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ABSTRACT Federated Learning (FL) enables decentralized training of machine learning models across
multiple clients, preserving data privacy by aggregating locally trained models without sharing raw data.
Traditional aggregation methods, such as Federated Averaging (FedAvg), often assume uniform client
contributions, leading to suboptimal global models in heterogeneous data environments. This article
introduces SimProx, a novel FL approach for aggregation that addresses heterogeneity in data through three
key improvements. First, SimProx employs a composite similarity-based weighting mechanism, integrating
cosine and Gaussian similarity measures to dynamically optimize client contributions. Then, it incorporates
a proximal term in the client weighting scheme, using gradient norms to prioritize updates closer to
the global optimum, thereby enhancing model convergence and robustness. Finally, a dynamic parameter
learning technique is introduced, which adapts the balance between similarity measures based on data
heterogeneity, refining the aggregation process. Extensive experiments on standard benchmarking datasets
and real-world multimodal data demonstrate that SimProx significantly outperforms traditional methods
like FedAvg in terms of accuracy. SimProx offers a scalable and effective solution for decentralized deep
learning in diverse and heterogeneous environments.

INDEX TERMS Federated learning, decentralized network, weighted aggregation, data heterogeneity, deep
learning, multimodal classification.

I. INTRODUCTION

FEDERATED Learning (FL) [1] has recently gained
significant attention since it attempts to train Machine

Learning (ML) models with a decentralized approach,
addressing major concerns with data security and privacy.
By enabling multiple clients to collaboratively contribute
to training ML models without sharing their raw data,
FL maintains data confidentiality while utilizing the col-
lective power of distributed datasets. Therefore, federated
learning plays an increasingly important role in main-
taining privacy and attaining good model performance
results as the amount of data generated globally keeps
growing [2], [3].

While FL offers many advantages, it faces considerable
challenges in building a generalized and robust global model
from locally trained models. The essence of FL lies in
aggregating local updates from distributed clients to create
a unified global model without sharing raw data. The more
realistic challenging scenario of heterogeneous FL remains
a key challenge despite the tremendous progress made
in homogeneous FL, where clients share similar network
architectures and analyze similar data distributions [4], [5].
In most large-scale, real-world applications, clients exhibit
considerable differences in data distributions, communication
networks, and model structures, leading to four primary types
of heterogeneity.
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Firstly, statistical heterogeneity [6] arises from varying
data distributions across clients participating in the FL
process. Secondly, model heterogeneity [7] occurs when
different clients employ distinct models, which may differ
in architecture, size, customizations, learning rates, and
hyperparameters. Researchers have attempted to address
this issue using various approaches, including model map-
ping [8], knowledge distillation [9], ensemble learning [10],
and meta learning [11]. Thirdly, communication hetero-
geneity [12] emerges when clients operate under diverse
network environments. Lastly, device heterogeneity [13]
arises from the varying storage and computation capabilities
of devices among participants, which can lead to faults and
inactivation of some nodes, known as stragglers [14], [15].
To mitigate these challenges, several methods have been
developed, including asynchronous aggregation [16], [17],
which enables clients to upload their local updates in a
staggered manner.
Many studies have concentrated on FL aggregating tech-

niques that mitigate the impact of statistical heterogeneity on
building a global model on the server side [18], [19], [20],
starting with FedAvg [21] where a group of clients is
randomly selected at each round of training for aggregation.
During the aggregation process, the parameters of each
client are weighted and averaged to produce a global
model. Despite that FedAvg can handle Non-Independent and
Identically Distributed (Non-IID) [22] data to some extent,
many research investigations [23], [24] have demonstrated
that a degradation in the accuracy of FL is practically certain
when dealing with Non-IID or heterogeneous data.
The non-IID issue arises in FL because the data distribu-

tion across clients often does not adhere to the Independent
and Identically Distributed (IID) assumption, which is a
cornerstone of many traditional machine learning techniques.
This statistical heterogeneity can manifest in various forms,
such as differences in data quantity, class distribution,
or feature space across clients. Such disparities lead to
challenges in achieving a globally optimal model, as the
gradients contributed by clients may be biased or conflicting.
This imbalance hampers the convergence of the aggregation
process, resulting in suboptimal performance and accuracy
degradation in the global model. Addressing these issues
is critical to ensure that FL can deliver reliable and robust
outcomes in real-world applications where data heterogeneity
is the norm.
This paper addresses the non-IID issues from a novel

perspective based on the following observation: if two
models training on different (skewed) datasets have learned
the same information, then this particular information is
crucial for producing a generalized model. Consequently, we
propose a new aggregation technique based on the similarity
information of client models. Unlike existing approaches
that utilize similarity for clustering, the proposed technique,
Similarity-Proximal (SimProx), employs a similarity matrix
to calculate weights for clients and performs weighted sum
aggregation. It incorporates a proximal term that considers

the gradient norms as a proxy for the client’s contribution
to the global model update. This term indicates how much
the client model has changed during the current round of
FL. The specific contributions of this work are as follows:

1) Propose a method to calculate the similarity matrix
using both Gaussian and cosine similarity, which helps
the global model to learn from the most relevant and
complementary client updates.

2) Include a proximal term into the deep FL aggregation
to complement the client similarity information cap-
tured by the similarity matrix, stimulating the global
model to learn more from the client updates that are
closer to the global optimum. Additionally, we apply a
dynamic calculation of the lambda learning parameter
based on the heterogeneity of learnt data.

3) Evaluate the performance of the proposed method
on real-world multimodal data, textual and visual
representation, and two versions of CIFAR testbed.

The remaining part of this paper is structured as follows:
Section II introduces the general task of FL and then reviews
the related work regarding similarity-based aggregation in
heterogeneous settings. Section III presents the methodology
adopted in this study. Section IV presents the experimental
setups and discusses the model’s results in the context of
previous approaches using image, textual, and multimodal
data. Section V discusses the computational complexity of
the proposed method. Finally, Section VI concludes the paper
and highlights the main finding.

II. RELATED WORK
This section reviews various existing aggregation approaches
related to the proposed work in federated deep learning.
To facilitate a thorough understanding of these approaches,
we first establish a common task notation with necessary
preliminaries.

A. FEDERATED LEARNING PRELIMINARIES
Federated learning is a distributed machine learning approach
that enables model training across multiple decentralized
devices or servers holding local data samples, without
exchanging their data. Unlike traditional centralized machine
learning methods that require pooling data to a central server,
FL maintains data privacy and security by keeping data on
local devices.
Given the list of preliminaries shown in Table 1, consider

a FL system with C clients, each holding a local dataset Di

where i ∈ {1, 2, . . . ,C}. The objective is to train a global
model w by aggregating local models wi trained on the local
datasets Di. In order to achieve the primary objectives of
FL, the following factors need to be maintained:

1) Data Privacy: Preserve the privacy of local data by
ensuring that raw data remains on the client’s device.

2) Communication Efficiency: Minimize the communica-
tion overhead between clients and the central server
to make the system scalable and efficient.
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TABLE 1. FL task preliminaries.

3) Robustness to Heterogeneity: Handle non-IID data
distributions across clients, ensuring that the global
model generalizes well despite variations in local data.

4) Decentralized Model Training: Enable collaborative
model training across multiple clients without the need
for centralized data aggregation.

Improving aggregation methods is crucial for FL, espe-
cially when dealing with non-IID data. In FL, data is
distributed across multiple clients, often with significant
differences in data distribution and quality. Traditional
aggregation methods, such as simple averaging, may not
adequately address these disparities, leading to suboptimal
model performance [23]. Non-IID data poses additional
challenges because the variations in data can cause local
models to diverge significantly, complicating the aggregation
process [7]. Advanced aggregation methods that consider
the underlying data distribution and client similarities can
help mitigate these issues, ensuring more robust and accurate
global models. By developing and implementing more
sophisticated aggregation techniques, FL systems can achieve
better generalization, resilience to client variability, and
ultimately, more effective and reliable AI solutions in
decentralized environments [13], [22].
Several research studies have attempted to improve data

aggregation from the client’s side, particularly for non-IID
data, which typically focus on either local training or the
aggregation process. However, Our study’s objective is to
improve the aggregation process, offering a more adaptive
and robust solution to the challenges of FL in diverse real-
world settings.

B. RELATED AGGREGATION ALGORITHMS
FedAvg [21] is a fundamental approach in FL, where model
updates are aggregated across clients through a weighted
average. FedAvg framework involves four key steps in each
iteration: the server distributes the global model wt to all
participating clients, each client i updates their local model wi
by performing Stochastic Gradient Descent (SGD) on their
local data Di, the clients send their updated local models
w(t+1)
i back to the server, and the server aggregates the local

models by averaging them to produce the new global model,
which is defined as follows:

wt+1 = 1

C

C∑

i=1

w(t+1)
i (1)

where C is the number of clients.
However, FedAvg assumes that the data distributions

across clients are identical and independent, which is often
not the case in real-world scenarios [25]. To address this
limitation, FedProx [26] extends FedAvg by introducing a
proximal term to handle heterogeneous data. The objective
function for each client includes a proximal term to maintain
proximity to the global model:

LFedProx
i (w) = Li(w)+ μ

2
|w− wt|2 (2)

where μ is a regularization parameter. This approach has
been shown to improve the robustness of FL systems in the
presence of non-IID data.
FedAtt [27] introduces an attention mechanism applied to

model parameters to improve aggregation. The global model
is optimized by minimizing the weighted distance between
it and client models, using attention scores to weigh each
client’s contribution. FedAtt treats server model parameters
as queries and client parameters as keys, calculating layer-
wise attention scores as:

αlk = softmax
(
slk

)
= softmax

(
‖wl − wlk‖p

)
(3)

where slk is the similarity between the global model parame-
ters wl and the client model parameters wlk in the l-th layer,
calculated using the norm p.
Other sophisticated similarity-based aggregation

approaches were introduced. SimAgg was introduced by
Khan et al. [28] to improve model aggregation by weighting
client model contributions based on how similar they are
to the global model. This method demonstrates significant
improvements in settings with highly heterogeneous data.
Moreover, Wu and Wang [29] proposed an adaptive
weighting approach aimed at speeding up convergence in FL
by dynamically adjusting the contribution of each client’s
update based on its relevance to the global model.
Modeling Overlapping Neighborhoods (MOON) [30] also

focuses on better client aggregation strategies by considering
overlapping neighborhoods. The loss function includes a
contrastive loss term to improve model consistency across
overlapping data distributions:

LMOON
i (w) = Li(w)+ γ

∑
j ∈ N (i)|wi − wj|2 (4)
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where N (i) represents the neighborhood of client i and γ

is a weighting parameter. This approach has been shown
to improve the robustness of FL systems in scenarios with
overlapping data distributions.
Clustered-based FL aggregation [31], [32] is another

approach that involves grouping clients into clusters based
on the similarity of their data distributions. Each cluster
independently trains a local model, and the global model is
formed by aggregating the cluster models:

wcluster
t+1 = 1

|Ck|
∑

i∈Ck
w(t+1)
i (5)

where Ck is the k-th cluster and |Ck| is the number of clients
in cluster k. Hierarchical FL [33] introduces an additional
layer of aggregation, where local models are first aggregated
at the cluster level and then at the global level:

wt+1 = 1

M

M∑

k=1

wclusterk
t+1 (6)

where M is the number of clusters.
Our proposed method bridges the gap in existing FL

approaches by introducing a novel similarity-based weighting
mechanism designed to improve model aggregation. Unlike
prior methods that predominantly rely on either cosine sim-
ilarity, which focuses on the alignment of model directions,
or Gaussian similarity, which depends on the Euclidean
distance between client models, our approach leverages
a combination of both. This dual-similarity calculation
enhances the accuracy and robustness of the aggregation
process. Furthermore, while many existing similarity-based
methods modify the loss function or compute separate
similarity scores for each layer of the model–introducing
significant computational overhead on resource-constrained
edge devices–our method shifts the computational load to
the cloud. By assigning a single aggregated weight for
each client, our approach achieves greater scalability and
efficiency for real-world applications. The process involves
calculating a unified similarity score using both cosine
and Gaussian similarity, normalizing client weights, and
performing similarity-weighted aggregation of client models.
To further enhance the system’s robustness, particularly in
scenarios with highly heterogeneous data, we incorporate a
proximal term with dynamic parameter learning, ensuring
improved adaptability and performance.

III. METHODOLOGY
In this work, we propose a novel FL approach that incor-
porates client similarity information to improve the overall
model performance. Figure 1 shows the generic pipeline of
the proposed similarity-based aggregation of FL results from
the client side to the server side. A set of clients contribute
to the learning procedure performed on the global model
broadcasted by a Central server. The results and weights of
each single client trained on its local data are aggregated

into a similarity matrix that indicates the similarity-weighted
scores to understand the diversity of clients’ models.
A proximal term with dynamic parameter learning is

also involved in the learning procedure, providing the final
weighted sum of results aggregated from the clients in
each training round. This process is performed over many
rounds to improve the convergence and robustness of the FL
paradigm. We first establish the baseline distance calculation
between clients, followed by detailing each step of the
proposed approach in the subsequent subsections.
Let C = 1, 2, . . . ,m be the set of clients, and let

wi ∈ R
d be the model weights of client i, where d is

the dimensionality of the model. To quantify the overall
similarity between clients, we define the average distance
between clients as:

σ = 1(m
2

)
m∑

i=1

m∑

j=i+1

‖wi − wj‖2 (7)

where ‖·‖2 denotes the Euclidean norm. This average
distance metric captures the diversity of the client models,
with a smaller value indicating that clients are more similar,
and a larger value indicating that clients are more diverse.

A. CLIENT SIMILARITY MATRIX
The core of the proposed aggregation process relies on
calculating the similarity between the clients’ results. This
section explains how Gaussian and Cosine functions are
used to determine the similarity matrix, incorporating a
dynamically learned hyperparameter to manage the trade-off
between similarity scores.
The rationale for employing similarity-based aggregation

lies in its ability to handle data heterogeneity more effectively
than simple averaging. In FL systems, clients operate on
datasets that may differ significantly in terms of content,
size, and distribution. By focusing on clients whose models
exhibit greater similarity, SimProx optimizes the aggregation
process by giving more weight to clients whose updates are
most likely to contribute to a well-generalized global model.
This reduces the noise introduced by dissimilar client updates
and improves overall model robustness.

1) GAUSSIAN SIMILARITY

The Gaussian similarity term in the client similarity matrix
S is defined as:

SGaussianij = exp

(
−‖wi − wj‖22

2σ 2

)
(8)

This term captures the Euclidean distance between the
client model weights wi and wj, normalized by the average
distance σ between all client models. The key intuition
behind the Gaussian similarity is that clients with more
similar model weights, as measured by the Euclidean dis-
tance, are likely to provide more relevant and complementary
updates to the global model. The Gaussian function is used
to map the Euclidean distances to similarity scores, with
smaller distances resulting in higher similarity scores.

VOLUME 5, 2024 7809
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FIGURE 1. The general pipeline of the proposed similarity-based FL aggregation approach.

2) COSINE SIMILARITY

The cosine similarity term in the client similarity matrix S
is defined as:

SCosineij = w�i wj

‖wi‖2‖wj‖2 (9)

This term captures the angular difference between the
client model weights wi and wj, as measured by the cosine
of the angle between them. The cosine similarity provides a
complementary perspective to the Gaussian similarity. While
the Gaussian similarity focuses on the Euclidean distance
between the model weights, the cosine similarity captures
the alignment or “direction” of the model weights.
Clients with more similar model directions, as indicated by

a higher cosine similarity score, are likely to provide updates
that are more aligned with the global model’s learning
objective. These updates can help the global model converge
faster and achieve better generalization performance. Also
The cosine similarity is invariant to the scaling of the model
weights, as it only depends on the relative direction of the
vectors.

3) HYBRID SIMILARITY MEASURE

By combining the Gaussian similarity and the cosine similar-
ity, the algorithm can capture both the Euclidean distance and

the angular difference between the client models, providing
a more comprehensive assessment of client similarity. This
hybrid similarity measure helps the global model learn from
the most relevant and complementary client updates, leading
to improved performance and faster convergence. We merge
the Gaussian similarity and cosine similarity into a unified
similarity matrix S using a hyperparameter λ ∈ [0, 1] to
control the trade-off between the two similarity measures:
The use of both cosine and Gaussian similarity is grounded

in the principle that alignment (captured by cosine similarity)
and proximity (captured by Gaussian similarity) together
provide a richer understanding of model behavior. Cosine
similarity alone might fail to distinguish between models
that are directionally aligned but distant in magnitude, while
Gaussian similarity may overlook models that share a similar
direction but differ slightly in magnitude. By combining
the two, SimProx ensures that client models are weighted
based on both their direction and magnitude, which leads
to more accurate aggregation and faster convergence. This
dual-similarity approach addresses the limitations of using a
single metric in isolation, thus ensuring that SimProx learns
from updates that are both highly relevant and balanced in
their influence on the global model.

Sij = λSCosineij + (1− λ)SGaussianij (10)
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We incorporate a dynamic lambda adjustment mechanism
to adaptively control the balance between cosine and
Gaussian similarity measures. The average cosine similarity
between the client models and the global model is calculated
at every round. If this average falls below a predefined
heterogeneity threshold, indicating high client diversity, The
lambda value is proportionally reduced to the ratio of average
similarity to the threshold. Otherwise, the base lambda
value is maintained. Formally, let si be the cosine similarity
between the i-th client model and the global model, and
s̄ = 1

N

∑N
i=1 si be the average similarity. Given a base lambda

λ0 and heterogeneity threshold τ , we adjust lambda as:

λ =
{

λ0 ·
( s̄

τ

)
if s̄ < τ

λ0 otherwise

The λ parameter plays a critical role in balancing the
trade-off between cosine and Gaussian similarity measures,
directly influencing how client contributions are weighted
during aggregation. In our experiments, we observed that
extreme values of λ –either too small (close to 0) or
too large (close to 1)–result in suboptimal performance,
particularly in heterogeneous, non-IID environments. When
λ is set too low, the model over-relies on Gaussian
similarity, which prioritizes clients with numerically close
updates, potentially disregarding important directional trends.
Conversely, a high λ value overemphasizes cosine similarity,
focusing excessively on directional alignment without ade-
quately accounting for the magnitude of updates, slowing
down convergence. Our empirical evidence indicates that
intermediate values between 0.6 and 0.7 offer the optimal
balance, with an average accuracy decrease of 3% when
values fall above or below this range, allowing the model
to incorporate both similarity measures effectively, thereby
improving convergence speed and model accuracy.
Given the sensitivity of λ, our method includes a dynamic

adjustment mechanism to further optimize its impact during
the training process. This mechanism adapts λ based on
the current level of heterogeneity across clients, utilizing
a predefined threshold to dynamically balance between
the cosine and Gaussian similarity measures. When the
average cosine similarity between the client models and
the global model falls below this heterogeneity threshold,
is proportionally reduced, ensuring that client updates that
are numerically closer are given more weight. This dynamic
adaptation has proven effective in our experiments, improv-
ing the robustness of the SimProx method in environments
with varying levels of data heterogeneity. Although our
initial findings indicate that the optimal λ typically falls
between 0.6 and 0.7, future work could explore the dynamic
adjustment strategy across a broader range of datasets and
FL settings to further solidify these insights.

B. PROXIMAL GRADIENT NORMS
In addition to the client similarity, we also consider the
gradient norms g ∈ R

m as a proxy for the client’s
contribution to the global model update. The gradient norm

gi is defined as the Euclidean norm of the difference between
the client’s current model weights wi and its previous model
weights wprev

i :

gi = ‖wi − wprev
i ‖2 (11)

The gradient norm gi serves as an indicator of how much
the client model has changed during the current round of
FL. Clients with smaller gradient norms are likely to have
model updates that are closer to the global optimum, as their
current model is already well-aligned with the global model.
The inclusion of proximal gradient norms is motivated

by the observation that not all model updates are equally
beneficial to the global model. In FL systems, certain clients
may undergo substantial model updates due to local data
characteristics, but these large updates could destabilize the
global model if incorporated uncritically. By prioritizing
clients with smaller gradient norms, SimProx stabilizes the
learning process, reducing the risk of overshooting and ensur-
ing smoother convergence. This approach is aligned with
the theoretical understanding of gradient-based optimization,
where smaller updates closer to the optimum are generally
more reliable indicators of model convergence. The proximal
term thus enhances the resilience of SimProx in handling
the variability in client contributions, leading to more stable
and accurate global model updates.
This proximal term complements the client similarity

information captured by the similarity matrix S. Together,
these two components allow the algorithm to identify the
most relevant client updates and incorporate them more
effectively into the global model update, leading to improved
performance and faster convergence of the FL process.

C. CLIENT WEIGHTS
The client weights α ∈ R

m are calculated as follows:

αi = exp(−gi)
(

1+
∑

j �=i Sij
m− 1

)
(12)

This formulation combines two key components: the
gradient norms g and the client similarity matrix S. By
combining the gradient norm term and the client similarity
term, the algorithm assigns higher weights to clients that
have both smaller gradient norms (indicating updates closer
to the global optimum) and higher average similarity to
the rest of the client population (indicating more relevant
and complementary updates). This dual consideration of the
client’s contribution and similarity allows the global model to
learn more effectively from the most valuable client updates,
leading to improved performance and faster convergence.
The m − 1 term in the equation arises from the normal-

ization of the similarity scores, where
∑

j �=i Sij calculates
the total similarity of client i with all other m − 1 clients,
and dividing by m − 1 gives the average similarity. This
normalization ensures that the weight αi is independent of
the total number of clients, making the approach scalable.
In graph-theoretic terms, the similarity matrix S can be
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seen as the adjacency matrix of a fully connected graph,
where nodes represent clients, and edges represent pairwise

similarities. The term
∑

j �=i Sij
m−1 corresponds to the normalized

degree (or average similarity) of a node in this graph,
reflecting how representative or connected client i is to the
rest of the population. Combining this with the gradient norm
gi, which prioritizes clients closer to the global optimum,
allows the algorithm to weight client updates based on both
individual reliability and collective relevance, leading to a
more effective and balanced aggregation process.
The mathematical properties of the individual components,

such as boundedness, monotonicity, and normalization,
ensure that the client weight calculation is well-behaved and
provides a principled way to prioritize the most relevant
client updates during the FL process.
After calculating the client weights α using the for-

mulation in Equation (12), we perform an additional
normalization step:

α← α/

m∑

i=1

αi (13)

Then a softmax function is applied to the weights to
provide more evenly weight distribution.
The pre-softmax normalization step ensures that the

weights sum to 1 before applying the softmax function.
This normalization is crucial for emphasizing the relative
shape of the weights vector, α, rather than its absolute
magnitude. Since the softmax function inherently sharpens
input differences due to its exponential component (eαi), pre-
normalization mitigates the risk of excessively large values
disproportionately dominating the output. By dampening
extreme variations in the input, this approach controls the
spread of the softmax outputs and ensures a more balanced
response. Furthermore, empirical evidence suggests that
pre-normalization improves convergence, as it provides a
consistent and well-defined range of inputs to the softmax
function, thereby enhancing the stability of the optimization
process.

softmax(α)i = eαi∑n
j=1 e

αj
(14)

This normalization ensures that the client weights sum up
to 1, i.e.,

∑m
i=1 αi = 1.

The softmax function is a widely used normalization
technique that converts unbounded weights into a proba-
bilistic distribution. By applying softmax, SimProx ensures
that no single client’s update dominates the aggregation
process, thereby preventing overfitting to specific clients.
This probabilistic scaling aligns with the need for smooth
and consistent updates in FL, where extreme variations in
client contributions can lead to instability and oscillations
in model performance. The use of softmax normalization
is scientifically justified by its ability to smooth out the
aggregation process, ensuring that all client contributions are
balanced and scaled appropriately, contributing to a more
reliable and stable global model update process.

Algorithm 1 SimProx

1: procedure FEDERATEDLEARNING(wglobal, wclient,
wprev)

2: S← ComputeClientSimilarityMatrix(wclient) �
Compute the client similarity matrix

3: α← ComputeClientWeights(wclient,S,wprev) �
Compute client weights

4: α← α/
∑m

i=1 αi � Normalize the weights
5: α← Softmax(α) � Apply softmax
6: for k ∈ wglobal do
7: u← 0
8: for i← 1 to m do
9: u← u+ αiwi[k] � Weighted aggregation of

client updates
10: end for
11: wglobal[k]← u � Update global model
12: end for
13: wclient← wglobal � Update client models
14: end procedure

The normalization step serves two important purposes,
which are proper weighting and interpretability.
On one hand, normalizing the client weights ensures that

the weighted sum of the client updates wi is a valid model
update, as the weights are properly scaled to sum up to
1. This allows the global model wglobal to be updated as
a convex combination of the client updates, which is a
necessary condition for the FL algorithm to converge. On
the other hand, the normalized client weights α can be
interpreted as the relative importance or contribution of each
client to the global model update. This provides a clear and
intuitive way to understand the role of different clients in
the FL process.
The overall FL algorithm incorporating the client similar-

ity information is presented in Algorithm 1.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
The proposed method is implemented using Pytorch [34]
and executed on a GPU-enabled cloud environment. The
SGD optimizer is used with the learning rate set to 0.01
and weight decay to 0.001. The batch size is set to 64.
The number of local epochs is set to 20 epochs for all
FL approaches. For our approach, the optimal value of the
lambda parameter was 0.7. For CIFAR-10 and CIFAR-100,
the experiments were conducted 10 times, starting with 10
rounds, then repeated with 20 rounds and so on, up to 100
rounds. We compare the proposed SimProx approach with
the state-of-the-art method FedAvg, along with the related
methods SimAgg [28] and FedProx [26]. For collaborator
selection, we use a subset of the available collaborators
(30%) in each round. To accommodate system heterogeneity,
where collaborator contributions may vary unpredictably,
we simulate a random selection process in each round. To
ensure that all collaborators are engaged uniformly over
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FIGURE 2. Data distribution across 20 clients for CIFAR-10 and CIFAR-100.

time, we utilize a sliding window mechanism over the
randomized collaborator index. This method ensures that,
after all collaborators have participated, a new randomized
order is generated to enhance learning efficiency. The
sliding window approach is favored over random selection
to guarantee consistent participation from all collaborators.
The sliding-window size is set to 30% of the total number of
collaborators within each partition. This approach guarantees
that each client contributes to the model’s updates over time,
while also introducing an element of randomness to prevent
overfitting to any particular client order.

B. PERFORMANCE ON CIFAR IMAGES
We conduct experiments on CIFAR-10 and CIFAR-100[35]
both of which are widely recognized as benchmark datasets
in the context of heterogeneous FL. To ensure a rigorous
evaluation, we utilized the ResNet-18 [36] and DensNet-
121 [37] architectures for both datasets. The two models
are well-established Convolutional Neural Network (CNN)
that have demonstrated robust performance in image clas-
sification tasks and serve as a consistent baseline in FL
studies. While our primary focus is on introducing and
validating a novel aggregation approach, ResNet-18 and
DensNet-121 provide a reliable foundation for assessing
the performance of our method across diverse experimental
settings. The CIFAR-10 dataset contains 60,000 color images
of size 32x32, divided into 10 mutually exclusive classes with
6,000 images per class. It includes 50,000 training images
and 10,000 test images. The CIFAR-100 dataset consists of
100 classes, each containing 600 images, with 500 training
images and 100 testing images per class. Figure 2 shows
the samples of CIFAR-10 and CIFAR-100 distributed in the
default settings across 20 clients participating in the FL
process. Like previous studies [38], [39], we use Dirichlet
distribution to generate the non-IID data partition among
parties. Specifically, we sample pk ∼ DirN(β) and allocate
a pk,j proportion of the instances of class k to party j, where
Dir(β) is the Dirichlet distribution with a concentration
parameter β (0.5 by default). With the above partitioning
strategy, each party can have relatively few (even no) data
samples in some classes. We set the number of parties to 20
where 6 clients are picked randomly to participate in the
learning process in each round to simulate a real world
scenario.

FIGURE 3. Average accuracy on CIFAR-10 and CIFAR-100 using ResNet-18.

With ResNet-18, Figure 3(a) shows the average classifi-
cation accuracy computed every 10 rounds on CIFAR-10
over multiple communication rounds for four different
methods: FedAvg, FedProx, SimAgg, and SimProx. SimProx
consistently achieves the highest average accuracy, across
all communication rounds compared to the other methods.
The curve indicates that SimProx is particularly effective
in handling the data, which improves convergence speed
and model robustness. Both SimProx and FedProx show
steady improvement, outperforming FedAvg and SimAgg
and maintaining the lead throughout the evaluation process.
However, SimProx shows approximately a 2% improvement
in accuracy on CIFAR-10 compared to FedProx, reaching a
peak accuracy of 0.628 with 90 rounds, whereas FedProx
achieves its best accuracy of 0.609 with 100 rounds.
Figure 3(b) also demonstrates how SimProx performs

better than the other methods on CIFAR-100 under the
same non-IID settings, achieving the highest classification
accuracy of 0.247 overall with 100 rounds. The results of the
SimProx aggregation approach show superior and consistent
performance starting from 60 rounds onward, earlier than
the other methods. With a 5–6% accuracy gain over FedAvg
and FedProx, SimProx proves its reliability and effectiveness
even with the more complex CIFAR-100 dataset.
Figure 4 presents the average accuracy scores obtained

from ten test experiments conducted for each aggregation
approach on CIFAR-10 and CIFAR-100. SimProx outper-
forms all the other methods, achieving the highest accuracy.
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FIGURE 4. Average accuracy of all methods on CIFAR-10 and CIFAR-100.

TABLE 2. SimProx performance on CIFAR-10 and CIFAR-100 with ResNet-18 and
DenseNet-121.

These accuracy results suggest that SimProx offers a robust
and efficient aggregation approach to FL.
Further performance enhancements for SimProx could

be achieved through the use of alternative deep learning
backbones and hyperparameter tuning, although this is
beyond the primary scope of this study. Table 2 demonstrates
that SimProx’s performance on CIFAR-10 improves by 21%
and on CIFAR-100 by 41% on average across all metrics
when using DenseNet-121. The highest accuracy achieved
using DenseNet-121 over 100 rounds is 0.817 on CIFAR-10
and 0.471 on CIFAR-100, with precision, recall, and F1-
score displaying similarly comparable values to the accuracy.
It is worth mentioning that ResNet-18 with its iden-

tity shortcuts bypass residual blocks to preserve features,
potentially limiting the network’s representational power and
learning capacity for SimProx. In contrast, DenseNet-121
uses dense concatenation across all subsequent layers, avoid-
ing direct summation and retaining features from previous
layers. While DenseNet-121 has demonstrated more efficient
feature utilization for SimProx, outperforming ResNet-18, it
demands more GPU memory due to concatenation operations
and increases training time by an average of 15%.

C. PERFORMANCE ON TEXTUAL DATA
To further assess the robustness and adaptability of our
proposed SimProx aggregation approach in federated learn-
ing (FL), we conducted experiments on Banking77 [40], a
widely used benchmarking dataset in intent detection for
customer service applications. This dataset, comprising over
13,000 customer queries labeled across 77 distinct intents,
provides a challenging, real-world setting with inherently
diverse and nuanced language, making it well-suited for
evaluating FL approaches in non-IID environments. We
implemented our model using a pretrained BERT-based

FIGURE 5. Performance of SimProx on Banking77 over 50 rounds.

TABLE 3. Results of SimProx and FedAvg on Banking77.

uncased model [41] for text embeddings, enabling us to
capture semantic representations of the intents while keeping
parameters consistent across clients. By comparing SimProx
to the baseline FedAvg aggregation approach, we aimed to
demonstrate SimProx’s performance in accuracy and conver-
gence, especially under data heterogeneity. Specifically, we
simulated a non-IID setup by assigning each client a subset
of intents and varying the number of examples per client.
The performance results on the Banking77 dataset, as

shown in Figure 5, demonstrate that SimProx achieved
a notably accuracy and fast convergence rate. After 15
communication rounds, SimProx reached an accuracy of
0.903, while it achieved an accuracy of 0.922 with 50
rounds. SimProx also shows relatively similar rates of
precision, recall, and F1-score, suggesting that SimProx
effectively mitigates the challenges posed by non-IID data,
particularly in scenarios where intent representations are not
uniformly distributed across clients. SimProx’s similarity-
based weighting allowed the global model to prioritize
updates from clients with higher relevance to the aggregated
intent distribution, leading to a more generalized model that
accurately captures intent diversity across all clients. Table 3
also shows that SimProx and FedAvg perform very similarly
on the Banking77 dataset across all evaluation metrics.

D. PERFORMANCE ON MULTIMODAL DATA
To assess the performance of the proposed aggregation
method on different type of data, we conducted a compre-
hensive evaluation on the MEDIC dataset [43], a publicly
available dataset comprising image-tweet pairs related to
various disaster events. This dataset serves as a representative
real-world multimodal data source, presenting the challenges
inherent in social media data during critical events, such as
class imbalance and noisy data.
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FIGURE 6. The multimodal deep learning model used for disaster event
classification.

The MEDIC dataset consists of 5,831 image-tweet pairs,
divided into a training set of 5,247 samples and a test
set of 584 samples. To mitigate the class imbalance issue,
we employed a range of data augmentation techniques,
including random horizontal flipping, color jittering, and
random rotation, to enhance the diversity of the training data.
We configured the FL setup with 20 client models, similar

to the CIFAR experimental setup, randomly selecting clients
to participate in each training round. The performance of
our proposed aggregation method was evaluated against the
traditional FedAvg algorithm implemented in [42] on the
MEDIC dataset, with results reported in terms of key metrics,
including accuracy, precision, recall, and F1-score, averaged
over 31 training rounds.
For feature extraction, we leveraged pre-trained models

to capture both textual and visual information, as shown
in Figure 6. Specifically, we utilized the BERT model [41]
to extract meaningful features from the textual content of
the tweets, and the ResNet50 [36] architecture to extract
visual features from the corresponding images. The extracted
features were then combined using a late fusion approach,
where the outputs of the text and image models were
concatenated to form a unified representation, enabling our
model to capture the complementary information present in
both modalities.
The experimental results, presented in Table 4, demon-

strate the superiority of SimProx aggregation method
compared to FedAvg, emphasizing its effectiveness in lever-
aging the multimodal nature of the data and the collaborative
nature of the FL environment. The improved classification
performance, in terms of accuracy, precision, recall, and
F1-score, highlights the advantages of our approach in

TABLE 4. Performance comparison on MEDIC dataset.

addressing the challenges inherent in real-world multimodal
data.
The findings of this study demonstrate the effectiveness

of our proposed aggregation method in the context of real-
world multimodal data, highlighting its potential to improve
disaster event classification performance while addressing
data privacy and scalability concerns.

V. COMPLEXITY ANALYSIS
The SimProx method introduces a hybrid similarity-based
aggregation that integrates both cosine and Gaussian simi-
larity measures alongside a proximal term for client update
weighting, which increases its computational complexity
relative to traditional aggregation methods such as FedAvg,
FedProx, and SimAgg. Specifically, SimProx’s use of a
similarity matrix, which calculates pairwise similarities
between client models, scales quadratically with the number
of clients, resulting in an overall complexity of O(C2 · p),
where C represents the number of clients and p denotes
the number of model parameters. The proximal term, which
evaluates the gradient norms of client updates, incurs an
additional complexity of O(C · p).

In contrast, simpler methods like FedAvg have a lower
complexity of O(C · p) due to their reliance on a straight-
forward weighted averaging process, but they suffer from
poor performance in handling heterogeneous, non-IID data
distributions. FedProx, while introducing a proximal term to
improve robustness in heterogeneous settings, adds additional
computational load on edge devices by penalizing updates
that diverge from the global model, which increases the
complexity of local computations. Although the complexity
of FedProx remains O(C · p), the proximal term requires
extra gradient calculations, making local updates slower
and more computationally intensive. Similarly, SimAgg,
while leveraging similarity measures for client weighting,
lacks the proximal regularization, exhibiting a complexity of
O(C2 ·p) without the added benefits of SimProx’s enhanced
optimization.
The increased computational complexity of SimProx

translates into significant performance gains, particularly
in non-IID environments. The propose method accelerates
convergence and enhances model robustness. In comparison,
FedProx, while handling heterogeneity better than FedAvg,
imposes more computational burden on edge devices as
they must perform additional local gradient computations
to maintain proximity to the global model, potentially
affecting resource-constrained devices. Experimental results
demonstrate that SimProx outperforms FedAvg, FedProx,
and SimAgg in terms of accuracy and convergence speed,
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especially in scenarios with high data heterogeneity, as
shown in the CIFAR-10, CIFAR-100, and Banking77
datasets. While the quadratic complexity of SimProx may
pose scalability challenges in large-scale federated learning
systems, its effectiveness in handling heterogeneous data
distributions makes it a valuable method for environments
where data variability is a critical concern.
While SimProx offers several advantages, it is not without

limitations, particularly in addressing device heterogeneity.
A key challenge lies in the requirement for the server to
collect all client models to calculate similarity scores. This
process may introduce delays in the learning cycle, especially
as the number of participating clients increases significantly.
Such delays may impede the responsiveness of the system in
dynamic or resource-constrained environments [44]. Future
research could explore the adaptation of this method to
buffered asynchronous federated learning frameworks [45],
which may alleviate delays by enabling clients to upload
updates at different times. Additionally, efforts to reduce
the computational complexity of the similarity calculation
process would further enhance the feasibility of the proposed
approach in large-scale, real-world deployments.

VI. CONCLUSION
In this article, we introduced SimProx, a novel similarity-
based aggregation method for federated deep learning
that optimizes client weights using a combination of
cosine and Gaussian similarity measures. Our approach
addresses the challenges of data heterogeneity by effec-
tively weighting client contributions based on computed
similarities. Experimental results demonstrate that SimProx
significantly improves the accuracy and robustness of the
aggregated global model, outperforming traditional methods
like FedAvg, particularly in non-IID settings and real-world
multimodal datasets. The proposed method enhances model
performance, also reduces training time, showcasing its
potential for practical applications in decentralized envi-
ronments. While SimProx offers substantial advantages, it
also introduces increased computational complexity, which
may pose challenges in large-scale FL systems to maintain
scalability. Exploring additional similarity measures and
addressing communication and computational heterogeneity
are also promising directions for future research.
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