR may overlook structural information loss,

such as local distortions of the shape of objects of interest,

providing a misleadingly positive assessment of overall per-

formance. For instance, Figure 1 shows one original frame

(left) with a robot, and two frames generated by diffusion

models (middle and right). We can see that the generated

frame on the right has a broken arm (lost retention of the

shape), while the generated frame in the middle maintains

the shape of the arm. Despite the failed arm shape retention,

the two generated frames have similar PSNR values as the

distorted arm does not contribute enough to make a distinc-

tive difference in PSNR values. This oversight is particularly

critical in scenarios where an object’s shape and location are

crucial in generated frames. For instance, in human-robot

collaborative tasks, there is the need to forecast potential

collisions between humans and (dynamic) robots, and the

collection of such data for collision model training in real

life often faces ethical and legal challenges. Therefore, using

diffusion models to generate data with shape and location

retention becomes a promising solution. In light of these ob-

servations, the Structural Similarity Index (SSIM) emerges as

an alternative metric for evaluating diffusion models. Unlike

PSNR, SSIM is adept at capturing structural similarities and

differences, making it a more reliable indicator of a model’s

ability to preserve object shapes and locations.

This paper aims at developing diffusion models that can

generate frames where the shape and location of objects of

interest can be retained. Particularly, we are interested in

generating videos that contain moving robots, whose shape



and location retention are vital in the generated frames. As

mentioned earlier, this holds the potential to generate data for

human-robot collaboration model training and bypass legal

and ethical hurdles. Two types of robots are used in different

scenarios, i.e., a Waffle Pi mobile robot with a gripper

mounted on top and a collaborative robot, a.k.a., cobot.

The proposed diffusion models take the ConvNext [11]

as the backbone network, to accelerate the training and

sampling efficiency [6]. To retain the shape and location of

the robots, we have embedded the robot pose information

such as location, orientation, and velocities into ConvNext

blocks and used semantic masks (either the masks of the

robots or the masks of the robots and the backgrounds)

to regulate the intermediate outputs of ConvNext blocks.

Various experiments have been conducted to investigate how

pose embedding and mask regulation affect the performance

of the models in shape and location retention.

The contributions of this work include 1) the development

of diffusion models capable of preserving the shape and loca-

tion of robots within generated frames. 2) the introduction of

a novel Spatially-Adaptive Normalization (SPADE) module

for integrating semantic masks, and the implementation of

an embedding procedure that incorporates robot pose infor-

mation from controllers like the Robot Operating System

(ROS) into the backbone network, which strikes a balance

between the quality of generation and the preservation of

shape and location information. 3) Introduction of a refined

Intersection over Union (IoU) metric and the Hu moments

match for evaluating the retention of location and shape.

The remainder of the paper is organised as follows:

Section II presents some related works, Section III elaborates

on the approach, Section IV covers experiments, discussions,

and an ablation study, and finally, Section V concludes the

paper.

II. RELATED WORKS

Most video generation models based on DDPMs share a

common underlying core backbone, specifically the UNet

architecture [4], [12], which is utilized for the denoising

process. However, these models differ significantly in the

conditions they employ for generating new frames. Broadly,

these conditions can be categorized into three types:

• Embedded Context Information: For example, Yang et

al. [13] introduce residual video diffusion, where a

context vector, generated by a convolutional recurrent

neural network, is used as a condition to generate the

next frame.

• Semantic Masks: Wang et al. [10] propose the Semantic

Diffusion Model, which employs semantic masks to

condition the generation of new frames, particularly

improving the quality of small objects in the video.

• Video Frames as Conditions: Vikram et al. [14] pro-

pose masked conditional video diffusion, where certain

frames from the past or future are masked. The model

is then trained on unmasked frames and generates the

masked frames based on a predefined masking strategy.

Yaniv et al. [6] recently introduced SinFusion, a video

generation diffusion model that leverages ConvNext [11] as

its backbone. ConvNext, a pure ConvNet architecture, has

demonstrated equivalent or superior performance compared

to Transformers in terms of accuracy and scalability, par-

ticularly in detection and segmentation tasks on datasets

like ImageNet and COCO. This makes ConvNext a strong

candidate for enhancing the efficiency of diffusion models.

SinFusion exploits the strengths, offering significant advan-

tages in training DDPMs on a single image or its large

crops, effectively addressing the overfitting issues typically

associated with using UNet as a backbone.

The authors have identified potential drawbacks of Sin-

Fusion, such as the generation of distorted dynamic objects,

as illustrated in Figure 1 (Right). This issue highlights the

importance of shape retention in diffusion-based generative

models. Additionally, it has been observed that generative

models may struggle to maintain the correct location of

dynamic objects in the generated outputs. In applications

like human-robot collaboration [15], the retention of both

shape and location is crucial for generating accurate data for

downstream model training.

Several approaches have been proposed to address the

challenge of shape retention in diffusion models. For ex-

ample, Okuyama et al. [7] utilize diffusion models to refine

facial features after human pose and body editing. Similarly,

Holmquist et al. [16] apply diffusion models to recover 3D

human poses from single images. These studies focus on

human generation and refinement, with less emphasis on

location retention. Our work, however, focuses on a robotic

context, prioritizing the accurate generation of dynamic

robots while maintaining both shape and location integrity.

III. DIFFUSION MODELS

The theory and fundamental principles of diffusion models

were introduced by Sohl-Dickstein et al. [8] and further

elaborated upon in subsequent studies like those by Ho et

al. [4], [9], as well as other works such as that by Hoppe

et al. [3]. In essence, diffusion models utilize a deep neural

network M, such as UNet [12], as their backbone network.

This network is trained on noisy data, such as images and

video frames, to enable the trained model to accurately

identify and model the noise present in the input data.

The training of diffusion models comprises two primary

stages: the forward diffusion process (forward process) and

the reverse diffusion process (reverse process). In the forward

process, data such as images and videos serve as inputs,

and the structure of the data distribution is disrupted by

introducing noise. This facilitates the training of model M
to recognize and model the noise imposed on the data. The

reverse diffusion process, known as the reverse process, aims

to reconstruct the data structure from noisy data or the noise

itself. In this paper, we will first review these two stages of

diffusion models in the context of video generation, followed

by our proposed works.



A. The Forward Diffusion Process

In the context of image/video generation, given an input

frame x0 sampled from a distribution q(x0), one can itera-

tively add Gaussian noise Σt ∼ N (Σt;0, I), t = 1, · · · , T
to x0 for T steps. This process generates a sequence of noisy

samples {x1, · · · ,xT }. The variance of the noise added

at each step can be controlled using a variance scheduler

{βt ∈ (0, 1)}Tt=1. The forward diffusion process is normally

formulated as a Markov chain:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

where

q(xt|xt−1) := N (
xt;

√
1− βtxt−1, βtI

)
, (2)

which indicates the dependency of xt on xt−1. This also

implies that to get a noisy sample at xt, one needs to add

noises from x0 up to xt−1 step by step, which could be

time and computational resources demanding. Fortunately,

this can be simplified as shown in [9], i.e., the forward

process admits sampling xt at an arbitrary timestep t in

closed form. This is achieved by letting αt = 1 − βt and

ᾱt =
∏t

i=1 αi, one then gets

q(xt|x0) := N (
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (3)

which indicates that xt can be sampled from x0 in one step

as in

xt =
√
ᾱtx0 +

√
1− ᾱtΣ, (4)

where Σ ∼ N (0, I) is the noise used to generate the noisy

frame xt.

B. The Reverse Diffusion Process

The reverse diffusion process involves starting with a

Gaussian noise xT ∼ N (0, I) and then reversing the transi-

tion outlined in Equation (1). This reversal allows for sam-

pling from the posterior of the forward process q(xt−1|xt),
with t = T, · · · , 1, in order to recover x0 (it’s worth noting

that the process can terminate at any intermediate stage).

However, reversing Equation (1) presents a challenge, and

it is typically approximated using a trainable Markov chain

depicted in Equation (5), which begins with a Gaussian noise

p(xT ) = N (xT ;0, I):

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt), (5)

where

pθ(xt−1|xt) := N (
xt−1;μθ(xt, t),Σθ(xt, t)

)
. (6)

One can see that if pθ(x0:T ) can be learned by M, then

the reverse process simplifies to

pθ(x0) :=

∫
pθ(x0:T )dx1:T , (7)

where x1:T are latent variables of the same dimensions

with x0. The approximation of q(x1:T |x0) using pθ(x0:T )

is achieved by optimising the variational bound on negative

log-likelihood between them [9]:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
:= L, (8)

which can be rewritten into Equation (9) according to [8]:

L :=Eq

[
DKL

(
q(xT |x0) ‖ pθ(xT )

)︸ ︷︷ ︸
LT

+

T∑
t=2

DKL

(
q(xt−1|xt,x0) ‖ pθ(xt−1|xt)

)︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
,

(9)

where DKL represents the KL divergence. One can see

that each term in Equation (9) is a direct measure of the

similarity in terms of KL divergence between pθ(xt−1|xt)
and the reversed forward transitions but conditioned on x0,

i.e., q(xt−1|xt,x0). It is noteworthy that q(xt−1|xt,x0) is

tractable and this makes optimisation of L viable, henceforth

making the approximation of q(x1:T |x0) using pθ(x0:T )
viable.

In the context of video generation, an arbitrary noisy

sample xt, t = T, · · · , 1 sampled using Equation (4) is fed to

the deep neural network-based model M, which is trained

(by optimising Equation (9)) to approximate the noise Σt

imposed. When well trained, M will be able to identify and

model the noises, helping to remove the noise and restore

data structures.

Inspired by advancements in image and video generation,

researchers have introduced various diffusion models. These

models include those that utilise semantic masks as condi-

tions to produce high-quality images [10], among others.

Semantic masks offer valuable information, such as object

shapes and locations, making them ideal for generative tasks

that prioritise retaining shape and spatial details. Denoting

conditions like masks as y, Equation (5) can be reformulated

as:

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt,y), (10)

where

pθ(xt−1|xt,y) = N (xt−1;μθ(xt,y, t),Σθ(xt,y, t)).
(11)

Since the condition y applies to pθ(xt−1|xt,y) for t =
T, · · · , 1, it is straightforward to substitute these terms in-

volve y into Equation (9) to derive the optimization term for
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Fig. 2: The overall architecture of the proposed diffusion model for shape and location retention. The black arrows indicate

residual connections. It is worth noting we use images that depict masks of both the robot and the background. However,

we also consider cases where only robot masks are used in this paper.

conditioned diffusion models:

L =Eq

[
DKL

(
q(xT |x0) ‖ pθ(xT )

)︸ ︷︷ ︸
LT

+
T∑

t=2

DKL

(
q(xt−1|xt,x0) ‖ pθ(xt−1|xt,y)

)︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1,y)︸ ︷︷ ︸
L0

]
.

(12)

When the model is well trained, it will take in a Gaussian

noise image xT ∼ N (0, I) and ‘recreate’ samples from it

by removing the noise step by step.

IV. SHAPE AND LOCATION RETENTION DIFFUSION

MODELS

A. Overall Architecture

Figure 2 shows the overall architecture of the proposed

shape and location retaining diffusion models, as well as

the inputs and outputs of the model. We have adopted the

ConvNext [11] as the backbone network. We have introduced

semantic mask regulation and robot pose embedding into

the module, to improve shape and location retention per-

formance. The mask regulation and robot pose embedding

modules are depicted in Figure 3 and Figure 4, respectively.

More details are given as follows.

B. Inputs and Robot Pose Embedding

The inputs include 1) A condition frame xn
0 sampled from

a video comprising N frames {x1
0,x

2
0, · · · ,xN

0 }, along with

a noisy frame xn+Δk
t where t denotes the diffusion steps of

xn
0 , and Δk represents the frame difference between xn

0 and

xn+Δk
0 . These frames are concatenated along the channel

dimension as the first input. 2) The diffusion time steps t
and frame index difference Δk between the condition frame

and the current frame are embedded following Equation (13).

emb(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · · ,

sin
(
2L−1πp

)
, cos

(
2L−1πp

) )
,

(13)

Conv2d
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target frame

Conv2d

condition mask

target mask

Interpolate

Layernorm

Conv2d

Conv2d

C
onv2d

G
ELU

C
onv2d

Layernorm

Res_conv

Outputs

Inputs

SPADE

ConvNext Block

Fig. 3: The improved ConvNext block with a SPADE mod-

ule. The symbol ⊗ represents element-wise products and ⊕
indicates the sum of two tensors.

Fig. 4: The embedding block in Fig. 2. We use

(Δx,Δy,Δz,Δφ,Δθ,Δψ)T to represent the robot pose

difference between the condition frame and the current frame

(frame to generate), the frame index difference is denoted as

Δk, and the diffusion time step is denoted as t.

where p represents t or Δk. We have also embedded the

robot pose difference (between the condition frame and the

frame to generate) vector (Δx,Δy,Δz,Δφ,Δθ,Δψ)T :=
ΔP into each ConvNext block, as shown in Figure 4.

Δx,Δy,Δz are position differences, and Δφ,Δθ,Δψ are

orientation differences, respectively. In this paper, we use

a linear embedding strategy for the pose difference vector

embedding, i.e., ΔP′ = A ·ΔP+b. The motive behind this

is the pose of the robot changes almost linearly as the time

between the two frames is short. One setting is A is identity

and b is 0.

C. Mask Regulation

Semantic masks, abundant in shape and location infor-

mation, have become easily accessible with advancements



in object segmentation models like the Segment Anything

model [17]. Recognizing the potential benefits of leveraging

semantic mask information, we propose incorporating it

into ConvNext blocks to regulate intermediate outputs. Our

approach introduces a new SPADE-based ConvNext block,

outlined in Figure 3. Initially, frames and masks undergo

separate processing through convolutional layers (conv2d),

yielding outputs denoted as x and m, respectively. Subse-

quently, the output m undergoes further processing using the

proposed SPADE block to regulate x. The SPADE block, as

shown in Figure 3, is defined as follows.

x = x⊗ f(γ)⊕ σ, (14)

where the symbol ⊗ indicates element-wise products, f(·)
represents a mapping, x is the output of the SPADE block,

m = Layernorm
(

Interpolate(m)
)
, (15)

γ = conv2d(m), and σ = conv2d(γ). We use the

Layernorm(·) module to retain information from all mask

channels and the nearest neighbor interpolation method is

used for the Interpolate(·) module to ensure the size of masks

matches that of the frames.

It is worth mentioning that the SPADE normalization in

Equation (14) is different from [6] and [18] as we focus on

using mask information to regulate intermediate outputs of

ConvNext module such that shape and location information

can be retained in video generation.

D. Sampling

In the sampling phase, the model is presented with a

singular frame extracted from the video to generate sub-

sequent frames interactively. This process continues until

the desired number of frames has been produced. During

each iteration, the model utilises the provided frame and

conditions such as pose information and semantic masks to

inform the generation of the subsequent frames, ensuring

a coherent and sequential flow of frames in the generated

video.

V. EXPERIMENTS

A. Datasets

Given the necessity of robot pose information for training

the proposed models, we constructed our datasets accord-

ingly. We employed ROS to control robots in diverse envi-

ronments, capturing video footage at 24 frames per second

(fps). Subsequently, we processed the footage to produce

videos with a reduced frame rate of 1 fps, ensuring noticeable

changes in the robot’s pose. Our dataset comprises two

types of robots: the Turtlebot Waffle Pi robot and a cobot.

For the Turtlebot, we recorded videos in two laboratory

environments: one with the robot and a simple background

(Scene I) and the other with a more complex background

(Scene II). Additionally, we recorded the translational and

rotational velocities of the robot from ROS to calculate

robot pose difference vectors. The frames of these videos

were annotated to generate the necessary masks. We also

Δx(m) Δy(m) Δz(m) Δφ(rad) Δθ(rad) Δψ(rad)
· · · · · · · · · · · · · · · · · ·
-1 0 0 0 0 0.251

-0.5 0 0 0 0 0.252
-2 1 0 0 0 0.252
· · · · · · · · · · · · · · · · · ·

TABLE I: Examples of robot pose data. It is noteworthy that

as the robots move on flat floors, there are no translational

changes along z axis (Δz = 0), and there are no rotational

changes along x (Δφ = 0) and y (Δθ = 0) axes. We keep

these columns to make the models general to robots work in

different environments.

created a third dataset (Scene III) featuring the cobot using

a similar procedure to test the adaptability and robustness

of our models. It is worth noting that our models focus

on retaining the shape and location of objects of inter-

est, such as robots, rather than super-resolution or high-

resolution frame generation. Therefore, irrespective of the

original frame sizes, we resized both the frames and masks

to dimensions 256×144 to optimize computational resources

and accelerate training. This also facilitates fair comparisons

with benchmark models. Our dataset is publicly accessible

at: https://github.com/PengPaulWang/diffusion-robots..

B. Models

In this paper, we explore two types of conditions: masks

and robot pose information. To comprehensively compare

and understand how these different conditions impact the

shape and location retention performance of diffusion mod-

els, we investigate three models: 1) Ours-Mask-Pose, where

both masks and pose information are utilized as conditions;

2) Ours-Mask, where only masks are employed as condi-

tions; and 3) Ours-Pose, where only pose information is

used as a condition. SinFusion is employed as the benchmark

model for performance evaluation and comparison.

All three of our models utilize a backbone ConvNext

consisting of 16 improved blocks, as depicted in Figure 3. To

ensure a fair comparison, the benchmark model also employs

16 blocks but lacks pose embedding and mask regulation.

Additionally, our models feature several key distinctions: 1)

When masks serve as conditions (in Ours-Mask-Pose and

Ours-Mask models), they are subjected to regulation via the

proposed SPADE module, as illustrated in Figure 3. 2) In

instances where robot poses are employed as conditions (in

Ours-Mask-Pose and Ours-Pose models), the difference in

robot pose between two frames is embedded and integrated

into the model, as depicted in Figure 4. Table I presents some

example data of the robot pose used for embedding. Notably,

these data are collected in ROS, which is trivial.

All models were trained on a single Nvidia A100 GPU.

For our models, the loss function in Equation (12) is used

for training, while SinFusion training employed Equation (9).

Training durations varied among the models: the Ours-Mask-

Pose model required approximately 6.2 hours, Ours-Mask

took around 5.7 hours, and Ours-Pose took approximately

3.75 hours. In comparison, the benchmark model SinFusion



Fig. 5: Results on Scene III, from top to bottom rows: 1) Original frames; 2) Ours-Mask-Pose; 3) Ours-Mask; 4) Ours-Poses;

5) SinFusion. It is noteworthy that only robot masks are used in models where masks are required for this set of results.

While robot shape retention can be observed by comparing original and generated frames, location retention can be observed

by comparing the robot location with the background in the upper right corner of the frames.
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Fig. 6: Quality of generated frames against SSIM. (a) Scene

I; (b) Scene III. Note that only robot masks are used.

required approximately 3.72 hours for training.

C. Evaluation Metrics

Three metrics are employed to assess model performance.

SSIM is utilized to evaluate frame generation quality across

different models. SSIM is preferred over PSNR for two main

reasons: Firstly, SSIM measures image similarity in terms of

structural information, luminance, and contrast, providing a

more comprehensive assessment compared to PSNR, which

solely quantifies reconstruction quality by comparing pixel

values between original and generated frames. Secondly, as

our focus is on retaining the shape and location of objects in

generated frames, SSIM offers a more relevant comparison

metric since shape and location information is assessed at a

structural level rather than at the pixel level.

Shape-retention performance is evaluated by comparing

the Hu moments of the i-th original frame mi
orig with those

of the i-th generated frame mi
gen. Hu moments are seven

real-valued descriptors chosen for their ability to capture

essential shape properties of an object of interest. These

moments offer a concise representation of shape features,

encompassing characteristics such as orientation, scale, and

skewness [19]. Equation (16) is utilized to quantify the

shape-retaining performance of diffusion models compared

to the original video. The output of Equation (16) indicates

the dissimilarity between shapes in the generated frames

and their corresponding original frames, with smaller values

suggesting greater similarity. More information about Hu

moments can be found in the supplemental materials at:

https://github.com/PengPaulWang/diffusion-robots.

di =

√√√√ 7∑
j=1

(
Mi

orig[j]−Mi
gen[j]

)2

, (16)

where di is the similarity between shapes of interest in

the i-th original and generated frames, and Mi
orig[j] and

Mi
gen[j] represent the j-th Hu moments of the i-th original

and generated frames, respectively.

The Intersection over Union (IoU) metric is utilized to

assess the model’s performance in retaining the robot’s loca-

tion. Rather than directly determining the precise location

of the robot, we employ Equation (17) to calculate the

IoU between the masks of the robot in the i-th original

frame mi
orig and the mask of the robot in the i-th generated

frame mi
gen. This computation serves as an indicator of how

effectively the location is preserved in the generated videos.

IoUi =
mi

orig

⋂
mi

gen

mi
orig

⋃
mi

gen

(17)

D. Main Results

To delve deeply into the impact of masks and poses on the

performance of shape and location retention, we have first

considered the masks of the two types of robots exclusively.
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(a) Scene I: Hu Moments
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(b) Scene III: Hu Moments
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(d) Scene III: IoU

Fig. 7: Shape and location retention performance of different models. Only the robot masks are used where masks are used

as conditions for frame generation.
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Fig. 8: Quality of generated frames against SSIM. (a) Scene

II; (b) Scene III. Both robot and background masks are used.

Two sets of experiments were conducted, one using the Scene

I datasets and the other using the Scene III datasets.

The trained models from each dataset are employed

to generate frames for evaluation. Figure 5 displays

some of the generated results from Scene III, with

additional results available in the https://stummuac-

my.sharepoint.com/personal/55141653admmuacuk/layouts/15/onedrive.aspx?id =
Quantitative evaluation results using the three metrics are

computed: 1) shape retention based on Equation (16); 2)

location retention based on Equation (17); and 3) overall

quality of generated frames based on SSIM. The SSIM

results are depicted in Figure 6, while the shape and location

retention results are illustrated in Figure 7.

Regarding the overall quality of the generated frames,

it can be observed from Figure 6 that Ours-Pose achieves

the best results, and Ours-Mask-Pose achieves comparable

results, but both outperform the benchmark model. Regarding

shape and location retention, it is evident from Figure 7

that Ours-Mask-Pose achieves either the best or the second-

best results in both aspects. Ours-Pose achieves comparable

results with Ours-Mask-Pose in shape retention. In terms

of location retention, Ours-Mask-Pose performs comparably

with Ours-Pose and outperforms other models in both Scene

I and Scene III. In conclusion, incorporating sole pose infor-

mation or the combination of pose information with masks

improves the performance of diffusion models compared to

the benchmark model across all three metrics. However,

considering only mask results does not always improve the

performance compared to the benchmark models, which we

assume is due to the exclusive use of robot masks. Further

experiments are conducted to investigate this phenomenon.

E. Ablation Study

1) Considering Both Robot and Background Masks: To

further investigate the impact of masks on the generation

results, additional experiments were conducted on Scene

II and Scene III, using masks of both the robots and the

backgrounds as conditions. The SSIM results are presented

in Figure 8, while the shape and location retention results

are depicted in Figure 9. It is evident that by considering

both robot and background masks, the quality of generated

frames by Ours-Mask has improved in terms of SSIM. In

Scene II, Ours-Mask achieves comparable results with Ours-

Pose or Ours-Mask-Pose, and in Scene III, it either slightly

outperforms Ours-Pose and Ours-Mask-Pose or achieves

comparable results. Regarding shape and location retention,

improvements are observed with Ours-Mask as well, as

shown in Figure 9. However, Ours-Pose and Ours-Mask-

Pose still outperform Ours-Mask in both shape and location
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(a) Scene II: Hu Moments
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(b) Scene III: Hu Moments
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Fig. 9: Shape and location retention performance of different models. Both robot and background masks are used where 
masks are employed as conditions for frame generation.

 



The broken arm

Fig. 10: Evalution. Left: the original frame; Middle: Ours-

Mask-Pose; Right: SinFusion. Top row: Ours-Mask-Pose

retains the arm shape better; Middle row: the robot arm was

broken in the frame generated by SinFusion; Bottom row:
Ours-Mask-Pose retains the location of the robot better.

retention in both scenes.

2) The implication of Shape and Location Retention:
Some examples of shape and location retention of the robots

are provided in Figure 10. In Scene I, Ours-Mask-Pose keeps

the shape of the robot better compared to the benchmark

model. In Scene II, similar results are observed and the

robot arm is broken into two in the generated frame by

the benchmark model. The location retention is shown in

the results from Scene III, this can be recognized from the

relative location of the robot and the wall highlighted.

Considering all experiments across the three scenes, it can

be concluded that masks and pose information contribute

to retaining the structural information of generated frames.

In the meantime, it is important to highlight that models

incorporating robot pose embedding only have consistently

achieved comparable results in terms of location retention to

those incorporating mask regulation, albeit with shorter train-

ing times. However, considering robot and/or background

masks helps to improve the performance in shape retention

and SSIM, but normally needs a longer model training time.

Regardless, better performance has been achieved by the

proposed models compared to the benchmark model.

VI. CONCLUSIONS

This paper introduces diffusion models that leverage robot

pose and masks as conditional inputs for video generation.

The objective is to produce video frames that maintain

high structural fidelity, thereby enhancing the preservation

of the shape and location information of objects within the

generated frames. Through a series of experiments conducted

across three distinct scenes involving various robots, we

consistently observed improvements in generation quality as

measured by SSIM, as well as in the retention of shape

and location evaluated using Hu moments and IoU. These

advancements hold promise for applications where accurate

depiction of robot shape and location is crucial. For in-

stance, our models will be further developed to generate data

to facilitate accurate dangerous human-interaction detection

training, which will help mitigate potential risks associated

with human-robot interactions.
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