
Please cite the Published Version

Acheson, Jordan, Joanisse, Sophie, Sale, Craig and Hodson, Nathan (2025) Recycle, Re-
pair, Recover: The Role of Autophagy in Modulating Skeletal Muscle Repair and Post-Exercise
Recovery. Bioscience Reports, 45 (1). pp. 1-30. ISSN 0144-8463

DOI: https://doi.org/10.1042/bsr20240137

Publisher: Portland Press Ltd

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/637811/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an open access article which first appeared in Bioscience Reports

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-5816-4169
https://orcid.org/0000-0003-1330-4030
https://doi.org/10.1042/bsr20240137
https://e-space.mmu.ac.uk/637811/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Review Article
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Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response
to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo
a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The
mechanisms that underpin this remodeling are believed to be a combination of cellular processes including
ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell prolifera‐
tion/differentiation. A relatively understudied system that has the potential to be a significant contributing
mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades
damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new
organelles and cellular structures. This review summarizes our current understanding of the autophagolyso‐
somal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical
models of how this system may interact with other processes involved in skeletal muscle remodeling and
provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.

Introduction
During recovery from resistance exercise (RE), mechanically perturbed myofibers undergo rapid
ultrastructural remodeling to regain full physiological function normally within a week [1,2]. Successive
bouts of RE accustoms skeletal muscle to loading [3,4] and significant myofibrillar protein accrual (i.e.
fiber cross-sectional area growth) can be observed after 10–12 weeks of resistance training (RT) [5–7]. This
hypertrophic response is fundamentally driven by the combined effect of incremental mechanical loading
and consistent dietary amino acid availability, which increases muscle protein synthesis (MPS) beyond
muscle protein breakdown (MPB) for positive net protein balance over time [8,9]. The initial protein
synthetic increase during early-stage RT is, however, likely indicative of a global stress response to novel
exercise-induced muscle damage (EIMD) rather than hypertrophy adaptation per se [6,10–12]. While the
necessity of this initial damage response for muscle hypertrophy has been debated [5,13,14], unaccustomed
eccentric exercise evokes a degree of ultrastructural deformation and functional impairment [1], which
likely needs to be attenuated for adaptive remodeling to ensue [6]. Therefore, identifying the mechanisms
underpinning skeletal muscle recovery may uncover potential methods to enhance athletic performance or
expedite training-induced adaptations.

While most post-exercise recovery strategies favor the stimulation of skeletal muscle anabolism,
recent evidence suggests that changes in myofibrillar MPS do not directly explain improved exercise
recovery when dietary protein is sufficient [15]. Further, an inability to synthesize myofibrillar proteins
does not seem to be the underlying cause of delayed skeletal muscle recovery in aging rodents [16].
These intriguing data could imply that, in the context of muscle damage, MPB could be a modulating
factor. However, despite the increasing need to consider proteostatic mechanisms holistically [16–18],
our current understanding of human skeletal muscle catabolism is poor relative to anabolism [19].
Intracellular degradation is predominantly regulated by the calpain, ubiquitin-proteasome (UPS), and
autophagolysosomal systems, each of which has their own distinct underpinning signaling pathways.
Throughout this review, we will focus on the role of the autophagolysosomal system in skeletal muscle, with
particular emphasis on its (potential) role during recovery from EIMD. For an in-depth overview of the
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role of the calpain and UPS systems in skeletal muscle, readers are directed to the review provided by Goll
et al. [20].

Overview of autophagy
Autophagy, meaning ‘self-eating’, is a conserved intracellular process originally conceptualized in 1963 by
the discoverer of the lysosome, De Duve [21], and mechanistically expanded upon in yeast by Ohsumi
[22,23] during the 1990s. Today, it is evident that autophagy is a pivotal quality control mechanism through
which mammalian cells maintain tissue homeostasis under basal conditions [24,25] and in response to
physiological stress [25,26]. Unlike the protein-specific UPS, autophagy also facilitates the degradation
of lipids, carbohydrates, and nucleotides via acid hydrolysis. An energy-depleted and/or metabolically
perturbed intracellular environment initiates the autophagic process, allowing redundant structures to be
recycled into their constituent metabolites for anabolic (i.e. growth of cellular components) or catabolic
(i.e. adenosine triphosphate resynthesis) repurposing. Abnormal clearance of such components can be
detrimental to skeletal muscle health; thus, it is unsurprising aberrant autophagy has been linked to a
variety of muscular diseases, the primary category being lysosomal storage disorders [27].

There are three known types of autophagy distinguishable by the method of cargo delivery
to the lysosome: micro-autophagy, chaperone-mediated autophagy, and macro-autophagy. Although
likely interconnected [28], a holistic discussion of these pathways is beyond the scope of this
review; therefore, readers are referred elsewhere for overviews of chaperone-mediated [29] and micro-
autophagy [30]. Macro-autophagy, henceforth referred to as autophagy, involves the intricate and
highly coordinated interaction of autophagolysosomal machinery. Here, damaged or redundant organelles/
cytosolic constituents are engulfed by nascent double-membrane autophagosome vesicles, which, in turn,
fuse with lysosomes where the isolated cargo is catabolized. Originally thought to be an entirely non-
selective process, more than 30 selective autophagy receptors have now been discovered [31] displaying
how this pathway acts not only as a global stress response but can also target specific intracellular
components.

Molecular mechanism of autophagosome biogenesis
and degradation
The autophagic process is complex but can be broken down into four distinct stages: (1) induction
and nucleation of the pre-autophagosome phagophore, (2) expansion of the phagophore membrane, (3)
autophagosome maturation/lysosome fusion, and (4) hydrolytic degradation and efflux of metabolites.

Autophagic induction and phagophore nucleation are primarily coordinated by the Unc51-like kinase
1/2 (ULK1/2) autophagy initiation complex, comprising the ULK1/2 kinase, autophagy-related gene (ATG)
13, ATG101, and scaffold protein focal adhesion kinase family interacting protein of 200 kD (FIP200),
and the autophagy specific class III phosphatidylinositol 3-kinase complex 1 (PI3K-C1), containing the
phosphatidylinositol 3-phosphate (PI3P) kinase vacuolar protein sorting (VPS) 34, VPS15, ATG14L, and
Beclin-1. Upon activation, ULK1/2 complexes are recruited to the phagophore initiation site where they
exert kinase activity toward PI3K-C1 for PI3P production (Figure 1A) [32,33]. Localized accumulation
of PI3P at the initiation site recruits WD repeat domain (WIPI) PI3P-binding proteins, triggering the
assembly of downstream autophagy machinery for membrane elongation [34].

Mammalian autophagosomes are predominantly formed in association with an endoplasmic reticulum
(ER) subdomain with an Ω-like shape, fittingly termed the ‘omegasome’ [35]. Here, phagophore-ER
contact sites are established between integrated ER VAMP-associated proteins (VAPs) and FIP200/ULK1
in a PI3P-dependent manner [36], while ATG2A and ATG9A transfer lipids from the ER to the
elongating phagophore membrane (Figure 1b) [37,38]. ATG9A is trafficked to the phagophore assembly
site within Golgi/endosome-derived vesicles [39,40], which form the initial phagophore seed [41] and
begin to accumulate autophagic machinery [33]. The ubiquitin-like ATG16L-ATG5-ATG12 conjugation
system associates with the growing phagophore to convert cytoplasmic microtubule-associated protein
1A/1B-light chain 3 (LC3-I) into membrane-bound phosphatidylethanolamine (PE) conjugated LC3-II
[34,42–45] in a series of reactions involving ATG10, ATG7, and ATG3 (Figure 1C) [46–49].

LC3 isoforms and their gamma-aminobutyric acid receptor-associated protein (GABARAP) subfamily
are structurally like other ubiquitin-like proteins but contain two extra α-helices that act as docking regions
for autophagy-related proteins [50]. Several ATGs within the ULK1/2 complex, PI3K-C1, and ATG2A
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lipid-transferase harbor LC3-interacting regions; thus, it is thought that lipidated LC3 and GABARAP
accelerate phagophore expansion by providing additional scaffolding sites for autophagic machinery
[51–53]. Furthermore, during selective autophagy, LC3/GABARAP mediates tethering of predetermined
cargo to the inner phagophore membrane (Figure 1D). Ubiquitin-sensitive autophagy receptors, such as
sequestosome-1 (p62), connect ubiquitinated cargo to PE-conjugated LC3/GABARAP through LC3 and
ubiquitin-binding domains [54], whereas ubiquitin-independent receptors such as BCL2/Adenovirus E1B
19 kDa protein-interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L/NIX), directly bind cargo to LC3/
GABARAP [55,56].

Autophagosomes are formed once fully elongated phagophores undergo endosomal sorting complexes
required for transport (ESCRT) mediated membrane scission [57–59] and omegasome constriction,
allowing the autophagosome to dissociate from its membrane donor (Figure 1E) [60,61]. Newly formed
autophagosomes are then bound to motor scaffold proteins and transported along the microtubule
network via dynein [62–64] and kinesin [65] toward juxtanuclear lysosomes (Figure 1F) [66]. Here,
concerted actions between Rab guanosine triphosphatases (GTPases), LC3 proteins, homotypic fusion
and protein sorting (HOPS)-tethering factors, and soluble N-ethylmaleimide-sensitive factor attachment
protein receptors (SNARE) promote tethering and fusion of the outer autophagosome and lysosomal
membranes (Figure 1G), subsequently creating an autolysosome [67–70].

Autophagic catabolism within autolysosomes involves the hydrolysis of the inner autophagosome
membrane, the cargo it surrounds, and the connecting autophagy adaptors. Such degradation can be

Figure 1: General mechanism of autophagosome biogenesis and degradation.

(A) Activated ULK1/2 complexes localize at the phagophore induction site and phosphorylates Beclin-1, allowing VPS34 to convert PI to PI3P for recruitment of WIPI proteins.
(B) Recently nucleated phagophores are tethered to the ‘Omegasome’ by interactions between integral ER VAPs, ULK1/FIP200, and WIPI2. ATG2A associates with ATG9A via
WIPI4 and transfers synthesized ER lipids to the elongating phagophore, which are equilibrated by the ATG9A lipid scramblase. (C) LC3/GABARAP proteins are embedded into
the autophagic membrane through a series of ubiquitin-like reactions mediated by ATG7 and ATG3 as well as the ATG12-5-16L complex. (D) Autophagic cargo is tethered
to LC3-II on the nascent phagophore membrane through connecting autophagy receptors. (E) Fully elongated phagophores are sealed by ESCRT machinery and disassociate
from their ER donor through Omegasome constriction. (F) Newly formed autophagosomes are transported along microtubules by kinesin or dynein motor proteins, where
they eventually encounter lysosomes. (G) GTP-loaded Rab proteins and LC3-II promote the tethering of the lysosomal and outer autophagosome membrane through PLEKHM1
and its HOPS complex effector allowing SNARE-mediated fusion of the membrane structures. (H) The V-ATPase acidifies the autolysosome lumen allowing hydrolysis of the
inner autophagosome membrane, connecting autophagy adaptors, and sequestered cargo. (I) Autophagic components are extracted from the autolysosome membrane by the
SNX4-5-17 recycler complex and degraded materials are released into the cytosol (J). Created in BioRender. Acheson, J. (2024) BioRender.com/a02s604.
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carried out by over 60 lysosomal hydrolases [71], which require acidification of the autolysosome lumen
by vacuolar H+-adenosine triphosphatases (v-ATPase) (Figure 1H). Importantly, however, recent evidence
has suggested that proteins of the outer autophagosome membrane are recycled for future use (Figure 1I)
[72,73]. Similarly, for efficient autophagy [74], lysosomal bodies must be extracted from the autolysosome
through a separate process termed autophagic lysosome reformation (reviewed in-depth elsewhere [75]).
Following catabolism within the autolysosome, constituent elements of degraded material are released into
the cytosol through various transporters/channels for subsequent recycling into new cellular components
(Figure 1J) [76].

The autophagolysosomal system is a highly regulated pathway and there are a myriad of stages that have
the potential to be affected by stimuli such as mechanical disruption/damage of tissue. This is important as
common markers of autophagosomes (e.g. LC3-II and p62) fluctuate depending on their rate of synthesis
and autophagic degradation [77], meaning ‘static’ assessments of these proteins could misrepresent true
rates of autophagy. Therefore, control comparators where autophagosome degradation has been inhibited
(e.g. with colchicine) are required to confirm whether autophagy ‘flux’ (i.e. autophagosome synthesis and
degradation) has increased or decreased in response to experimental conditions.

Upstream regulation of autophagy

Nutrient-sensitive autophagy signaling
Our understanding of the upstream signals that regulate autophagy primarily stems from in vitro or
animal studies utilizing nutrient withdrawal or pharmaceutical autophagy inhibitors. During periods
where nutrients are replete, the active mammalian target of rapamycin complex 1 (mTORC1) inhibits
the ULK1/2 complex by phosphorylating ULK1ser757 and ATG13ser258 [78–81]. Upstream of mTORC1,
the growth factor/insulin-sensitive protein kinase B/AKT (AKT) phosphorylates transcription factor
forkhead box O3 (FOXO3) at several inhibitory sites, promoting its interaction with cytosolic 14-3-3 to
suppress autophagy gene transcription [82–85]. In a similar mechanism, both AKT and mTORC1 prevent
coordinated lysosomal enhancement and regulation (CLEAR) gene network expression by phosphorylating
members of the microphthalmia/transcription factor E (MiT/TFE) family, such as transcription factor EB
(TFEB) and transcription Factor Binding to IGHM Enhancer 3 (TFE3) [86–88].

In contrast, during nutrient deficiency, a reduction in mTORC1 signaling alleviates the induction
complex’s negative inhibition on ULK1/2 and TFEB, allowing autophosphorylation of ATG13 and FIP2000
by ULK1/2 [79,80] and TFEB nuclear translocation for CLEAR gene network expression [89]. Meanwhile,
an increase in cellular adenosine monophosphate (AMP):triphosphate (ATP) activates the energy sensor 5′
AMP-activated protein kinase (AMPK), which promotes autophagy induction by phosphorylating ULK1/2
at multiple serine residues [90–92] and elevates autophagy-related gene expression via phosphorylation
of FOXO3 [92,93]. AMPK may also indirectly promote autophagy, given its ability to inhibit mTORC1
through phosphorylation of tuberous sclerosis protein and raptor [78,90–92]. Finally, phosphorylation of
B-cell leukemia/lymphoma 2 protein (BCL-2) at several residues by starvation-activated c-Jun N-terminal
protein kinase 1 (JNK1) attenuates BCL-2’s negative inhibition of Beclin-1 [94,95]. These opposing
mechanisms allow cellular autophagy to be regulated temporally in response to changes in nutrient status
(Figure 2).

Redox/calcium-sensitive autophagy signaling
While there are various potential upstream autophagic regulators, disturbance of intracellular redox
and calcium homeostasis has been strongly implicated in skeletal muscle autophagy (Figure 3) [96–98].
Mitochondrial-derived reactive oxygen species (ROS) are thought to be key regulators of contraction-
induced autophagy induction [99–101]. Mechanistically, ROS activate AMPK by reducing cellular ATP
[102], upregulate autophagy by attenuating AKT signaling [103,104], and directly oxidize MiT/TFE
transcription factors to promote autophagolysosomal gene expression [105]. Furthermore, ROS stimulate
lysosomal calcium release by oxidizing the lysosome calcium channel mucolipin-1/TRPML1 (MCOLN1)
[106,107] which, in turn, promote TFEB nuclear translocation to elevate lysosomal/autophagy-related
gene expression [108]. MCOLN1 also activates the AMPK-effector calcium/calmodulin-dependent protein
kinase kinase β (CaMKKβ), resulting in phosphorylation of ULK1 and Beclin-1 [109].
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Alike starvation-induced autophagy, exercise promotes the phosphorylation and dissociation of BCL-2
from Beclin-1, albeit via a differing mechanism [110]. In addition, exercise-induced phosphorylation
of p38 mitogen-activated protein kinases (MAPK) has been implicated in upregulating autophagy gene
expression [111], which could reflect upstream regulation by oxidative stress [112] or inflammatory
receptor activation [113]. Cytosolic calcium mobilization in response to sarcoplasmic reticulum (SR)
stress [114,115] may also promote autophagosome formation via protein kinase C theta (PKCθ) [116],
while ROS produced during lactate clearance stimulates phosphorylation of extracellular signal-regulated
kinases 1/2 (ERK1/2), thereby inhibiting mTORC1 and promoting autophagy flux [117]. Collectively,
these mechanistic studies highlight potential redox and calcium-sensitive signaling cascades that may be
upregulated during recovery from strenuous exercise, albeit the degree to which such pathways influence
autophagy flux in human skeletal muscle is yet to be determined.

Exercise-induced muscle damage

Defining exercise-induced muscle damage
It is well known that mechanical and/or metabolic stress during strenuous physical exercise causes
temporary muscle damage and functional impairment [2,118–121]. Human experimental models of EIMD
clearly show that repeated isolated eccentric muscle contractions significantly disrupt myofiber integrity
and muscle force generating capacity [122–129], the most appropriate proxy of ultrastructural damage
[130,131]. In severe cases of EIMD, evidence of myofiber necrosis, such as intramyofiber immune cell

Figure 2: Upstream regulators of nutrient-sensitive autophagy.

(A) During periods where growth factors and amino acids are replete, the AKT/mTORC1 pathway negatively regulates autophagy induction and transcriptional programs.
mTORC1 directly phosphorylates and inhibits ULK1/2, ULK1/2, and ATG13. TFEB/E3 are phosphorylated by both AKT and mTORC1 and sequestered in the cytosol by 14-3-3
proteins, while AKT similarly phosphorylates and prevents FOXO3-mediated autophagy gene expression. Autophagosome biogenesis is suppressed through BCL-2-mediated
inhibition of Beclin-1. (B) In low nutrient conditions, a reduction in AKT/mTORC1 signaling alleviates the negative inhibition of the ULK1/2 complex. The energy sensor AMPK
simultaneously phosphorylates and activates ULK1/2, allowing it to phosphorylate Beclin-1, which has been released from BCL-2 by JNK1. FOXO3 and TFEB/E3 translocate
to the nucleus and upregulate autophagy and CLEAR network gene expression due to the reduction in AKT/mTORC1 activity and direct phosphorylation of FOXO3 by AMPK.
Created in BioRender. Acheson, J. (2024) BioRender.com/r89e937.
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infiltration [127,129,132,133], particularly in dystrophin-negative myofibers [133], is also observed. Such
effects are often preceded by a substantial (≈50%) loss of muscle force generating capacity that requires > 7
days to recover [127,132,133]. In contrast, more traditional resistance and endurance-type exercise results
in milder muscle strength losses and shorter recovery periods [134,135], although ultrastructural damage
is noted following high-intensity RE [6,136–139] and downhill running [140,141], reflecting the eccentric
demand of these modalities.

Mechanisms of exercise-induced muscle damage
To understand how autophagy may contribute to skeletal muscle recovery, it is important to consider the
etiology of EIMD. This can be divided into two distinct phases: the initial primary damage phase, relating
to the immediate exercise-induced disruption of intracellular proteins and organelles, and the secondary
damage phase, which occurs as an autogenic response to the initial damaging event.

Primary damage
Eccentric loading of contractile proteins is likely the primary source of ultrastructural damage during
weight-bearing exercise [142]. Compared to concentric loading, eccentric contractions recruit a lower
number of motor units, which results in a greater amount of tensile stress per unit of muscle fiber
area [143,144]. As a result, elongating sarcomeres progressively weaken and eventually stretch beyond
myofilament overlap, subsequently placing a greater strain on surrounding structures (see Morgan’s [145]
‘popping sarcomere hypothesis’). In support of this theory, disruption of sarcomeres (e.g. Z-line/disk
‘smearing’ or myofilament disorganization), the t-tubule system, SR, and intermyofibrillar mitochondria

Figure 3: Redox and calcium-related autophagy signaling.

Perturbations in cellular redox and intracellular calcium homeostasis can result in autophagy induction and related gene expression. ROS increase ULK1/2 complex activity
through allosteric activation of AMPK and attenuation of AKT/mTORC1 activity. Lysosomal calcium efflux through MCOL1N, which can be induced by ROS, results in autophagy
enhancement through CaMKKβ/AMPK activation and by activating TFEB via calmodulin. ROS may also promote autophagy gene expression through direct oxidation of TFEB/E3
and increasing p38 MAPK signaling. Oxidative stress results in sarcoplasmic reticulum efflux, associated with autophagosome biogenesis through activation of PKCθ. ROS
promote HMGB1 relocation to the cytosol where it promotes autophagy induction by competitively binding BCL-2. Dashed lines represent autophagic pathways that remain to
be documented in skeletal muscle. Created in BioRender. Acheson, J. (2024) BioRender.com/f77k718.
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can all be observed in skeletal muscle tissue immediately after eccentric exercise [146–148]. Furthermore,
much of the acute post-exercise reduction in muscle function has been attributed to a rise in intracellular
calcium concentrations and subsequent excitation-contraction uncoupling [148,149]. While the precise
mechanism of cytosolic calcium influx is debated [150], evidence from both human and animal
investigations suggests that stretch-mediated and/or oxidative disruption of t-tubules, sarcolemma, and
the SR may be involved [122,148,151–153].

Secondary damage
During the secondary phase, a rise in cytosolic calcium levels signals the activation of calcium-sensitive
calpains [154–156]. It is thought that these non-lysosomal proteases disassemble damaged myofibrillar
and cytoskeletal structures, subsequently allowing the UPS to degrade unbound protein fragments into
smaller peptide chains [20]. Indeed, human eccentric exercise-induced myofibrillar disruption and loss of
muscle function directly correlate with calpain activity [155], while proteasome activity increases during
the post-exercise period [157]. However, given that the presence of myofibrillar disruption is often delayed
[155,158,159], changes in tissue ultrastructure during the days following exercise likely reflect a remodeling
response to strenuous loading rather than further ‘damage’. Elevated cytosolic calcium may also increase
mitochondrial calcium uptake and ROS formation [160], which are known to cause lipid, protein, and
DNA oxidation in exercised-human muscle [161]. However, recent animal evidence has shown that
transient ROS formed by localized mitochondrial calcium uptake are important for sarcolemma repair
and maintaining myofiber viability following eccentric-damage, whereas sustained increases in cellular
ROS hinder homeostatic regain [162]. Other rodent-based studies suggest that redox imbalances created
by eccentric exercise may promote mitochondrial calcium overload and permeability [160,163,164], which
increases the risk of pro-apoptotic factors entering the cytosol [165].

Inflammation is another key factor associated with secondary EIMD. Various cytokines are elevated
in skeletal muscle and the circulation following eccentric exercise (for an extensive list, see Paulsen et
al. [1]), some of which have been shown to coordinate the immune and myogenic response in cultured
human skeletal myotubes [166–169]. Neutrophils initially accumulate in damaged human skeletal muscle
tissue with pro-inflammatory M1-like phagocytic macrophages predominating soon after [133,167]. These
phagocytic cells contribute to muscle healing by clearing cellular debris and further regulating the immune
response, although cell culture and rodent models of muscle injury indicate that neutrophils also exhibit
a role in generating cytolytic intermediates during phagocytosis [170–174]. Mouse M1 macrophages
differentiate into a pro-regenerative, anti-inflammatory M2 phenotype upon engulfing muscle debris in
vitro [175], and this timely expression seems to be important for regulating satellite cell dynamics and
healthy myofiber regeneration in both humans and mice [174–178]. Importantly, however, a distinct
change in macrophage phenotype may not occur in human skeletal muscle during recovery from
traditional, less damaging forms of RE, possibly reflecting a lack of need to degrade necrotic tissue [179].
Nevertheless, macrophage and satellite cell accretion remain tightly coupled in response to exercise training
[180–182]; thus, interactions between immune and myogenic cells are likely important for muscle recovery
regardless of myofiber necrosis.

Autophagy is essential for rodent skeletal muscle health
and regeneration
Studies of skeletal muscle-specific ATG-knockout (KO) rodents have uncovered the pivotal role autophagy
plays in maintaining myofiber homeostasis. Maserio et al. [24] delineated the importance of basal
autophagy by generating life-long and tamoxifen-inducible ATG7-KO mouse lines. These animals were
unable to lipidate LC3 and had substantial LC3 and p62 build-up, indicating a blockage of autophagosome
removal. Both genotypes displayed loss of force production, indices of muscle damage, and skeletal muscle
atrophy, which coincided with increased proteolytic gene expression and diminished activity of protein
translational machinery, suggestive of a catabolic phenotype. ATG5-KO also induces glycolytic myofiber
atrophy, which is associated with autophagy protein build-up and impaired lysosome morphology within
the intermyofibrillar space [183]. Intriguingly, slow-twitch muscle and measures of muscle fatiguability
were observed to be unaffected by ATG5-KO, highlighting a need to consider muscle-fiber type when
investigating the autophagic response.
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Pare et al. [184] showed that mouse chronic ATG7-KO hindered muscle force-production and measures
of contractility in both the fast-twitch dominant extensor digitorum longus (EDL) and slow-twitch soleus
muscle, but these effects were more pronounced and had an earlier onset in EDL. Analyses of autophagy-
sufficient muscle showed that the EDL had higher basal autophagic flux and both basal and starvation-
induced LC3-II accumulation are negatively associated with skeletal muscle citrate synthase activity [185],
indicating that muscle with low oxidative capacity has greater autophagic turnover. Notably, glycolytic
muscle is more susceptible to MPS attenuation and subsequent muscle loss during catabolic conditions
[186,187], including aging where the decline in fast-twitch muscle size and function has been associated
with dysfunctional autophagy [188]. However, preferential glycolytic muscle fiber wasting in sarcopenic
muscle appears to be mTORC1 independent whereby inflammatory cytokines suppress autophagy via
FYN/signal transducer and activator of transcription 3 signaling [189,190]. Nevertheless, the observation
that fast-twitch muscle is especially reliant upon autophagy to maintain its health highlights important
considerations in circumstances where glycolytic fibers are preferentially recruited, such as during eccentric
loading [191].

In addition to basal autophagy, animal investigations indicate that the autophagy system plays a
crucial role in recovering severely injured skeletal muscle [26,192,193]. Nichenko et al. [192] showed
that suppressing autophagy significantly impeded the recovery of mitochondrial enzyme activity and
muscle strength in mice exposed to localized cardio-toxin (Ctx) injury. This does not seem to be due
to global autophagy repression as similar results have been reported in muscle-specific ULK1-KO mice
[26]. Interestingly, ULK1-KO does not impede basal skeletal muscle health in young muscle [26], but does
impair mitochondrial homeostasis and skeletal muscle contractility with advancing age [194]. Therefore,
it seems ULK1-mediated autophagy facilitates skeletal muscle health and recovery during aging and acute
skeletal muscle trauma in mice.

ATG16L-KO, which impedes, but does not entirely suppress autophagosome formation, also
significantly delays muscle recovery from Ctx injury [195], with these mice exhibiting elevated
sarcolemmal damage, smaller regenerating fibers and lower amounts of both proliferating and
differentiating satellite cells compared to their autophagy-sufficient littermates. The effect on satellite cells
seems to be of particular importance given that autophagy is upregulated during myoblast proliferation
and differentiation in vitro [196–198]. Furthermore, loss of basal autophagy through satellite cell-specific
ATG7-KO reduces the satellite cell pool in young mice, indicating that autophagy can prevent myogenic
cell senescence/death [199]. Accordingly, it is believed that autophagy preserves satellite cell proteostasis
and provides the necessary energy for mitosis [198,200]. Intriguingly, myogenin-Cre ablation of ULK1,
which attenuates autophagy in postmitotic myofibers, represses the myogenic program during recovery
from freeze injury, suggesting that autophagy within adult myofibers can regulate satellite cell dynamics
[193]. Overall, these data show that autophagy facilitates rodent skeletal muscle repair/regeneration
through both intrinsic and extrinsic (satellite cell) mechanisms and that these pathways are interrelated.

It is important to note that an increase in autophagy protein content may not translate to a
relative increase in autophagic flux. Investigations conducted by Jarrod Call’s laboratory have shown
that while autophagy protein content is elevated in mouse skeletal muscle recovering from traumatic
freeze injury, 2-photon microscopy analyses show a reduced clearance of autophagosome bound LC3,
indicative of attenuated autophagosome clearance [193,201]. The authors postulated that this could be
due to an autophagy ‘bottleneck’ whereby accumulating damaged components are not effectively degraded
despite increases in autophagosome production [202]. One possible explanation for this may be that
lysosomal biogenesis fails to proportionally increase with damage-induced autophagosome formation. For
example, mouse cardiac muscle recovering from ischemia reperfusion (I/R) undergoes a robust increase in
autophagosome formation yet is accompanied by a decline in the lysosomal marker lysosome-associated
membrane protein 2 (LAMP2) [203], while restored expression of LAMP2 significantly improved
the clearance of I/R induced autophagosomes [203]. Similar effects have been shown during TFEB
overexpression in cultured I/R injured mouse cardiomyocytes [204], suggesting that a general increase
in lysosomal number can overcome the ‘bottleneck’. Overall, these data highlight the lysosomal system as a
target to improve autophagic flux and subsequently skeletal muscle recovery.
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Autophagy is upregulated in rodent and cellular models of exercise-
induced muscle damage
Salminen and Vihko’s seminal work provided that the first indication that autophagy may be upregulated
following EIMD [205], reporting that 9 hours of running causes significant myofiber necrosis and
inflammatory cell infiltration in mouse quadriceps muscle. Surviving myofibers exhibited mitochondria-
containing autophagic-like vacuoles at days 2 and 7 post-injury, indicative of increased autophagosome
production. Using a similar model, Salminen and Kihlström [206] observed markers of lysosomal
activity increased stepwise with greater dosages of exercise and subsequent tissue injury, suggesting that
a more potent autophagic response occurs with higher magnitudes of EIMD. In more recent years,
a growing body of research has identified a notable relationship between markers of autophagy and
rodent mitochondrial dysfunction following EIMD [207–209]. Shang et al. [209] reported that 90 minutes
of downhill running increased the LC3-II/LC3-I ratio and co-localization of PTEN-induced putative
protein kinase 1 (PINK)/Parkin with dysfunctional mitochondria, for up to 48 hours post-exercise. The
accumulation of PINK1 and its E3-ligase effector Parkin on depolarized mitochondrial membranes are
key stages of ubiquitin-dependent mitophagy and are often preceded by mitochondrial fission events (see
Erlich and Hood [210]). Mechanistically, it has recently been reported that the high mobility group box-1
protein (HMGB1), a structural component of chromatin [211], promotes autophagy induction during
recovery from downhill running by translocating to the cytosol and relieving BCL-2’s inhibition of Beclin-1
(Figure 3) [207]. A similar mechanism is noted in murine fibroblasts where mitochondrial ROS promote
HMGB1-translocation and Beclin-1 mediated autophagy, whereas HMGB1 ablation impedes autophagy,
resulting in apoptosis [212]. As such, HMGB1-translocation seems to be a key autophagic signal during
conditions that stimulate mitochondrial stress (e.g. EIMD).

Maintaining a healthy mitochondrial pool is crucial for myofiber viability, especially during periods
where intracellular calcium homeostasis is perturbed [213]. Investigations of mice with skeletal muscle
dystrophy, where calcium [214] and autophagic [215] dysfunction are exhibited, illustrate that an inability
to sequester damaged mitochondria exacerbates muscle degeneration and apoptosis during recovery from
acute endurance exercise (EE) [216,217]. Mitochondrial turnover is likely important for general skeletal
muscle recovery, given the significant energy cost of MPS [218,219]. Indeed, alike autophagy suppression
[195,197], inhibition of mitochondrial biogenesis attenuates muscle regeneration following traumatic
injury [220]. While the relationship between mitophagy and myogenesis is yet to be explored in the context
of EIMD, mitochondrial oxidative stress peaks 6 hours after strenuous EE and coincides with elevated
markers of mitophagy, suggesting that mitochondrial turnover and ROS-emitted by sustained oxidative
phosphorylation are coupled during exercise recovery [99]. For an in-depth discussion of how mitophagy
and mitochondrial turnover may regulate cellular bioenergetics for muscle remodeling, readers are referred
to other recent publications [221,222].

It is important to note that the combined aerobic and mechanical stimulus induced by running-
based models of EIMD make it difficult to determine whether autophagy is specifically induced to
accommodate mechanically induced damage. In fact, many studies have confirmed that autophagic
flux is upregulated in rodents following exercise without significant eccentric strain, i.e. uphill running
and swimming [223–225], which is perhaps unsurprising considering autophagy’s role in mitochondrial
remodeling [226]. However, there is some evidence to suggest that eccentric loading promotes a unique
autophagic response. Inducible ATG7-KO female mice display impaired exercise capacity compared to
their autophagy-sufficient wild-type littermates during downhill, but not uphill, running [208], although
limited morphological alterations were observed. In contrast, Lu et al. [227] showed that an unaccustomed
bout of exhaustive wheel running induced immediate myofibrillar damage and elevated markers of
chaperone-assisted selective autophagy (CASA) (see Tedesco et al. [228] for an in-depth CASA review).
Considering skeletal muscle is more susceptible to damage from eccentric loading, an attractive hypothesis
may be that resistance-type exercise induces a particularly potent autophagic response. However, in
anesthetized rodents, electrically evoked eccentric, concentric, and isometric loading patterns all increase
the phosphorylation of ULK1ser757 and ULK1ser317 to a similar degree without affecting LC3-II/LC3-I ratios
[229]. Therefore, further investigations are warranted to determine whether autophagy flux is specifically
increased in response to voluntary eccentric-EIMD.
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Autophagy may be upregulated in untrained human skeletal muscle
recovering from novel resistance exercise
It is well known that RE, especially involving novel eccentric contractions [4,142], damages myofiber
structure [6,136–139] and promotes a robust protein synthetic response [10,11,230]. In untrained
individuals, RE-induced myofibrillar damage and protein synthesis are closely related, supporting the
notion that muscle proteins are initially synthesized to renew damaged myofibers [5,6,231]. Despite this,
human studies investigating the effect of unaccustomed RE on autophagy are equivocal (Table 1) [232–238].

One related hypothesis on this topic is that mechanical stimulation of AKT/mTORC1 activity inhibits
autophagy following acute RE [18,235,239]. In support of this, Hentilä et al. [235] showed that LC3-
II, but not LC3-I or p62, protein content decreased 1 hour post-exercise, in line with reductions in
AMPK-dependent ULK1ser555 and elevations in mTORC1-dependent ULK1ser757 phosphorylation. Several
autophagy-related proteins were, however, elevated once ULK1ser757 returned to basal values 48 hours
post exercise, which could suggest that autophagosome formation increases once anabolic signaling has
diminished. Alternatively, it is possible that autophagy proteins may have accumulated due to inhibited
autophagosome degradation during recovery, thereby corroborating the ‘bottleneck’ hypothesis [202].
Regulation of autophagy-related genes following novel RE is also equivocal, with studies reporting
unaltered [233,235] or elevated [237] LC3 and p62 expression. The combination of novel RE and essential
amino acid (EAA) ingestion, a further anabolic stimulus [8], elicits reductions in LC3-II/LC3-I ratio at
2 h post-exercise, possibly reflecting a reduction in autophagosome biogenesis. Interestingly, if the EAA
beverage contained higher leucine doses, the LC3-II/LC3-I ratio increased at 5 and 24 hours, leading the
authors to postulate that further elevations in mTORC1 activation may have impeded autophagosome
degradation [238,240]. The observation that LC3-II increases with higher amounts of leucine ingestion
is in contrast to in vitro [241] and animal investigations [242], which characterize leucine-mediated
autophagy inhibition through a reduction in LC3-II content. However, as each of these studies only utilized
‘static’ assessments of autophagic protein content, more appropriate methodologies are required to better
understand the relationship between RE, nutritional status, and autophagy flux.

Alike novel RE, Fritzen et al. [243] showed that 1 h one-legged concentric cycling exercise (80%
peak workload with two 5-minute intervals at 100%) reduced LC3-II/LC3-I ratio, but not p62 content,
for up to 4 hours post-exercise in moderately trained men. This occurred alongside elevated AMPK-
dependent ULK1ser555 phosphorylation, implying that while EE upregulates AMPK/ULK1 signaling, this
may not lead to altered autophagosome content [243], or could simply reflect that static measurements are
unable to accurately reflect autophagic flux. Other works have reported that exercise-induced ULK1ser555

phosphorylation (AMPK-regulated), but not ULK1ser757 (mTORC1), was associated with a lowered LC3-II/
LC3-I ratio immediately after 1 h cycling at 50% maximal oxygen consumption (VO2max), potentially
indicating elevated autophagosome clearance [244]. p62 protein content was, however, unaltered in this
investigation, highlighting further uncertainty over whether autophagy flux was increased. In contrast,
Mazo et al. [236] showed that acute cycling (40 minutes at 75% peak-heart rate) or lower-body RE
reduced both LC3-II and p62 protein content to a similar degree in untrained individuals 4 hours
after exercise. Considering that both LC3-II and p62 are degraded within the lysosomal lumen during
autophagy [77], autophagosome degradation may have been upregulated, a notion reinforced by the
observation that autophagy gene expression was upregulated at 1 h and 4 hours post-exercise. Nevertheless,
while combined measures of p62, LC3-II, and upstream autophagic regulators provide a more detailed
description of autophagy, these findings cannot confirm the status of autophagic flux, which requires the
use of autophagosome-lysosome fusion inhibitors [77].

Despite the evident limitations of monitoring autophagy via static measures, Schwalm et al. [245] found
that the LC3-II/LC3-I ratio and p62 protein content was decreased in endurance-trained individuals 1 hour
after high-intensity (70% VO2max), but not low-intensity (55% VO2max) cycling. In addition, autophagy-
related gene expression was greater in the high-intensity trial and these effects were primarily attributed
to a greater induction of the AMPK/ULK1 axis, possibly indicating elevated autophagy induction and
autophagosome clearance with higher intensity exercise. However, as the total amount of work performed
differed between trials, it is unclear whether the decline in autophagy proteins was specifically related to
exercise intensity. For example, work-matched bouts of exercise performed above, or below, maximum
lactate steady state elicit similar reductions in LC3-II protein content albeit while p62 protein content
and autophagy-related gene expression were unchanged [246]. These data may indicate that total work
completed during an exercise bout may be the primary driver of alterations in autophagy, although further
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Table 1: Overview of human studies investigating effects of acute novel resistance exercise on skeletal muscle autophagy markers in
healthy untrained individuals.

Study Participants Exercise/Intervention mRNA expression Protein content

Diaz-Castro et al.
(2024) (232)

Untrained adult males

n = 8

Age 31.5 ± 4.23 y

Weight 78.45 ± 6.29 kg

Unilateral leg presses 10 sets of 10

repetitions at 70% 1RM with 2 minute

rest intervals

N/A (vs. rested leg)

LC3AB-II

+ 1 h↔

LC3AB-II/LC3AB-I

+ 1 h↔

p62

+ 1 h↔

p-AMPKthr172

+ 1 h↔

p-mTORser448

+ 1 h↑

PINK1

+ 1 h↔

Parkin

+ 1 h↓

BNIP3L/NIX

+ 1 h↓

FUNDC1

+ 1 h↔

BNIP3

+ 1 h↓†2

MFN2

+ 1 h↓†2

OPA1

+ 1 h↔

p-DRP1ser616

+ 1 h↑

Dickinson et al.
(2017) (238)

Untrained older males

control group

n = 7

Age 74 ± 2 y

BMI 26 ± 1

Leucine group

n = 8

Age 71 ± 3 y

BMI 27 ± 1

Bilateral leg extensions 8 sets of 10

repetitions at 65% 1RM with 3-minute

rest intervals

10g EEA beverages containing either

1.85 g leucine (control group) or 3.5 g
leucine (leucine group) consumed 1

hour post exercise

Control group (vs. baseline)

LC3

+ 2 h↑ + 5 h↑ + 24 h↑

GABARAP

+ 2 h↔ + 5 h↔ + 24 h↔

BECN1

+ 2 h↔ + 5 h↔ + 24 h↔

ATG7

+ 2 h↔ + 5 h↔ + 24 h↔

LAMP2B

+ 2 h↔ + 5 h↔ + 24 h↔

CISD2

+ 2 h↔ + 5 h↔ + 24 h↔

RUNX1

+ 2 h↔ + 5 h↑ + 24 h↑

MuRF1

+ 2 h↑ + 5 h↑ + 24 h↔

Leucine group (vs. baseline)

LC3

Control group (vs. baseline)

LC3B-I

+ 2h↔+ 5h↔+24 h↔

LC3B-II

+ 2 h↓ + 5 h↔*1 + 24 h↔

LC3B-II/LC3B-I

+ 2 h↓ + 5 h↓*1 + 24 h↓*1

Beclin-1

+ 2 h↔ + 5 h↔ + 24 h↔

p-AKTthr308

+ 2 h↑†2 + 5 h↔ + 24 h↔

Nuclear/cytosolic FoxO3a

+ 2 h↔ + 5 h↔ + 24 h↔*1

Leucine group (vs. baseline)

LC3B-I

+ 2 h↔ + 5 h↔ + 24 h↔

LC3B-II

+ 2 h↓ + 5 h↔*1 + 24 h↔

Continued
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Table 1:  Continued.

Study Participants Exercise/Intervention mRNA expression Protein content

+ 2 h↑ + 5 h↔ + 24 h↔

GABARAP

+ 2 h↔ + 5 h↔ + 24 h↔

BECN1

+ 2 h↔ + 5 h↔ + 24 h↔

ATG7

+ 2 h↔ + 5 h↔ + 24 h↔

LAMP2B

+ 2 h↔ + 5 h↔ + 24 h↔

CISD2

+ 2 h↔ + 5 h↔ + 24 h↑

RUNX1

+ 2 h↑† + 5 h↑ + 24 h↑

MuRF1

+ 2 h↑ + 5 h↑ + 24 h↔

LC3B-II/LC3B-I

+ 2 hr↓ + 5 h↓*1 + 24 h↔*Beclin-11

+ 2 h↔ + 5 h↔ + 24 h↔

p-AKTthr308

+ 2 h↑† + 5 h↔ + 24 h↔

Nuclear/cytosolic FoxO3a

+ 2 h↔ + 5 h↔ + 24 h↔*1

Fry et al.

(2013) (233)

Untrained younger adults

n = 16

Age 27 ± 2 y

BMI 25.1 ± 0.9

Untrained older adults

n = 16

Age 70 ± 2 y

BMI 24.2 ± 0.6

Bilateral leg extensions 8 sets of 10

repetitions at 70%1RM with 3 minute

rest intervals

Younger group (vs. baseline)

LC3

+ 3 h↔ + 6 h↔ + 24 h↔

GABARAP

+ 3 h↓ + 6 h↓†2 + 24 h↔

MuRF1

+ 3 h↑ + 6 h↑ + 24 h↔

Older group (vs. baseline)

LC3

+ 3 h↔ + 6 h↔ + 24 h↔

GABARAP

+ 3 h↓ + 6 h↓†2 + 24 h↔

MuRF1

+ 3 h↑ + 6 h↑ + 24 h↔

Younger group (vs. baseline)

LC3B-I

+ 3 h↔ + 6 h↔ + 24 h↔

LC3B-II

+ 3 h↔ + 6 h↓ + 24 h↓

LC3B-II/LC3B-I

+ 3 h↓ + 6 h↓ + 24 h↓

Beclin-1

+ 3 h↔*1 + 6 h↔* 1+ 24 h↔*1

ATG7

+ 3 h↔*1 + 6 h↔*1 + 24 h↑*1

FoxO3aser253

+ 3 h↓ + 6 h↓ + 24 h↓

p-AKTthr308

+ 3 h↑ + 6 h↔ + 24 h↔

Older group (vs. baseline)

LC3B-I

+ 3 h↔ + 6 h↔ + 24 h↔

LC3B-II

+ 3 h↓ + 6 h↓ + 24 h↓

LC3B-II/LC3B-I

+ 3 h↓ + 6 h↓ + 24 h↓

Beclin-1

+ 3 h↔*1 + 6 h↔*1 + 24 h↔*1

ATG7

+ 3 h↔*1 + 6 h↔*1 + 24 h↔*1

FoxO3aser253

+ 3 h↓ + 6 h↓ + 24 h↓

p-AKTthr308

+ 3 h↑ + 6 h↔ + 24 h↔

Continued
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Table 1:  Continued.

Study Participants Exercise/Intervention mRNA expression Protein content

Glynn et al.

(2010) (234)

Untrained adult males

EAA + LCHO group

n = 7

Age 30 ± 2 y

BMI 26 ± 1

EAA + HCHO group

n = 32 default 1

Age 32 ± 1 y

BMI 27 ± 1

Bilateral leg extensions
10 sets of 10

repetitions at 70%1RM with 3 minute

rest intervals

~20 g EAA beverage containing

0.35 g/kgLM EAA with either 0.5 g/
kgLM carbohydrate (EAA + LCHO
group) or

1.40 g/kgLM (EAA + HCHO group)

consumed straight after 1 hour biopsy

time point

EAA + LCHO group (vs. baseline)

MuRF1

+ 1 h↑ + 2 h↑

EAA + HCHO group (vs. baseline)

MuRF1

+ 1 h↑ + 2 h↑

EAA + LCHO group (vs. baseline)

LC3B-I

+ 1 h↔ + 2 h↔

LC3B-II

+ 1 h↔ + 2 h↓

p-AMPKthr172

+ 1 h↑ + 2 h↑*1

p-AKTser473

+ 1 h↑ + 2 h↑

FoxO3aser253

+ 1 h↔ + 2 h↔

FoxO3aser318/321

+ 1 h↔ + 1 h↔

MuRF1

+ 1 h↑ + 2 h↔

EAA + HCHO group (vs.

baseline)

LC3B-I

+ 1 h↔ + 2 h↔

LC3B-II

+ 1 h↔ + 2 h↓

p-AMPKthr172

+ 1 h↑ + 2 h↔*1

p-AKTser473

+ 1 h↑ + 2 h↑

FoxO3aser253

+ 1 h↔ + 2 h↔

FoxO3aser318/321

+ 1 h↔ + 1 h↔

MuRF1

+ 1 h↑ + 2 h↔

Hentilä et al.

(2018) (235)

Untrained younger adult males

n = 12 (whey protein group n = 6,

placebo group n = 6)

Age 27 ± 4 y

Untrained older adults

n = 8

Age 61 ± 6 y

BMI 23.4–28.8

Bilateral leg presses 5
sets of 10

repetition maximums
with 2 minute

rest intervals

Young cohort consumed either 15 g

whey protein isolate or an isocaloric

placebo immediately before and after

the resistance exercise bout (pooled

analysis, no effect of supplementation
on autophagy markers)

Younger group (vs. baseline)

LC3B

+ 1 h↔ + 48 h↔p62

+ 1 h↔ + 48 h↔

Younger group (vs. baseline)

LC3B-I

+ 1 h↔ + 48 h↑

LC3B-II

+ 1 h↓ + 48 h↑p62

+ 1 h↔ + 48 h↑

p-ULK1ser555

+ 1 h↓ + 48 h↔

p-ULK1ser757

+ 1 h↑† + 48 h↔

Beclin-1

+ 1 h + 48 h↑†2

BCL-2

+ 1 h↔ + 48 h↔

Continued
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Table 1:  Continued.

Study Participants Exercise/Intervention mRNA expression Protein content

Older group (vs. baseline)

LC3B-I

+ 48 h↔

LC3B-II

+ 48 h↔

p62 + 48 h↔

Beclin-1

+ 48 h↔BCL-2

+ 48 h↔

Mazo et al.

(2021) (236)

Untrained adult males

n = 6

Age 27 ± 3 y

Weight 79 ± 10 kg

Unilateral leg extensions 8 sets of 10
repetitions at 60-65%1RM with 3
minute rest intervals

40 minutes of stationary cycling at
75% peak heart rate

Cross-over trial comparing an
unaccustomed bout of aerobic and
resistance exercise, separated by ~ 1
week

Resistance exercise (vs. baseline)

Autophagy genes

+ 1 h 7 ATGs DE

+ 4 h 43 ATGsDE

FOXO3 pathway

+ 1 h↑ + 4 h↑

mTOR pathway

+ 1 h? + 4 h↑

Aerobic exercise (vs. baseline)

Autophagy genes

+ 1 h 6 ATGs DE

+ 4 h 17 ATGsDE

FOXO3 pathway

+ 1 h↑ + 4 h?

mTOR pathway

+ 1 h? + 4 h↑

Resistance exercise (vs. baseline)

LC3B-I

+ 1 h↔ + 4 h↔

LC3B-II

+ 1 h↓ + 4 h↓

LC3B-II/LC3B-I

+ 1 h↔ + 4 h↔

p62

+ 1 h↔ + 4 h↓

FoxO3a

+ 1 h↔ + 4 h↓

mTORser2448

+ 1 h↔ + 4 h↑*1

Aerobic exercise (vs. baseline)

LC3B-I

+ 1 h↔ + 4 h↔

LC3B-II

+ 1 h↓ + 4 h↓

LC3B-II/LC3B-I

+ 1 h↔ + 4 h↔

P62

+ 1 h↔ + 4 h↓

FoxO3a

+ 1 h↔ + 4 h↓

mTORser2448

+ 1 h↔ + 4 h↑†*21

Ogborn et al.

(2015) (237)

Untrained younger males

n = 9

Age 21 ± 3 y

Weight 91.7 ± 21.9 kg

Untrained older males

n = 9

Age 70 ± 4

Weight 87.6 ± 11.5 kg

Unilateral leg extensions and leg
presses 4 sets of 10 repetitions per
exercise at 75%1RM with 2-minute
rest intervals (pooled analysis, no
effect of age)

(vs. rested leg)

LC3B

+ 3 h↑ + 24 h↑†2 + 48 h↔

p62

+ 3 h↑ + 24 h↔ + 48 h↔

ATG7

+ 3 h↔ + 24 h↔ + 48 h↔

BECN1

+ 3 h↔ + 24 h↔ + 48 h↔

(vs. rested leg)

Total LC3B

+ 3 h↔ + 24 h↑†2 + 48 h↑

p62

+ 3 h↔ + 24 h↑ + 48 h↑

ATG7

+ 3 h↔ + 24 h↔ + 48 h↔

PINK1

+ 3 h↔ + 24 h↔

Continued
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work utilizing more sophisticated measures of autophagic flux in human skeletal muscle is required to
confirm this.

In addition to EE, RT can induce mitochondrial remodeling [247–251]; thus, it is plausible that
auto/mitophagy pathways may be regulated by this form of exercise. Diaz-Castro et al. [232] recently
reported that acute RE increased markers of mitochondrial fission and elicited reductions in the protein
content of the mitophagy receptor BNIP3L/NIX in untrained human muscle. TEM-derived observations
of damaged mitochondria and mitophagosome-like structures were also noted at this time, suggesting
that mitophagy may have been taking place. It is unclear whether the mitophagosome-like structures
were degraded intracellularly as LC3-II and p62 content were unchanged. Intriguingly, though, it was also
reported that subsarcolemmal mitophagosome-like structures could be seen exiting muscle following RE,
a phenomenon that has been described in other cell types [252,253]. While Diaz-Castro et al. [232] did
not show evidence of mitophagosomes in circulation, other studies have shown that mouse cardiac muscle
with impaired lysosomal function also ejects damaged mitochondria, but the vesicles do not appear in
circulation due to being degraded by nearby macrophages [254]. Similar ‘outsourcing’ of mito-/autophagy
has also been observed within human mesenchymal stem cells [255], and pharmaceutical inhibition of
lysosomal function elevates secretory autophagy [256,257]. Considering these data, extracellular release
of autophagosome-like structures could represent an alternative mechanism to eliminate cellular debris
when lysosomes are inundated during recovery from novel RE (i.e. the ‘bottleneck’) [232], although further
research regarding this novel hypothesis is required.

Limitations of this field and outstanding questions

Static measures of autophagy are insufficient to determine autophagic
flux
As emphasized throughout this review, a key limitation of human research is the use of static markers
to infer the status of autophagy flux. Cellular contents of LC3, p62, and many other autophagy-related
proteins change depending on their rate of synthesis and/or their autophagic degradation, meaning that
unidirectional changes could be due to either elevated autophagosome formation or reduced fusion with
lysosomes and subsequent degradation. Drugs that block autophagosome degradation (e.g. colchicine
and bafilomycin) have proven invaluable in determining the autophagic effect of exercise in animals and
cellular models of muscle contraction [77]; however, the use of these drugs in human research is ethically
challenging. By adapting such an assay [258], Botella et al. [246] have recently provided some, albeit
limited, evidence that EE may upregulate autophagy flux in human skeletal muscle. In agreement with most
investigations, static measures of human LC3-II protein content were immediately reduced post-exercise
and returned to basal values within 3.5 hours of recovery, with no changes in p62 protein content or
related mRNA expression. In contrast, in rodents, LC3-II was unaffected immediately after but increased
3.5 hours post-exercise, corroborating most reports that static measures of LC3-II decrease in human
[233–236,238,243–245] and increase in rodent [17,110,111,208,217,227,259–261] skeletal muscle during
the initial stages of exercise recovery. However, when a small subset of biopsied tissue (n = 5) was incubated
in a lysosomotropic ammonium chloride-leupeptin solution prior to freezing, a moderate-to-large effect of
exercise on elevating LC3-II flux was observed for up to 24 hours [246]. These data should be interpreted
with caution given the limited sample size, but they do indicate the potential for this methodology to be
utilized in human exercise studies.

Overall, comparing human and rodent changes in static measures of LC3 may lead to false conclusions
regarding the autophagic response to exercise. Although a confirmatory lysosomal blockade can delineate

Table 1:  Continued.

Study Participants Exercise/Intervention mRNA expression Protein content

VPS34

+ 3 h↔ + 24 h↔ + 48 h↔

BNIP3

+3h↔+24h↔ + 48 h↔

+ 48 h↔

Parkin

+ 3 h↔ + 24 h↔ + 48 h↔

1Denotes a significant difference between condition/group.
2Indicates a borderline significant difference compared to baseline or rested sample.
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whether LC3-II is altered by lysosomal degradation, LC3-II is also a feature of phagocytic and endocytic
pathways that converge at the lysosome [262]. Therefore, the flux of other autophagy-related proteins could
also be included to provide a better indication of whether the autophagolysosomal system is specifically
upregulated. We hope that future experiments employing ex vivo autophagy assays will shed light on
conflicting data and ultimately begin to decipher the complexity of autophagy regulation in human skeletal
muscle (Figure 4).

Potential mTOR-independent mechanisms of selective-autophagy at
sites of cellular damage
A primary reason why many researchers postulate that RE could lead to inhibition of autophagy is
due to mTORC1’s inhibitory effects on aspects of the autophagic cellular machinery [78,86]. However,
it is becoming increasingly evident that autophagic pathways can be differentially regulated [263,264],
and several accounts of mTORC1-independent autophagic induction have been described in in vitro
and animal studies. For example, Cardenas et al. [265,266] identified an AMPK-mediated mechanism of
autophagy activation in response to alterations in ER-mitochondria calcium flux, which occurs regardless
of mTORC1 activity status. Moreover, others have displayed ULK1-mediated autophagy to occur at
mitochondria and peroxisomes independent of both AMPK and mTORC1 [267] and investigations
in C2C12 myotubes show that CASA-mediated degradation of filamin can occur despite mechanically
induced mTORC1 activation [268]. In addition to autophagy induction events, transcriptional regulation of
the autophagolysosomal system can occur independent of mTORC1. Medina et al. [108] reported that local
calcium release from the lysosomal calcium channel MCOL1N activates nearby calcineurin, which, in turn,
dephosphorylates TFEBSer211/Ser142 allowing its nuclear translocation even in nutrient-replete conditions.

Figure 4: Limitations of current research and future questions.

(A) Experimental model commonly used to measure autophagic flux in rodents. (B) Schematic of how an ex vivoautophagy flux methodology could be incorporated into
existing human muscle biopsy techniques to better infer activity of the autophagolysosomal system. (C) A list of pertinent questions yet to be elucidated by researchers
studying human skeletal muscle autophagy.
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The precise mechanism governing MCOL1N activation in exercised skeletal muscle is unclear, although
mitochondrial-ROS have been shown to stimulate the MCOL1N/TFEB axis in COS-I and HEK293 cells
[106,107]. It is plausible that such mTORC1-independent mechanisms could occur in human skeletal
muscle following RE to elevate autophagic flux, albeit well-controlled experimental investigations are
required to elucidate this.

Does autophagy contribute to myofibrillar protein degradation?
Another issue often discussed in the field of muscle protein metabolism is whether autophagy can
contribute to myofibrillar protein turnover. Early research demonstrated that lysosomal protease inhibitors
do not suppress proxy measures of myofibrillar protein breakdown [269], and immunofluorescence
imaging of starved rat skeletal muscle shows cytoplasmic autophagosomes with no evidence of enclosed
myofibrillar proteins [25]. Therefore, it is generally believed that the proteasomal and calpain systems are
primarily responsible for myofibrillar protein turnover while the lysosomal system facilitates degradation of
cytosolic proteins and organelles [20,270]. However, in vitro investigations have shown that lysosomal
cathepsins can hydrolyze purified myofibrillar proteins [271–273] and recent transmission electron
microscopy (TEM) images of human and rodent skeletal muscle following EIMD observe autophagosome-
like structures within the intermyofibrillar space [127,207,227,274]. Furthermore, autophagic flux is
upregulated in aging rodent skeletal muscle with impaired proteasomal function and significant protein
aggregation, possibly reflecting compensation of the autophagy system [18]. Interestingly, autophagic
flux is not further enhanced in these animals during recovery from disuse atrophy, which could suggest
that lysosomes are inundated in basal conditions and cannot cope with an elevated need to degrade
accumulating aggregates. Therefore, autophagy may operate in harmony with other proteolytic pathways to

Figure 5: Hypothetical model of contractile protein degradation by the autophagy system.

Myofibrillar proteins can become damaged during periods of mechanical loading and must, therefore, be removed for muscle recovery to ensue. The calpains release
myofibrillar proteins from sarcomeres allowing the ubiquitinated fragments to be degraded by the UPS. The autophagy system may also contribute to the degradation of
aggregated myofibrillar fragments or partly degraded peptides released from the UPS. Created in BioRender. Acheson, J. (2024) BioRender.com/f57e974.
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sufficiently degrade cleaved contractile proteins or aggregated peptide chains during periods of myofibrillar
damage (Figure 5).

One such investigation that has observed autophagy-related myofibrillar degradation in humans is
Ulbricht et al. [274], whereby an acute bout of maximal eccentric contractions, but not conventional
RE, elicited myofibrillar disruption and reductions in CASA proteins and their substrate, filamin C.
Immunofluorescence imaging of damaged fibers showed an increase in LC3-positive structures suggesting
autophagosome presence/formation in this region. Furthermore, the mechanical stretch of the myofibrillar
protein titin in rat cardiomyocytes exposes a cryptic titin-kinase binding site, which can associate with
autophagy adaptors neighbor of BRCA1 gene 1 (NBR1) and p62 [275]. More recent data indicate that
muscle inactivity may promote an interaction between NBR1/p62 and titin-kinase at sarcomeres, further
indicating a potential role of autophagy in myofibrillar turnover [276]. Nevertheless, further work is
required to confirm whether autophagy flux is enhanced during periods where CASA protein content
decreases [274] as well as to determine whether this pathway contributes to myofibrillar protein turnover.

Is autophagy involved in skeletal muscle adaptation to chronic
exercise?
The repeated bout effect increases skeletal muscle’s resilience to mechanical damage [4], contributed to
by a variety of adaptations including a sensitized immune response, extracellular matrix remodeling, and
neural modulation [3]. However, there is some evidence that the autophagy system is also modulated by
consistent training. Ulbricht et al. [274] observed protein levels of p62 and several CASA components
to be elevated after 4 weeks of progressive RT, but not constant load RT, suggesting that progressive
overload is required for adaptation to the autophagolysosomal system. Conversely, others have shown
no changes in p62 protein content following 12 weeks of progressive RT [277], although this study
was conducted in trained men where adaptations could have already occurred. It is also possible that
different types of RE may induce unique adaptations in the autophagy system. Lim et al. [278] reported
that 10 weeks of low-load, high-volume RT (30%1RM) performed to volitional fatigue increased Parkin
protein content and proteins involved in mitochondrial dynamics, yet these adaptations did not occur in
high-load or low-intensity non-failure training cohorts. Thus, high-volume, low-load RT may promote a
greater capacity for mitochondrial remodeling, possibly to accommodate mitochondrial stress elicited by a
more ‘endurance-type’ exercise. Indeed, 8 weeks of continuous moderate-intensity or work-matched sprint
interval endurance training (ET) increases Parkin, BNIP3, LC3-I, and oxidative phosphorylation complex
1 content in previously moderately trained men [279]. Similarly, in mouse skeletal muscle, 6 weeks of ET
increased mitochondria content, Parkin expression, and Parkin-colocalization with mitochondrial markers
[280], although basal levels of mitophagy flux were unchanged, further highlighting the importance of
including measurements of flux in such investigations. Other studies investigating the effects of chronic
exercise training on ‘static’ measures of autophagy protein content observe contrasting results with several
reporting increased LC3-I content [243,279], which could indicate increased autophagic capacity without
alterations in basal autophagosome content, while others suggest that the LC3-II content is increased,
indicating potential expansion of the autophagosome pool [235,246].

Another model that has provided insight into the regulation of the autophagolysosomal system to
exercise training is that of chronic contractile activity (CCA), employed consistently by the laboratory of
Prof. David Hood. Here, several investigations have indicated that frequent bouts of muscle contraction
enhance the content of proteins that regulate autophagy induction (e.g. LC3-I, Beclin-1) and related
transcriptional programs [100,281–283]. Paradoxically, however, when utilizing autophagy inhibitors, CCA
had either no effect or reduced basal LC3-II/p62 flux, potentially reflecting improvements in muscle
quality [100,281,283,284]. The acute increase in autophagy flux during EE recovery is also attenuated
in trained-mouse quadriceps, indicating increased resilience to exercise-induced stress [281]. Similarly, 9
weeks of progressive weighted climbing exercise reduces markers of autophagy flux (e.g. LC3-II/LC3-I ratio
and p62) while increasing those of autophagic and lysosomal capacity in aging rats [285]. In vitro data also
support these notions as CCA elicits elevations in TFEB protein content and markers of lysosomal content
and proteolytic activity [100,282,284]. Notably, evidence of lysosomal biogenesis can occur within as little
as 3 days of increased contractile activity and precedes mitochondrial adaptations in these models [282].
In contrast, TFEB content was unaltered in young mouse skeletal muscle following 9 days of CCA in vivo
[283], although lysosomal biogenesis did occur. Overall, these data show that TFEB activity and lysosome
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biogenesis are important mechanisms underpinning skeletal muscle plasticity and may contribute to other
autophagic adaptations.

It is unclear whether TFEB nuclear translocation and lysosomal biogenesis are enhanced by exercise
training in human skeletal muscle, although we have observed elevations in LAMP2 protein content
following 8 weeks of progressive RE [286]. Considering the relationship between CCA and lysosomal
biogenesis in vitro and in rodent skeletal muscle, we speculate that an enhanced lysosomal pool
may increase the efficiency of autophagolysosomal recycling [281]. Furthermore, given that lysosomal
biogenesis appears to be the rate-limiting factor of the autophagolysosomal system during skeletal
muscle repair (i.e. the ‘bottleneck’ [202]), methods to improve lysosomal capacity may benefit untrained
individuals susceptible to EIMD. In vitro and animal-based studies have reported that nutraceutical
compounds such as curcumin [282,283], spermidine [284,285,287], and quercetin [288,289] can promote
lysosomal biogenesis and autophagic function, although the use of these in relation to exercise-induced
autophagy have yet to be comprehensively investigated in human skeletal muscle. Importantly, some
evidence suggests that antioxidant supplementation can also attenuate autophagy [103,208], highlighting
the need for further mechanistic investigation of these compounds.

Conclusion
The autophagolysosomal system maintains skeletal muscle homeostasis throughout the lifespan and during
acute stress such as energy imbalance and tissue injury. Changes in intracellular calcium and redox
status are key signals regulating autophagy induction and transcriptional programs. Animal models
generally indicate that autophagy is upregulated to remove dysfunctional mitochondria and preserve
skeletal muscle integrity during recovery from strenuous exercise. However, a lack of sufficient methods to
monitor autophagy flux has prevented any robust conclusions regarding whether autophagic degradation is
increased by exercise-related stress in human skeletal muscle. It is well established that novel eccentric
exercise is particularly damaging to myofibrillar protein architecture; thus, autophagy may play an
important role in muscle regeneration and remodeling. Moreover, consistent exercise training can increase
the expression of autophagy-related genes and proteins, suggesting potential adaptation of the autophagy
system to increased skeletal muscle loading. Nonetheless, further well-controlled human investigations
utilizing various autophagic signaling and flux measurements are required to appropriately delineate
whether, and if so, how autophagy contributes to exercise-induced muscle repair/remodeling.
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