
Please cite the Published Version

Asiamah, Emmanuel Acheampong, Akrasi-Mensah, Nana Kwadwo, Odame, Prince, Keelson,
Eliel, Agbemenu, Andrew Selasi, Tchao, Eric Tutu, Al-Khalidi, Mohammed and Klogo, Griffith
Selorm (2025) A storage-efficient learned indexing for blockchain systems using a sliding window
search enhanced online gradient descent. The Journal of Supercomputing, 81 (1). 321 ISSN
0920-8542

DOI: https://doi.org/10.1007/s11227-024-06805-3

Publisher: Springer

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/637757/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author-produced version of the published paper. Uploaded in
accordance with the University’s Research Publications Policy.

Data Access Statement: The data used in this research will be made available upon request.
The code used for the experiments will be made available upon request.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-1655-8514
https://doi.org/10.1007/s11227-024-06805-3
https://e-space.mmu.ac.uk/637757/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

A storage‑efficient learned indexing for blockchain systems
using a sliding window search enhanced online gradient
descent

Emmanuel Acheampong Asiamah1,2 · Nana Kwadwo Akrasi‑Mensah1,2 ·
Prince Odame1,2 · Eliel Keelson1,2 · Andrew Selasi Agbemenu1,2 ·
Eric Tutu Tchao1,2 · Mohammed Al‑Khalidi3 · Griffith Selorm Klogo1,2

Abstract
With its promise of transparency, security, and decentralization, blockchain
technol-ogy faces significant challenges related to data storage and query
efficiency. Current indexing methods, which often rely on structures like Merkle
trees and Patricia tries, contribute to excessive storage overhead and slower query
responses, particularly for full nodes that maintain a complete copy of the
blockchain. To address this, we introduce a novel-learned indexing approach for
blockchain that utilizes a layered structure with a sliding window search
enhanced Online Gradient Descent (SWS-OGD) as the inter-block index. The
method was implemented across five distinct blockchain environments—Bitcoin,
Ethereum, Dogecoin, Litecoin, and IoTeX. Experimental results demonstrate
that the proposed method reduces storage costs by up to 99% compared to state-
of-the-art approaches, requiring as little as 0.9 KB for 20,000 blocks-a substantial
improvement over existing methods. Despite the sig-nificant reduction in storage
costs, the SWS-OGD method maintains comparable performance in other key
metrics, such as query latency. These results ensure that blockchain systems can
handle large-scale data queries efficiently, maintaining high performance even as
the blockchain grows in size.

Keywords Blockchain · Learned index · Online learning · Querying

1 Introduction

Blockchain technology has revolutionized the landscape of digital
transactions and data management, providing unprecedented levels of
transparency, security, and decentralization [1]. Originating as the underlying
technology for Bitcoin, blockchains are now applied in a wide array of sectors
beyond cryptocurrencies.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06805-3&domain=pdf

E. A. Asiamah et al.Page 2 of 29

The fundamental structure of a blockchain is a distributed ledger where trans-
actions are securely linked in blocks, ensuring data integrity and immutability
through cryptographic principles [2]

Blockchain’s importance lies in its ability to provide a reliable and tamper-
proof record of transactions without a central authority. This decentralized nature
means no single entity controls the entire system [3]. Blockchain technology also
secures sensitive data in sensor networks, as demonstrated by solutions leverag-
ing cryptographic accumulators for secure data storage [4], thereby protecting IoT
infrastructure from potential vulnerabilities. This has enabled the use of trans-
parent supply chains in which every product’s journey can be tracked from ori-
gin to consumer [5], and healthcare records are securely shared among author-
ized parties without the risk of unauthorized access or alteration [6]. Blockchain
also facilitates new business models and efficiencies by enabling smart contracts,
which are self-executing contracts with the terms directly written into code,
automating and enforcing agreements without intermediaries [7]. In developing
countries, blockchain could address key issues such as reducing land disputes by
providing an immutable record of land ownership, enabling efficient tracking of
disease spread and secure sharing of medical records in public health crises, and
combating corruption through enhanced transparency and accountability [8–10].

Despite the tremendous potential blockchain has in revolutionizing society
positively, one of the challenges to the widespread adoption of blockchain is
the significant storage requirements. Since blockchain data cannot be altered or
deleted, every transaction is permanently recorded, leading to an ever-increasing
volume of data that every node in the network must store. This growing storage
demand can quickly become burdensome, particularly for full nodes that must
maintain a complete copy of the blockchain. As the size of the blockchain grows,
so do the costs and complexities associated with storing and managing this data
[11]. This challenge highlights the need for solutions that can optimize storage
efficiency without compromising the integrity and security of the blockchain.
Addressing these storage challenges is crucial for enabling the broader adoption
of blockchain technology, ensuring it remains scalable and sustainable as it con-
tinues to evolve and expand its applications across various sectors.

Traditional indexing structures, such as B-trees [12] and Merkle Patricia
Tries (MPT) [13], which are often employed to aid efficient querying, exacer-
bate these storage challenges. While effective for smaller-scale applications,
these data structures exhibit linear growth in storage complexity, often approxi-
mated by O(N ×M) , where N is the number of nodes and M is the size of each
node. In rapidly growing blockchain systems with millions of blocks, this lin-
ear growth becomes unsustainable. The ever-expanding storage requirements not
only increase costs but also hinder efficient query performance, leading to higher
latency and straining computational resources. Furthermore, the continuous addi-
tion of new data in blockchain environments necessitates frequent index updates,
which incur additional computational and memory overhead [14]. Addressing
these inherent inefficiencies in traditional indexing methods is critical to unlock-
ing the full potential of blockchain technology and ensuring its scalability across
diverse applications.

A storage‑efficient learned indexing for blockchain systems… Page 3 of 29

These scalability issues are particularly pressing given the rate at which
blockchain sizes are growing. For instance, by 2014, the Bitcoin blockchain had
reached 20 GB, containing around 15,846 blocks with an average block size of
1.3 MB. By July 2024, this blockchain had grown to exceed 580 GB, equating
to approximately 417,477 blocks [15]. Projecting forward, it is estimated that
by 2034, the Bitcoin blockchain could expand to 1040 GiB (or about 806,597
blocks) and further to 1550 GiB (around 1,219,231 blocks) by 2044. These pro-
jections underscore the urgent need for novel approaches to indexing that can effi-
ciently manage the exponential growth of blockchain data.

However, current indexing methods fall short of meeting this challenge.
While they aim to enhance query performance, they come with excessive stor-
age demands, rendering them impractical for large-scale systems. Addressing
this gap, we propose a novel indexing approach that minimizes storage costs
while maintaining comparable query latency to existing state-of-the-art indexing
methods.

The following is a summary of the main contributions of this paper:

1. This research introduces a novel learned indexing approach for blockchain index-
ing that utilizes a layered structure with a Sliding Window Search-enhanced
Online Gradient Descent (SWS-OGD). This method focuses on optimizing the
inter-block indexing process to efficiently map timestamps to block heights, sig-
nificantly improving the efficiency of blockchain data retrieval.

2. The proposed learned index method significantly reduces the storage requirements
for blockchain systems. By minimizing the index size, the method addresses one
of the critical challenges in blockchain technology—high storage overhead. This
reduction in storage consumption is crucial for the scalability and efficiency of
blockchain applications.

3. Besides the reduced storage requirements, the proposed method maintains com-
parable performance in key metrics such as query latency. This balance between
storage efficiency and query performance ensures that the blockchain system
remains both scalable and efficient, providing fast and reliable data retrieval.

4. The proposed method was rigorously evaluated against state-of-the-art learned
indexes in a blockchain environment. Experimental results demonstrate that the
proposed method significantly outperforms existing methods in terms of storage
cost while maintaining or enhancing query efficiency. This validation underscores
the practical applicability and effectiveness of the learned index approach in real-
world blockchain systems.

The remaining sections are organized as follows: Section II reviews related work
on blockchain indexing and querying techniques, highlighting advancements,
limitations, and the evolution of methodologies used by other researchers in the
field. Section III outlines the detailed methodology for developing and imple-
menting the proposed solution. Section IV presents the results and discussions.
Section VI summarizes the key findings of the research and offers recommenda-
tions for future work.

E. A. Asiamah et al.Page 4 of 29

2 Related works

Efficient querying in blockchain systems has been approached through various
schemes, which can be categorized into four primary schemes: External Database
Integration, On-chain Indexing, Smart Contract Querying, and Data Structure
Modification.

2.1 External database integration

This scheme involves connecting blockchain systems with external databases to
enhance query capabilities by leveraging advanced database functionalities. Mid-
dleware approaches use integrations with external databases such as MongoDB and
ForkBase, enabling support for complex queries like range and top-k queries, thus
significantly improving performance [16–19]. Other strategies apply big data tech-
niques, such as Map/Reduce, to enable efficient data extraction and analysis [20].

Further, Blockchain Database approaches adapt database architecture to block-
chain principles. For example, BlockchainDB employs shared tables and data shard-
ing [21], EthernityDB integrates a lightweight database with Ethereum using BSON
for efficient storage [22], and HBasechainDB leverages the Hadoop ecosystem to
enhance data storage and retrieval [23].

While these methods improve querying capabilities, they often introduce
increased storage requirements and system complexity. These approaches generally
involve redundant data storage across both the blockchain and external databases;
BlockchainDB and HBasechainDB, for instance, require additional distributed data
structures and sharding, further inflating storage overhead.

2.2 Smart contract querying

Alternative approaches to enhance data retrieval have been implemented in specific
blockchain applications, including ride-sharing, pharmacogenomics, and SQL query
processing. These methods integrate smart contracts with data structures like the
Merkle Patricia Trie and employ upgradable contracts to support evolving require-
ments [24–28]. While these solutions improve data accessibility and flexibility, they
also impose additional storage demands, as each instance or update of a smart con-
tract is permanently recorded on the blockchain. The use of complex structures, such
as the Merkle Patricia Trie, combined with the need to store multiple contract ver-
sions for future upgrades, further increases both storage consumption and computa-
tional complexity, creating scalability challenges for blockchain systems.

2.3 Data structure modification

Data Structure Modification involves altering the fundamental data structures of the
blockchain to facilitate faster information retrieval. Proposed modifications include
the Multi-State Merkle Patricia Trie (MSMPT), which enhances key-based searches
with linked-list storage [29], the integration of height-balanced Binary Search Trees

A storage‑efficient learned indexing for blockchain systems… Page 5 of 29

with Threaded Binary Search Trees for faster searches [30], and restructuring blocks
into index and data layers using Abstract-Trie and Operation-Record List [31].
While these modifications enhance query efficiency, they typically result in higher
storage demands due to additional indexing layers and metadata structures.

2.4 On‑chain indexing

On-chain indexing refers to creating and maintaining indexing structures within
the blockchain itself to enhance the efficiency of data retrieval processes. Unlike
external database solutions, on-chain indexes store data structures directly on the
blockchain, thus preserving the decentralized nature of blockchain systems. These
indexing structures aim to improve the speed of point and range queries-critical for
applications like transaction validation, smart contract execution, and historical data
retrieval.

These indexing structures significantly reduce search complexity in retrieving
data from large and growing blockchain ledgers. For example, an index can elimi-
nate the need to sequentially traverse the entire blockchain to locate a specific trans-
action or set of blocks, thus improving the efficiency and speed of queries.

Various techniques have been proposed in this domain, each tailored to differ-
ent aspects of blockchain querying. Hybrid index systems, for example, combine
B-trees and Skip-lists to improve access times by balancing tree depth and node tra-
versal paths [32]. Some methods embed index data within individual transactions to
enable faster data lookup, essentially coupling data and index at the transaction level
[33].

Advanced structures like the Group Merkle Patricia Tree (GMPT) [34] cluster
blockchain accounts using Merkle Patricia Trees combined with K-Means clustering
to optimize query efficiency by reducing verification time. Similarly, the Adaptive
Balanced Merkle (AB-M) Tree [13] enhances storage scalability and query speed
by combining rapid retrieval and data verification mechanisms. The Authenticated
Layered Index (ALI) [35] employs a hybrid on-chain and off-chain model to support
efficient queries for lightweight clients. The EBTree structure [12] uses a hierarchi-
cal metadata-based design to facilitate efficient traversal and querying in Ethereum.
The Deterministic Append-only Skip List (DASL) [36] integrates Merkle DAG
structures to improve provenance query efficiency while maintaining minimal runt-
ime overhead.

The Merkle Semantic Trie (MST) [37] introduces real-time querying capabilities,
supporting complex query types such as semantic and range queries without alter-
ing the underlying blockchain database. The Subchain-based Account Transaction
Chain (SCATC) [38] divides account transaction histories into smaller, hash-linked
subchains to improve query performance for accounts with extensive histories. The
vChain [39] utilizes a Sliding Window Accumulator (SWA) within an authenti-
cated data structure to enhance dynamic query efficiency, particularly for large-scale
implementations. Finally, BCTkPQ [40] employs a Blockchain Transaction Graph
(BTG) with collaborative query parsing and execution to efficiently handle first-‘k‘
query paths with high accuracy.

E. A. Asiamah et al.Page 6 of 29

While traditional on-chain indexing techniques can enhance query performance,
they often impose substantial storage costs due to the need to maintain complex data
structures and metadata on the blockchain. This storage overhead scales with the
number of transactions or blocks, ultimately impacting blockchain scalability and
sustainability. These limitations underline the necessity for alternative approaches
that achieve high query efficiency without the excessive storage demands character-
istic of on-chain indexing.

2.5 Learned indexes

Learned indexes represent a promising alternative by employing machine learning
models to predict data locations within the blockchain. Unlike traditional on-chain
indexing, which stores metadata and extensive structures directly on-chain, learned
indexes leverage predictive modeling, allowing for efficient data access with mini-
mal storage requirements.

The concept of learned indexes, introduced by Kraska et al. [41], proposes replac-
ing traditional index structures with machine learning models that can learn and
exploit data distributions. By doing so, learned indexes can significantly improve
query performance and storage efficiency. Learned indexes can significantly reduce
the memory footprint compared to traditional indexes. For example, by modeling
the data’s cumulative distribution function (CDF), a learned index can store the
mapping information more compactly.

Since their inception, learned indexes have sparked significant research interest,
leading to various improvements and adaptations. A notable advancement in this
domain is presented by Ding et al. [42]. ALEX addresses the limitations of static
learned indexes by introducing an adaptive layout that efficiently handles dynamic
updates such as inserts, deletes, and updates. This approach ensures the index
remains efficient even as the data distribution changes over time. Experimental
results show that ALEX achieves up to 4.1× higher throughput and up to 2000×
smaller index size than B+Trees. It also outperforms the original learned index in
read-only scenarios while maintaining a smaller index size.

Ge et al. [43] presented SALI, which incorporates adaptive strategies to handle
various workload skews, enhancing concurrency performance. SALI incorporates
adaptive strategies to handle multiple workload skews, enhancing concurrency
performance. The experimental results showcased that SALI improved insertion
throughput by an average of 2.04× with 64 threads compared to the second-best
learned index, ALEX+.

2.6 Learned indexes in blockchain

In the context of blockchain, learned indexes have been explored to address the
unique challenges of blockchain’s immutable and append-only nature. Zhang
et al. [44] introduced COLE, a column-based learned storage for blockchain
systems, which leverages learned models to index historical state values effi-
ciently. COLE addresses the high storage costs and ensures data integrity through

A storage‑efficient learned indexing for blockchain systems… Page 7 of 29

a combination of column-based design and learned indexes optimized for disk
environments. While COLE offers substantial storage size reductions and query
performance improvements compared to traditional indexing methods like Mer-
kle Patricia Trie (MPT), its focus is primarily on provenance queries, which lim-
its its applicability to more common and critical query types like point and range
queries.

Another significant work is by Yao et al [45], who proposed a learned-index-
based semantic keyword query architecture for blockchain. This architecture records
data semantics information to support efficient semantic keyword queries, estab-
lishing a lookup table index for semantic information among blocks and a block-
level recursive model index to improve query efficiency. By storing the lookup
table in extended block headers and maintaining recursive model indexes off-chain,
the proposed system enhances query performance while ensuring the complete-
ness and correctness of query results. The experimental results show that combin-
ing the lookup table and the learned index effectively improves query efficiency on
the blockchain, demonstrating substantial improvements in query speed and storage
efficiency. However, this approach is specifically tailored for semantic queries and
does not address the challenges associated with optimizing point and range queries,
which are vital for most blockchain applications.

In the recent study presented by Chang et al. [46], the authors propose a novel
approach to indexing in blockchain systems named Anole. This approach leverages
learned indexes to optimize point and time-range queries, significantly improving
performance and storage efficiency compared to traditional methods.

Anole employs a dynamic piecewise linear regression approach, which fits well
within the online learning framework. Online learning is a framework for designing
and analyzing algorithms that build predictive models by processing data sequen-
tially. This approach is particularly efficient for large datasets, as it updates models
incrementally with each new data point rather than retraining from scratch with the
entire dataset [47].

While Anole reduces storage overhead compared to traditional methods, its use
of dynamic piecewise regression in the learned inter-block index still requires con-
siderable storage to maintain the parameters of the linear functions. Our approach
distinguishes itself by employing SWS-OGD, which does not require segment-based
model storage, thereby reducing the storage cost significantly while maintaining
comparable performance in query latency and accuracy (Figure 1).

3 System overview

This section provides an overview of the system architecture for the proposed
learned index for blockchain systems. The system consists of full nodes, each main-
taining a layered learned index to efficiently manage and retrieve blockchain data.
Our proposed solution is designed to be compatible with various blockchain consen-
sus algorithms, including innovative mechanisms like Reputation Awareness Rand-
omization Consensus [48].

E. A. Asiamah et al.Page 8 of 29

3.1 System components

The system architecture comprises these key components, as can be seen in
Fig. 1:

1. Full nodes: Full nodes are crucial components of the blockchain network,
maintaining a complete copy of the blockchain ledger. They are responsible for
validating and relaying transactions to ensure the integrity and security of the
blockchain. Full nodes store block headers and transaction data, processing query
requests and managing data updates. Full nodes in the system utilize the pro-
posed layered learned index without additional indexing schemes. All queries are
executed on the full nodes, leveraging the blockchain’s inherent security measures
for user connections, which are assumed to be in place.

2. Layered learned index: This index structure is designed to optimize point and
range queries using a hierarchical model. The top layer handles inter-block index-
ing, which identifies the relevant blocks for a query. The lower layer manages
intra-block indexing within those identified blocks, ensuring that both indexes
work together seamlessly to provide efficient and precise data retrieval.

• Inter-block indexing: Focuses on relationships and data distribution
across blocks within the blockchain. This type of indexing is used to
quickly locate which blocks contain the data relevant to a query, signifi-
cantly narrowing down the search space before performing a more detailed
search within the blocks.

• Intra-block indexing: Focuses on the data within individual blocks. Once
the inter-block index identifies the relevant blocks, the intra-block index
helps locate the exact data points within those blocks.

Fig. 1 System overview of the proposed learned index architecture

A storage‑efficient learned indexing for blockchain systems… Page 9 of 29

3. Clients (Users): Clients, also called users, interact with the blockchain system by
submitting queries to full nodes. They are integral to the system as they initiate
the data retrieval process.

3.2 Proposed inter‑block indexing algorithm

3.2.1 Problem formulation and objective

The inter-block index is designed to efficiently map timestamps to block heights,
enabling quick and accurate queries in a blockchain system. This section formulates
the problem and sets the objective for the inter-block indexing algorithm.

Problem formulation: Consider a sequence of data points {(xi, yi)}Ni=1 , where:

• xi : the normalized timestamp representing the time at which a transaction
occurred, scaled to a uniform range.

• yi : the corresponding block height, representing the position of the block in the
blockchain.

The challenge is to build an index that accurately predicts the block height yi for a
given timestamp xi with high efficiency.

Objective: The objective is to minimize the prediction error across all data
points, aiming to accurately predict yi given a timestamp xi . A linear prediction
function f (w;xi) = xT

i
w is defined, where:

• w : the parameter vector that defines the prediction model.

The goal is to find the optimal parameter vector w that minimizes the cumulative
prediction error over all data points. This is done by minimizing the sum of squared
errors between the actual and predicted block heights. Let L(w, xi, yi) be the loss
function, defined as the squared error between yi and xT

i
w:

This objective ensures that the predicted block heights are as close as possible to
the actual block heights, improving the accuracy of the inter-block index in map-
ping timestamps to block heights. The Online Gradient Descent (OGD) algorithm,
enhanced with a sliding window search, is proposed to solve this optimization
problem.

3.2.2 Online gradient descent (OGD)

Online Gradient Descent (OGD) is specifically tailored to address sequential learn-
ing problems, where data points arrive one at a time, and the model must be updated
in real-time without reprocessing the entire dataset [49]. This characteristic makes it

(1)min
w

N∑

i=1

L(w, xi, yi) = min
w

N∑

i=1

(yi − xT
i
w)2

E. A. Asiamah et al.Page 10 of 29

particularly suitable for blockchain systems, which generate new blocks sequentially
over time.

Unlike traditional batch gradient descent, which processes the entire dataset at
once to compute the gradient and update the model parameters, OGD updates the
model incrementally with each new data point as shown in Fig. 2.

To minimize the objective function, Online Gradient Descent computes the gra-
dient of the loss function with respect to the model parameters w . This gradient
indicates the adjustment needed to reduce the difference between the predicted and
actual block heights. The gradient of the loss function L(w, xi, yi) with respect to w
is:

where:

• ∇wL(w, xi, yi) : the gradient of the loss function with respect to the parameter vec-
tor w.

• −2xi : the partial derivative of the squared error term with respect to w.
• yi − xT

i
w : the error term representing the difference between the actual block

height yi and the predicted block height xT
i
w.

Update rule: The update rule in OGD adjusts the model parameters iteratively to
reduce the loss function value:

where:

(2)∇wL(w, xi, yi) = −2xi(yi − xT
i
w)

(3)wt+1 = wt − �∇wL(wt, xi, yi) = wt + 2�xi(yi − xT
i
wt)

Fig. 2 Iterative process of model and index updates

A storage‑efficient learned indexing for blockchain systems… Page 11 of 29

• wt+1 : the updated parameter vector after iteration t.
• wt : the parameter vector at iteration t.
• � : the learning rate, which determines the step size of each update.
• 2�xi(yi − xT

i
wt) : the adjustment to w based on the gradient.

By iteratively applying this update, the parameters converge to values that minimize
the prediction error. This process is tied directly to the objective function, aiming to
minimize cumulative prediction error:

Using Online Gradient Descent to iteratively update w minimizes this cumulative
loss, achieving the goal of accurately predicting block heights from timestamps.

3.2.3 Assumptions

In developing the proposed learned index algorithm for blockchain systems, several
assumptions are made to ensure convergence and performance:

• Convex loss function: The MSE loss function is assumed to be convex with
respect to w , which guarantees that any local minimum is a global minimum.
This is crucial for the optimization process, as it allows the algorithm to con-
verge reliably to the optimal solution.

• Lipschitz continuity: It is assumed that the gradients are Lipschitz continuous,
meaning there exists a constant L such that:

 This assumption ensures that the gradient does not change abruptly, stabiliz-
ing the optimization process and providing consistent updates to the model
parameters.

• Bounded gradients: The gradients are assumed to be bounded by a constant G :

 To prevent excessively large gradient values, gradient clipping is applied by set-
ting a maximum threshold G for the gradient norm. This ensures stability in the
optimization process by scaling down gradients that exceed this threshold, pre-
venting destabilization and promoting steady convergence.

• Diminishing step size: The step size �t diminishes over time, satisfying:

 This ensures that updates become smaller as the algorithm progresses, allowing
it to converge to the minimum loss.

(4)min
w

N∑

i=1

L(w, xi, yi) = min
w

N∑

i=1

(yi − xT
i
w)2

(5)‖∇L(w) − ∇L(w�)‖ ≤ L‖w − w�‖

(6)‖∇L(w)‖ ≤ G

(7)
∞∑

t=1

𝜂t = ∞ and

∞∑

t=1

𝜂
2

t
< ∞

E. A. Asiamah et al.Page 12 of 29

These assumptions support the convergence and stability of the proposed learned
index algorithm, ensuring accurate mapping of timestamps to block heights with
minimal cumulative prediction error.

3.2.4 Sliding window prediction mechanism

The sliding window prediction mechanism refines initial predictions by incremen-
tally adjusting the search range until the correct value is found. Unlike fixed-range
searches, this sliding window dynamically expands its range, effectively "sliding"
to cover a larger area if the correct value is not located within the initial range. This
adaptive approach ensures completeness and is particularly suited to block genera-
tion times with high variability.

The sliding window process begins with an initial prediction, generated by the
Online Gradient Descent (OGD) model. This prediction is calculated based on the
normalized input data and then scaled back to the original space of the target vari-
able, such as block heights. The initial prediction serves as a starting point for the
search.

Based on the initial prediction, an initial search range, denoted as ws , is centered
around the predicted index, which corresponds to the closest match in the block
heights array. This range serves as the immediate neighborhood within which the
search will begin.

The search proceeds bidirectionally within this initial range. Starting from the
predicted index, the search iterates forward and backward in steps, defined by a
parameter s (set to 5 in the implementation). At each step, the algorithm checks
whether the timestamp at the current index matches the target timestamp. If a match
is found, the correct value is returned, terminating the search.

In cases where no match is found within the initial range ws , the window expands
or "slides" incrementally beyond this predefined range. The algorithm continuously
extends the boundaries of ws until the correct value is found or until the bounds
of the block heights are reached. This adaptive sliding mechanism is essential for
ensuring completeness, as it guarantees that the query is located, even if it lies out-
side the initially predicted range.

3.3 Intra‑block learned index adoption

The approach leverages Anole’s [46] intra-block learned index methodology to
enhance querying efficiency within individual blocks. Given that most blockchains,
such as Bitcoin, average over 1,000 transactions per block, optimizing query times
within these blocks is essential. The purpose of adopting Anole’s intra-block learned
index is to streamline intra-block query performance.

Construction of intra-block learned index: The intra-block learned index is
constructed by organizing transactions within a block according to addresses. For
each unique address, the first occurrence of a transaction serves as the aggregation
point, grouping subsequent transactions under that address. This ensures that queries

A storage‑efficient learned indexing for blockchain systems… Page 13 of 29

targeting a specific address can quickly access the aggregation point without scan-
ning the entire block.

For example, consider transactions tx1 and tx2 associated with address addr1 , and
transactions tx3 and tx4 associated with address addr2 . According to this method, tx1
would be the aggregation point for addr1 , while tx3 would be the aggregation point
for addr2 . This organization reduces query time within a block by structuring the
data to minimize search complexity. Since the number of transactions within a sin-
gle block is typically limited, this approach ensures that query processing remains
efficient and precise.

The construction process involves:

1. Sorting transactions within each block based on the address.
2. Aggregating transactions for each address, with the first transaction serving as

the aggregation point.
3. Constructing the intra-block index using the sorted transactions and different

aggregation points.

Given the relatively small amount of data within a single block, the intra-block
learned index does not require frequent updates. This stability allows the error
bound of the intra-block learned index to be set to zero, achieving precise position-
ing and efficient data retrieval.

3.4 Query process overview

When a client submits a query, the system uses the inter-block index to determine
the relevant block heights. It then uses the intra-block index to locate the desired
transactions inside the block.

The querying process in the proposed system involves several steps to ensure effi-
cient and accurate retrieval of data from the blockchain. The process is as follows:

1. Initial query submission: The client submits a query Q specifying the address
and the time range or a specific point in time.

2. Inter-block index lookup using OGD: For point queries, the system uses the
inter-block index with Online Gradient Descent (OGD) to predict the block height
that might contain the transaction. The system predicts the block heights for the
start and end times for range queries. A sliding window search mechanism refines
these predictions to ensure accuracy.

3. Intra-block index lookup: The system uses the intra-block index for each identi-
fied block to locate the exact transactions within the block. For a given address,
locate the aggregation point in the sorted list of transactions within the block.
Once the aggregation point is identified, all transactions associated with that
address will be retrieved directly.

4. Result compilation: The system aggregates the results before returning them to
the client.

Algorithm 1 Point and Range Query with a Learned Index

E. A. Asiamah et al.Page 14 of 29

Algorithm 1 handles both point and range queries. The algorithm predicts a sin-
gle block height for point queries and searches around this prediction to locate the
transaction. For range queries, the algorithm predicts the block heights for the start
and end of the time range by effectively performing two-point queries and then
searching within the range to locate the transactions. The sliding window search
ensures that any potential deviations in the predictions are corrected by examining a
localized window around the initial predictions.

3.5 Implementation

The system was implemented on an Intel(R) Core(TM) i5-10500T CPU @ 2.30GHz,
with an 8.00 GB (7.78 GB usable) system. A custom blockchain was implemented

A storage‑efficient learned indexing for blockchain systems… Page 15 of 29

using Rust, which was chosen for its performance and safety features. The imple-
mentation involved constructing both inter-block and intra-block indexes to facilitate
efficient querying. Bitcoin and Ethereum data was collected from Google BigQuery.
The block height, input and output addresses, input and output values, and block
timestamps for transactions were retrieved. The retrieved data was used to build the
blockchain and construct the indexes. In total, 20,000 blocks were created, each con-
taining transactions as they appeared in the Bitcoin, Ethereum, Iotex, Dogecoin, and
Litecoin blockchain. These datasets provided a comprehensive view of transaction
flows and patterns over a period, facilitating an accurate representation of the block-
chain for experimental purposes. Using this data, the efficiency and effectiveness of
the proposed indexing algorithm could be tested in real-world scenarios, ensuring
that the results are both practical and relevant to actual blockchain environments and
also giving two different workloads to test how the proposed method performed.

3.6 Evaluation

A set of evaluation metrics was employed to assess the effectiveness of the proposed
inter-block indexing algorithm. These metrics were chosen to provide a holistic view
of the algorithm’s performance in various aspects crucial for blockchain indexing.
The metrics include:

• Size of the inter-block index: This metric evaluates the memory efficiency of
the index by measuring its total storage consumption. A smaller index indicates
better scalability and efficiency, which is essential for blockchain systems with
limited storage resources.

• Average CPU time per update: This metric measures the average time the
CPU takes to update the inter-block index whenever a new block is added to the
blockchain. It reflects the computational load required for each update, averaged
across multiple instances, and indicates how efficiently the algorithm can handle
new data over time.

• Query latency: This metric assesses the responsiveness of the index by measur-
ing the time taken to retrieve data in response to query requests. Lower query
latency signifies a faster and more efficient data retrieval process, enhancing the
overall usability of the blockchain system.

The performance of the proposed algorithm was benchmarked against other online
learning algorithms. These include:

• Anole (Inter-index): The Anole Inter-Index uses a Dynamic Piecewise Linear
Regression, outperforming state-of-the-art on-chain indexing techniques like
vChain+. Notably, Anole is the only algorithm used that has been published in
the literature.

• Recursive least squares (Inter-index): A well-established algorithm known for
its precision in parameter estimation. RLS operates by recursively updating its
model parameters with each new data point, making it highly suitable for online

E. A. Asiamah et al.Page 16 of 29

learning applications. It adapts to changes in real-time while efficiently manag-
ing memory, thus providing accurate and stable predictions in dynamic environ-
ments. RLS was chosen for benchmarking due to its strong reputation for reli-
ability in adaptive filtering and online learning contexts.

A comparison against traditional indexing methods was not made because Anole had
already demonstrated superiority in all metrics. Additionally, a comparison against
any other learned indexes in blockchain apart from Anole was not made because
the two other learned indexes were used for entirely different purposes. Anole is the
only learned index used for point and range queries within the blockchain context.

4 Results and discussion

4.1 Storage cost results

The storage cost is the most important metric as it relates directly to the aim of this
paper. The model size in kilobytes (KB) measures the storage cost. Figure 3 and
Fig. 4 show that the Anole Inter-Index algorithm has a significantly higher stor-
age cost than SWS-OGD and RLS. As the number of blocks increases, the storage
cost of Anole Inter-Index grows linearly, reaching approximately 100 KB at 20,000
blocks. In contrast, the storage costs of SWS-OGD and RLS remain almost constant,
at around 0.12 KB and 0.28 KB, respectively. This indicates that SWS-OGD and
RLS are more efficient in terms of storage.

The minimal storage cost of SWS-OGD arises from its design philosophy,
which centers on incremental parameter updates rather than creating new mod-
els. In SWS-OGD, a single set of model parameters is continuously refined as
new blocks are added. This approach is inherently storage-efficient: the model’s

Fig. 3 Index size in bitcoin environment

A storage‑efficient learned indexing for blockchain systems… Page 17 of 29

size remains stable because it does not need to store parameters for different
data segments, in contrast to Anole Inter-Index. Anole Inter-Index employs a
dynamic piecewise regression, which creates multiple local models for different
data segments to optimize prediction accuracy. While effective in this regard, it
significantly increases storage cost linearly as each additional segment requires
new model parameters and will require lots of space as the blockchain grows.
Although RLS also aims for storage efficiency, it maintains a covariance matrix,
which introduces additional storage overhead. This matrix is essential for its
recursive update mechanism, which estimates parameters based on historical data
and continuously updates them as new data is introduced.

Notably, the storage cost of Anole Inter-Index is directly influenced by the vari-
ability of the data it models. For datasets with high variability in block generation
times, such as those found in certain blockchain systems, Anole Inter-Index would
require a larger number of segments to maintain accuracy, thereby increasing its
storage footprint substantially.

SWS-OGD is uniquely suited for environments with variable or high-frequency
data, such as blockchain systems, due to its storage independence from data vari-
ability. Unlike Anole, where storage costs scale with both data size and variability,
SWS-OGD remains unaffected by these factors, maintaining a consistent storage
footprint that is ideal for large-scale, high-throughput systems.

We report storage cost results for only Bitcoin and Ethereum workloads as repre-
sentative datasets because the storage performance of indexing algorithms is not sig-
nificantly affected by the underlying dataset. This is due to the design of SWS-OGD,
which updates model parameters incrementally and does not rely on dataset-specific
characteristics such as block interval variability. Thus, the trends observed with Bit-
coin and Ethereum workloads are consistent across other datasets. Reporting these
two allows for a concise presentation without redundancy while maintaining the
generalizability of the findings.

Fig. 4 Index size in Ethereum environment

E. A. Asiamah et al.Page 18 of 29

4.2 Average CPU time per update results

The average CPU time per update measures the computational efficiency of the
algorithms. It is crucial for maintaining real-time performance in dynamic block-
chain environments. The results shown in Fig. 5 and Fig. 6 indicate that SWS-OGD
has a lower average CPU time per update than RLS but slightly higher than Anole
Inter-Index. Specifically, SWS-OGD maintains an average CPU time per update of
around 2 × 10−5 seconds, while RLS reaches up to 8 × 10−5 seconds at 4,096 blocks.
Anole Inter-Index remains the most efficient in terms of CPU time, with values con-
sistently below 1 × 10−5 seconds.

Fig. 5 Average CPU time for bitcoin workload

Fig. 6 Average CPU time for Ethereum workload

A storage‑efficient learned indexing for blockchain systems… Page 19 of 29

In terms of computational efficiency, SWS-OGD shows a balanced performance
in CPU time per update. Although Anole Inter-Index exhibits lower CPU times due
to its approach of creating new model parameters without constant training, this
comes at the cost of higher storage usage and increased complexity. SWS-OGD, on
the other hand, takes more CPU time per update because it refines predictions and
updates the same model parameters across the entire dataset, which involves fitting
the model continuously. This continuous fitting process, while more computation-
ally intensive, ensures that the model remains accurate and smaller as the blockchain
grows. For future work, exploring methods to optimize the computational efficiency
of SWS-OGD, such as parallelizing updates or introducing more efficient fitting
techniques could further enhance its applicability in large-scale blockchain systems.

For computational efficiency, results are reported for two representative datasets-
Bitcoin and Ethereum-because the outcomes remain consistent across datasets. The
efficiency of SWS-OGD is primarily influenced by its design and not by dataset-spe-
cific characteristics, as the computational load depends on the number of blocks and
updates rather than the inherent variability of the dataset. This consistency across
datasets validates the generalizability of the method.

For future work, exploring methods to optimize the computational efficiency of
SWS-OGD, such as parallelizing updates or introducing more efficient fitting tech-
niques could further enhance its applicability in large-scale blockchain systems.

4.3 Latency analysis

The latency comparison in Figs. 7, 8, 9, 10, and 11 highlights the performance of
SWS-OGD, Anole, and RLS across various checkpoints. The proposed SWS-OGD
method, represented by green bars, demonstrates a latency performance comparable

Fig. 7 Bitcoin latency comparison

E. A. Asiamah et al.Page 20 of 29

to Anole (red bars) while significantly reducing storage costs, as previously dis-
cussed. This observation validates SWS-OGD’s efficiency in achieving low latency
with minimal storage, positioning it as a viable alternative to Anole, particularly in
storage-constrained environments.

At early checkpoints (e.g., 256 and 512), SWS-OGD shows slightly higher
latency than Anole. This higher initial latency is attributed to the limited number of

Fig. 8 Ethereum latency comparison

Fig. 9 IoTeX latency comparison

A storage‑efficient learned indexing for blockchain systems… Page 21 of 29

entries in the model at these early stages, leading to an incomplete fit. As more data
becomes available and the model refines its predictions, SWS-OGD’s latency stabi-
lizes and becomes comparable to Anole, demonstrating its ability to adapt efficiently
as the dataset grows.

Anole exhibits an incremental rise in latency as the checkpoint index advances.
This increase can be attributed to Anole’s dynamic segmentation approach, where
additional segments may be created over time to maintain prediction accuracy,

Fig. 10 Litecoin latency comparison

Fig. 11 Dogecoin latency comparison

E. A. Asiamah et al.Page 22 of 29

inadvertently adding latency due to segment management overhead. This trend indi-
cates that Anole’s latency performance is sensitive to the complexity of the data-
set, especially as variability in block generation times increases with higher block
indices.

RLS consistently records the highest latency across all checkpoints. Its latency
remains elevated and even increases at later checkpoints. This can be attributed to
the recursive updates and covariance matrix adjustments, which add computational
overhead, making RLS the least suitable for real-time applications in blockchain
indexing.

Notably, SWS-OGD and Anole converge in latency at higher checkpoints (e.g.,
8192 and 13191), where both methods exhibit similarly low latency values. This
convergence suggests that SWS-OGD’s adaptive sliding window efficiently mini-
mizes latency as the model becomes more stable over time, aligning closely with
Anole’s performance but with the advantage of reduced storage requirements.

4.3.1 Impact of block interval variability on latency performance

The datasets used in this analysis-Bitcoin, Ethereum, Dogecoin, Litecoin, and
IoTeX-exhibit significant differences in block interval characteristics, as summa-
rized in Table 1. These interval statistics provide essential context for interpreting
the latency trends observed in the Latency Comparison. Variability in block gen-
eration times influences how the SWS-OGD, Anole, and RLS algorithms adapt and
respond, impacting their latency performance at different checkpoints.

The datasets exhibit a broad range of mean intervals and variabilities, with
Ethereum and IoTeX showing particularly high standard deviations (46916.22 s and
28714.89 s, respectively), which indicate extreme fluctuations in block generation
times. Conversely, Bitcoin and Dogecoin show relatively low variability, with stand-
ard deviations of 588.21 s and 76.68 s, respectively. This diversity in block interval
variability is crucial, as it presents different challenges for indexing algorithms that
rely on temporal consistency.

Despite these differences, SWS-OGD demonstrates effective latency performance
across all datasets. The algorithm’s ability to adapt its sliding window search dynam-
ically allows it to maintain low latency even when the underlying data distribution
exhibits high variability, as seen with Ethereum and IoTeX. By adjusting the search

Table 1 Block interval statistics for different datasets

Dataset Mean interval (s) Std dev (s) Min interval (s) Max interval (s)

Ethereum 388.82 46916.22 1 6566428
Bitcoin 588.76 588.21 0 6902
Dogecoin 69.12 76.68 0 712
Litecoin 263.42 603.12 0 15166
IoTeX 211.69 28714.89 5 4060805

A storage‑efficient learned indexing for blockchain systems… Page 23 of 29

range based on the initial prediction error, SWS-OGD compensates for unexpected
fluctuations in block intervals, ensuring that query response times remain consistent.

4.4 Success rate of sliding window search across datasets

The success rate of the sliding window search mechanism was evaluated across
multiple blockchain datasets, including Bitcoin, Ethereum, Dogecoin, Litecoin,
and IoTeX. Success rates were calculated for increasing search ranges, from 1 up to
when the rates hit hundred percent or close, and the results were plotted to observe
how the search range impacts accuracy.

The sliding window search range ws significantly affects the ability of the model
to locate the correct target within the specified search radius. As shown in Fig. 12,
there is a clear trend across datasets: as the search range ws increases, the suc-
cess rate improves. This is expected, as a larger ws allows the model to consider
a broader range of indices, thereby increasing the likelihood of finding the correct
target even if the initial prediction deviates. However, this improvement comes at
the cost of higher computational latency, as a larger window size requires additional
comparisons.

Although all datasets show an increase in success rate with larger ws , the rate
of improvement varies. For instance, Ethereum and IoTeX datasets achieve near-
complete success (100%) at relatively smaller search ranges compared to others.
This suggests that the underlying data distribution and volatility within each dataset
impact how effectively the sliding window can correct initial predictions. Data with
higher volatility or irregular patterns may require a larger search range to achieve a
similar success rate.

Fig. 12 Success rate of sliding window search across multiple datasets for varying search ranges

E. A. Asiamah et al.Page 24 of 29

Selecting an optimal window size is crucial for balancing accuracy and latency.
Smaller search ranges provide lower latency but can result in suboptimal accu-
racy, as seen with ranges below 5. Conversely, while larger ranges (approach-
ing 10 or more) ensure a high success rate, they incur a latency penalty. Thus,
an adaptive approach to setting ws , potentially based on error measurements dur-
ing training, may offer an efficient compromise for real-time applications, allow-
ing the search range to adjust dynamically based on workload characteristics and
observed accuracy.

4.4.1 Latency analysis: success vs. failure scenarios

The latency comparison in success vs. failure scenarios, shown in Fig. 13, pro-
vides insights into the system’s performance. The graph distinguishes between
Success Latency (green) and Failure Latency (red) across various percentiles
(25th, 50th, 75th, 90th, and 99th), allowing a direct comparison of the time
required in successful vs. unsuccessful search cases. This distinction reveals that
failures typically incur higher latency, particularly at higher percentiles, indicat-
ing that when the sliding window search does not correct predictions within the
specified range, the latency cost increases significantly.

Furthermore, this illustrates the worst-case performance (99th percentile) rela-
tive to typical cases (e.g., 50th percentile). Notably, the 99th percentile latency
for failure cases is substantially higher, highlighting potential latency spikes in
the most challenging scenarios. This observation is critical for understanding how
the system performs under varying conditions.

Fig. 13 Latency percentiles during success and failure scenarios for SWS-OGD

A storage‑efficient learned indexing for blockchain systems… Page 25 of 29

5 Conclusion

In this paper, a novel-learned indexing technique for blockchain querying was devel-
oped and evaluated. The results demonstrate that the proposed system offers a lower
storage cost and a balanced performance across other key metrics.

This paper contributes to the field of blockchain technology by addressing the
critical issue of storage efficiency in blockchain indexing. The learned indexing
model developed provides a scalable and adaptable solution, paving the way for
more efficient blockchain systems that can support a broader range of applications
and enhance widespread adoption.

Despite its advantages, the proposed system has some limitations. One significant
limitation is the CPU time required for updates, which can be further optimized.
Additionally, the current system primarily focuses on point and range queries.
Future work should explore optimizations for other queries, such as top-k queries,
semantic searches, and more complex querying semantics and also using neural net-
works to improve prediction accuracy, to refine the indexing process, enabling even
faster query responses. To ensure that such models remain practical for blockchain
systems with resource constraints, techniques for reducing the size of neural net-
works could be investigated.

Funding Not applicable.

Data Availability The data used in this research will be made available upon request.

Code availability The code used for the experiments will be made available upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Javaid M, Haleem A, Pratap Singh R, Khan S, Suman R (2021) Blockchain technology applications
for industry 4.0: a literature-based review. Blockchain Res Appl 2(4):100027

2. Gad AG, Mosa DT, Abualigah L, Abohany AA (2022) Emerging trends in blockchain technology
and applications: a review and outlook. J King Saud Univ Comput Inf Sci 34(9):6719–6742. https://
doi. org/ 10. 1016/j. jksuci. 2022. 03. 007

3. Ali V, Norman AA, Azzuhri SRB (2023) Characteristics of blockchain and its relationship with
trust. IEEE Access 11:15364–15374. https:// doi. org/ 10. 1109/ ACCESS. 2023. 32437 00

4. Wang J, Chen W, Wang L, Sherratt RS, Alfarraj O, Tolba A (2020) Data secure storage mechanism
of sensor networks based on blockchain. Comput Mater Continua 65(3):2365–2384

5. Sunny J, Undralla N, Madhusudanan Pillai V (2020) Supply chain transparency through blockchain-
based traceability: an overview with demonstration. Comput Ind Eng 150:106895. https:// doi. org/
10. 1016/j. cie. 2020. 106895

6. Zaabar B, Cheikhrouhou O, Jamil F, Ammi M, Abid M (2021) Healthblock: a secure blockchain-
based healthcare data management system. Comput Netw 200:108500. https:// doi. org/ 10. 1016/j.
comnet. 2021. 108500

https://doi.org/10.1016/j.jksuci.2022.03.007
https://doi.org/10.1016/j.jksuci.2022.03.007
https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1016/j.cie.2020.106895
https://doi.org/10.1016/j.cie.2020.106895
https://doi.org/10.1016/j.comnet.2021.108500
https://doi.org/10.1016/j.comnet.2021.108500

E. A. Asiamah et al.Page 26 of 29

7. Hewa TM, Hu Y, Liyanage M, Kanhare SS (2021) Ylianttila M survey on blockchain-based smart
contracts: technical aspects and future research. IEEE Access 9:87643–87662. https:// doi. org/ 10.
1109/ ACCESS. 2021. 30681 78

8. Ameyaw PD, Vries WT (2021) Toward smart land management: land acquisition and the associated
challenges in ghana a look into a blockchain digital land registry for prospects. Land. https:// doi. org/
10. 3390/ land1 00302 39

9. Musah S, Medeni TD, Soylu D (2019) Assessment of role of innovative technology through block-
chain technology in ghana’s cocoa beans food supply chains. In: 2019 3rd International Symposium
on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–12. https:// doi. org/ 10.
1109/ ISMSIT. 2019. 89329 36

 10. Gyimah KN, Asiedu E, Antwi F (2023) Adoption of blockchain technology in the banking sector of
ghana: opportunities and challenges. Afr J Bus Manage 17(2):32–42

 11. Akrasi-Mensah NK, Tchao ET, Sikora A, Agbemenu AS, Nunoo-Mensah H, Ahmed A-R, Welte D,
Keelson E (2022) An overview of technologies for improving storage efficiency in blockchain-based
iiot applications. Electronics. https:// doi. org/ 10. 3390/ elect ronic s1116 2513

 12. XiaoJu H, XueQing G, ZhiGang H, LiMei Z, Kun G (2020) Ebtree: A b-plus tree based index for
ethereum blockchain data. In: Proceedings of the 2020 Asia Service Sciences and Software Engi-
neering Conference. ASSE ’20, pp. 83–90. Association for Computing Machinery, New York, NY,
USA https:// doi. org/ 10. 1145/ 33998 71. 33998 92

 13. Jia D-Y, Xin J-C, Wang Z-Q, Lei H, Wang G-R (2021) Se-chain: a scalable storage and efficient
retrieval model for blockchain. J Comput Sci Technol 36(3):693–706. https:// doi. org/ 10. 1007/
s11390- 020- 0158-2

 14. Zhu Y, Zhang Z, Jin C, Zhou A, Yan Y (2019) Sebdb: semantics empowered blockchain database.
In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831 https://
doi. org/ 10. 1109/ ICDE. 2019. 00198

 15. Bitcoin blockchain size. https:// ychar ts. com/ indic ators/ bitco in_ block chain_ size
 16. Li Y, Zheng K, Yan Y, Liu Q, Zhou X (2017) Etherql: A query layer for blockchain system. In: Can-

dan S, Chen L, Pedersen TB, Chang L, Hua W (eds) Database Systems for Advanced Applications.
Springer, Cham, pp 556–567

 17. Zhang Z, Zhong Y, Yu X (2021) Blockchain storage middleware based on external database. In:
2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), pp.
1301–1304 https:// doi. org/ 10. 1109/ ICSP5 1882. 2021. 94087 52

 18. Pratama, F.A., Mutijarsa, K.: Query support for data processing and analysis on ethereum block-
chain. In: 2018 International Symposium on Electronics and Smart Devices (ISESD), pp. 1–5
(2018). https:// doi. org/ 10. 1109/ ISESD. 2018. 86054 76

 19. Laishevskiy I, Barger A, Gorgadze V (2023) A journey towards the most efficient state database
for hyperledger fabric. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pp. 1–3 https:// doi. org/ 10. 1109/ ICBC5 6567. 2023. 10174 970

 20. Bragagnolo S, Marra M, Polito G, Gonzalez Boix E (2019) Towards scalable blockchain analysis.
In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pp. 1–7 https:// doi. org/ 10. 1109/ WETSEB. 2019. 00007

 21. El-Hindi M, Binnig C, Arasu A, Kossmann D, Ramamurthy R (2019) Blockchaindb: a shared data-
base on blockchains. Proc VLDB Endow 12(11):1597–1609. https:// doi. org/ 10. 14778/ 33422 63.
33426 36

 22. Helmer S, Roggia M, Ioini NE, Pahl C (2018) Ethernitydb - integrating database functionality into
a blockchain. In: Benczúr A, Thalheim B, Horváth T, Chiusano S, Cerquitelli T, Sidló C, Revesz PZ
(eds) New trends in databases and information systems. Springer, Cham, pp 37–44

 23. Sahoo MS, Baruah PK (2018) Hbasechaindb - a scalable blockchain framework on hadoop ecosys-
tem. In: Yokota R, Wu W (eds) Supercomputing frontiers. Springer, Cham, pp 18–29

 24. Abuhashim A, Tan CC (2020) Smart contract designs on blockchain applications. In: 2020 IEEE
Symposium on Computers and Communications (ISCC), pp. 1–4 https:// doi. org/ 10. 1109/ ISCC5
0000. 2020. 92196 22

 25. Thabet NA, Abdelbaki N (2021) Efficient quering blockchain applications. In: 2021 3rd Novel Intel-
ligent and Leading Emerging Sciences Conference (NILES), pp. 365–369 https:// doi. org/ 10. 1109/
NILES 53778. 2021. 96005 33

 26. Gürsoy G, Brannon CM, Gerstein M (2020) Using ethereum blockchain to store and query phar-
macogenomics data via smart contracts. BMC Med Genomics 13(1):74. https:// doi. org/ 10. 1186/
s12920- 020- 00732-x

https://doi.org/10.1109/ACCESS.2021.3068178
https://doi.org/10.1109/ACCESS.2021.3068178
https://doi.org/10.3390/land10030239
https://doi.org/10.3390/land10030239
https://doi.org/10.1109/ISMSIT.2019.8932936
https://doi.org/10.1109/ISMSIT.2019.8932936
https://doi.org/10.3390/electronics11162513
https://doi.org/10.1145/3399871.3399892
https://doi.org/10.1007/s11390-020-0158-2
https://doi.org/10.1007/s11390-020-0158-2
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1109/ICDE.2019.00198
https://ycharts.com/indicators/bitcoin_blockchain_size
https://doi.org/10.1109/ICSP51882.2021.9408752
https://doi.org/10.1109/ISESD.2018.8605476
https://doi.org/10.1109/ICBC56567.2023.10174970
https://doi.org/10.1109/WETSEB.2019.00007
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.1109/ISCC50000.2020.9219622
https://doi.org/10.1109/ISCC50000.2020.9219622
https://doi.org/10.1109/NILES53778.2021.9600533
https://doi.org/10.1109/NILES53778.2021.9600533
https://doi.org/10.1186/s12920-020-00732-x
https://doi.org/10.1186/s12920-020-00732-x

A storage‑efficient learned indexing for blockchain systems… Page 27 of 29

 27. Chishti MS, Sufyan F, Banerjee A (2022) Decentralized on-chain data access via smart contracts
in ethereum blockchain. IEEE Trans Netw Serv Manage 19(1):174–187. https:// doi. org/ 10. 1109/
TNSM. 2021. 31209 12

 28. Han J, Seo Y, Lee S, Kim S, Son Y (2023) Design and implementation of enabling sql –query
processing for ethereum-based blockchain systems. Electronics. https:// doi. org/ 10. 3390/ elect ronic
s1220 4317

 29. Mardiansyah V, Muis A, Sari RF (2023) Multi-state merkle patricia trie (msmpt): high-perfor-
mance data structures for multi-query processing based on lightweight blockchain. IEEE Access
11:117282–117296. https:// doi. org/ 10. 1109/ ACCESS. 2023. 33257 48

 30. Huang T-L, Huang J (2022) An efficient storage structure and management for distributed ledgers
in blockchain systems: an exploration based on purely theoretical approach. IEEE Trans Netw Serv
Manage 19(4):3706–3723. https:// doi. org/ 10. 1109/ TNSM. 2022. 31952 46

 31. Liu M, Wang H, Yang F (2021) An efficient data query method of blockchain based on index. In:
2021 7th International Conference on Computer and Communications (ICCC), pp. 1539–1544
https:// doi. org/ 10. 1109/ ICCC5 4389. 2021. 96747 08

 32. Du P, Liu Y, Li Y, Yin H, Zhang L (2021) Etherh: A hybrid index to support blockchain data query.
In: Proceedings of the ACM Turing Award Celebration Conference - China. ACM TURC ’21, pp.
72–76. Association for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/ 34726
34. 34726 53

 33. Zeng L, Qiu W, Wang X, Wang H, Yao Y, Yu Z (2021) Transaction-based static indexing method
to improve the efficiency of query on the blockchain. In: 2021 IEEE International Conference on
Artificial Intelligence and Computer Applications (ICAICA), pp. 780–784 https:// doi. org/ 10. 1109/
ICAIC A52286. 2021. 94979 66

 34. Wan L (2021) A query optimization method of blockchain electronic transaction based on group
account. In: Atiquzzaman M, Yen N, Xu Z (eds) Big data analytics for cyber-physical system in
smart city. Springer, Singapore, pp 1358–1364

 35. Pei Q, Zhou E, Xiao Y, Zhang D, Zhao D (2020) An efficient query scheme for hybrid storage
blockchains based on merkle semantic trie. In: 2020 International Symposium on Reliable Distrib-
uted Systems (SRDS), pp. 51–60 https:// doi. org/ 10. 1109/ SRDS5 1746. 2020. 00013

 36. Ruan P, Dinh TTA, Lin Q, Zhang M, Chen G, Ooi BC (2021) Lineagechain: a fine-grained, secure
and efficient data provenance system for blockchains. VLDB J 30(1):3–24. https:// doi. org/ 10. 1007/
s00778- 020- 00646-1

 37. Zhu Y, Zhang Z, Jin C, Zhou A, Yan Y (2019) Sebdb: Semantics empowered blockchain database.
In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831 https://
doi. org/ 10. 1109/ ICDE. 2019. 00198

 38. Xing X, Chen Y, Li T, Xin Y, Sun H (2021) A blockchain index structure based on subchain query. J
Cloud Comput 10(1):52. https:// doi. org/ 10. 1186/ s13677- 021- 00268-0

 39. Xu C, Zhang C, Xu J (2019) vchain: Enabling verifiable boolean range queries over blockchain data-
bases. In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD ’19,
pp. 141–158. Association for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/
32998 69. 33000 83

 40. Hao K, Xin J, Wang Z, Yao Z, Wang G (2022) On efficient top-k transaction path query processing
in blockchain database. Data Knowl Eng 141:102079. https:// doi. org/ 10. 1016/j. datak. 2022. 102079

 41. Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N (2018) The case for learned index structures. In:
Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18, pp. 489–
504. Association for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/ 31837 13.
31969 09

 42. Ding J, Minhas UF, Yu J, Wang C, Do J, Li Y, Zhang H, Chandramouli B, Gehrke J, Kossmann
D, Lomet D, Kraska T (2020) Alex: An updatable adaptive learned index. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. SIGMOD ’20, pp. 969–
984. Association for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/ 33184 64.
33897 11

 43. Ge J, Zhang H, Shi B, Luo Y, Guo Y, Chai Y, Chen Y, Pan A (2023) Sali: a scalable adaptive
learned index framework based on probability models. Proc ACM Manag Data. https:// doi. org/ 10.
1145/ 36267 52

 44. Zhang C, Xu C, Hu H, Xu J (2024) Cole: A column-based learned storage for blockchain systems
(technical report)

https://doi.org/10.1109/TNSM.2021.3120912
https://doi.org/10.1109/TNSM.2021.3120912
https://doi.org/10.3390/electronics12204317
https://doi.org/10.3390/electronics12204317
https://doi.org/10.1109/ACCESS.2023.3325748
https://doi.org/10.1109/TNSM.2022.3195246
https://doi.org/10.1109/ICCC54389.2021.9674708
https://doi.org/10.1145/3472634.3472653
https://doi.org/10.1145/3472634.3472653
https://doi.org/10.1109/ICAICA52286.2021.9497966
https://doi.org/10.1109/ICAICA52286.2021.9497966
https://doi.org/10.1109/SRDS51746.2020.00013
https://doi.org/10.1007/s00778-020-00646-1
https://doi.org/10.1007/s00778-020-00646-1
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1109/ICDE.2019.00198
https://doi.org/10.1186/s13677-021-00268-0
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1016/j.datak.2022.102079
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3626752
https://doi.org/10.1145/3626752

E. A. Asiamah et al.Page 28 of 29

 45. Yao Z, Xin J, Hao K, Wang Z, Zhu W (2023) Learned-index-based semantic keyword query on
blockchain. Mathematics. https:// doi. org/ 10. 3390/ math1 10920 55

 46. Chang J, Li B, Xiao J, Lin L, Jin H (2023) Anole: a lightweight and verifiable learned-based index
for time range query on blockchain systems. In: Wang X, Sapino ML, Han W-S, El Abbadi A, Dob-
bie G, Feng Z, Shao Y, Yin H (eds) Database systems for advanced applications. Springer, Cham,
pp 519–534

 47. Hoi SCH, Sahoo D, Lu J, Zhao P (2021) Online learning: a comprehensive survey. Neurocomputing
459:249–289. https:// doi. org/ 10. 1016/j. neucom. 2021. 04. 112

 48. Zhang J, Sun Y, Guo D, Luo L, Li L, Nian Q, Zhu S, Yang F (2024) A reputation awareness ran-
domization consensus mechanism in blockchain systems. IEEE Internet Things J 11(20):32745–
32758. https:// doi. org/ 10. 1109/ JIOT. 2024. 34088 46

 49. Hoi SCH, Sahoo D, Lu J, Zhao P (2021) Online learning: a comprehensive survey. Neurocomputing
459:249–289. https:// doi. org/ 10. 1016/j. neucom. 2021. 04. 112

Authors and Affiliations

Emmanuel Acheampong Asiamah1,2 · Nana Kwadwo Akrasi‑Mensah1,2 ·
Prince Odame1,2 · Eliel Keelson1,2 · Andrew Selasi Agbemenu1,2 ·
Eric Tutu Tchao1,2 · Mohammed Al‑Khalidi3 · Griffith Selorm Klogo1,2

 * Emmanuel Acheampong Asiamah
eaasiamah4@st.knust.edu.gh

Nana Kwadwo Akrasi-Mensah
nkakrasimensah3@st.knust.edu.gh

Prince Odame
podame.coe@knust.edu.gh

Eliel Keelson
ekeelson@knust.edu.gh

Andrew Selasi Agbemenu
asagbemenu@knust.edu.gh

Eric Tutu Tchao
ettchao.coe@knust.edu.gh

Mohammed Al-Khalidi
m.al-khalidi@mmu.ac.uk

Griffith Selorm Klogo
 gsklogo.coe@knust.edu.gh

1 Distributed IoT Platforms, Privacy and Edge-Intelligence Research (DIPPER) Laboratory,
Faculty of Electrical and Computer Engineering, Kwame Nkrumah University of Science
and Technology, PMB, Kumasi, Ashanti, Ghana

2 Department of Computer Engineering, Kwame Nkrumah University of Science and Technology,
PMB, Kumasi, Ashanti, Ghana

3 Department of Computing and Mathematics, Manchester Metropolitan University,
Manchester M15 6BH, UK

https://doi.org/10.3390/math11092055
https://doi.org/10.1016/j.neucom.2021.04.112
https://doi.org/10.1109/JIOT.2024.3408846
https://doi.org/10.1016/j.neucom.2021.04.112

	A storage-efficient learned indexing for€blockchain systems using a€sliding window search enhanced online gradient descent
	Abstract
	1 Introduction
	2 Related works
	2.1 External database integration
	2.2 Smart contract querying
	2.3 Data structure modification
	2.4 On-chain indexing
	2.5 Learned indexes
	2.6 Learned indexes in€blockchain

	3 System overview
	3.1 System components
	3.2 Proposed inter-block indexing algorithm
	3.2.1 Problem formulation and€objective
	3.2.2 Online gradient descent (OGD)
	3.2.3 Assumptions
	3.2.4 Sliding window prediction mechanism

	3.3 Intra-block learned index adoption
	3.4 Query process overview
	3.5 Implementation
	3.6 Evaluation

	4 Results and€discussion
	4.1 Storage cost results
	4.2 Average CPU time per€update results
	4.3 Latency analysis
	4.3.1 Impact of€block interval variability on€latency performance

	4.4 Success rate of€sliding window search across€datasets
	4.4.1 Latency analysis: success vs. failure scenarios

	5 Conclusion
	References

