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Abbreviations

AKT, protein kinase B/AKT: AMP, adenosine monophosphate: AMPK, 5' AMP-activated
protein kinase: ATG, autophagy-related gene: ATP, adenosine triphosphate: BCL-2, B-cell
leukemia/lymphoma 2 protein: BNIP3, BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3:
BNIP3L/NIX, BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3-like: CaMKK}B,
calcium/calmodulin-dependent protein kinase kinase P: CASA, chaperone-assisted selective
autophagy: CCA, chronic contractile activity: CLEAR, coordinated lysosomal enhancement and
regulation: Ctx, cardio-toxin: EAA, essential amino acids: EDL, extensor digitorum longus: EE,
endurance exercise: EIMD, exercise-induced muscle damage: ER, endoplasmic reticulum: ERK1/2,
extracellular signal-regulated kinases: ESCRT, endosomal sorting complexes required for transport:
ET, endurance training: FIP200, focal adhesion kinase family interaction protein of 200kD: FOXO03,
forkhead box 03: GABARAP, gamma-aminobutyric acid receptor-associated protein: HMGB1, high
mobility group box-1 protein: HOPS, homotypic fusion and protein sorting: I/R, ischemia reperfusion:
JNK1, c-Jun N-terminal protein kinase 1: KO, knockout: LAMP2, lysosome-associated membrane
protein 2: LC3, microtubule-associated protein 1A/1B-light chain 3: MAPK, mitogen-activated protein
kinases: MCOLN1, mucolipin-1/TRPML1: MIT/TFE, microphthalmia/transcription factor E: MPB,
muscle protein breakdown: MPS, muscle protein synthesis: mTORC1, mammalian target of
rapamycin complex 1: NBR1, neighbour of BRCA1l gene 1: p62, sequestosome-1: PE,
phosphatidylethanolamine: PI3K-C1, class Il phosphatidylinositol 3-kinase complex 1: PI3P,
phosphatidylinositol 3-phosphate: PINK1, PTEN-induced putative protein kinase 1: PIS,
phosphatidylinositol synthase: PKCB, protein kinase C theta: RE, resistance exercise: ROS, reactive
oxygen species: RT, resistance training: SNARE, soluble N-ethylmaleimide-sensitive factor attachment
protein receptors: SR, sarcoplasmic reticulum: TEM, transmission electron microscopy: TFE3,
transcription Factor Binding to IGHM Enhancer 3: TFEB, transcription factor EB: ULK1/2, unc51-like
kinase 1/2: UPS, ubiquitin-proteasome: VAPs, VAMP-associated proteins: v-ATPase, vacuolar H'-
adenosine triphosphatases: VO,ma , maximal oxygen consumption: VPS, vacuolar protein sorting:

WIPI, WD repeat domain.
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Abstract

Skeletal muscle is a highly plastic tissue which can adapt relatively rapidly to a range of stimuli. In
response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are
disrupted and undergo a period of ultrastructural remodelling to regain full physiological function,
normally within 7 days. The mechanisms which underpin this remodelling are believed to be a
combination of cellular processes including UPS/Calpain-mediated degradation, immune cell
infiltration and satellite cell proliferation/differentiation. A relatively understudied cellular system
which has the potential to be a significant contributing mechanism to repair and recovery is
autophagolysosomal system, a cellular process which degrades damaged and dysfunctional cellular
components to provide constituent components for the resynthesis of new organelles and cellular
structures. This review summarises our current understanding of the autophagolysosomal system in
the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models
of how this system may interact with other processes involved in skeletal muscle remodelling and
provide avenues for future research to improve our understanding of autophagy in human skeletal

muscle.
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Introduction

During recovery from resistance exercise (RE), mechanically perturbed myofibers undergo rapid
ultrastructural remodelling to regain full physiological function normally within a week (1, 2).
Successive bouts of RE accustoms skeletal muscle to loading (3, 4) and significant myofibrillar protein
accrual (i.e., fibre cross sectional area growth) can be observed after 10-12weeks of resistance
training (RT) (5-7). This hypertrophic response is fundamentally driven by the combined effect of
incremental mechanical loading and consistent dietary amino acid availability, which increases
muscle protein synthesis (MPS) beyond muscle protein breakdown (MPB) for positive net protein
balance over time (8, 9). The initial protein synthetic increase during early-stage RT is, however, likely
indicative of a global stress-response to novel exercise-induced muscle damage (EIMD) rather than
hypertrophy adaptation per se (6, 10-12). Whilst the necessity of this initial damage response for
muscle hypertrophy has been debated (5, 13, 14), unaccustomed eccentric exercise evokes a degree
of ultrastructural deformation and functional impairment (1), which likely needs to be attenuated for
adaptive remodelling to ensue (6). Therefore, identifying the mechanisms underpinning skeletal
muscle recovery may uncover potential methods to enhance athletic performance or expedite

training induced adaptations.

Whilst most post-exercise recovery strategies favour the stimulation of skeletal muscle anabolism,
recent evidence suggests changes in myofibrillar MPS do not directly explain improved exercise
recovery when dietary protein is sufficient (15). Further, an inability to synthesise myofibrillar
proteins does not seem to be the underlying cause of delayed skeletal muscle recovery in ageing
rodents (16). These intriguing data could imply that, in the context of muscle damage, MPB could be
a modulating factor. However, despite the increasing need to consider proteostatic mechanisms
holistically (16-18), our current understanding of human skeletal muscle catabolism is poor relative
to anabolism (19). Intracellular degradation is predominantly regulated by the calpain, ubiquitin-
proteasome (UPS), and autophagolysosomal systems, each of which have their own distinct
underpinning signalling pathways. Throughout this review, we will focus on the role of the
autophagolysosomal system in skeletal muscle, with particular emphasis on its (potential) role during
recovery from EIMD. For an in-depth overview of the role of the calpain and UPS systems in skeletal

muscle, readers are directed to the review provided by Goll et al. (20).

Overview of Autophagy
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Autophagy, meaning ‘self-eating’, is a conserved intracellular process originally conceptualised in
1963 by the discoverer of the lysosome, Christian de Duve (21), and mechanistically expanded upon
in yeast by Yoshinori Ohsumi (22, 23) during the 1990s. Today;, it is evident that autophagy is a pivotal
quality control mechanism through which mammalian cells maintain tissue homeostasis under basal
conditions (24, 25), and in response to physiological stress (25, 26). Unlike the protein-specific
ubiquitin-proteosome system, autophagy also facilitates the degradation of lipids, carbohydrates,
and nucleotides via acid hydrolysis. An energy depleted and/or metabolically perturbed intracellular
environment initiates the autophagic process, allowing redundant structures to be recycled into their
constituent metabolites for anabolic (i.e., growth of cellular components) or catabolic (i.e., adenosine
triphosphate resynthesis) repurposing. Abnormal clearance of such components can be detrimental
to skeletal muscle health; thus, it is unsurprising aberrant autophagy has been linked to a variety of

muscular diseases, the primary category being lysosomal storage disorders (27).

There are three known types of autophagy distinguishable by the method of cargo delivery to the
lysosome: micro-autophagy, chaperone-mediated autophagy, and macro-autophagy. Although likely
interconnected (28), a holistic discussion of these pathways is beyond the scope of this review,
therefore, readers are referred elsewhere for overviews of chaperone-mediated (29) and micro-
autophagy (30). Macro-autophagy, henceforth referred to as autophagy, involves the intricate and
highly coordinated interaction of autophagolysosomal machinery. Here, damaged, or redundant
organelles/cytosolic constituents are engulfed by nascent double-membrane autophagosome
vesicles which, in turn, fuse with lysosomes where the isolated cargo are catabolised. Originally
thought to be an entirely non-selective process, more than 30 selective autophagy receptors have
now been discovered (31) displaying how this pathway acts not only as a global stress response but

can also target specific intracellular components.
Molecular Mechanism of Autophagosome Biogenesis and Degradation

The autophagic process is complex but can be broken down into 4 distinct stages: 1) induction and
nucleation of the pre-autophagosome phagophore, 2) expansion of the phagophore membrane, 3)
autophagosome maturation/lysosome fusion, and 4) hydrolytic degradation and efflux of

metabolites.

Autophagic induction and phagophore nucleation are primarily coordinated by the Unc51-like kinase
1/2 (ULK1/2) autophagy initiation complex, comprising the ULK1/2 kinase, autophagy-related gene
(ATG) 13, ATG101, and scaffold protein focal adhesion kinase family interacting protein of 200 kD
(FIP200), and the autophagy specific class Il phosphatidylinositol 3-kinase complex 1 (PI3K-C1),
containing the phosphatidylinositol 3-phosphate (PI3P) kinase vacuolar protein sorting (VPS) 34,

G20z Arenuer Z0 uo 1asn Aysiaaiun uepjodonsy Jeisayouei Aq Jpd-02€10-4202-15q/L L 8796/L€L0¥Z0ZHSE/Z0L 01/10p/3pd-8joiLie/da110s01q/Woo"ssaidpueod/:dpy ol papeojumoq



1€1.0%2024S8/2+01°01/610°10p//:SdNY Je S|qe|ieA. S| UOISIaA-0)ep-0}-dn }SOW By "UOISIOA siyy aoe|dal [im ‘paysiiand uaym ‘Jey pJoday JO UOISIBA U} 8sn 0} pebeinoous ale noA -Jduosnuepy paydecoy Ue si siy] “sHoday 8ousiosolg

VPS15, ATG14L, and Beclin-1. Upon activation, ULK1/2 complexes are recruited to the phagophore
initiation site where they exert kinase activity towards PI3K-C1 for PI3P production (Figure 1A) (32,
33). Localised accumulation of PI3P at the initiation site recruits WD repeat domain (WIPI) PI3P-
binding proteins, triggering the assembly of downstream autophagy machinery for membrane

elongation (34).

Mammalian autophagosomes are predominantly formed in association with an endoplasmic
reticulum (ER) subdomain with an Q-like shape, fittingly termed the ‘omegasome’ (35). Here,
phagophore-ER contact sites are established between integrated ER VAMP-associated proteins
(VAPs) and FIP200/ULK1 in a PI3P dependent manner (36), while ATG2A and ATG9A transfer lipids
from the ER to the elongating phagophore membrane (Figure 1b) (37, 38). ATG9A is trafficked to the
phagophore assembly site within Golgi/endosome-derived vesicles (39, 40), which form the initial
phagophore seed (41) and begin to accumulate autophagic machinery (33). The ubiquitin-like
ATG16L-ATG5-ATG12 conjugation system associates with the growing phagophore to convert
cytoplasmic microtubule-associated protein 1A/1B-light chain 3 (LC3-l) into membrane-bound
phosphatidylethanolamine (PE) conjugated LC3-1l (34, 42-45) in a series of reactions involving ATG10,
ATG7, and ATG3 (Figure 1C) (46-49).

LC3 isoforms and their gamma-aminobutyric acid receptor-associated protein (GABARAP) subfamily
are structurally like other ubiquitin-like proteins but contain two extra a-helices which act as docking
regions for autophagy-related proteins (50). Several ATGs within the ULK1/2 complex, PI3K-C1, and
ATG2A lipid-transferase harbour LC3-interacting regions, thus it is thought that lipidated LC3 and
GABARAP accelerate phagophore expansion by providing additional scaffolding sites for autophagic
machinery (51-53). Furthermore, during selective autophagy, LC3/GABARAP mediates tethering of
predetermined cargo to the inner phagophore membrane (Figure 1D). Ubiquitin sensitive autophagy
receptors, such as sequestosome-1 (p62), connect ubiquitinated cargo to PE-conjugated
LC3/GABARAP through LC3 and ubiquitin-binding domains (54), whereas ubiquitin independent
receptors such as BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and BNIP3-like
(BNIP3L/NIX), directly bind cargo to LC3/GABARAP (55, 56).

Autophagosomes are formed once fully elongated phagophores undergo endosomal sorting
complexes required for transport (ESCRT) mediated membrane scission (57-59) and omegasome
constriction, allowing the autophagosome to dissociate from its membrane doner (Figure 1E) (60,
61). Newly formed autophagosomes are then bound to motor scaffold proteins and transported
along the microtubule network via dynein (62-64) and kinesin (65) towards juxtanuclear lysosomes

(Figure 1F) (66). Here, concerted actions between Rab guanosine triphosphatases (GTPases), LC3
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proteins, homotypic fusion and protein sorting (HOPS)-tethering factors, and soluble N-
ethylmaleimide-sensitive factor attachment protein receptors (SNARE) promote tethering and fusion
of the outer autophagosome and lysosomal membranes (Figure 1G), subsequently creating an

autolysosome (67-70).

Autophagic catabolism within autolysosomes involves the hydrolysis of the inner autophagosome
membrane, the cargo its surrounds, and the connecting autophagy adaptors. Such degradation can
be carried out by over 60 lysosomal hydrolases (71), which require acidification of the autolysosome
lumen by vacuolar H*-adenosine triphosphatases (v-ATPase) (Figure 1H). Importantly, however,
recent evidence has suggested that proteins of the outer autophagosome membrane are recycled for
future use (Figure 11) (72, 73). Similarly, for efficient autophagy (74), lysosomal bodies must be
extracted from the autolysosome through a separate process termed autophagic lysosome
reformation (reviewed in-depth elsewhere (75)). Following catabolism within the autolysosome,
constituent elements of degraded material are released into the cytosol through various

transporters/channels for subsequent recycling into new cellular components (Figure 1J) (76).

The autophagolysosomal system is a highly regulated pathway and there are a myriad of stages
which have the potential to be affected by stimuli such mechanical disruption/damage of tissue. This
is important as common markers of autophagosomes (e.g., LC3-1l and p62) fluctuate depending on
their rate of synthesis and autophagic degradation (77), meaning ‘static’ assessments of these
proteins could misrepresent true rates of autophagy. Therefore, control comparators where
autophagosome degradation has been inhibited (e.g., with colchicine) are required to confirm
whether autophagy ‘flux’ (i.e., autophagosome synthesis and degradation) has increased or

decreased in response to experimental conditions.
Upstream Regulation of Autophagy
Nutrient Sensitive Autophagy Signalling

Our understanding of the upstream signals that regulate autophagy primarily stems from in vitro or
animal studies utilising nutrient withdrawal or pharmaceutical autophagy inhibitors. During periods
where nutrients are replete, active mammalian target of rapamycin complex 1 (mTORC1) inhibits the
ULK1/2 complex by phosphorylating ULK1**°” and ATG13**"**® (78-81). Up-stream of mTORC1 the
growth factor/insulin sensitive protein kinase B/AKT (AKT) phosphorylates transcription factor
forkhead box O3 (FOX03) at several inhibitory sites, promoting its interaction with cytosolic 14-3-3 to
supress autophagy gene transcription (82-85). In a similar mechanism, both AKT and mTORC1

prevent coordinated lysosomal enhancement and regulation (CLEAR) gene network expression by

G20z Arenuer Z0 uo 1asn Aysiaaiun uepjodonsy Jeisayouei Aq Jpd-02€10-4202-15q/L L 8796/L€L0¥Z0ZHSE/Z0L 01/10p/3pd-8joiLie/da110s01q/Woo"ssaidpueod/:dpy ol papeojumoq



1€1.0%2024S8/2+01°01/610°10p//:SdNY Je S|qe|ieA. S| UOISIaA-0)ep-0}-dn }SOW By "UOISIOA siyy aoe|dal [im ‘paysiiand uaym ‘Jey pJoday JO UOISIBA U} 8sn 0} pebeinoous ale noA -Jduosnuepy paydecoy Ue si siy] “sHoday 8ousiosolg

phosphorylating members of the microphthalmia/transcription factor E (MiT/TFE) family, such as
transcription factor EB (TFEB) and transcription Factor Binding to IGHM Enhancer 3 (TFE3) (86-88).

In contrast, during nutrient deficiency, a reduction in mTORCL1 signalling alleviates the induction
complex’s negative inhibition on ULK1/2 and TFEB, allowing autophosphorylation of ATG13 and
FIP2000 by ULK1/2 (79, 80) and TFEB nuclear translocation for CLEAR gene network expression (89).
Meanwhile, an increase in cellular adenosine monophosphate (AMP):triphosphate (ATP) activates
the energy sensor 5' AMP-activated protein kinase (AMPK), which promotes autophagy induction by
phosphorylating ULK1/2 at multiple serine residues (90-92) and elevates autophagy-related gene
expression via phosphorylation of FOXO03 (92, 93). AMPK may also indirectly promote autophagy
given its ability to inhibit mTORC1 through phosphorylation of tuberous sclerosis protein and raptor
(78, 90-92). Finally, phosphorylation of B-cell leukemia/lymphoma 2 protein (BCL-2) at several
residues by starvation-activated c-Jun N-terminal protein kinase 1 (JNK1) attenuates BCL-2's negative
inhibition of Beclin-1 (94, 95). These opposing mechanisms allow cellular autophagy to be regulated

temporally in response to changes in nutrient status (Figure 2).
Redox/Calcium Sensitive Autophagy Signalling

Whilst there are various potential upstream autophagic regulators, disturbance of intracellular redox
and calcium homeostasis has been strongly implicated in skeletal muscle autophagy (Figure 3) (96-
98). Mitochondrial derived reactive oxygen species (ROS) are thought to be key regulators of
contraction-induced autophagy induction (99-101). Mechanistically, ROS activate AMPK by reducing
cellular ATP (102), upregulates autophagy by attenuating AKT signalling (103, 104), and oxidation of
MIT/TFE transcription factors (105). Furthermore, ROS stimulate lysosomal calcium release by
oxidising the lysosome calcium channel mucolipin-1/TRPML1 (MCOLN1) (106, 107) which, in turn,
promotes TFEB nuclear translocation to elevate lysosomal/autophagy-related gene expression (108).
MCOLN1 also activates the AMPK-effector calcium/calmodulin-dependent protein kinase kinase B

(CaMKKP) resulting in phosphorylation of ULK1 and Beclin-1 (109).

Alike starvation induced autophagy, exercise promotes the phosphorylation and dissociation of BCL-2
from Beclin-1, albeit via a differing mechanism (110). In addition, exercise-induced phosphorylation
of p38 mitogen-activated protein kinases (MAPK) has been implicated in upregulating autophagy
gene expression (111), which could reflect upstream regulation by oxidative stress (112) or
inflammatory receptor activation (113). Cytosolic calcium mobilisation in response to sarcoplasmic
reticulum (SR) stress (114, 115) may also promote autophagosome formation via protein kinase C
theta (PKCO) (116), whilst ROS produced during lactate clearance stimulates phosphorylation of
extracellular signal-regulated kinases 1/2 (ERK1/2), thereby inhibiting mTORC1 and promoting
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autophagy flux (117). Collectively, these mechanistic studies highlight potential redox and calcium
sensitive signalling cascades that may be upregulated during recovery from strenuous exercise, albeit
the degree to which such pathways influence autophagy flux in human skeletal muscle is yet to be

determined.

Exercise Induced Muscle Damage
Defining Exercise Induced Muscle Damage

It is well known that mechanical and/or metabolic stress during strenuous physical exercise causes
temporary muscle damage and functional impairment (2, 118-121). Human experimental models of
EIMD clearly show that repeated isolated eccentric muscle contractions significantly disrupt myofiber
integrity and muscle force generating capacity (122-129), the most appropriate proxy of
ultrastructural damage (130, 131). In severe cases of EIMD, evidence of myofiber necrosis, such as
intramyofiber immune cell infiltration (127, 129, 132, 133), particularly in dystrophin negative
myofibers (133), is also observed. Such effects are often preceded by a substantial (=50%) loss of
muscle force generating capacity that requires >7 days to recover (127, 132, 133). In contrast, more
traditional resistance and endurance-type exercise results in milder muscle strength losses and
shorter recovery periods (134, 135), although, ultrastructural damage is noted following high-
intensity RE (6, 136-139) and downhill running (140, 141), reflecting the eccentric demand of these

modalities.
Mechanisms of Exercise Induced Muscle Damage

To understand how autophagy may contribute to skeletal muscle recovery, it is important to consider
the aetiology of EIMD. This can be divided into two distinct phases: the initial primary damage phase,
relating to the immediate exercise-induced disruption of intracellular proteins and organelles, and

the secondary ‘damage’ phase, which occurs as an autogenic response to the initial damaging event.
Primary Damage

Eccentric loading of contractile proteins is likely the primary source of ultrastructural damage during
weight-bearing exercise (142). Compared to concentric loading, eccentric contractions recruit a lower
number of motor units, which results in a greater amount of tensile stress per unit of muscle fibre
area (143, 144). As a result, elongating sarcomeres progressively weaken and eventually stretch
beyond myofilament overlap, subsequently placing greater strain on surrounding structures (see

Morgan’s (145) ‘popping sarcomere hypothesis’). In support of this theory, disruption of sarcomeres
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(e.g., Z-line/disk ‘smearing’ or myofilament disorganisation), the t-tubule system, SR, and
intermyofibrillar mitochondria can all be observed in skeletal muscle tissue immediately after
eccentric exercise (146-148). Furthermore, much of the acute post-exercise reduction in muscle
function has been attributed to a rise in intracellular calcium concentrations and subsequent
excitation-contraction uncoupling (148, 149). Whilst the precise mechanism of cytosolic calcium
influx is debated (150), evidence from both human and animal investigations suggests that stretch-
mediated and/or oxidative disruption of t-tubules, sarcolemma, and the SR may be involved (122,

148, 151-153).
Secondary Damage

During the secondary phase, a rise in cytosolic calcium levels signals the activation of calcium-
sensitive calpains (154-156). It is thought these non-lysosomal proteases disassemble damaged
myofibrillar and cytoskeletal structures, subsequently allowing the UPS to degrade unbound protein
fragments into smaller peptide chains (20). Indeed, human eccentric-exercise induced myofibrillar
disruption and loss of muscle function directly correlates with calpain activity (155), whilst
proteasome activity increases during the post-exercise period (157). However, given that the
presence of myofibrillar disruption is often delayed (155, 158, 159), changes in tissue ultrastructure
during the days following exercise likely reflect a remodelling response to strenuous loading rather
than further ‘damage’. Elevated cytosolic calcium may also increase mitochondrial calcium uptake
and ROS formation (160), which are known to cause lipid, protein, and DNA oxidation in exercised-
human muscle (161). However, recent animal evidence has shown that transient ROS formed by
localised mitochondrial calcium-uptake are important for sarcolemma repair and maintaining
myofiber viability following eccentric-damage, whereas sustained increases in cellular ROS hinder
homeostatic regain (162). Other rodent-based studies suggest that redox imbalances created by
eccentric-exercise may promote mitochondrial calcium overload and permeability (160, 163, 164),

which increases the risk of pro-apoptotic factors entering the cytosol (165).

Inflammation is another key factor associated with secondary EIMD. Various cytokines are elevated
in skeletal muscle and the circulation following eccentric exercise (for an extensive list see Paulsen et
al. (1)), some of which have been shown to coordinate the immune and myogenic response in
cultured human skeletal myotubes (166-169). Neutrophils initially accumulate in damaged human
skeletal muscle tissue with pro-inflammatory M1-like phagocytic macrophages predominating soon
after (133, 167). These phagocytic cells contribute to muscle healing by clearing cellular debris and
further regulating the immune response, although, cell culture and rodent models of muscle injury

indicate that neutrophils also exhibit a role in generating cytolytic intermediates during phagocytosis
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(170-174). Mouse M1 macrophages differentiate into a pro-regenerative, anti-inflammatory M2
phenotype upon engulfing muscle debris in vitro (175), and this timely expression seems to be
important for regulating satellite cell dynamics and healthy myofiber regeneration in both humans
and mice (174-178). Importantly, however, a distinct change in macrophage phenotype may not
occur in human skeletal muscle during recovery from traditional, less damaging forms of RE, possibly
reflecting a lack of need to degrade necrotic tissue (179). Nevertheless, macrophage and satellite cell
accretion remain tightly coupled in response to exercise training (180-182), thus interactions
between immune and myogenic cells are likely important for muscle recovery regardless of myofiber

necrosis.
Autophagy is Essential for Rodent Skeletal Muscle Health and Regeneration

Studies of skeletal muscle specific ATG-knockout (KO) rodents have uncovered the pivotal role
autophagy plays in maintaining myofiber homeostasis. Maserio et al. (24) delineated the importance
of basal autophagy by generating life-long and tamoxifen-inducible ATG7-KO mouse lines. These
animals were unable to lipidate LC3 and had substantial LC3 and p62 build-up, indicating a blockage
of autophagosome removal. Both genotypes displayed loss of force production, indices of muscle
damage, and skeletal muscle atrophy which coincided with increased proteolytic gene expression
and diminished activity of protein translational machinery, suggestive of a catabolic phenotype.
ATG5-KO also induces glycolytic myofiber atrophy, which is associated with autophagy protein build-
up and impaired lysosome morphology within the intermyofibrillar space (183). Intriguingly, slow-
twitch muscle and measures of muscle fatiguability were observed to be unaffected by ATG5-KO,

highlighting a need to consider muscle-fibre type when investigating the autophagic response.

Pare et al. (184) showed that mouse chronic ATG7-KO hindered muscle force-production and
measures of contractility in both the fast-twitch dominant extensor digitorum longus (EDL) and slow-
twitch soleus muscle, but these effects were more pronounced and had an earlier onset in EDL.
Analyses of autophagy-sufficient muscle showed that the EDL had higher basal autophagic flux and
both basal and starvation induced LC3-Il accumulation is negatively associated with skeletal muscle
citrate synthase activity (185), indicating muscle with low oxidative capacity has greater autophagic
turnover. Notably, glycolytic muscle is more susceptible to MPS attenuation and subsequent muscle
loss during catabolic conditions (186, 187), including ageing where the decline in fast-twitch muscle
size and function has been associated with dysfunctional autophagy (188). However, preferential
glycolytic muscle fibre wasting in sarcopenic muscle appears to be mTORC1 independent whereby
inflammatory cytokines supress autophagy via FYN/signal transducer and activator of transcription 3

signalling (189, 190). Nevertheless, the observation that fast-twitch muscle is especially reliant upon
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autophagy to maintain its health highlights important considerations in circumstances where

glycolytic fibres are preferentially recruited, such as during eccentric-loading (191).

In addition to basal autophagy, animal investigations indicate the autophagy system plays a crucial
role in recovering severely injured skeletal muscle (26, 192, 193). Nichenko et al. (192) showed that
suppressing autophagy significantly impeded the recovery of mitochondrial enzyme activity and
muscle strength in mice exposed to localised cardio-toxin (Ctx) injury. This does not seem to be due
to global autophagy repression as similar results have been reported in muscle-specific ULK1-KO
mice (26). Interestingly, ULK1-KO does not impede basal skeletal muscle health in young muscle (26),
but does impair mitochondrial homeostasis and skeletal muscle contractility with advancing age
(194). Therefore, it seems ULK1-mediated autophagy facilitates skeletal muscle health and recovery

during ageing and acute skeletal muscle trauma in mice.

ATG16L-KO, which impedes, but does not entirely supress autophagosome formation, also
significantly delays muscle recovery from Ctx injury (195), with these mice exhibiting elevated
sarcolemmal damage, smaller regenerating fibres and lower amounts of both proliferating and
differentiating satellite cells compared to their autophagy sufficient littermates. The effect on
satellite cells seems to be of particular importance given that autophagy is upregulated during
myoblast proliferation and differentiation in vitro (196-198) Furthermore, loss of basal autophagy
through satellite cell-specific ATG7-KO reduces the satellite cell pool in young mice, indicating that
autophagy can prevent myogenic cell senescence/death (199). Accordingly, it is believed autophagy
preserves satellite cell proteostasis and provides the necessary energy for mitosis (198, 200).
Intriguingly, myogenin-Cre ablation of ULK1, which attenuates autophagy in postmitotic myofibers,
represses the myogenic programme during recovery from freeze injury, suggesting that autophagy
within adult myofibers can regulate satellite cell dynamics (193). Overall, these data show that
autophagy facilitates rodent skeletal muscle repair/regeneration through both intrinsic and extrinsic

(satellite cell) mechanisms, and that these pathways are interrelated.

It is important to note that an increase in autophagy protein content may not translate to a relative
increase in autophagic flux. Investigations conducted by Jarrod Call’s laboratory have shown that
whilst autophagy protein content is elevated in mouse skeletal muscle recovering from traumatic
freeze injury, 2-photon microscopy analyses show a reduced clearance of autophagosome bound
LC3, indicative of attenuated autophagosome clearance (193, 201). The authors postulated this could
be due to an autophagy ‘bottleneck’ whereby accumulating damaged components are not effectively
degraded despite increases in autophagosome production (202). One possible explanation for this

may be that lysosomal biogenesis fails to proportionally increase with damage-induced
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autophagosome formation. For example, mouse cardiac muscle recovering from ischemia
reperfusion (I/R) undergoes a robust increase in autophagosome formation yet is accompanied by a
decline in the lysosomal marker lysosome-associated membrane protein 2 (LAMP2) (203), while
restored expression of LAMP2 significantly improved the clearance of I/R induced autophagosomes
(203). Similar effects have been shown during TFEB overexpression in cultured I/R injured mouse
cardiomyocytes (204), suggesting a general increase in lysosomal number can overcome the
‘bottleneck’. Overall, these data highlight the lysosomal system as a target to improve autophagic

flux and subsequently skeletal muscle recovery.
Autophagy is Upregulated in Rodent and Cellular Models of Exercise Induced Muscle Damage

Salminen and Vihko’s seminal work provided the first indication that autophagy may be upregulated
following EIMD (205), reporting that 9-hours of running causes significant myofiber necrosis and
inflammatory cell infiltration in mouse quadriceps muscle. Surviving myofibers exhibited
mitochondria-containing autophagic-like vacuoles at days 2 and 7 post-injury, indicative of increased
autophagosome production. Using a similar model, Salminen and Kihlstrom (206) observed markers
of lysosomal activity increased stepwise with greater dosages of exercise and subsequent tissue
injury, suggesting that a more potent autophagic response occurs with higher magnitudes of EIMD.
In more recent years, a growing body of research has identified a notable relationship between
markers of autophagy and rodent mitochondrial dysfunction following EIMD (207-209). Shang et al.
(209) reported that 90 minutes of downhill running increased the LC3-1l/LC3-I ratio and co-
localisation of PTEN-induced putative protein kinase 1 (PINK)/Parkin with dysfunctional
mitochondria, for up to 48-hours post-exercise. The accumulation of PINK1 and its E3-ligase effector
Parkin on depolarised mitochondrial membranes are key stages of ubiquitin dependent mitophagy
and are often preceded by mitochondrial fission events (see Erlich and Hood et al. (210)).
Mechanistically, it has recently been reported that the high mobility group box-1 protein (HMGB1), a
structural component of chromatin (211), promotes autophagy induction during recovery from
downhill running by translocating to the cytosol and relieving BCL-2’s inhibition of Beclin-1 (Figure 3)
(207). A similar mechanism is noted in murine fibroblasts where mitochondrial ROS promote HMGB1
translocation and Beclin-1 mediated autophagy, whereas HMGB1 ablation impedes autophagy
resulting in apoptosis (212). As such, HMGB1-translocation seems to be a key autophagic signal

during conditions that stimulate mitochondrial stress (e.g., EIMD).

Maintaining a healthy mitochondrial pool is crucial for myofiber viability, especially during periods
where intracellular calcium homeostasis is perturbed (213). Investigations of mice with skeletal

muscle dystrophy, where calcium (214) and autophagic (215) dysfunction are exhibited, illustrate
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that an inability to sequester damaged mitochondria exacerbates muscle degeneration and
apoptosis during recovery from acute endurance exercise (EE) (216, 217). Mitochondrial turnover is
likely important for general skeletal muscle recovery given the significant energy cost of MPS (218,
219). Indeed, alike autophagy suppression (195, 197), inhibition of mitochondrial biogenesis
attenuates muscle regeneration following traumatic injury (220). While the relationship between
mitophagy and myogenesis is yet to be explored in the context of EIMD, mitochondrial oxidative
stress peaks 6-hours after strenuous EE and coincides with elevated markers of mitophagy,
suggesting that mitochondrial turnover and ROS-emitted by sustained oxidative phosphorylation are
coupled during exercise recovery (99). For an in-depth discussion of how mitophagy and
mitochondrial turnover may regulate cellular bioenergetics for muscle remodelling, readers are

referred to other recent publications (221, 222).

It is important to note, the combined aerobic and mechanical stimulus induced by running-based
models of EIMD make it difficult to determine whether autophagy is specifically induced to
accommodate mechanically induced damage. In fact, many studies have confirmed that autophagic
flux is upregulated in rodents following exercise without significant eccentric strain i.e., up-hill
running and swimming (223-225), which is perhaps unsurprising considering autophagy’s role in
mitochondrial remodelling (226). However, there is some evidence which suggests that eccentric
loading promotes a unique autophagic response. Inducible ATG7-KO female mice display impaired
exercise capacity compared to their autophagy-sufficient wild-type littermates during downhill, but
not uphill, running (208), although limited morphological alterations were observed. In contrast, Lu
et al. (227) showed that an unaccustomed bout of exhaustive wheel running induced immediate
myofibrillar damage and elevated markers of chaperone-assisted selective autophagy (CASA) (see
Tedesco et al. (228) for an in-depth CASA review). Considering skeletal muscle is more susceptible to
damage from eccentric loading, an attractive hypothesis may be that resistance-type exercise
induces a particularly potent autophagic response. Although, in anesthetised rodents, electrically
evoked eccentric, concentric, and isometric loading patterns all increase the phosphorylation of
ULK1***” and ULK1**"" to a similar degree without affecting LC3-Il/LC3-I ratios (229). Therefore,
further investigations are warranted to determine whether autophagy flux is specifically increased in

response to voluntary eccentric-EIMD.

Autophagy May be Upregulated in Untrained Human Skeletal Muscle Recovering from Novel

Resistance Exercise

It is well known that RE, especially involving novel eccentric contractions (4, 142), damages myofiber

structure (6, 136-139) and promotes a robust protein synthetic response (10, 11, 230). In untrained
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individuals, RE-induced myofibrillar damage and protein synthesis are closely related, supporting the
notion that muscle proteins are initially synthesised to renew damaged myofibers (5, 6, 231). Despite
this, human studies investigating the effect of unaccustomed RE on autophagy are equivocal (Table 1)

(232-238).

One related hypothesis on this topic is that mechanical stimulation of AKT/mTORC1 activity inhibits
autophagy following acute RE (18, 235, 239). In support of this, Hentila et al. (235) showed that LC3-
II, but not LC3-I or p62, protein content decreased 1-hour post-exercise, in line with reductions in
AMPK-dependent ULK1**™>> and elevations in mTORC1l-dependent ULK1*”>’ phosphorylation.
Several autophagy-related proteins were, however, elevated once ULK1***’ returned to basal values
48-hours post exercise, which could suggest autophagosome formation increases once anabolic
signalling has diminished. Alternatively, it is possible autophagy proteins may have accumulated due
to inhibited autophagosome degradation during recovery, thereby corroborating the ‘bottleneck’
hypothesis (202). Regulation of autophagy-related genes following novel RE is also equivocal, with
studies reporting unaltered (233, 235) or elevated (237) LC3 and p62 expression. The combination of
novel RE and essential amino acid (EAA) ingestion, a further anabolic stimulus (8), elicits reductions
in LC3-1I/LC3-I ratio at 2h post-exercise, possibly reflecting a reduction in autophagosome biogenesis.
Interestingly, if the EAA beverage contained higher leucine doses, the LC3-1I/LC3-I ratio increased at 5
and 24-hours, leading the authors to postulate that further elevations in mTORC1 activation may
have impeded autophagosome degradation (238, 240). The observation that LC3-Il increases with
higher amounts of leucine ingestion is in contrast to in vitro (241) and animal investigations (242),
which characterise leucine-mediated autophagy inhibition through a reduction in LC3-Il content.
However, as each of these studies only utilised ‘static’ assessments of autophagic protein content,
more appropriate methodologies are required to better understand the relationship between RE,

nutritional status, and autophagy flux.

Alike novel RE, Fritzen et al. (243) showed that 1h one-legged concentric cycling exercise (80% peak
workload with two 5-minute intervals at 100%) reduced LC3-1I/LC3-I ratio, but not p62 content, for
up to 4-hours post-exercise in moderately trained men. This occurred alongside elevated AMPK-
dependent ULK1%™°* phosphorylation implying that while EE upregulates AMPK/ULK1 signalling, this
may not lead to altered autophagosome content (243), or could simply reflect that static
measurements are unable to accurately reflect autophagic flux. Other works have reported that
exercise-induced ULK1*™** phosphorylation (AMPK-regulated), but not ULK1*”*" (mTORC1), was
associated with a lowered LC3-II/LC3-I ratio immediately after 1h cycling at 50% maximal oxygen
consumption (VO, max), potentially indicating elevated autophagosome clearance (244). p62 protein

content was, however, unaltered in this investigation, highlighting further uncertainty over whether
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autophagy flux was increased. In contrast, Mazo et al. (236) showed that acute cycling (40-minutes at
75% peak-heart rate) or lower-body RE reduced both LC3-Il and p62 protein content to a similar
degree in untrained individuals 4-hours after exercise. Considering both LC3-Il and p62 are degraded
within the lysosomal lumen during autophagy (77), autophagosome degradation may have been
upregulated, a notion reinforced by the observation that autophagy gene expression was
upregulated at 1-hours and 4-hours post-exercise. Nevertheless, whilst combined measures of p62,
LC3-1l and upstream autophagic regulators provides a more detailed description of autophagy, these
findings cannot confirm the status of autophagic flux, which requires the use of autophagosome-

lysosome fusion inhibitors (77).

Despite the evident limitations of monitoring autophagy via static measures, Schwalm et al. (245)
found that the LC3-1l/LC3-l ratio and p62 protein content was decreased in endurance-trained
individuals 1-hour after high intensity (70% VO,max), but not low intensity (55% VO,max) cycling. In
addition, autophagy-related gene expression was greater in the high intensity trial and these effects
were primarily attributed to a greater induction of the AMPK/ULK1 axis, possibly indicating elevated
autophagy induction and autophagosome clearance with higher intensity exercise. However, as the
total amount of work performed differed between trials it is unclear whether the decline in
autophagy proteins was specifically related to exercise intensity. For example, work-matched bouts
of exercise performed above, or below, maximum lactate steady state elicit similar reductions in LC3-
Il protein content albeit while p62 protein content and autophagy-related gene expression were
unchanged (246). These data may indicate that total work completed during an exercise bout may be
the primary driver of alterations in autophagy, although further work utilising more sophisticated

measures of autophagic flux in human skeletal muscle are required to confirm this.

In addition to EE, RT can induce mitochondrial remodelling (247-251), thus it is plausible
auto/mitophagy pathways may be regulated by this form of exercise. Diaz-Castro et al. (232) recently
reported that acute RE increased markers of mitochondrial fission and elicited reductions in the
protein content of the mitophagy receptor BNIP3L/NIX in untrained human muscle. TEM-derived
observations of damaged mitochondria and mitophagosome-like structures were also noted at this
time, suggesting mitophagy may have been taking place. It is unclear whether the mitophagosome-
like structures were degraded intracellularly as LC3-Il and p62 content were unchanged. Intriguingly,
though, it was also reported that subsarcolemmal mitophagosome-like structures could be seen
exiting muscle following RE, a phenomenon which has been described in other cell types (252, 253).
While Diaz-Castro et al. (232) did not show evidence of mitophagosomes in circulation, other studies
have shown that mouse cardiac muscle with impaired lysosomal function also ejects damaged

mitochondria but the vesicles do not appear in circulation due to being degraded by nearby
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macrophages (254). Similar ‘outsourcing’ of mito-/autophagy has also been observed within human
mesenchymal stem cells (255) and pharmaceutical inhibition of lysosomal function elevates
secretory autophagy (256, 257). Considering these data, extracellular release of autophagosome-like
structures could represent an alternative mechanism to eliminate cellular debris when lysosomes are
inundated during recovery from novel RE (i.e., the ‘bottleneck’) (232), although further research

regarding this novel hypothesis is required.
Limitations of this field and Outstanding Questions
Static Measures of Autophagy are Insufficient to Determine Autophagic Flux

As emphasised throughout this review, a key limitation of human research is the use of static markers
to infer the status of autophagy flux. Cellular contents of LC3, p62, and many other autophagy-
related proteins change depending on their rate of synthesis and/or their autophagic degradation
meaning that unidirectional changes could be due to either elevated autophagosome formation or
reduced fusion with lysosomes and subsequent degradation. Drugs that block autophagosome
degradation (e.g., colchicine and bafilomycin) have proven invaluable to determine the autophagic
effect of exercise in animals and cellular models of muscle contraction (77), however, the use of
these drugs in human research is ethically challenging. By adapting such an assay (258), Botella et al.
(246) has recently provided some, albeit limited, evidence that EE may upregulate autophagy flux in
human skeletal muscle. In agreement with most investigations, static measures of human LC3-II
protein content were immediately reduced post-exercise and returned to basal values within 3.5
hours of recovery, with no changes in p62 protein content or related mRNA expression. In contrast, in
rodents, LC3-1l was unaffected immediately after but increased 3.5 hours post-exercise, corroborating
most reports that static measures of LC3-Il decrease in human (233-236, 238, 243-245), and increase
in rodent (17, 110, 111, 208, 217, 227, 259-261) skeletal muscle during the initial stages of exercise
recovery. However, when a small subset of biopsied tissue (n=5) was incubated in a lysomotropic
ammonium chloride-leupeptin solution prior to freezing, a moderate-to-large effect of exercise on
elevating LC3-1l flux was observed for up to 24-hours (246). These data should be interpreted with
caution given the limited sample size, but they do indicate the potential for this methodology to be

utilised in human exercise studies.

Overall, comparing human and rodent changes in static measures of LC3 may lead to false
conclusions regarding the autophagic response to exercise. Although, while a confirmatory lysosomal
blockade can delineate whether LC3-1l is altered by lysosomal degradation, LC3-Il is also a feature of
phagocytic and endocytic pathways which converge at the lysosome (262). Therefore, the flux of

other autophagy-related proteins could also be included to provide a better indication of whether
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the autophagolysosomal system is specifically upregulated. We hope that future experiments
employing ex vivo autophagy assays will shed light on conflicting data and ultimately begin to

decipher the complexity of autophagy regulation in human skeletal muscle (Figure 4).
Potential mTOR-Independent Mechanisms of Selective-Autophagy at Sites of Cellular Damage

A primary reason why many researchers postulate that RE could lead to inhibition of autophagy is
due to mTORC1’s inhibitory effects on aspects of the autophagic cellular machinery (78, 86).
However, it is becoming increasingly evident that autophagic pathways can be differentially regulated
(263, 264), and several accounts of mTORC1-independent autophagic induction have been described
in in vitro and animal studies. For example, Cardenas et al. (265, 266) identified an AMPK-mediated
mechanism of autophagy activation in response to alterations in ER-mitochondria calcium flux which
occurs regardless of mTORC1 activity status. Moreover, others have displayed ULK1-mediated
autophagy to occur at mitochondria and peroxisomes independent of both AMPK and mTORC1 (267)
and investigations in C2C12 myotubes show CASA-mediated degradation of filamin can occur despite
mechanically induced mTORC1 activation (268). In addition to autophagy induction events,
transcriptional regulation of the autophagolysosomal system can occur independent of mTORC1.
Medina et al. (108) report that local calcium release from the lysosomal calcium channel MCOL1N
activates nearby calcineurin which, in turn, dephosphorylates TFEBS™¥/5¢™42 gjjowing its nuclear
translocation even in nutrient replete conditions. The precise mechanism governing MCOL1N
activation in exercised skeletal muscle is unclear, although mitochondrial-ROS have been shown to
stimulate the MCOLIN/TFEB axis in COS-I and HEK293 cells (106, 107). It is plausible that such
MTORC1-independent mechanisms could occur in human skeletal muscle following RE to elevate

autophagic flux, albeit well-controlled experimental investigations are required to elucidate this.
Does Autophagy Contribute to Myofibrillar Protein Degradation?

Another issue often discussed in the field of muscle protein metabolism is whether autophagy can
contribute to myofibrillar protein turnover. Early research demonstrated that lysosomal protease
inhibitors do not suppress proxy measures of myofibrillar protein breakdown (269), and
immunofluorescence imaging of starved rat skeletal muscle show cytoplasmic autophagosomes with
no evidence of enclosed myofibrillar proteins (25). Therefore, it is generally believed the proteasomal
and calpain systems are primarily responsible for myofibrillar protein turnover whilst the lysosomal
system facilitates degradation of cytosolic proteins and organelles (20, 270). However, in vitro
investigations have shown that lysosomal cathepsins can hydrolyse purified myofibrillar proteins
(271-273) and recent transmission electron microscopy (TEM) images of human and rodent skeletal

muscle following EIMD observe autophagosome-like structures within the intermyofibrillar space
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(127, 207, 227, 274). Furthermore, autophagic flux is upregulated in ageing rodent skeletal muscle
with impaired proteasomal function and significant protein aggregation, possibly reflecting
compensation of the autophagy system (18). Interestingly, autophagic flux is not further enhanced in
these animals during recovery from disuse atrophy, which could suggest lysosomes are inundated in
basal conditions and cannot cope with an elevated need to degrade accumulating aggregates.
Therefore, autophagy may operate in harmony with other proteolytic pathways to sufficiently
degrade cleaved contractile proteins or aggregated peptide chains during periods of myofibrillar

damage (Figure 5).

One such investigation which has observed autophagy-related myofibrillar degradation in humans is
Ulbricht et al. (274) whereby an acute bout of maximal eccentric contractions, but not conventional
RE, elicited myofibrillar disruption and reductions in CASA proteins and their substrate, filamin C.
Immunofluorescence imaging of damaged fibres showed an increase in LC3-positive structures
suggesting autophagosome presence/formation in this region. Furthermore, mechanical stretch of
the myofibrillar protein titin in rat cardiomyocytes exposes a cryptic titin-kinase binding site, which
can associate with autophagy adaptors neighbour of BRCA1 gene 1 (NBR1) and p62 (275). More
recent data indicates muscle inactivity may promote an interaction between NBR1/p62 and titin-
kinase at sarcomeres, further indicating a potential role of autophagy in myofibrillar turnover (276).
Nevertheless, further work is required to confirm whether autophagy flux is enhanced during periods
where CASA protein content decreases (274), as well as to determine whether this pathway

contributes to myofibrillar protein turnover.
Is Autophagy Involved in Skeletal Muscle Adaptation to Chronic Exercise?

The repeated bout effect increases skeletal muscle’s resilience to mechanical damage (4),
contributed to by a variety of adaptations including a sensitised immune response, extracellular
matrix remodelling, and neural modulation (3). However, there is some evidence that the autophagy
system is also modulated by consistent training. Ulbricht et al. (274) observed protein levels of p62
and several CASA components to be elevated after 4-weeks of progressive RT, but not constant load
RT, suggesting progressive overload is required for adaptation to the autophagolysosomal system.
Conversely, others have shown no changes in p62 protein content following 12 weeks of progressive
RT (277), although this study was conducted in trained men where adaptations could have already
occurred. It is also possible that different types of resistance exercise may induce unique adaptations
in the autophagy system. Lim et al. (278) reported that 10-weeks of low-load, high-volume RT
(30%1RM) performed to volitional fatigue increased Parkin protein content and proteins involved in

mitochondrial dynamics, yet these adaptations did not occur in high-load or low-intensity non-failure
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training cohorts. Thus, high-volume low-load RT may promote a greater capacity for mitochondrial
remodelling, possibly to accommodate mitochondrial stress elicited by a more ‘endurance-type’
exercise. Indeed, 8-weeks of continuous moderate intensity or work-matched sprint interval
endurance training (ET) increases Parkin, BNIP3, LC3-I, and oxidative phosphorylation complex 1
content in previously moderately trained men (279). Similarly, in mouse skeletal muscle, 6-weeks of
ET increased mitochondria content, Parkin expression, and Parkin-colocalization with mitochondrial
markers (280), although basal levels of mitophagy flux were unchanged, further highlighting the
importance of including measurements of flux in such investigations. Other studies investigating the
effects of chronic exercise training on ‘static’ measures of autophagy protein content observe
contrasting results with several reporting increased LC3-I content (243, 279) which could indicate
increased autophagic capacity without alterations in basal autophagosome content, whilst others
suggest LC3-1l content is increased indicating potential expansion of the autophagosome pool (235,

246).

Another model that has provided insight into the regulation of autophagolysosomal system to
exercise training is that of chronic contractile activity (CCA), employed consistently by the laboratory
of Prof. David Hood. Here, several investigations have indicated that frequent bouts of muscle
contraction enhance the content of proteins that regulate autophagy induction (e.g., LC3-I, Beclin-1)
and related transcriptional programmes (100, 282-284). Paradoxically, however, when utilising
autophagy inhibitors, CCA either had either no effect or reduced basal LC3-1I/p62 flux, potentially
reflecting improvements in muscle quality (100, 282, 284, 285). The acute increase in autophagy flux
during EE recovery is also attenuated in trained-mouse quadriceps, indicating increased resilience to
exercise-induced stress (282). Similarly, 9-weeks of progressive weighted climbing exercise reduces
markers of autophagy flux (e.g., LC3-1I/LC3-I ratio and p62) whilst increasing those of autophagic and
lysosomal capacity in ageing rats (286). In vitro data also support these notions as CCA elicits
elevations in TFEB protein content and markers of lysosomal content and proteolytic activity (100,
283, 285). Notably, evidence of lysosomal biogenesis can occur within as little as 3-days of increased
contractile activity and precedes mitochondrial adaptations in these models (283). In contrast, TFEB
content was unaltered in young mouse skeletal muscle following 9-days of chronic contractile activity
in vivo (284), although lysosomal biogenesis did occur. Overall, these data show that TFEB activity
and lysosome biogenesis are important mechanisms underpinning skeletal muscle plasticity and may

contribute to other autophagic adaptations.

It is unclear whether TFEB nuclear translocation and lysosomal biogenesis are enhanced by exercise
training in human skeletal muscle, although we have observed elevations in LAMP2 protein content

following 8-weeks progressive resistance exercise (281). Considering the relationship between CCA
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and lysosomal biogenesis in vitro and in rodent skeletal muscle, we speculate an enhanced lysosomal
pool may increase the efficiency of autophagolysosomal recycling (282). Furthermore, given that
lysosomal biogenesis appears to be the rate limiting factor of the autophagolysosomal system during
skeletal muscle repair (i.e., the ‘bottleneck’(202)), methods to improve lysosomal capacity may
benefit untrained individuals susceptible to EIMD. In vitro and animal-based studies have reported
that nutraceutical compounds such as curcumin (283, 284), spermidine (285-287), and quercetin
(288, 289) can promote lysosomal biogenesis and autophagic function, although use of these in
relation to exercise-induced autophagy have yet to be comprehensively investigated in human
skeletal muscle. Importantly, some evidence suggests antioxidant supplementation can also
attenuate autophagy (103, 208), highlighting the need for further mechanistic investigation of these

compounds.
Conclusion

The autophagolysosomal system maintains skeletal muscle homeostasis throughout the lifespan and
during acute stress such as energy-imbalance and tissue injury. Changes in intracellular calcium and
redox status are key signals regulating autophagy induction and transcriptional programmes. Animal
models generally indicate autophagy is upregulated to remove dysfunctional mitochondria and
preserve skeletal muscle integrity during recovery from strenuous exercise. However, a lack of
sufficient methods to monitor autophagy flux has prevented any robust conclusions regarding
whether autophagic degradation is increased by exercise-related stress in human skeletal muscle. It
is well established that novel eccentric exercise is particularly damaging to myofibrillar protein
architecture, thus autophagy may play an important role in muscle regeneration and remodelling.
Moreover, consistent exercise training can increase the expression of autophagy related genes and
proteins, suggesting potential adaptation of the autophagy system to increased skeletal muscle
loading. Nonetheless, further well-controlled human investigations utilising various autophagic
signalling and flux measurements are required to appropriately delineate whether, and if so, how

autophagy contributes to exercise-induced muscle repair/remodelling.
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Tables and Figures

Table 1. Overview of studies investigating effects of acute novel resistance exercise on skeletal

muscle autophagy markers in healthy untrained individuals.
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Study

Diaz-Castro et al
2024 (232)

Dickinson et al 2017 (238)

Participants

Untrained adult males
n=8

Age 31.5+4.23y
Weight 78.4516.29kg

Untrained older males

Control group
n=7

Age 7412y
BMI 26+1

Leucine group
n=8
Age 713y

Exercise/Intervention

Unilateral leg presses 10 sets of 10
repetitions at 70% 1RM with 2-minute
rest intervals

Bilateral leg extensions 8 sets of 10
repetitions at 65% 1RM with 3-minute
rest intervals

10g EEA beverages containing either
1.85g leucine (control group) or 3.5g
leucine (leucine group) consumed 1
hour post exercise

mRNA

Expression

N/A

Control group (vs baseline)
LC3

+2h D +5h D +24h D
GABARAP

+2h4> +5h<> +24h&>
BECN1

+2h¢> +5h¢> +24h&>
ATG7

+2h<> +5h¢> +24h¢>
LAMP2B

Protein Content

(vs rested leg)
LC3AB-II

+1h¢>
LC3AB-II/LC3AB-|
+1h&>
p62
+1h&>
p-AMPK
+1h&>
p-mTOR
+1h
PINK1
+1h¢>
Parkin
+1hd
BNIP3L/NIX
+1hd
FUNDC1
+1h¢>
BNIP3
+1ht
MFN2
+1h t
OPA1
+1h¢&>
p-DRP1
+1h

thr172

serdas

ser616

Control group (vs baseline)
LC3B-I

+2h4> +5h<> +24hé>
LC3B-II

+2h{ +5hé>* +24h>
LC3B-II/LC3B-I

+2hd, +5h{ * +24h | *
Beclin-1

+2h6> +5h<> +24hé>
p-AKT‘MOB
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Fry et al 2013 (233)

Glynn et al 2010 (234)

BMI 271

Untrained younger adults Bilateral leg extensions 8 sets of 10

n=16 repetitions at 70%1RM with 3-minute
Age 2742y rest intervals
BMI 25.1+0.9

Untrained older adults
n=16

Age 70+2y

BMI 24.240.6

Untrained adult males Bilateral leg extensions 10 sets of 10

repetitions at 70%1RM with 3-minute

EAA+LCHO group rest intervals

n=7

Age 302y ~20g EAA beverage containing

BMI 26+1 0.35g/kgLM EAA with either 0.5g/kgLM

carbohydrate (EAA+LCHO group) or

EAA+HCHO group 1.40g/kgLM (EAA+HCHO group)
n=32%1 consumed straight after 1 hour biopsy
Age 321y time point

BMI 27+1

+2h<> +5h¢> +24h<>
CIsD2

+2h<> +5h¢> +24h<>
RUNX1

+2h¢> +5h D +24h
MuRF1

+2h P +5h P +24h&>

Leucine group (vs baseline)
Lc3

+2hD +5h¢> +24h&>
GABARAP

+2h¢> +5h¢> +24h<&>
BECN1

+2h¢> +5h<> +24h<>
ATG7

+2h¢> +5h¢> +24h<>
LAMP2B

+2h¢> +5h¢> +24h<&>
CISD2

+2h¢> +5h¢> +24h
RUNX1

+2h Mt +5h 7 +24h D
MuRF1

+2h P +5h +24h&>
Younger group (vs baseline)
Lc3

+3h¢> +6h¢> +24h¢>
GABARAP

+3h{, +6h{ t +24h&>
MuRF1

+3h ™ +6h N +24h¢&>

Older group (vs baseline)
LC3

+3h¢> +6h<> +24h<>
GABARAP

+3hl +6hl 1 +24h&>
MuRF1

+3h P +6h ! +24h&>

EAA+LCHO group (vs baseline)
MuRF1
+1h D +2h D

EAA+HCHO group (vs baseline)
MuRF1
+1h +2h

+2h M +5h&> +24h&>
Nuclear/cytosolic FoxO3a
+2h<> +5h¢> +24h&>*

Leucine group (vs baseline)
LC3B-I

+2h¢> +5h<> +24h&>
LC3B-II

+2hd, +5h>* +24h¢&>
LC3B-II/LC3B-I

+2hr{ +5h{ * +24h¢>*
Beclin-1

+2h¢> +5h¢> +24h¢>
p_AKTmraos

+2h Mt +5h¢> +24h&>
Nuclear/cytosolic FoxO3a
+2h4> +5h<> +24h>*

Younger group (vs baseline)
LC3B-I

+3h¢> +6h<> +24hé>
LC3B-II

+3h<> +6hl, +24hl,
LC3B-II/LC3B-I

+3hd +6h{ +24h{
Beclin-1

+3h>* +6h>* +24h>*
ATG7

+3h6>* +6h<>* +24h M *
Fox03a*?*

+3h{ +6h{ +24hl
p»AKTthGDS

+3h P +6h<> +24h<>

Older group (vs baseline)
LC3B-I

+3h¢> +6h<> +24hé&>
LC3B-II

+3hd +6h{ +24h{
LC3B-II/LC3B-I

+3h{ +6h{ +24hJ
Beclin-1

+3h6>* +6h<>* +24h<>*
ATG7

+3h>* +6h>* +24h>*
Foxosaser253

+3h{ +6h{ +24hl
pfAKTtmog

+3h P +6h<> +24h&>
EAA+LCHO group (vs baseline)
LC3B-I

+1h> +2hé>

LC3B-II

+1h¢> +2hl

p-AMPKmmZ

+1h +2h P *

p_AKTser473

+1h +2h

Fox03a52r253

+1h +2h>
Foxosaser318/321

+1h& +1h&>

MuRF1

+1h +2h&>

EAA+HCHO group (vs
baseline)

LC3B-I

+1hé> +2h&>
LC3B-II

+1hé> +2hl
p_AMPKchrln

+1h D +2h&>*
p-AKTSEWB

+1h +2h
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Hentil3 et al 2018 (235)

Mazo et al 2021 (236)

Ogborn et al 2015 (237)

*Denotes a significant difference between condition/group. findicates a borderline significant

Untrained younger adult males
n=12 (whey protein group n=6,
placebo group n=6)

Age 274y

Untrained older adults
n=8

Age 6116y

BMI 23.4-28.8

Untrained adult males
n=6

Age 2743y

Weight 79+10kg

Untrained younger males
n=9

Age 2143y

Weight 91.7+21.9kg

Untrained older males
n=9

Age 704

Weight 87.6+11.5kg

Bilateral leg presses 5 sets of 10
repetition maximums with 2-minute
rest intervals

Young cohort consumed either 15g
whey protein isolate or an isocaloric
placebo immediately before and after
the resistance exercise bout (pooled
analysis, no effect of supplementation
on autophagy markers)

Unilateral leg extensions 8 sets of 10
repetitions at 60-65%1RM with 3-
minute rest intervals

40 minutes of stationary cycling at 75%
peak heart rate

Cross over trial comparing an
unaccustomed bout of aerobic and
resistance exercise, separated by ~1
week

Unilateral leg extensions and leg
presses 4 sets of 10 repetitions per
exercise at 75%1RM with 2-minute rest
intervals (pooled analysis, no effect of
age)

difference compared to baseline or rested sample.

Younger group (vs baseline)
LC3B

+1h<> +48h¢é>

p62

+1h¢> +48h&>

Resistance exercise (vs
baseline)

Autophagy genes

+1h 7 ATGs DE

+4h 43 ATGs DE
FOXO3 pathway
+1h 1 +4h D

mTOR pathway

+1h? +4h

Aerobic exercise (vs baseline)

Autophagy genes
+1h 6 ATGs DE
+4h 17 ATGs DE
FOXO3 pathway
+1h +4h?
mTOR pathway
+1h? +4h

(vs rested leg)

LC3B

+3h ™ +24h Mt +48h&>
p62

+3h M +24h<> +48h<>
ATG7

+3h¢> +24h<> +48h¢&>
BECN1

+3h<> +24h<> +48h<>
VPS34

+3h¢> +24h<> +48h<>
BNIP3

+3h¢> +24h<> +48h<>

ser253

FoxO3a
+1h +2h>
Foxosaser318/321
+1h& +1h&>
MuRF1

+1h D +2h>
Younger group (vs baseline)
LC3B-I

+1h¢> +48h
LC3B-II

+1h{ +48h1
p62

+1h¢> +48h
p-U LK1
+1h{ +48h<&>
p-U LK1%757
+1h Mt +48h¢&>
Beclin-1

+1h +48h M
BCL-2

+1h<> +48h<>

Older group (vs baseline)
LC3B-I
+48h¢>
LC3B-II
+48h<>

p62

+48h<>
Beclin-1
+48h<>

BCL-2

+48h<>
Resistance exercise (vs
baseline)
LC3B-I

+1h¢> +4h&>
LC3B-II

+1h{ +4h{
LC3B-II/LC3B-I
+1h¢> +4hé&>
p62

+1h<> +4hl
FoxO3a
+1h&> +4h
mTORSerZ44B
+1h&> +4h M

Aerobic exercise (vs baseline)

LC3B-I

+1h& +4h&>

LC3B-II

+1h{ +4h{
LC3B-I1/LC3B-I

+1h¢> +4h&>

P62

+1h¢> +4h{,

FoxO3a

+1h¢> +4h{
mTORser2448

+1h&> +4h P 1*

(vs rested leg)

Total LC3B

+3h¢> +24h Mt +48h D
p62

+3h<> +24h +48h
ATG7

+3h<> +24h¢> +48h &>
PINK1

+3h4> +24h<> +48h<>
Parkin

+3h¢> +24h<> +48h<&>
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Figure 1. General Mechanism of Autophagosome Biogenesis and Degradation

(A) Activated ULK1/2 complexes localise at the phagophore induction site and phosphorylates Beclin-
1, allowing VPS34 to convert Pl to PI3P for recruitment of WIPI proteins. (B) Recently nucleated
phagophores are tethered to the ‘Omegasome’ by interactions between integral ER VAPs,
ULK1/FIP200, and WIPI2. ATG2A associates with ATG9A via WIPI4 and transfers synthesised ER lipids
to the elongating phagophore, which are equilibrated by the ATG9A lipid scramblase. (C)

LC3/GABARAP proteins are embedded into the autophagic membrane through a series of ubiquitin-
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like reactions mediated by ATG7 and ATG3 as well as the ATG12-5-16L complex. (D) Autophagic cargo
is tethered to LC3-ll on the nascent phagophore membrane through connecting autophagy
receptors. (E) Fully elongated phagophores are sealed by ESCRT machinery and disassociate from
their ER donor through Omegasome constriction. (F) Newly formed autophagosomes are transported
towards along microtubules by kinesin or dynein motor proteins, where they eventually encounter
lysosomes. (G) GTP-loaded Rab proteins and LC3-1l promote the tethering of the lysosomal and outer
autophagosome membrane through PLEKHM1 and its HOPS complex effector allowing SNARE-
mediated fusion of the membrane structures. (H) The V-ATPase acidifies the autolysosome lumen
allowing hydrolysis of the inner autophagosome membrane, connecting autophagy adaptors, and
sequestered cargo. () Autophagic components are extracted from the autolysosome membrane by
the SNX4-5-17 recycler complex and degraded materials are released into the cytosol (J). Created in

BioRender. Acheson, J. (2024) BioRender.com/a02s604.
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Figure 2. Upstream regulators of nutrient sensitive autophagy
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Beclin-1

Cytosol Nucleus

(A) During periods where growth factors and amino acids are replete, the AKT/mTORC1 pathway
negatively regulates autophagy induction and transcriptional programmes. mTORC1 directly
phosphorylates and inhibits ULK1/2 ULK1/2 and ATG13. TFEB/E3 are phosphorylated by both AKT
and mTORC1 and sequestered in the cytosol by 14-3-3 proteins, whilst AKT similarly phosphorylates

and prevents FOXO3-mediated autophagy gene expression. Autophagosome biogenesis is supressed
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through BCL-2 mediated inhibition of Beclin-1. (B) In low nutrient conditions, a reduction in
AKT/mTORC1 signalling alleviates the negative inhibition of the ULK1/2 complex. The energy-sensor
AMPK simultaneously phosphorylates and activates ULK1/2, allowing it to phosphorylate Beclin-1,
which has been released form BCL-2 by JNK1. FOXO3 and TFEB/E3 translocate to the nucleus and
upregulate autophagy and CLEAR network gene expression due to the reduction in AKT/mTORC1
activity and direct phosphorylation of FOXO3 by AMPK. Created in BioRender. Acheson, J. (2024)

BioRender.com/r89e937.
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Figure 3. Redox and Calcium Related Autophagy Signalling

Perturbations in cellular redox and intracellular calcium homeostasis can result in autophagy
induction and related gene expression. ROS increase ULK1/2 complex activity through allosteric
activation of AMPK and attenuation of AKT/mTORC1 activity. Lysosomal calcium efflux through
MCOLIN, which can be induced by ROS, results in autophagy enhancement through CaMKKB/AMPK

activation and by activating TFEB via calmodulin. ROS may also promote autophagy gene expression
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through direct oxidation of TFEB/E3 and increasing p38 MAPK signalling. Oxidative stress results in
sarcoplasmic reticulum efflux, associated with autophagosome biogenesis through activation of
PKCB. ROS promote HMGB1 relocation to the cytosol where it promotes autophagy induction by
competitively binding BCL-2. Dashed lines represent autophagic pathways that remain to be

documented in skeletal muscle. Created in BioRender. Acheson, J. (2024) BioRender.com/f77k718.
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Figure 4. Limitations of Current Research and Future Questions

(A) Experimental model commonly used to measure autophagic flux in rodents. (B) Schematic of how
an ex vivo autophagy flux methodology could be incorporated into existing human muscle biopsy
techniques to better infer activity of the autophagolysosomal system. (C) A list of pertinent questions

yet to be elucidated by researchers studying human skeletal muscle autophagy.
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Figure 5. Hypothetical Model of Contractile Protein Degradation by the Autophagy System

Myofibrillar proteins can become damaged during periods of mechanical loading and must therefore
be removed for muscle recovery to ensue. The calpains release myofibrillar proteins from
sarcomeres allowing the ubiquitinated fragments to be degraded by the UPS. The autophagy system
may also contribute to the degradation of aggregated myofibrillar fragments, or partly degraded

peptides released from the UPS. Created in BioRender. Acheson, J. (2024) BioRender.com/f57e974.

G20z Asenuer zq uo Jasn Aysiaaiun ueypjodonay Jsysayduely Aq ypd-o.€10-¥202-1SA/L L 8796/LE10¥202HSE/Z0 L 0L/1op/Apd-ajoile/daiiosolq/wod ssaidpueod)/:dny woly papeojumod



University :m.&.. 02 January 2025]
()

awososAjoiny “ﬂ.

1
Downloaded ?.._:u’.__m:%ﬂmmm.ooa\c_omo__.mu\m:_o_ -pdf/doi/10( ¥R20240137/964811/bsr-2024-0137c.pdf by _,\_m:n:ommﬂ w\wﬁ_-o
, \ 1

[5) \ o XnpJe
@ auoqed (r)

- &m\a Bujohoaai

4 jusuodwod

nb ai6eydoiny ()

CcLolv

uoisnj/uoneiniew SiBcBibihititititibisiiotoinchchibahitatatatititctoot SBajchaonshadinisesotit o {o\s“w:m_m:_omo_u:m
awosobeydoiny (9 EEESoECEmEEsas B RN Y B — ——— a1e7/16j09-suel
\ (©) R ecsse- o
@ = , ; — uuAqg uisauny
uonepeibap !
= / ®/ ankjoipAH (H) awosobeydoiny (4) O
o 8/aIsan
- V69Ly O
.3) N-L4083
, , . uoneajonu/uonanpuy () @
h | ,, \ & uoissios eLIpUOYO0NA
- \\ ’ aloydobeyd
. \ N /UONDLIISUOD
VO awososA| — 2wosebaw Jordaodal
r—— Jeajonu-Liad 0.@) apuadapul aloydobeyd
-an
suojoey buiaypa V691V Juawyjnbud
1-€91 ¢ buquiesos _— /Buniayyay obie) (q)

d)
4 =l  VZOLY ajebaibbe

xny uigjoid

>

xajdwoa swiaysAs uonebnfuod
V691V-VZO1V 3d-€231/2L-S-19191V

Joydaogal uonebuo|3z Amv 3
japuadap-qn
wnjnanai
ajwsejdopu
LO-MEld xo|dwod Z/Ly1N ) ! jdopu3z
guin_g@ 2wosebawQ,

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is available at https://doi.org/10.1042/BSR20240137



L-ujoeg

Downloaded from http://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20240137| ma@—i@ﬂ%—@ 37c.pdf by Manchester Metropolitan University user on 02 January 2025 _OWOH >o

€0X04

A

sauab
> €0X04d & Abeydoiny

DNYDIN

}Iomiau
4vI1o

€3/d341

€3/4341

¢104

IANC

/XN )

Loyol1w )|

ANV

AdINY

SuoIIPU0D JuslINU Mo (g)

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is available at https://doi.org/10.1042/BSR20240137

DNPOIN

/N J

S10)0e4
yImol9

—— D)=

uinsuj

» ( LoyoLw

(_E0X04

¢-104

suonpuod a39|dal JusinN (V)



Downloaded from :zun\\vo:_m_.auﬂmmm.ooB\Eomo:m_u\m:ﬂﬂa\—@jﬁzgw\mmxmowhoimimmpm; 1/bsr-2024-0137c.pdf by Manchester Metropolitan University user on 02 January 2025 _OmOH >o

NdVIN sauab Abeydoine - v .
ged ) > « /4VITI £3/8311 e ;

sisauaboig
: »  swosobeydoiny o’y
¢ fo oo(l
e ® oo
§

— (unpowieg
8ONd L-uljoeg Z/1N

¢-109

© e AN ) @----- GINNYO ) @----- LNTOOW c ©_ 9
© LEONH) @-------mm---- :

SOl SR 1 = R [T S P

LOYOLW ) ——— (2/1MY3 ) —

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is available at https://doi.org/10.1042/BSR20240137



¢Kouaioys aibeydoine ooéz_omwmckrg%iwm_.m_,Wmmw%ag%%%\m:_o_m.u&ao_:oA«.%mmm“_@mw} &5%&%%.333& by Manchestér AL RN BARINS MM ary 2025 £9S1019Xd aguelnpud

pue sisauaboiq [ewososA| [e19]9)s ul 9jo4 Juediubis e sAemyjed asay) aie 1o ui xn|} Abeydoine |eseq 10 9S1949Xd 10 @ouB)SISa JO N0 d)NJe Ue
Buiseasou Aq sise}soajoud Aeid s1y1 saop ‘os j1 pue ‘suieloud ‘Auanoe 1oYyoLw ela sisauaboiq 9)noe 0} 9suodsau oibeydoine BUIMO||0} 9]OSNW [B}39YS UewNy
ajosnu [e3a[ays anoidwi am ued Jejjuquyofw apeibap warshs awosobeydoine apadwi asoioxa 9y} J9)e bulure.) as1o19xd sa0q ui pajejnbaidn xnyy o16eydoine s
|JewososAjobeydoine ay} ue) 0} asuodsal d1joqeue ay} saoq

& @) - G

uonepeibaq sisauaboig
1 awosobeydoiny awosobeydoiny

o g

20 IR

. o o s ° °Se
S ) a5 « : + e
D G d
(J
uonepelbap pasealoul Jo sisauaboiq
9s1019x9 Aq pajejnpouw si xny Abeydoine ajosnwi |e1o|a)s awosobBeydojne pajenusye 109401 9S1919Xd YUM saseauaul xnjj o1beydoine sysabbns |o1ju0d
uewny Jay1aym alepron|d Aew shAesse xnyy Abeydoine oAIn-x3 pInoo asiaJaxa 1sod [|-£97 paonpay 0} pasedwod auldIydj09 jo asuasaud ay} ui dnpjing |1-€91
9S1049X3  }S9Y 9sIdiex3 1S9y asioJaxy 1S9y 9SI049X3 1S9y 9Sldi9X3 18y
° 11-€07 | , | 11-€21 I— 1I-€07 | —
h 1-€91 e - - - . 1-€01 _ 1-€01 || I
L ] L J L J L J
pauqiyuj jonuo) auIdIYd|09 [013u0)
Bumojgqounwiwi
Bumojqounwiw 1 Buizaayy aeipawiw) Bumojqounwiwi sjosnw
5 Buizeaiy ’ [e13]2)S 73 B21110eS
A A
saInuw 09 10} BIPAW [0.3UOD 10 SIONQIYUI UoHEPRIBAP Asdoig sjosniy g eodlo
awosobeydoine ul pajeqnaui anssi paisdoig 1e)s @ 9siexy
[ 1 I 1 [ 1
Jonquyu |ouog ( auIYj0D ( Jonuod
@ N g . ) : )
] e | v, , Y
| G | @\
pewod 4 uomepeibea - wonmpaiocl i
! awosobeydoiny 150y uonepeibaq awosobeydoiny

awosobeydony JewuoN P3lalead (9) | | swosobeydoiny [PWLION (V)

Bioscience Reports: This is"an"Accepted Manuscript:-You are encotraged to use the Version of Record that, when published; will replace this version:The most up-to-date=version-is-available-at-https://doi-org/10:1042/BSR20240137"



par by Vichester Metropolitan University user on 02 January 2025

awosobeydoiny

\I/ suiajoud
Sdn paisabip Ajjed

ojebalbbe
cod

sjuawbeuy % abeaes|d
JLquOAN AM%& < uiedje)

S 2
00000000 < ® 00000000

abewep
[HquoAW

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date-version is available at https://doi.org/10.1042/BSR20240137



