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Abstract
With its promise of transparency, security, and decentralization, blockchain 
technol-ogy faces significant challenges related to data storage and query 
efficiency. Current indexing methods, which often rely on structures like Merkle 
trees and Patricia tries, contribute to excessive storage overhead and slower query 
responses, particularly for full nodes that maintain a complete copy of the 
blockchain. To address this, we introduce a novel-learned indexing approach for 
blockchain that utilizes a layered structure with a sliding window search 
enhanced Online Gradient Descent (SWS-OGD) as the inter-block index. The 
method was implemented across five distinct blockchain environments—Bitcoin, 
Ethereum, Dogecoin, Litecoin, and IoTeX. Experimental results demonstrate 
that the proposed method reduces storage costs by up to 99% compared to state-
of-the-art approaches, requiring as little as 0.9 KB for 20,000 blocks-a substantial 
improvement over existing methods. Despite the sig-nificant reduction in storage 
costs, the SWS-OGD method maintains comparable performance in other key 
metrics, such as query latency. These results ensure that blockchain systems can 
handle large-scale data queries efficiently, maintaining high performance even as 
the blockchain grows in size.

Keywords Blockchain · Learned index · Online learning · Querying

1 Introduction

Blockchain technology has revolutionized the landscape of digital 
transactions and data management, providing unprecedented levels of 
transparency, security, and decentralization [1]. Originating as the underlying 
technology for Bitcoin, blockchains are now applied in a wide array of sectors 
beyond cryptocurrencies. 
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The fundamental structure of a blockchain is a distributed ledger where trans-
actions are securely linked in blocks, ensuring data integrity and immutability 
through cryptographic principles [2]

Blockchain’s importance lies in its ability to provide a reliable and tamper-
proof record of transactions without a central authority. This decentralized nature 
means no single entity controls the entire system [3]. Blockchain technology also 
secures sensitive data in sensor networks, as demonstrated by solutions leverag-
ing cryptographic accumulators for secure data storage [4], thereby protecting IoT 
infrastructure from potential vulnerabilities. This has enabled the use of trans-
parent supply chains in which every product’s journey can be tracked from ori-
gin to consumer [5], and healthcare records are securely shared among author-
ized parties without the risk of unauthorized access or alteration [6]. Blockchain 
also facilitates new business models and efficiencies by enabling smart contracts, 
which are self-executing contracts with the terms directly written into code, 
automating and enforcing agreements without intermediaries [7]. In developing 
countries, blockchain could address key issues such as reducing land disputes by 
providing an immutable record of land ownership, enabling efficient tracking of 
disease spread and secure sharing of medical records in public health crises, and 
combating corruption through enhanced transparency and accountability [8–10].

Despite the tremendous potential blockchain has in revolutionizing society 
positively, one of the challenges to the widespread adoption of blockchain is 
the significant storage requirements. Since blockchain data cannot be altered or 
deleted, every transaction is permanently recorded, leading to an ever-increasing 
volume of data that every node in the network must store. This growing storage 
demand can quickly become burdensome, particularly for full nodes that must 
maintain a complete copy of the blockchain. As the size of the blockchain grows, 
so do the costs and complexities associated with storing and managing this data 
[11]. This challenge highlights the need for solutions that can optimize storage 
efficiency without compromising the integrity and security of the blockchain. 
Addressing these storage challenges is crucial for enabling the broader adoption 
of blockchain technology, ensuring it remains scalable and sustainable as it con-
tinues to evolve and expand its applications across various sectors.

Traditional indexing structures, such as B-trees [12] and Merkle Patricia 
Tries (MPT) [13], which are often employed to aid efficient querying, exacer-
bate these storage challenges. While effective for smaller-scale applications, 
these data structures exhibit linear growth in storage complexity, often approxi-
mated by O(N ×M) , where N is the number of nodes and M is the size of each 
node. In rapidly growing blockchain systems with millions of blocks, this lin-
ear growth becomes unsustainable. The ever-expanding storage requirements not 
only increase costs but also hinder efficient query performance, leading to higher 
latency and straining computational resources. Furthermore, the continuous addi-
tion of new data in blockchain environments necessitates frequent index updates, 
which incur additional computational and memory overhead [14]. Addressing 
these inherent inefficiencies in traditional indexing methods is critical to unlock-
ing the full potential of blockchain technology and ensuring its scalability across 
diverse applications.
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These scalability issues are particularly pressing given the rate at which 
blockchain sizes are growing. For instance, by 2014, the Bitcoin blockchain had 
reached 20 GB, containing around 15,846 blocks with an average block size of 
1.3 MB. By July 2024, this blockchain had grown to exceed 580 GB, equating 
to approximately 417,477 blocks [15]. Projecting forward, it is estimated that 
by 2034, the Bitcoin blockchain could expand to 1040 GiB (or about 806,597 
blocks) and further to 1550 GiB (around 1,219,231 blocks) by 2044. These pro-
jections underscore the urgent need for novel approaches to indexing that can effi-
ciently manage the exponential growth of blockchain data.

However, current indexing methods fall short of meeting this challenge. 
While they aim to enhance query performance, they come with excessive stor-
age demands, rendering them impractical for large-scale systems. Addressing 
this gap, we propose a novel indexing approach that minimizes storage costs 
while maintaining comparable query latency to existing state-of-the-art indexing 
methods.

The following is a summary of the main contributions of this paper: 

1. This research introduces a novel learned indexing approach for blockchain index-
ing that utilizes a layered structure with a Sliding Window Search-enhanced
Online Gradient Descent (SWS-OGD). This method focuses on optimizing the
inter-block indexing process to efficiently map timestamps to block heights, sig-
nificantly improving the efficiency of blockchain data retrieval.

2. The proposed learned index method significantly reduces the storage requirements
for blockchain systems. By minimizing the index size, the method addresses one
of the critical challenges in blockchain technology—high storage overhead. This
reduction in storage consumption is crucial for the scalability and efficiency of
blockchain applications.

3. Besides the reduced storage requirements, the proposed method maintains com-
parable performance in key metrics such as query latency. This balance between
storage efficiency and query performance ensures that the blockchain system
remains both scalable and efficient, providing fast and reliable data retrieval.

4. The proposed method was rigorously evaluated against state-of-the-art learned
indexes in a blockchain environment. Experimental results demonstrate that the
proposed method significantly outperforms existing methods in terms of storage
cost while maintaining or enhancing query efficiency. This validation underscores
the practical applicability and effectiveness of the learned index approach in real-
world blockchain systems.

The remaining sections are organized as follows: Section II reviews related work 
on blockchain indexing and querying techniques, highlighting advancements, 
limitations, and the evolution of methodologies used by other researchers in the 
field. Section III outlines the detailed methodology for developing and imple-
menting the proposed solution. Section IV presents the results and discussions. 
Section VI summarizes the key findings of the research and offers recommenda-
tions for future work.
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2  Related works

Efficient querying in blockchain systems has been approached through various 
schemes, which can be categorized into four primary schemes: External Database 
Integration, On-chain Indexing, Smart Contract Querying, and Data Structure 
Modification.

2.1  External database integration

This scheme involves connecting blockchain systems with external databases to 
enhance query capabilities by leveraging advanced database functionalities. Mid-
dleware approaches use integrations with external databases such as MongoDB and 
ForkBase, enabling support for complex queries like range and top-k queries, thus 
significantly improving performance [16–19]. Other strategies apply big data tech-
niques, such as Map/Reduce, to enable efficient data extraction and analysis [20].

Further, Blockchain Database approaches adapt database architecture to block-
chain principles. For example, BlockchainDB employs shared tables and data shard-
ing [21], EthernityDB integrates a lightweight database with Ethereum using BSON 
for efficient storage [22], and HBasechainDB leverages the Hadoop ecosystem to 
enhance data storage and retrieval [23].

While these methods improve querying capabilities, they often introduce 
increased storage requirements and system complexity. These approaches generally 
involve redundant data storage across both the blockchain and external databases; 
BlockchainDB and HBasechainDB, for instance, require additional distributed data 
structures and sharding, further inflating storage overhead.

2.2  Smart contract querying

Alternative approaches to enhance data retrieval have been implemented in specific 
blockchain applications, including ride-sharing, pharmacogenomics, and SQL query 
processing. These methods integrate smart contracts with data structures like the 
Merkle Patricia Trie and employ upgradable contracts to support evolving require-
ments [24–28]. While these solutions improve data accessibility and flexibility, they 
also impose additional storage demands, as each instance or update of a smart con-
tract is permanently recorded on the blockchain. The use of complex structures, such 
as the Merkle Patricia Trie, combined with the need to store multiple contract ver-
sions for future upgrades, further increases both storage consumption and computa-
tional complexity, creating scalability challenges for blockchain systems.

2.3  Data structure modification

Data Structure Modification involves altering the fundamental data structures of the 
blockchain to facilitate faster information retrieval. Proposed modifications include 
the Multi-State Merkle Patricia Trie (MSMPT), which enhances key-based searches 
with linked-list storage [29], the integration of height-balanced Binary Search Trees 
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with Threaded Binary Search Trees for faster searches [30], and restructuring blocks 
into index and data layers using Abstract-Trie and Operation-Record List [31]. 
While these modifications enhance query efficiency, they typically result in higher 
storage demands due to additional indexing layers and metadata structures.

2.4  On‑chain indexing

On-chain indexing refers to creating and maintaining indexing structures within 
the blockchain itself to enhance the efficiency of data retrieval processes. Unlike 
external database solutions, on-chain indexes store data structures directly on the 
blockchain, thus preserving the decentralized nature of blockchain systems. These 
indexing structures aim to improve the speed of point and range queries-critical for 
applications like transaction validation, smart contract execution, and historical data 
retrieval.

These indexing structures significantly reduce search complexity in retrieving 
data from large and growing blockchain ledgers. For example, an index can elimi-
nate the need to sequentially traverse the entire blockchain to locate a specific trans-
action or set of blocks, thus improving the efficiency and speed of queries.

Various techniques have been proposed in this domain, each tailored to differ-
ent aspects of blockchain querying. Hybrid index systems, for example, combine 
B-trees and Skip-lists to improve access times by balancing tree depth and node tra-
versal paths [32]. Some methods embed index data within individual transactions to
enable faster data lookup, essentially coupling data and index at the transaction level
[33].

Advanced structures like the Group Merkle Patricia Tree (GMPT) [34] cluster 
blockchain accounts using Merkle Patricia Trees combined with K-Means clustering 
to optimize query efficiency by reducing verification time. Similarly, the Adaptive 
Balanced Merkle (AB-M) Tree [13] enhances storage scalability and query speed 
by combining rapid retrieval and data verification mechanisms. The Authenticated 
Layered Index (ALI) [35] employs a hybrid on-chain and off-chain model to support 
efficient queries for lightweight clients. The EBTree structure [12] uses a hierarchi-
cal metadata-based design to facilitate efficient traversal and querying in Ethereum. 
The Deterministic Append-only Skip List (DASL) [36] integrates Merkle DAG 
structures to improve provenance query efficiency while maintaining minimal runt-
ime overhead.

The Merkle Semantic Trie (MST) [37] introduces real-time querying capabilities, 
supporting complex query types such as semantic and range queries without alter-
ing the underlying blockchain database. The Subchain-based Account Transaction 
Chain (SCATC) [38] divides account transaction histories into smaller, hash-linked 
subchains to improve query performance for accounts with extensive histories. The 
vChain [39] utilizes a Sliding Window Accumulator (SWA) within an authenti-
cated data structure to enhance dynamic query efficiency, particularly for large-scale 
implementations. Finally, BCTkPQ [40] employs a Blockchain Transaction Graph 
(BTG) with collaborative query parsing and execution to efficiently handle first-‘k‘ 
query paths with high accuracy.
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While traditional on-chain indexing techniques can enhance query performance, 
they often impose substantial storage costs due to the need to maintain complex data 
structures and metadata on the blockchain. This storage overhead scales with the 
number of transactions or blocks, ultimately impacting blockchain scalability and 
sustainability. These limitations underline the necessity for alternative approaches 
that achieve high query efficiency without the excessive storage demands character-
istic of on-chain indexing.

2.5  Learned indexes

Learned indexes represent a promising alternative by employing machine learning 
models to predict data locations within the blockchain. Unlike traditional on-chain 
indexing, which stores metadata and extensive structures directly on-chain, learned 
indexes leverage predictive modeling, allowing for efficient data access with mini-
mal storage requirements.

The concept of learned indexes, introduced by Kraska et al. [41], proposes replac-
ing traditional index structures with machine learning models that can learn and 
exploit data distributions. By doing so, learned indexes can significantly improve 
query performance and storage efficiency. Learned indexes can significantly reduce 
the memory footprint compared to traditional indexes. For example, by modeling 
the data’s cumulative distribution function (CDF), a learned index can store the 
mapping information more compactly.

Since their inception, learned indexes have sparked significant research interest, 
leading to various improvements and adaptations. A notable advancement in this 
domain is presented by Ding et  al. [42]. ALEX addresses the limitations of static 
learned indexes by introducing an adaptive layout that efficiently handles dynamic 
updates such as inserts, deletes, and updates. This approach ensures the index 
remains efficient even as the data distribution changes over time. Experimental 
results show that ALEX achieves up to 4.1× higher throughput and up to 2000× 
smaller index size than B+Trees. It also outperforms the original learned index in 
read-only scenarios while maintaining a smaller index size.

Ge et al. [43] presented SALI, which incorporates adaptive strategies to handle 
various workload skews, enhancing concurrency performance. SALI incorporates 
adaptive strategies to handle multiple workload skews, enhancing concurrency 
performance. The experimental results showcased that SALI improved insertion 
throughput by an average of 2.04× with 64 threads compared to the second-best 
learned index, ALEX+.

2.6  Learned indexes in blockchain

In the context of blockchain, learned indexes have been explored to address the 
unique challenges of blockchain’s immutable and append-only nature. Zhang 
et  al. [44] introduced COLE, a column-based learned storage for blockchain 
systems, which leverages learned models to index historical state values effi-
ciently. COLE addresses the high storage costs and ensures data integrity through 
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a combination of column-based design and learned indexes optimized for disk 
environments. While COLE offers substantial storage size reductions and query 
performance improvements compared to traditional indexing methods like Mer-
kle Patricia Trie (MPT), its focus is primarily on provenance queries, which lim-
its its applicability to more common and critical query types like point and range 
queries.

Another significant work is by Yao et  al [45], who proposed a learned-index-
based semantic keyword query architecture for blockchain. This architecture records 
data semantics information to support efficient semantic keyword queries, estab-
lishing a lookup table index for semantic information among blocks and a block-
level recursive model index to improve query efficiency. By storing the lookup 
table in extended block headers and maintaining recursive model indexes off-chain, 
the proposed system enhances query performance while ensuring the complete-
ness and correctness of query results. The experimental results show that combin-
ing the lookup table and the learned index effectively improves query efficiency on 
the blockchain, demonstrating substantial improvements in query speed and storage 
efficiency. However, this approach is specifically tailored for semantic queries and 
does not address the challenges associated with optimizing point and range queries, 
which are vital for most blockchain applications.

In the recent study presented by Chang et al. [46], the authors propose a novel 
approach to indexing in blockchain systems named Anole. This approach leverages 
learned indexes to optimize point and time-range queries, significantly improving 
performance and storage efficiency compared to traditional methods.

Anole employs a dynamic piecewise linear regression approach, which fits well 
within the online learning framework. Online learning is a framework for designing 
and analyzing algorithms that build predictive models by processing data sequen-
tially. This approach is particularly efficient for large datasets, as it updates models 
incrementally with each new data point rather than retraining from scratch with the 
entire dataset [47].

While Anole reduces storage overhead compared to traditional methods, its use 
of dynamic piecewise regression in the learned inter-block index still requires con-
siderable storage to maintain the parameters of the linear functions. Our approach 
distinguishes itself by employing SWS-OGD, which does not require segment-based 
model storage, thereby reducing the storage cost significantly while maintaining 
comparable performance in query latency and accuracy (Figure 1).

3  System overview

This section provides an overview of the system architecture for the proposed 
learned index for blockchain systems. The system consists of full nodes, each main-
taining a layered learned index to efficiently manage and retrieve blockchain data. 
Our proposed solution is designed to be compatible with various blockchain consen-
sus algorithms, including innovative mechanisms like Reputation Awareness Rand-
omization Consensus [48].
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3.1  System components

The system architecture comprises these key components, as can be seen in 
Fig. 1: 

1. Full nodes: Full nodes are crucial components of the blockchain network,
maintaining a complete copy of the blockchain ledger. They are responsible for
validating and relaying transactions to ensure the integrity and security of the
blockchain. Full nodes store block headers and transaction data, processing query
requests and managing data updates. Full nodes in the system utilize the pro-
posed layered learned index without additional indexing schemes. All queries are
executed on the full nodes, leveraging the blockchain’s inherent security measures
for user connections, which are assumed to be in place.

2. Layered learned index: This index structure is designed to optimize point and
range queries using a hierarchical model. The top layer handles inter-block index-
ing, which identifies the relevant blocks for a query. The lower layer manages
intra-block indexing within those identified blocks, ensuring that both indexes
work together seamlessly to provide efficient and precise data retrieval.

• Inter-block indexing: Focuses on relationships and data distribution
across blocks within the blockchain. This type of indexing is used to
quickly locate which blocks contain the data relevant to a query, signifi-
cantly narrowing down the search space before performing a more detailed
search within the blocks.

• Intra-block indexing: Focuses on the data within individual blocks. Once
the inter-block index identifies the relevant blocks, the intra-block index
helps locate the exact data points within those blocks.

Fig. 1  System overview of the proposed learned index architecture
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3. Clients (Users): Clients, also called users, interact with the blockchain system by
submitting queries to full nodes. They are integral to the system as they initiate
the data retrieval process.

3.2  Proposed inter‑block indexing algorithm

3.2.1  Problem formulation and objective

The inter-block index is designed to efficiently map timestamps to block heights, 
enabling quick and accurate queries in a blockchain system. This section formulates 
the problem and sets the objective for the inter-block indexing algorithm.

Problem formulation: Consider a sequence of data points {(xi, yi)}Ni=1 , where:

• xi : the normalized timestamp representing the time at which a transaction
occurred, scaled to a uniform range.

• yi : the corresponding block height, representing the position of the block in the
blockchain.

The challenge is to build an index that accurately predicts the block height yi for a 
given timestamp xi with high efficiency.

Objective: The objective is to minimize the prediction error across all data 
points, aiming to accurately predict yi given a timestamp xi . A linear prediction 
function f (w;xi) = xT

i
w is defined, where:

• w : the parameter vector that defines the prediction model.

The goal is to find the optimal parameter vector w that minimizes the cumulative 
prediction error over all data points. This is done by minimizing the sum of squared 
errors between the actual and predicted block heights. Let L(w, xi, yi) be the loss 
function, defined as the squared error between yi and xT

i
w:

This objective ensures that the predicted block heights are as close as possible to 
the actual block heights, improving the accuracy of the inter-block index in map-
ping timestamps to block heights. The Online Gradient Descent (OGD) algorithm, 
enhanced with a sliding window search, is proposed to solve this optimization 
problem.

3.2.2  Online gradient descent (OGD)

Online Gradient Descent (OGD) is specifically tailored to address sequential learn-
ing problems, where data points arrive one at a time, and the model must be updated 
in real-time without reprocessing the entire dataset [49]. This characteristic makes it 

(1)min
w

N∑

i=1

L(w, xi, yi) = min
w

N∑

i=1

(yi − xT
i
w)2
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particularly suitable for blockchain systems, which generate new blocks sequentially 
over time.

Unlike traditional batch gradient descent, which processes the entire dataset at 
once to compute the gradient and update the model parameters, OGD updates the 
model incrementally with each new data point as shown in Fig. 2.

To minimize the objective function, Online Gradient Descent computes the gra-
dient of the loss function with respect to the model parameters w . This gradient 
indicates the adjustment needed to reduce the difference between the predicted and 
actual block heights. The gradient of the loss function L(w, xi, yi) with respect to w 
is:

where:

• ∇wL(w, xi, yi) : the gradient of the loss function with respect to the parameter vec-
tor w.

• −2xi : the partial derivative of the squared error term with respect to w.
• yi − xT

i
w : the error term representing the difference between the actual block 

height yi and the predicted block height xT
i
w.

Update rule: The update rule in OGD adjusts the model parameters iteratively to 
reduce the loss function value:

where:

(2)∇wL(w, xi, yi) = −2xi(yi − xT
i
w)

(3)wt+1 = wt − �∇wL(wt, xi, yi) = wt + 2�xi(yi − xT
i
wt)

Fig. 2  Iterative process of model and index updates
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• wt+1 : the updated parameter vector after iteration t.
• wt : the parameter vector at iteration t.
• � : the learning rate, which determines the step size of each update.
• 2�xi(yi − xT

i
wt) : the adjustment to w based on the gradient.

By iteratively applying this update, the parameters converge to values that minimize 
the prediction error. This process is tied directly to the objective function, aiming to 
minimize cumulative prediction error:

Using Online Gradient Descent to iteratively update w minimizes this cumulative 
loss, achieving the goal of accurately predicting block heights from timestamps.

3.2.3  Assumptions

In developing the proposed learned index algorithm for blockchain systems, several 
assumptions are made to ensure convergence and performance:

• Convex loss function: The MSE loss function is assumed to be convex with
respect to w , which guarantees that any local minimum is a global minimum.
This is crucial for the optimization process, as it allows the algorithm to con-
verge reliably to the optimal solution.

• Lipschitz continuity: It is assumed that the gradients are Lipschitz continuous,
meaning there exists a constant L such that:

 This assumption ensures that the gradient does not change abruptly, stabiliz-
ing the optimization process and providing consistent updates to the model 
parameters.

• Bounded gradients: The gradients are assumed to be bounded by a constant G : 

 To prevent excessively large gradient values, gradient clipping is applied by set-
ting a maximum threshold G for the gradient norm. This ensures stability in the 
optimization process by scaling down gradients that exceed this threshold, pre-
venting destabilization and promoting steady convergence.

• Diminishing step size: The step size �t diminishes over time, satisfying:

 This ensures that updates become smaller as the algorithm progresses, allowing 
it to converge to the minimum loss.

(4)min
w

N∑

i=1

L(w, xi, yi) = min
w

N∑

i=1

(yi − xT
i
w)2

(5)‖∇L(w) − ∇L(w�)‖ ≤ L‖w − w�‖

(6)‖∇L(w)‖ ≤ G

(7)
∞∑

t=1

𝜂t = ∞ and

∞∑

t=1

𝜂
2

t
< ∞
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These assumptions support the convergence and stability of the proposed learned 
index algorithm, ensuring accurate mapping of timestamps to block heights with 
minimal cumulative prediction error.

3.2.4  Sliding window prediction mechanism

The sliding window prediction mechanism refines initial predictions by incremen-
tally adjusting the search range until the correct value is found. Unlike fixed-range 
searches, this sliding window dynamically expands its range, effectively "sliding" 
to cover a larger area if the correct value is not located within the initial range. This 
adaptive approach ensures completeness and is particularly suited to block genera-
tion times with high variability.

The sliding window process begins with an initial prediction, generated by the 
Online Gradient Descent (OGD) model. This prediction is calculated based on the 
normalized input data and then scaled back to the original space of the target vari-
able, such as block heights. The initial prediction serves as a starting point for the 
search.

Based on the initial prediction, an initial search range, denoted as ws , is centered 
around the predicted index, which corresponds to the closest match in the block 
heights array. This range serves as the immediate neighborhood within which the 
search will begin.

The search proceeds bidirectionally within this initial range. Starting from the 
predicted index, the search iterates forward and backward in steps, defined by a 
parameter s (set to 5 in the implementation). At each step, the algorithm checks 
whether the timestamp at the current index matches the target timestamp. If a match 
is found, the correct value is returned, terminating the search.

In cases where no match is found within the initial range ws , the window expands 
or "slides" incrementally beyond this predefined range. The algorithm continuously 
extends the boundaries of ws until the correct value is found or until the bounds 
of the block heights are reached. This adaptive sliding mechanism is essential for 
ensuring completeness, as it guarantees that the query is located, even if it lies out-
side the initially predicted range.

3.3  Intra‑block learned index adoption

The approach leverages Anole’s [46] intra-block learned index methodology to 
enhance querying efficiency within individual blocks. Given that most blockchains, 
such as Bitcoin, average over 1,000 transactions per block, optimizing query times 
within these blocks is essential. The purpose of adopting Anole’s intra-block learned 
index is to streamline intra-block query performance.

Construction of intra-block learned index: The intra-block learned index is 
constructed by organizing transactions within a block according to addresses. For 
each unique address, the first occurrence of a transaction serves as the aggregation 
point, grouping subsequent transactions under that address. This ensures that queries 
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targeting a specific address can quickly access the aggregation point without scan-
ning the entire block.

For example, consider transactions tx1 and tx2 associated with address addr1 , and 
transactions tx3 and tx4 associated with address addr2 . According to this method, tx1 
would be the aggregation point for addr1 , while tx3 would be the aggregation point 
for addr2 . This organization reduces query time within a block by structuring the 
data to minimize search complexity. Since the number of transactions within a sin-
gle block is typically limited, this approach ensures that query processing remains 
efficient and precise.

The construction process involves: 

1. Sorting transactions within each block based on the address.
2. Aggregating transactions for each address, with the first transaction serving as

the aggregation point.
3. Constructing the intra-block index using the sorted transactions and different

aggregation points.

Given the relatively small amount of data within a single block, the intra-block 
learned index does not require frequent updates. This stability allows the error 
bound of the intra-block learned index to be set to zero, achieving precise position-
ing and efficient data retrieval.

3.4  Query process overview

When a client submits a query, the system uses the inter-block index to determine 
the relevant block heights. It then uses the intra-block index to locate the desired 
transactions inside the block.

The querying process in the proposed system involves several steps to ensure effi-
cient and accurate retrieval of data from the blockchain. The process is as follows: 

1. Initial query submission: The client submits a query Q specifying the address
and the time range or a specific point in time.

2. Inter-block index lookup using OGD: For point queries, the system uses the
inter-block index with Online Gradient Descent (OGD) to predict the block height
that might contain the transaction. The system predicts the block heights for the
start and end times for range queries. A sliding window search mechanism refines
these predictions to ensure accuracy.

3. Intra-block index lookup: The system uses the intra-block index for each identi-
fied block to locate the exact transactions within the block. For a given address,
locate the aggregation point in the sorted list of transactions within the block.
Once the aggregation point is identified, all transactions associated with that
address will be retrieved directly.

4. Result compilation: The system aggregates the results before returning them to
the client.

Algorithm 1  Point and Range Query with a Learned Index
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Algorithm 1 handles both point and range queries. The algorithm predicts a sin-
gle block height for point queries and searches around this prediction to locate the 
transaction. For range queries, the algorithm predicts the block heights for the start 
and end of the time range by effectively performing two-point queries and then 
searching within the range to locate the transactions. The sliding window search 
ensures that any potential deviations in the predictions are corrected by examining a 
localized window around the initial predictions.

3.5  Implementation

The system was implemented on an Intel(R) Core(TM) i5-10500T CPU @ 2.30GHz, 
with an 8.00 GB (7.78 GB usable) system. A custom blockchain was implemented 
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using Rust, which was chosen for its performance and safety features. The imple-
mentation involved constructing both inter-block and intra-block indexes to facilitate 
efficient querying. Bitcoin and Ethereum data was collected from Google BigQuery. 
The block height, input and output addresses, input and output values, and block 
timestamps for transactions were retrieved. The retrieved data was used to build the 
blockchain and construct the indexes. In total, 20,000 blocks were created, each con-
taining transactions as they appeared in the Bitcoin, Ethereum, Iotex, Dogecoin, and 
Litecoin blockchain. These datasets provided a comprehensive view of transaction 
flows and patterns over a period, facilitating an accurate representation of the block-
chain for experimental purposes. Using this data, the efficiency and effectiveness of 
the proposed indexing algorithm could be tested in real-world scenarios, ensuring 
that the results are both practical and relevant to actual blockchain environments and 
also giving two different workloads to test how the proposed method performed.

3.6  Evaluation

A set of evaluation metrics was employed to assess the effectiveness of the proposed 
inter-block indexing algorithm. These metrics were chosen to provide a holistic view 
of the algorithm’s performance in various aspects crucial for blockchain indexing. 
The metrics include:

• Size of the inter-block index: This metric evaluates the memory efficiency of
the index by measuring its total storage consumption. A smaller index indicates
better scalability and efficiency, which is essential for blockchain systems with
limited storage resources.

• Average CPU time per update: This metric measures the average time the
CPU takes to update the inter-block index whenever a new block is added to the
blockchain. It reflects the computational load required for each update, averaged
across multiple instances, and indicates how efficiently the algorithm can handle
new data over time.

• Query latency: This metric assesses the responsiveness of the index by measur-
ing the time taken to retrieve data in response to query requests. Lower query
latency signifies a faster and more efficient data retrieval process, enhancing the
overall usability of the blockchain system.

The performance of the proposed algorithm was benchmarked against other online 
learning algorithms. These include:

• Anole (Inter-index): The Anole Inter-Index uses a Dynamic Piecewise Linear
Regression, outperforming state-of-the-art on-chain indexing techniques like
vChain+. Notably, Anole is the only algorithm used that has been published in
the literature.

• Recursive least squares (Inter-index): A well-established algorithm known for
its precision in parameter estimation. RLS operates by recursively updating its
model parameters with each new data point, making it highly suitable for online
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learning applications. It adapts to changes in real-time while efficiently manag-
ing memory, thus providing accurate and stable predictions in dynamic environ-
ments. RLS was chosen for benchmarking due to its strong reputation for reli-
ability in adaptive filtering and online learning contexts.

A comparison against traditional indexing methods was not made because Anole had 
already demonstrated superiority in all metrics. Additionally, a comparison against 
any other learned indexes in blockchain apart from Anole was not made because 
the two other learned indexes were used for entirely different purposes. Anole is the 
only learned index used for point and range queries within the blockchain context.

4  Results and discussion

4.1  Storage cost results

The storage cost is the most important metric as it relates directly to the aim of this 
paper. The model size in kilobytes (KB) measures the storage cost. Figure  3 and 
Fig.  4 show that the Anole Inter-Index algorithm has a significantly higher stor-
age cost than SWS-OGD and RLS. As the number of blocks increases, the storage 
cost of Anole Inter-Index grows linearly, reaching approximately 100 KB at 20,000 
blocks. In contrast, the storage costs of SWS-OGD and RLS remain almost constant, 
at around 0.12 KB and 0.28 KB, respectively. This indicates that SWS-OGD and 
RLS are more efficient in terms of storage.

The minimal storage cost of SWS-OGD arises from its design philosophy, 
which centers on incremental parameter updates rather than creating new mod-
els. In SWS-OGD, a single set of model parameters is continuously refined as 
new blocks are added. This approach is inherently storage-efficient: the model’s 

Fig. 3  Index size in bitcoin environment
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size remains stable because it does not need to store parameters for different 
data segments, in contrast to Anole Inter-Index. Anole Inter-Index employs a 
dynamic piecewise regression, which creates multiple local models for different 
data segments to optimize prediction accuracy. While effective in this regard, it 
significantly increases storage cost linearly as each additional segment requires 
new model parameters and will require lots of space as the blockchain grows. 
Although RLS also aims for storage efficiency, it maintains a covariance matrix, 
which introduces additional storage overhead. This matrix is essential for its 
recursive update mechanism, which estimates parameters based on historical data 
and continuously updates them as new data is introduced.

Notably, the storage cost of Anole Inter-Index is directly influenced by the vari-
ability of the data it models. For datasets with high variability in block generation 
times, such as those found in certain blockchain systems, Anole Inter-Index would 
require a larger number of segments to maintain accuracy, thereby increasing its 
storage footprint substantially.

SWS-OGD is uniquely suited for environments with variable or high-frequency 
data, such as blockchain systems, due to its storage independence from data vari-
ability. Unlike Anole, where storage costs scale with both data size and variability, 
SWS-OGD remains unaffected by these factors, maintaining a consistent storage 
footprint that is ideal for large-scale, high-throughput systems.

We report storage cost results for only Bitcoin and Ethereum workloads as repre-
sentative datasets because the storage performance of indexing algorithms is not sig-
nificantly affected by the underlying dataset. This is due to the design of SWS-OGD, 
which updates model parameters incrementally and does not rely on dataset-specific 
characteristics such as block interval variability. Thus, the trends observed with Bit-
coin and Ethereum workloads are consistent across other datasets. Reporting these 
two allows for a concise presentation without redundancy while maintaining the 
generalizability of the findings.

Fig. 4  Index size in Ethereum environment
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4.2  Average CPU time per update results

The average CPU time per update measures the computational efficiency of the 
algorithms. It is crucial for maintaining real-time performance in dynamic block-
chain environments. The results shown in Fig. 5 and Fig. 6 indicate that SWS-OGD 
has a lower average CPU time per update than RLS but slightly higher than Anole 
Inter-Index. Specifically, SWS-OGD maintains an average CPU time per update of 
around 2 × 10−5 seconds, while RLS reaches up to 8 × 10−5 seconds at 4,096 blocks. 
Anole Inter-Index remains the most efficient in terms of CPU time, with values con-
sistently below 1 × 10−5 seconds.

Fig. 5  Average CPU time for bitcoin workload

Fig. 6  Average CPU time for Ethereum workload
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In terms of computational efficiency, SWS-OGD shows a balanced performance 
in CPU time per update. Although Anole Inter-Index exhibits lower CPU times due 
to its approach of creating new model parameters without constant training, this 
comes at the cost of higher storage usage and increased complexity. SWS-OGD, on 
the other hand, takes more CPU time per update because it refines predictions and 
updates the same model parameters across the entire dataset, which involves fitting 
the model continuously. This continuous fitting process, while more computation-
ally intensive, ensures that the model remains accurate and smaller as the blockchain 
grows. For future work, exploring methods to optimize the computational efficiency 
of SWS-OGD, such as parallelizing updates or introducing more efficient fitting 
techniques could further enhance its applicability in large-scale blockchain systems.

For computational efficiency, results are reported for two representative datasets-
Bitcoin and Ethereum-because the outcomes remain consistent across datasets. The 
efficiency of SWS-OGD is primarily influenced by its design and not by dataset-spe-
cific characteristics, as the computational load depends on the number of blocks and 
updates rather than the inherent variability of the dataset. This consistency across 
datasets validates the generalizability of the method.

For future work, exploring methods to optimize the computational efficiency of 
SWS-OGD, such as parallelizing updates or introducing more efficient fitting tech-
niques could further enhance its applicability in large-scale blockchain systems.

4.3  Latency analysis

The latency comparison in Figs. 7, 8, 9, 10, and 11 highlights the performance of 
SWS-OGD, Anole, and RLS across various checkpoints. The proposed SWS-OGD 
method, represented by green bars, demonstrates a latency performance comparable 

Fig. 7  Bitcoin latency comparison
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to Anole (red bars) while significantly reducing storage costs, as previously dis-
cussed. This observation validates SWS-OGD’s efficiency in achieving low latency 
with minimal storage, positioning it as a viable alternative to Anole, particularly in 
storage-constrained environments.

At early checkpoints (e.g., 256 and 512), SWS-OGD shows slightly higher 
latency than Anole. This higher initial latency is attributed to the limited number of 

Fig. 8  Ethereum latency comparison

Fig. 9  IoTeX latency comparison
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entries in the model at these early stages, leading to an incomplete fit. As more data 
becomes available and the model refines its predictions, SWS-OGD’s latency stabi-
lizes and becomes comparable to Anole, demonstrating its ability to adapt efficiently 
as the dataset grows.

Anole exhibits an incremental rise in latency as the checkpoint index advances. 
This increase can be attributed to Anole’s dynamic segmentation approach, where 
additional segments may be created over time to maintain prediction accuracy, 

Fig. 10  Litecoin latency comparison

Fig. 11  Dogecoin latency comparison
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inadvertently adding latency due to segment management overhead. This trend indi-
cates that Anole’s latency performance is sensitive to the complexity of the data-
set, especially as variability in block generation times increases with higher block 
indices.

RLS consistently records the highest latency across all checkpoints. Its latency 
remains elevated and even increases at later checkpoints. This can be attributed to 
the recursive updates and covariance matrix adjustments, which add computational 
overhead, making RLS the least suitable for real-time applications in blockchain 
indexing.

Notably, SWS-OGD and Anole converge in latency at higher checkpoints (e.g., 
8192 and 13191), where both methods exhibit similarly low latency values. This 
convergence suggests that SWS-OGD’s adaptive sliding window efficiently mini-
mizes latency as the model becomes more stable over time, aligning closely with 
Anole’s performance but with the advantage of reduced storage requirements.

4.3.1  Impact of block interval variability on latency performance

The datasets used in this analysis-Bitcoin, Ethereum, Dogecoin, Litecoin, and 
IoTeX-exhibit significant differences in block interval characteristics, as summa-
rized in Table 1. These interval statistics provide essential context for interpreting 
the latency trends observed in the Latency Comparison. Variability in block gen-
eration times influences how the SWS-OGD, Anole, and RLS algorithms adapt and 
respond, impacting their latency performance at different checkpoints.

The datasets exhibit a broad range of mean intervals and variabilities, with 
Ethereum and IoTeX showing particularly high standard deviations (46916.22 s and 
28714.89 s, respectively), which indicate extreme fluctuations in block generation 
times. Conversely, Bitcoin and Dogecoin show relatively low variability, with stand-
ard deviations of 588.21 s and 76.68 s, respectively. This diversity in block interval 
variability is crucial, as it presents different challenges for indexing algorithms that 
rely on temporal consistency.

Despite these differences, SWS-OGD demonstrates effective latency performance 
across all datasets. The algorithm’s ability to adapt its sliding window search dynam-
ically allows it to maintain low latency even when the underlying data distribution 
exhibits high variability, as seen with Ethereum and IoTeX. By adjusting the search 

Table 1  Block interval statistics for different datasets

Dataset Mean interval (s) Std dev (s) Min interval (s) Max interval (s)

Ethereum 388.82 46916.22 1 6566428
Bitcoin 588.76 588.21 0 6902
Dogecoin 69.12 76.68 0 712
Litecoin 263.42 603.12 0 15166
IoTeX 211.69 28714.89 5 4060805
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range based on the initial prediction error, SWS-OGD compensates for unexpected 
fluctuations in block intervals, ensuring that query response times remain consistent.

4.4  Success rate of sliding window search across datasets

The success rate of the sliding window search mechanism was evaluated across 
multiple blockchain datasets, including Bitcoin, Ethereum, Dogecoin, Litecoin, 
and IoTeX. Success rates were calculated for increasing search ranges, from 1 up to 
when the rates hit hundred percent or close, and the results were plotted to observe 
how the search range impacts accuracy.

The sliding window search range ws significantly affects the ability of the model 
to locate the correct target within the specified search radius. As shown in Fig. 12, 
there is a clear trend across datasets: as the search range ws increases, the suc-
cess rate improves. This is expected, as a larger ws allows the model to consider 
a broader range of indices, thereby increasing the likelihood of finding the correct 
target even if the initial prediction deviates. However, this improvement comes at 
the cost of higher computational latency, as a larger window size requires additional 
comparisons.

Although all datasets show an increase in success rate with larger ws , the rate 
of improvement varies. For instance, Ethereum and IoTeX datasets achieve near-
complete success (100%) at relatively smaller search ranges compared to others. 
This suggests that the underlying data distribution and volatility within each dataset 
impact how effectively the sliding window can correct initial predictions. Data with 
higher volatility or irregular patterns may require a larger search range to achieve a 
similar success rate.

Fig. 12  Success rate of sliding window search across multiple datasets for varying search ranges
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Selecting an optimal window size is crucial for balancing accuracy and latency. 
Smaller search ranges provide lower latency but can result in suboptimal accu-
racy, as seen with ranges below 5. Conversely, while larger ranges (approach-
ing 10 or more) ensure a high success rate, they incur a latency penalty. Thus, 
an adaptive approach to setting ws , potentially based on error measurements dur-
ing training, may offer an efficient compromise for real-time applications, allow-
ing the search range to adjust dynamically based on workload characteristics and 
observed accuracy.

4.4.1  Latency analysis: success vs. failure scenarios

The latency comparison in success vs. failure scenarios, shown in Fig. 13, pro-
vides insights into the system’s performance. The graph distinguishes between 
Success Latency (green) and Failure Latency (red) across various percentiles 
(25th, 50th, 75th, 90th, and 99th), allowing a direct comparison of the time 
required in successful vs. unsuccessful search cases. This distinction reveals that 
failures typically incur higher latency, particularly at higher percentiles, indicat-
ing that when the sliding window search does not correct predictions within the 
specified range, the latency cost increases significantly.

Furthermore, this illustrates the worst-case performance (99th percentile) rela-
tive to typical cases (e.g., 50th percentile). Notably, the 99th percentile latency 
for failure cases is substantially higher, highlighting potential latency spikes in 
the most challenging scenarios. This observation is critical for understanding how 
the system performs under varying conditions.

Fig. 13  Latency percentiles during success and failure scenarios for SWS-OGD
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5  Conclusion

In this paper, a novel-learned indexing technique for blockchain querying was devel-
oped and evaluated. The results demonstrate that the proposed system offers a lower 
storage cost and a balanced performance across other key metrics.

This paper contributes to the field of blockchain technology by addressing the 
critical issue of storage efficiency in blockchain indexing. The learned indexing 
model developed provides a scalable and adaptable solution, paving the way for 
more efficient blockchain systems that can support a broader range of applications 
and enhance widespread adoption.

Despite its advantages, the proposed system has some limitations. One significant 
limitation is the CPU time required for updates, which can be further optimized. 
Additionally, the current system primarily focuses on point and range queries. 
Future work should explore optimizations for other queries, such as top-k queries, 
semantic searches, and more complex querying semantics and also using neural net-
works to improve prediction accuracy, to refine the indexing process, enabling even 
faster query responses. To ensure that such models remain practical for blockchain 
systems with resource constraints, techniques for reducing the size of neural net-
works could be investigated.
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