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Autonomous Network Optimization and Dynamic 
Channel Allocation for Cognitive radio-based 

Consumer IoT 
Laraib Abbas, Umar Shoaib, Marwan Omar, and Ali K. Bashir

   Abstract—The heterogeneous environment of next-generation 
Consumer Internet of Things (CIoT) demands efficient resource 
utilization and reliable network services. On the contrary, the 
proliferation in the diverse nature of smart consumer IoT devices 
is causing spectrum scarcity and uneven utilization of available 
resources. Cognitive Radios (CRs) provide the most suitable 
solution for spectrum scarcity through dynamic spectrum access. 
To achieve spectral efficiency and provide consumer-centric 
network services we propose a novel Cognitive Radio based 
Autonomous Network Management framework called (CR-
ANM). The framework combines the benefits of cognitive radios, 
Network Function Virtualization (NFV), and Software Defined 
Networking (SDN), to decouple the control plane from the data 
plane and is divided into two further operations called Dynamic 
Priority Determination (DPD) and Efficient Channel Allocation 
(ECA). DPD is responsible for determining the SU’s priority using 
a fuzzy logic-based decision controller. Whereas ECA optimizes 
the channel allocation process and allocates the best available 
channel to SU. Which increases the channel availability by 77% 
and reduces the service drop rate by 81.8%. Both schemes run as 
Virtual Utility Functions (VUFs) on dedicated virtual machines 
assigned by the SDN controller. This approach increases energy 
efficiency for low-power consumer IoT devices and improves 
network reliability. 

     Index Terms— Cognitive Radio Network (CRN), efficient 
channel allocation, Consumer Internet of Things (CIoT), Network 
Function Virtualization (NFV), Software Defined Networking 
(SDN) 

I. INTRODUCTION
HE fifth generation industrial revolution including 
Industry 5.0 and the Consumer Internet of Things 
(CIoT), has led to the significant growth in number of 
smart devices and home appliances [1], [2]. The 

communication paradigm of consumer IoT demands 
computational intelligence and efficient resource utilization 
alongside reliable and reconfigurable network elements [3], [4]. 
The current era of communication encompasses emerging 
future network technologies such as Artificial Intelligence (AI), 
Cognitive Radios (CR), Software Defined Networking (SDN), 
and Network Function Virtualization (NFV). To fulfill the 
consumer-centric and application specific transmission 
requirements of consumer IoT devices, the integration of 
above-mentioned technologies can provide autonomous and 
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sustainable network solutions. Cognitive radios are 
computationally intelligent wireless devices, that are designed 
to intelligently use available radio frequency spectrum in a 
flexible and adaptive manner [5]. They can identify 
underutilized portions of the spectrum and automatically select 
the best available frequency band to transmit and receive data. 
This allows cognitive radios to operate in a more efficient and 
reliable manner, while also minimizing interference with other 
wireless communication devices. Cognitive Radio Network 
(CRN) is the most suitable network technology for achieving 
efficient resource utilization, Dynamic Spectrum Access 
(DSA), and Autonomous Network Management (ANM). 
     Radio spectrum band is a scarce natural resource and should 
be utilized in an efficient manner. Due to a variety of smart 
applications in consumer IoT environment, the licensed 
spectrum band utilization span is not constant with space and 
time. Whereas unlicensed spectrum is always crowded and 
faces congestion for data transmission. CRs also known as 
Secondary Users (SUs) can coexist with any licensed user also 
known as Primary Users (PUs) and can efficiently sense and 
detect free available spectrum holes for transmission without 
interfering with the transmission of PUs. CRs can access the 
free available spectrum in three modes: Interweave Mode, 
Underlay Mode, and Overlay [5]. The cognitive abilities of CRs 
also make them responsible for spectrum sensing, spectrum 
sharing, spectrum management, and spectrum mobility. These 
features show the eligibility of cognitive radio devices to form 
an autonomous, sustainable, and computationally intelligent 
network. That is why we propose a CR-based autonomous 
network framework that includes the significant benefits of 
SDN and NFV technology, to provide dynamic and application 
specific services to the heterogeneous communication system 
of consumer IoT.  
     SDN is a network architecture approach that separates the 
network control plane and data plane [6]. The controller 
provides a single point of control for the network, and it can 
dynamically adjust the network traffic flow based on real-time 
conditions and traffic patterns. The data plane, which is 
responsible for forwarding network traffic, remains in the 
network devices. Whereas, in an NFV architecture, network 
functions are implemented as software running on virtual 
machines or containers [7]. It decouples traditional hardware-
based network functions with software-based virtualized 
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network functions that can run on standard hardware. This 
allows network operators to deploy and manage network 
functions more easily and flexibly. This approach reduces 
capital costs and operational expenses, increases service agility, 
and improves the quality of service. Our proposed network 
framework CR-ANM includes the significance of both 
technologies integrated in a way that provides reliable and 
flexible network services as well as efficient spectrum 
utilization.  
     The following section provides the study of the most 
relevant state-of-the-art works to enhance CRN spectral 
efficiency as well as the computational intelligence of the core 
network.   

A. Related Work

The heterogeneous nature of the consumer IoT communication 
system and unpredictable channel states make the channel 
selection decision more crucial [8]. The author in [9] optimizes 
the channel assignment process of cognitive radio-based IoT 
devices and Power Beacons (PBs) using the mixed integer 
linear program (MILP) technique. IoT devices set their 
transmission power using a game theory-based iterative 
approach. On the other hand, a reinforcement learning-based 
approach is used for multichannel allocation for industrial IoT 
and cognitive IoT in [10]. A greedy algorithm-based channel 
allocation scheme called CASGA is proposed in [11] for 

cognitive radio-based vehicular networks. The algorithm 
divides the transmission services based on their load and 
allocates channels to maximize throughput and quality of 
service. In higher load VANET applications are divided into 
two categories, safe and unsafe application services, and the 
acceptance probability of safe application services is increased 
through SMDP-based channel allocation. The author in [12] 
proposed an iterative algorithm-based scheme to improve 
spectral efficiency and network throughput of CR-IoT, where 
the system intelligently senses and adjusts the threshold of SNR 
to adjust the throughput tradeoff. On the other hand, an AI-
based channel allocation approach called DeepCH for Satellite 
Internet of Things (SIoT) is proposed in [13]. The deep 
reinforcement-based algorithm is energy efficient and 
facilitates the dynamic channel allocation problem optimally. 
The Author in [14] proposed a guard band-aware channel 
assignment mechanism that considers the Rayleigh fading time 
constraint in different time slots to assign multiple channels to 
SUs. This approach is called batch-based channel assignment 
and is efficient enough to increase network capacity as well as 
the number of assigned channels to a particular SU. Similarly, 
another auction-based multichannel allocation scheme is 
proposed in [15] where a common channel is assigned to 
multiple SUs to increase the reusability of a single channel. To 
accomplish this goal, non-interfering SUs are divided into 
groups according to their transmission specifications using a 
bidder group formation scheme. The scheme selects a winner 
strategy and a pricing strategy to allocate the idle channels. A 
cooperative Q-learning-based energy-efficient spectrum 
allocation scheme is proposed in [16] whereas, a multi-agent-
based and reinforcement learning-based dynamic spectrum 
access framework is proposed in [17]. Both approaches are 
distributed in nature and improve the spectrum access 
efficiency of the network. Similarly, the SU transmission 
priority-based channel allocation approach is proposed in [18]. 
     All the above-mentioned approaches are significantly 
adding value to dynamic spectrum access and channel 
allocation in cognitive radio networks. But on the other hand, 
most of the works overlook the importance of channel quality 
before selection causing an increment in handoff rate and 
transmission delay. Some of the schemes offer priority-based 
channel allocation to provide application-specific transmission 
services but statically categorize the users, overlooking the 
benefits of reconfigurable and dynamic network services.   
     The author in [19] proposed an integrated network 
framework that combines the benefits of NFV, SDN, and 
software-defined radios (SDR). The optimization scheme is 
implemented on real-time Orchestration and Reconfiguration 
Control Architecture (ORCA) and has a very limited scope. The 
Markov Random Field (MRF) energy optimization scheme is 
used for Virtual Utility Function (VUF) computation. The 
framework lacks the benefits of hybrid Interweave/Underlay 
(IU) channel access modes. It overlooks the significant 
adjustable parameter settings e.g. channel quality, Signal-to-
Interference-Plus-Noise-Ratio (SINR), and TP of SUs to reduce 
the handoff rate. The author in [20] proposed a cognitive radio 
network integration with NFV, SDN, and Fog Computing (FC) 
for coastal smart cities. Multiple cognitive radio virtual 
networks are launched using Virtual Network Functions 
(VNFs) and are controlled by SDN controller for vehicular and 

TABLE I 
LIST OF ABBREVIATIONS 

Notation Description 
𝐶ℎ𝐻𝑖𝑔ℎ

𝐴 Channel availability for 𝑆𝑈𝐻𝑖𝑔ℎ

𝐶ℎ𝐿𝑜𝑤
𝐴 Channel availability for 𝑆𝑈𝐿𝑜𝑤

𝐶ℎ𝑅 Channel rank 
𝐶𝐶𝑅𝑒𝑞 SUs required channel capacity 
𝐶𝐻𝐼𝑑𝑙𝑒 Total number of idle channels 
𝐶𝐻𝑁 Total number of channels 

𝑁𝐶𝑅𝐿ℎ
 Number of channels in 𝑆𝑈𝐻𝑖𝑔ℎ CRL

𝑁𝐶𝑅𝐿𝑙
 Number of channels in 𝑆𝑈𝐿𝑜𝑤 CRL

𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 Number of high priority SUs 

𝑁𝐿𝑜𝑤
𝑆𝑈 Number of low Priority SUs 

𝑃𝑈𝑁 Total number of PUs 
𝑆𝑈𝑁 Total number of SUs 

𝑇𝑃𝑆𝑈𝑀𝑖𝑛
 Minimum threshold of 𝑇𝑃𝑆𝑈

𝑇𝑃𝑆𝑈 Transmission power of SU 
𝑇𝑡𝑟

Transmission time 
𝑉𝑀𝑁 Total number of VMs 

𝑉𝑈𝐹𝐷𝑃𝐷 Number of VUFs for dynamic priority 
determination  

𝑉𝑈𝐹𝐸𝐶𝐴 Number of VUFs for efficient channel allocation 
𝑉𝑈𝐹𝐻𝑖𝑔ℎ VUF for high priority transmission  
𝑉𝑈𝐹𝐿𝑜𝑤 VUF for low priority transmission  

𝛿𝑖 Maximum data rate on interweave mode 
𝛿𝑢 Maximum data rate on underlay mode 

𝜆𝑃𝑈 PU arrival rate 
𝜆𝑆𝑈 SU arrival rate 

𝜆𝑆𝐷𝑅 Service drop rate 
𝜆𝑆𝑈

𝑁 SU new service request rate  
𝜆𝑆𝑈

𝑂 SU ongoing service request rate 
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maritime end-to-end communication system. On the other hand, 
a framework based on general configuration and placement of 
NFV on SDRs is proposed in [21]. The literature shows that the 
integration of SDN and NFV with next-generation 
communication networks to achieve dynamic, on-demand, and 
low-cost services is inevitable now. In addition, To the best of 
our knowledge, there is no significant work available in the 
literature that serves autonomous network management and 
efficient spectrum utilization for CR-based consumer IoT at the 
same time. The following section provides the research 
contribution and significance of the proposed framework.   

B. Research Contribution and Significance

Cognitive-based Autonomous Network Management 
framework called CR-ANM addresses the shortcomings of 
discussed related work and offers an autonomous network 
framework that consists of two planes: Data plane is 
responsible for spectrum sensing, spectrum management, and 
spectrum access; Control Plane is responsible for SU’s priority 
determination and efficient channel allocation. To achieve 
spectral efficiency, the proposed framework CR-ANM enables 
the network to provide application-specific services according 
to transmission requirements by dividing the SU into two 
categories 𝑆𝑈𝐻𝑖𝑔ℎ and 𝑆𝑈𝐿𝑜𝑤. The VUFs are responsible for
deciding SUs priority allocating high-ranked channels for 
delay-sensitive or multimedia application transmissions and 
inducing a hybrid IU mode of channel management for non-
delay sensitive application transmissions. Furthermore, the 
contribution and significance of this paper are summarized as 
follows: 
• Flexible and Dynamic network framework: To the best of

our knowledge, the proposed framework CR-ANM is one
of the pioneers' works that integrates CR, NFV, and SDN
in a way that provides dynamic and flexible network

services and decouples the channel allocation and decision 
control from CRN to reduce configuration cost and energy 
consumption. In addition, the dedicated virtual machine for 
each SU reduces the computational complexity and service 
response delay. 

• Priority-based channel allocation scheme: CR-ANM ranks
the available channels according to their properties and
allocates them dynamically to SUs considering their
transmission requirements. This approach ensures the
optimum utilization of available resources.

• Performance evaluation on significant parameters: Our
proposed framework is evaluated on the five significant
parameters; channel availability, Service Drop Rate (𝜆𝑆𝐷𝑅),
Service Response Delay (SRD), transmission delay, and
network throughput. Whereas no other related work from
literature has considered these parameters altogether for
evaluation. The promising results demonstrate a significant
reduction in SDR leading to an improvement in network
throughput by 51.9%, as compared to the comparative
scheme SE-CRN [18].

C. Paper Organization

The rest of the paper is organized as follows. Section II explains 
the network model of the proposed framework CR-ANM, its 
components, and CTMC modeling. Section III describes the 
performance evaluation parameters and simulation results. The 
research contribution is concluded in section IV. The list of 
scientific notations used in the paper is given in Table I.  

II. PROPOSED FRAMEWORK CR-ANM
The proposed framework CR-ANM is a dynamic and intelligent 
network framework that integrates SDN and NFV with CRN in 
a way that the channel allocation control is separated from the 
data plane. The control plane is responsible for SUs Dynamic 

Fig. 1. Working of Cognitive Radio Autonomous Network Management (CR-ANM) framework where spectrum sensing and spectrum 
management is performed by data plane and DPD and ECA is managed by control plane 
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Priority Determination (DPD) and Efficient Channel Allocation 
(ECA). Both schemes DPD and ECA run as virtual utility 
functions on   VMs to reduce computational complexity and 
hardware cost. The data plane consisting of the physical 
network is only responsible for spectrum sensing and spectrum 
mobility which helps to minimize energy consumption as well. 
The following section explains the complete working of the 
proposed framework CR-ANM as shown in Fig. 1. 

A. Dynamic Priority Determination (DPD)

Dynamic Priority Determination scheme is designed to 
calculate SUs priority according to its transmission 
requirements to provide application-specific services. SUs send 
new service requests to the SDN controller with sensing data 
consisting of Transmission Parameters TPs to determine the 
priority. The controller forwards the request to the dedicated 
VM to initiate the relevant VUF. The DPD VUF is a fuzzy 
logic-based decision controller that takes the values of TPs as 
input parameters to the inference engine, applies the inference 
rules as shown in Table II, and decides SU’s priority as 
𝑆𝑈𝐻𝑖𝑔ℎor 𝑆𝑈𝐿𝑜𝑤. The transmission parameters for priority
determination are 𝐶𝐶𝑅𝑒𝑞 , 𝑆𝐼𝑁𝑅𝑆𝑈, and 𝑇𝑃𝑆𝑈 and can be
explained as follows: 
• Required Channel Capacity (𝑪𝑪𝑹𝒆𝒒) is the minimum

value of channel capacity in bits per second, required by
SU to transmit its data and can be calculated by the
Shannon-Hartley theorem:

𝐶𝐶𝑅𝑒𝑞 = 𝛽 𝑙𝑜𝑔2(1 +
𝑃𝑆

𝑃𝑁𝐼
⁄ )  (1) 

Where 𝛽 is the bandwidth of the channel measured in Hz, 
𝑃𝑆 is the average power of the signal received measured in
watts, and 𝑃𝑁𝐼  is the average value of the power of noise
and interference over the channel measured in watts.  

• Transmission Power (𝑻𝑷𝑺𝑼) is the maximum value of
transmission power of a SU, required to maintain the
transmission without causing any harmful interference to
the nearby PU’s transmission and is calculated as:

𝑇𝑃𝑆𝑈 =  𝑇𝑃𝐶𝐶 − 𝑇𝑃𝑅𝑥 − 𝛿𝐺𝐿𝑇 + 𝑁𝑆𝑈 +
𝑆𝐼𝑁𝑅𝑅𝑒𝑞          (2)

Where 𝑇𝑃𝐶𝐶  is the transmission power received at a
common channel, 𝑇𝑃𝑅𝑥 is the value of transmission power
calculated on the SU receiver, and the value of gain, loss, 
and tolerance is denoted with 𝛿𝐺𝐿𝑇, 𝑁𝑆𝑈 is the final
calculated noise ratio on the SU antenna, and 𝑆𝐼𝑁𝑅𝑅𝑒𝑞  is
the required value of 𝑆𝐼𝑁𝑅 to transmit its data. SU can 
transmit its data at the initially calculated maximum value 
of its transmission power at interweave mode. In underlay 
mode, SU must minimize the value of 𝑇𝑃𝑆𝑈 to continue its
transmission parallel to the PU’s transmission on the same 
channel. SU drops the service and initiates an ongoing 
service request if it hits the minimum threshold of 
transmission power and cannot continue its transmission 
on the same channel.  

• Signal-to-Interference-Plus-Noise Ratio (𝑺𝑰𝑵𝑹𝑺𝑼) on
SU’s receiving antenna can be calculated as:

𝑆𝐼𝑁𝑅𝑆𝑈

=
𝑇𝑃𝑆𝑈

∑ 𝑇𝑃𝑆𝑈𝑖
𝑁𝑃𝑈
𝑖=1

+ ∑ 𝑇𝑃𝑆𝑈𝑗
𝑁𝑆𝑈
𝑗=1

+ Δ𝑆𝑈𝑥
2

 (3) 

Where, 𝑁𝑃𝑈 and 𝑁𝑆𝑈 are the number of PUs and SUs using
the same channel for transmission, 𝑇𝑃𝑆𝑈𝑖  and 𝑇𝑃𝑆𝑈𝑗  are the
transmission powers at which neighbor SUs are 
transmitting. Whereas the variance of White Gaussian 
Noise on the SU receiver is donated by Δ𝑆𝑈𝑥

2 .

B. Efficient Channel Allocation (ECA)

After the SU priority determination process is completed, the 
VUF ECA is initiated which allocates available channels to SUs 
according to their priorities. For delay-sensitive and multimedia 
application transmission, ECA for 𝑆𝑈𝐻𝑖𝑔ℎ allocates the best
available free channels and sorts them according to their rank 
from high to medium and medium to low based on channel 
properties. Channel rank 𝐶ℎ𝑅 is calculated as [22]:

Fig. 2. Working of interweave channel access mode for high priority 
SUs and hybrid IU channel access mode for low priority SUs    

TABLE II 
INFERENCE RULES AND RESPECTIVE DECISIONS FOR FUZZY LOGIC

BASED DECISION CONTROLLER 
Rule # TPs Input Condition Decision 

𝑇𝑃𝑆𝑈 𝑆𝐼𝑁𝑅 𝐶𝐶𝑅𝑒𝑞 𝑉𝑈𝐹𝐻𝑖𝑔ℎ 𝑉𝑈𝐹𝐿𝑜𝑤

1, 2 H H H, M ✓ 
3 H H L ✓ 

4, 5 H M H, M ✓ 
6 H M L ✓ 

7, 8 H L H, M ✓ 
9 H L L ✓ 

10, 11 M H H, M ✓ 
12 M H L ✓ 

13, 14 M M H, M ✓ 
15 M M L ✓ 
16 M L H ✓ 

17, 18 M L M, L ✓ 
19 L H H ✓ 

20, 21 L H M, L ✓ 
22 L M H ✓ 

23, 24 L M M, L ✓ 
25 L L H ✓ 

26, 27 L L M, L ✓ 
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𝐶ℎ𝑅 =  
𝐶ℎ𝑖𝑑𝑙𝑒

𝑡

(𝐶ℎ𝑏𝑢𝑠𝑦
𝑡 × 𝜆𝑃𝑈

𝐶ℎ ) + 𝐶ℎ𝑖𝑑𝑙𝑒
𝑡

 (4) 

Where 𝐶ℎ𝑖𝑑𝑙𝑒
𝑡  is the total idle time of a particular channel and 

𝐶ℎ𝑏𝑢𝑠𝑦
𝑡  is the total busy time measured over the channel 𝐶ℎ in 

time 𝑡. While the PU arrival rate on a channel 𝐶ℎ on a unit time 
𝑡 is denoted as 𝜆𝑃𝑈

𝐶ℎ . ECA for high-priority applications allocates
the channels ranked from high to medium so that 𝑆𝑈𝐻𝑖𝑔ℎ could
operate in its full 𝑇𝑃𝑆𝑈 in interweave mode to maintain the
required quality of service. In the case of PU activity sensed on 
the channel 𝑆𝑈𝐻𝑖𝑔ℎ can immediately switch to the next
available channel on the allocated Channel Rank List (CRL). 
SUs send sensing data to their assigned VMs continuously 
which is why CRL is updated periodically after every interval 
of time 𝑡. This dynamic behavior of CRL allocated to a 
particular SU reduces the chances of hard handoffs and ensures 
transmission quality and continuity. In case the total number of 
channels in CRL is denoted by 𝑁𝐶𝑅𝐿ℎ

, approaches zero, 𝑆𝑈𝐻𝑖𝑔ℎ

drops the service and initiates an ongoing service request after 

a waiting time 𝑡𝑤, which is directed directly to ECA for channel
allocation. ECA for 𝑆𝑈𝐿𝑜𝑤 assigns free available channels
ranked as medium or low for non-delay sensitive data 
transmissions. 𝑆𝑈𝐿𝑜𝑤 performs continuous sensing to keep their
CRL updated after every time interval 𝑡. 𝑆𝑈𝐿𝑜𝑤 can operate at
its full power in interweave mode on one of the assigned 
channels whereas, in the case of PU activity detection it will 
switch to the next allocated channel within negligible switching 
time. In case the number of channels in CRL, denoted by 𝑁𝐶𝑅𝐿𝑙

approaches to zero, 𝑆𝑈𝐿𝑜𝑤 reduces its transmission power 𝑇𝑃𝑆𝑈

and continue transmitting on underlay mode coexisting with PU 
on the same channel as shown in Figure 2. 𝑇𝑃𝑆𝑈 hitting its
lowest threshold will cause channel drop and 𝑆𝑈𝐿𝑜𝑤 will initiate
an ongoing service request after the waiting time 𝑡𝑤. The
maximum value of data rate on interweave spectrum access that 
can be achieved by a SU where 𝑆𝑈𝜖{𝑆𝑈𝐻𝑖𝑔ℎ , 𝑆𝑈𝐿𝑜𝑤}, can be
calculated as: 

𝛿𝑖 = 𝛽 log2(1 +
𝑇𝑃𝑆𝑈𝐺𝑆𝑈

Δ𝑆𝑈𝑥
2⁄ )       (5) 

TABLE III 
CTMC STATE TRANSITION TABLE OF DPD AND ECA 

PU/SU activity Destination state and condition Transition 
rate 

Dynamic Priority Determination (DPD) 
1 SU arrives and initiates a new service request (𝑆𝑈𝑁 + 1, 𝑠𝑟𝑣𝑛𝑒𝑤 + 1, 𝑠𝑟𝑣𝑜𝑛, 𝑉𝑀𝑁, 𝑉𝑈𝐹𝐷𝑃𝐷, 𝑉𝑈𝐹𝐸𝐶𝐴)

𝜆𝑆𝑈

2 SDN controller creates a VM and initiates VUF for 
DPD 

(𝑆𝑈𝑁, 𝑠𝑟𝑣𝑛𝑒𝑤, 𝑠𝑟𝑣𝑜𝑛, 𝑉𝑀𝑁 + 1, 𝑉𝑈𝐹𝐷𝑃𝐷 + 1, 𝑉𝑈𝐹𝐸𝐶𝐴)

3 Priority is determined and VUF for ECA is initiated (𝑆𝑈𝑁, 𝑠𝑟𝑣𝑛𝑒𝑤, 𝑠𝑟𝑣𝑜𝑛, 𝑉𝑀𝑁, 𝑉𝑈𝐹𝐷𝑃𝐷, 𝑉𝑈𝐹𝐸𝐶𝐴 + 1)

4 In case of service drop SU initiates an ongoing 
service request 

(𝑆𝑈𝑁, 𝑠𝑟𝑣𝑛𝑒𝑤, 𝑠𝑟𝑣𝑜𝑛 + 1, 𝑉𝑀𝑁 + 1, 𝑉𝑈𝐹𝐷𝑃𝐷, 𝑉𝑈𝐹𝐸𝐶𝐴 +
1); 𝑁𝐶𝑅𝐿 = 0

𝜆𝑆𝑈
𝑂

5 SU transmission is completed  (𝑆𝑈𝑁 − 1, 𝑠𝑟𝑣𝑛𝑒𝑤, 𝑠𝑟𝑣𝑜𝑛, 𝑉𝑀𝑁 − 1, 𝑉𝑈𝐹𝐷𝑃𝐷, 𝑉𝑈𝐹𝐸𝐶𝐴 − 1) 𝜆𝑆𝑈

Efficient Channel Allocation (ECA) 
6 DPD identifies a high priority SU, and free channels 

are available 
(𝑁𝐻𝑖𝑔ℎ

𝑆𝑈 + 1, 𝑁𝐿𝑜𝑤
𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ

, 𝑁𝐶𝑅𝐿𝑙
, 𝑡𝑤);

𝐶𝐻𝑖𝑑𝑙𝑒 > 0

𝜆𝑆𝑈

7 ECA allocates channels to 𝑆𝑈𝐻𝑖𝑔ℎ (𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 −

𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿ℎ

, 𝑁𝐶𝑅𝐿𝑙
, 𝑡𝑤);

8 𝑆𝑈𝐻𝑖𝑔ℎ starts its transmission using one of the
allocated channels on interweave mode 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
− 1, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤);
𝑁𝐶𝑅𝐿ℎ

> 0

9 𝑆𝑈𝐻𝑖𝑔ℎ senses PU’s activity and switches to another
allocated channel available in CRL 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁 + 1, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
−

1, 𝑁𝐶𝑅𝐿𝑙
, 𝑡𝑤); 𝑁𝐶𝑅𝐿ℎ

> 0

𝜆𝑃𝑈

10 PU activity is detected, and no channel is available in 
CRL 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁 + 1, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤);
𝑁𝐶𝑅𝐿ℎ

= 0

11 𝑆𝑈𝐻𝑖𝑔ℎ drops the service and initiates an ongoing
service request to DPD  

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤 + 1);
𝑁𝐶𝑅𝐿ℎ

= 0

𝜆𝑆𝑈

12 DPD identifies a low priority SU, and free channels 
are available 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 + 1, 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤);
𝐶𝐻𝑖𝑑𝑙𝑒 > 0

13 ECA allocates channels to 𝑆𝑈𝐿𝑜𝑤 (𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 − 𝑁𝐶𝑅𝐿𝑙
, 𝑁𝐶𝑅𝐿ℎ

, 𝑁𝐶𝑅𝐿𝑙
, 𝑡𝑤);

14 𝑆𝑈𝐿𝑜𝑤 starts its transmission using one of the
allocated channels on interweave mode 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

− 1, 𝑡𝑤);
𝑁𝐶𝑅𝐿𝑙

> 0

15 𝑆𝑈𝐿𝑜𝑤 senses PU’s activity and switches to another
allocated channel 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁 + 1, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

−

1, 𝑡𝑤); 𝑁𝐶𝑅𝐿𝑙
> 0

𝜆𝑃𝑈16 PU activity is detected, and no channel is available in 
CRL 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁 + 1, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤);
𝑁𝐶𝑅𝐿𝑙

= 0

17 𝑆𝑈𝐿𝑜𝑤 continues its transmission in underlay mode
on the same channel 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤); 𝑁𝐶𝑅𝐿𝑙
=

0 
𝜆𝑆𝑈

18 PU activity is detected and 𝑆𝑈𝐿𝑜𝑤 cannot operate on
underlay mode 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁 + 1, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤) 𝜆𝑃𝑈

19 𝑆𝑈𝐿𝑜𝑤 drops the service and initiates an ongoing
service request 

(𝑁𝐻𝑖𝑔ℎ
𝑆𝑈 , 𝑁𝐿𝑜𝑤

𝑆𝑈 , 𝑃𝑈𝑁, 𝐶𝐻𝑁, 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ
, 𝑁𝐶𝑅𝐿𝑙

, 𝑡𝑤 + 1) 𝜆𝑆𝑈
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Where 𝛽 is the bandwidth of the channel, 𝐺𝑆𝑈 is the value of
channel gain for SU and Δ𝑆𝑈𝑥

2  is the power of additive White
Gaussian Noise. In underlay spectrum access mode, the 𝑆𝑈𝐿𝑜𝑤

reduces its transmission power causing a decrease in its data 
rate as well. The minimum data rate of a 𝑆𝑈𝐿𝑜𝑤 on an underlay
mode is denoted by 𝛿𝑢 and can be calculated as:

𝛿𝑢 =  𝛽 log2(1 +
𝑇𝑃𝑆𝑈𝐿𝑜𝑤

𝐺𝑆𝑈𝐿𝑜𝑤

𝑇𝑃𝑃𝑈𝐺𝑃𝑈Δ𝑆𝑈𝐿𝑜𝑤

2⁄ )          (6) 

Where 𝛽 is the bandwidth of the channel, 𝐺𝑆𝑈𝐿𝑜𝑤
 and 𝐺𝑃𝑈 is the

value of channel gain for 𝑆𝑈𝐿𝑜𝑤 and PU operating on the same
channel, 𝑇𝑃𝑆𝑈𝐿𝑜𝑤

 and 𝑇𝑃𝑃𝑈 is the transmission power of 𝑆𝑈𝐿𝑜𝑤

and PU, whereas, the power of additive White Gaussian Noise 
is denoted by Δ𝑆𝑈𝐿𝑜𝑤

2 . 

C. System Model and Assumptions

The network model is divided into data plane and control plane. 
The data plane consists of a distributed cognitive radio network 
environment with active 𝑆𝑈𝑁 number of SUs and a primary
network environment with 𝑃𝑈𝑁 number of PUs, where 𝑆𝑈𝑁 is
a positive integer. The network consists of 𝐶𝐻𝑁 number of non-
overlapping channels with variable channel capacities and are 
modeled as Idle and Busy states following the Markov 2-State 
model. The total number of free available channels is denoted 
by 𝐶𝐻𝐼𝑑𝑙𝑒 . PU arrival rate during SU transmission, SU arrival
rate, and SU new service request rate for VUFs observe poison 
distribution with the rate of 𝜆𝑃𝑈, 𝜆𝑆𝑈 and 𝜆𝑆𝑈

𝑁 . The service time
of SUs is assumed to follow an exponential distribution. We 
assume that SUs perform perfect spectrum sensing and sensing 
delay is considered negligible to evaluate the performance of 
the proposed framework CR-ANM on fairgrounds [18]. In the 
control plane, an SDN controller module is the central network 
controller, in charge of service determination and VM 
provisioning. The controller instantiates the requested service 
as a VUF on a dedicated VM and one VM can run multiple 
VUFs. 𝑉𝑀𝑁 is the total number of VMs running on a general-
purpose set of hardware in a specific state of the network and is 
equivalent to 𝑆𝑈𝑁 [23]. A common and dedicated channel is
allocated for control messaging of SUs with SDN controller to 
initiate a specific service. SU might request to initiate a new 
service or to continue an ongoing service. To determine the 
service SDN controller receives Transmission Parameters (TPs) 
from SUs and forwards them to the concerned VM to initiate 
the relevant VUF.  

D. Continuous Time Markov Chain (CTMC) Modeling

We assume S is the set of all possible states of the network. 
Whereas, the state of DPD is denoted by 𝑥 =
(𝑆𝑈𝑁 , 𝑠𝑟𝑣𝑛𝑒𝑤 , 𝑠𝑟𝑣𝑜𝑛 , 𝑉𝑀𝑁 , 𝑉𝑈𝐹𝐷𝑃𝐷 , 𝑉𝑈𝐹𝐻/𝐿), where 𝑆𝑈𝑁 is the
total number of SUs in the network, 𝑠𝑟𝑣𝑛𝑒𝑤 and 𝑠𝑟𝑣𝑜𝑛

represents the number of new service requests generated by a 
SU. The total number of virtual machines is denoted by 𝑉𝑀𝑁

where number 𝑉𝑀𝑁 in any state 𝑥 is 𝑉𝑀𝑁(𝑥) = 𝑆𝑈𝑁(𝑥). The
total number of VUFs for DPD, and ECA running on VMs at a 
state 𝑥 is denoted by 𝑉𝑈𝐹𝐷𝑃𝐷, and 𝑉𝑈𝐹𝐸𝐶𝐴. The list of all
possible states of the CTMC model of DPD scheme is presented 
in Table 2, with consequent transition rate and conditions. The 
steady-state probability 𝜂(𝑥) of state 𝑥 can be measured as: 

𝜂(𝑅) = 𝑂; ∑ 𝜂(𝑥) = 1

𝑥𝜖𝑆

  (7) 

Where, 𝑅 is the matrix for transition rate, and the vector 
containing one row and zero entries is denoted by 𝑂. On the 
other hand, the state of ECA scheme is denoted by 𝑦 with the 
initial state of  𝑦 =
(𝑁𝐻𝑖𝑔ℎ

𝑆𝑈 , 𝑁𝐿𝑜𝑤
𝑆𝑈 , 𝑃𝑈𝑁 , 𝐶𝐻𝑁 , 𝐶𝐻𝑖𝑑𝑙𝑒 , 𝑁𝐶𝑅𝐿ℎ

, 𝑁𝐶𝑅𝐿𝑙
, 𝑡𝑤). 𝑁𝐻𝑖𝑔ℎ

𝑆𝑈 , and
𝑁𝐿𝑜𝑤

𝑆𝑈  represents the number of high and low-priority SUs,
whereas 𝑃𝑈𝑁 denotes the number of PUs in the network in the
state 𝑦. 𝐶𝐻𝑁 and 𝐶𝐻𝑖𝑑𝑙𝑒  are the number of available channels
and the number of idle channels in the network. Number of 
allocated channels in 𝑆𝑈𝐻𝑖𝑔ℎ and 𝑆𝑈𝐿𝑜𝑤 CRLs are denoted by
𝑁𝐶𝑅𝐿ℎ

 and 𝑁𝐶𝑅𝐿𝑙
. Whereas 𝑡𝑤 is the waiting time of a SU after

a service drop, before initiating an ongoing service request. The 
list of all possible states of CTMC model of ECA scheme is 
presented in Table 2, with consequent transition rate and 
conditions. The steady-state probability 𝜂(𝑦) of state 𝑦 can be 
measured as: 

𝜂(𝑅) = 𝑂; ∑ 𝜂(𝑦) = 1

𝑦𝜖𝑆

  (8) 

Where R is the matrix for transition rate, and the vector 
containing one row and zero entries is denoted by 𝑂. 

III. RESULTS AND DISCUSSION

The following section explains the performance evaluation 
process and comparative results of the proposed scheme CR-
ANM with one of the state-of-the-art works SE-CRN proposed 
in [18] with simulation settings given in Table III. SE-CRN 
utilizes a dynamic channel reservation approach to assign 
optimal channels to high-priority SUs whereas channel quality 
has not been considered and all channels have the same capacity 
which is contrary to the heterogeneous nature of the wireless 
system. In addition, the channels are assigned by a central 
controller or base station which causes service response delay 
in case of increase in network load. On the contrary, our 
proposed framework CR-ANM allocates a dedicated VM to 
each node for service determination as well as channel 
allocation which deals with network load in a distributed 
manner. Moreover, the process of efficient channel allocation 
is optimized through channel rank calculation. To evaluate the 
significance and efficiency of the proposed framework CR-
ANM as compared to SE-CRN, we study the following QoS 
evaluation metrics:  
Channel Availability for 𝑆𝑈𝐻𝑖𝑔ℎ and 𝑆𝑈𝐿𝑜𝑤 in a state 𝑦 can be
defined as: 

TABLE III 
SIMULATION PARAMETERS AND THEIR RESPECTIVE SETTINGS 

Simulation Parameters Settings 
Simulation area 1000×1000m 
𝜆𝑃𝑈 𝜆𝜖(1, 2, 3, … ,8) 
𝜆𝑆𝑈 𝜆𝜖(4, 6, 8, … ,16) 
𝑇𝑃𝑆𝑈 in interweave mode 5 W 
𝑇𝑃𝑆𝑈 in underlay mode 0.05 W 
Threshold in underlay mode 1.16 db 
𝑡𝑤 1.5 sec 
PU detection time  1ms 
Service response time  0.5 sec 
Channel capacity  2-6 Mbps
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𝐶ℎ𝐻𝑖𝑔ℎ
𝐴 = 1 − ∑ 𝜂

𝑁𝐶𝑅𝐿ℎ
(𝑦)

(𝑦); (𝑦)𝜖𝑆  (9) 

𝐶ℎ𝐿𝑜𝑤
𝐴 = 1 − ∑ 𝜂

𝑁𝐶𝑅𝐿𝑙
(𝑦)

(𝑦); (𝑦)𝜖𝑆  (10) 

Figure 3 shows the comparative results of the proposed scheme 
CR-ANM with SE-CRN with respect to channel availability for 
(a) high-priority SUs and (b) low-priority SUs. Results varied
with the function of the PU arrival rate 𝜆𝑃𝑈  and SU arrival rate
𝜆𝑆𝑈. Increase in 𝜆𝑃𝑈 is inversely proportional to the number of
idle channels 𝐶𝐻𝑖𝑑𝑙𝑒  available for 𝑆𝑈𝐻𝑖𝑔ℎ and 𝑆𝑈𝐿𝑜𝑤

transmission. The promising results show that ECA scheme
ensures the best channel allocation to SUs by assigning them
channels according to their transmission requirements using
channel rank and the hybrid IU mode ensures transmission
continuity for 𝑆𝑈𝐿𝑜𝑤 even if PU arrival rate increases.

Service Drop Rate (𝝀𝑺𝑫𝑹) can be defined as the average number
of services dropped by SUs in the network due to the non-
availability of channels in CRL during time 𝑡 in any state 𝑦 
where 𝑦𝜖𝑆. Figure 4 shows the comparative results of proposed 
schemes in terms of service drop rate with the function of; (a) 
transmission time, where, 𝜆𝑃𝑈 = 2, and 𝜆𝑆𝑈 = 10 (b) PU
arrival rate where 𝑇𝑡𝑟 = 15 sec, and 𝜆𝑆𝑈 = 10, and (c) SU
arrival rate where, 𝜆𝑃𝑈 = 2, and 𝑇𝑡𝑟 = 15 sec. An increase in
transmission time causes more chances for a PU arrival on a 
particular channel causing the increase in channel handoff and 
service drop rate. Figure 4(a) shows the definite decrease in 
SDR as compared to SE-CRN due to efficient channel 

management and dynamic channel allocation of high-ranked 
channels. Similarly increasing 𝜆𝑃𝑈  and 𝜆𝑆𝑈 did increase the
value service drop rate but dynamic updates of high-ranked 
channels in CRL and underlay mode switching caused lesser 
service drop rate in CR-ANM as compared to the comparative 
scheme.   

Service Response Delay (SRD) is defined as the total time 
taken by SDN controller to respond to service requests initiated 
by SUs in time 𝑡: 

𝑆𝑅𝐷 = ∑ (
𝑁𝑆𝑅

𝑡(𝑥)

𝑛

𝑆𝑈𝐻𝑖𝑔ℎ,𝑆𝑈𝐿𝑜𝑤

× 𝑇𝑆𝑅) + 𝜆𝑆𝐷𝑅; (𝑥)𝜖𝑆      (11)

Where, 𝑁𝑆𝑅 is the total number of service requests made by SUs
in time 𝑡, and 𝑇𝑆𝑅 is the time taken by a VM to fulfill one service
request. Figure 5 shows the comparative results of proposed 
schemes in terms of service response delay with the function of; 
(a) transmission time, where, 𝜆𝑃𝑈 = 2, and 𝜆𝑆𝑈 = 10 (b) PU
arrival rate where 𝑇𝑡𝑟 = 15 sec, and 𝜆𝑆𝑈 = 10, and (c) SU
arrival rate where, 𝜆𝑃𝑈 = 2, and 𝑇𝑡𝑟 = 15 sec.  In CR-ANM the
SDN controller allocates dedicated VMs to each SU for
dynamic priority determination and efficient channel allocation.
Increase in 𝜆𝑆𝑈 and 𝜆𝑃𝑈 does increase the number of new
service requests and number of ongoing service requests but
this distributed and dynamic channel allocation nature of the
proposed scheme helped to reduce SRD significantly as
compared to centralized SE-CRN.

Fig. 3. Comparative results of CR-ANM and SE-CRN channel availability for (a) high priority SUs, (b) low priority SUs with the function of 
PU arrival rate 𝜆𝑃𝑈

Fig. 4. Comparative results of CR-ANM and SE-CRN service drop rate 𝜆𝑆𝐷𝑅 with the function of (a) Transmission time 𝑇𝑡𝑟, (b) PU arrival 
rate 𝜆𝑃𝑈 and (c) SU arrival rate 𝜆𝑆𝑈
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Transmission Delay is the average amount of time taken by 
SUs to transmit data from a source node to a destination node 
and complete a service within a specific period 𝑇𝑡𝑟 .
Transmission delay is calculated as: 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦

= 𝑆𝑅𝐷 +
∑ 𝐷𝑆𝑈𝐻𝑖𝑔ℎ,𝑆𝑈𝐿𝑜𝑤

𝑇𝑡𝑟

 (12) 

 Figure 6 shows the comparative results of proposed schemes in 
terms of transmission delay with the function of; (a) 
transmission time, where, 𝜆𝑃𝑈 = 2, and 𝜆𝑆𝑈 = 10 (b) PU
arrival rate where, 𝑇𝑡𝑟 = 15 sec, and 𝜆𝑆𝑈 = 10, and (c) SU
arrival rate where, 𝜆𝑃𝑈 = 2, and 𝑇𝑡𝑟 = 15 sec. Increase in all
these above factors except 𝐶𝐻𝑁 drastically affect the system

performance and increase the transmission delay. DPD and 
ECA schemes run as VUFs on dedicated virtual machines 
which is the reason why decoupling the control panel from data 
panel in such a distributed manner dramatically helps reduce 
delay as well as the computational complexity of the system. 
The comparative scheme SE-CRN shows an increase in 
transmission delay due to its centralized nature because the 
network load causes control overhead on the central node. On 
the contrary, CR-ANM outperformed and improved network 
performance and flexibility providing quality of service.  

Network Throughput is defined as the number of packets 
transferred from the source SU node to the destination SU node 
within a specific time 𝑡 and can be calculated as: 

Fig. 5. Comparative results of CR-ANM and SE-CRN service response delay SRD with the function of (a) Transmission time 𝑇𝑡𝑟, (b) PU 
arrival rate 𝜆𝑃𝑈 and (c) SU arrival rate 𝜆𝑆𝑈

Fig. 6. Comparative results of CR-ANM and SE-CRN transmission delay with the function of (a) Transmission time 𝑇𝑡𝑟, (b) PU arrival rate
𝜆𝑃𝑈 and (c) SU arrival rate 𝜆𝑆𝑈

Fig. 7. Comparative results of CR-ANM and SE-CRN network throughput with the function of (a) Transmission time 𝑇𝑡𝑟, and (b) PU arrival 
rate 𝜆𝑃𝑈
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𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = (𝜆𝑝𝑡𝑟 × 𝑇𝑡𝑟) − 𝜆𝑆𝐷𝑅      (13)

Where, 𝜆𝑝𝑡𝑟 denotes the packet transfer rate, and 𝑇𝑡𝑟  is
transmission time. Figure 7 shows the comparative results of 
proposed schemes in terms of network throughput with the 
function of; (a) transmission time, where 𝜆𝑃𝑈 = 2, and 𝜆𝑆𝑈 =

10, and (b) PU arrival rate where, 𝑇𝑡𝑟 = 15 sec, and 𝜆𝑆𝑈 = 10.
The comparative graphs show that service drop rate, service 
response delay, and transmission delay are interdependent on 
each other and have a great impact on network efficiency. The 
proposed scheme CR-ANM efficiently managed to counter the 
factors affecting performance evaluation parameters thus 
significantly improving network throughput as compared to SE-
CRN.  

IV. CONCLUSION

In this paper, we proposed a multi-attribute-based network 
framework called CR-ANM for resource constraint 
communication of the Consumer Internet of Things. Our system 
integrates three groundbreaking technologies CR, SDN, and 
NFV in a way that reduces system complexity as well as 
equipment cost. CR-ANM deals with the challenge of spectrum 
scarcity with Efficient Channel Allocation (ECA) and provides 
dynamic and application-specific priority-based network 
services by Dynamic Priority Determination Scheme (DPD). 
To achieve efficient results, it is suggested to place VM servers 
within the user premises, in case of remote placement it may 
cause an increase in transmission delay. As 𝑁𝑆𝑈 is equal to 𝑁𝑉

that is why the increase in the number of dedicated VMs may 
cause an increase in computation load over the server 
depending upon server specifications. In future work, CR-ANM 
can be evaluated on different parameters to test its energy 
efficiency and cost-effectiveness in various application areas.   
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