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Abstract
Traditional image retrieval methods often face challenges in adapting to varying 
user preferences and dynamic datasets. To address these limitations, this research 
introduces a novel image retrieval framework utilizing deep deterministic policy 
gradients (DDPG) augmented with a self-adaptive reward mechanism (SARM). 
The DDPG-SARM framework dynamically adjusts rewards based on user feedback 
and retrieval context, enhancing the learning efficiency and retrieval accuracy of 
the agent. Key innovations include dynamic reward adjustment based on user feed-
back, context-aware reward structuring that considers the specific characteristics 
of each retrieval task, and an adaptive learning rate strategy to ensure robust and 
efficient model convergence. Extensive experimentation with the three distinct data-
sets demonstrates that the proposed framework significantly outperforms traditional 
methods, achieving the highest retrieval accuracy having 3.38%, 5.26%, and 0.21% 
improvement overall as compared to the mainstream models over DermaMNIST, 
PneumoniaMNIST, and OrganMNIST datasets, respectively. The findings contrib-
ute to the advancement of reinforcement learning applications in image retrieval, 
providing a user-centric solution adaptable to various dynamic environments. The 
proposed method also offers a promising direction for future developments in intel-
ligent image retrieval systems.
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1 Introduction

Image retrieval systems have undergone significant evolution, transitioning from 
traditional keyword-based search methods to more advanced approaches that lev-
erage deep learning for feature extraction and similarity matching. Early methods 
like the bag-of-words model and scale-invariant feature transform (SIFT) descrip-
tors focused on extracting handcrafted features to match image content. These tech-
niques struggled to capture the high-level semantics of visual data, leading to lim-
ited retrieval accuracy and user satisfaction.

In recent years, convolutional neural network (CNN) has revolutionized the field 
by automatically learning hierarchical feature representations from large datasets. 
CNN enables more precise image retrieval by generating deep feature vectors that 
better represent the content and semantics of images, improving the system’s ability 
to retrieve relevant results based on visual similarity. However, static deep learn-
ing models have limitations when user preferences change dynamically or when the 
relevance of the content evolves over time. To address these issues, researchers have 
begun exploring reinforcement learning (RL) as a way to introduce adaptability and 
interaction-based learning into image retrieval systems. A general framework for RL 
is shown in Fig. 1

RL, particularly in combination with deep neural networks, has proven effective 
in various domains such as gaming, robotics, and natural language processing. RL 
algorithms enable systems to adapt their strategies based on real-time feedback, 
making them ideal for tasks where user preferences and contextual relevance are 
constantly shifting. The application of RL to image retrieval is still in its nascent 
stages but shows great promise. Existing research, such as the work of Khamaj et al. 
[1] and Liang et al. [2], has demonstrated RL’s potential for improving user interac-
tions and adaptability in various fields.

Fig. 1  Reinforcement learning framework
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Despite this progress, many RL-based image retrieval systems lack mechanisms 
that can effectively interpret and respond to user feedback and contextual changes. 
The integration of advanced reward mechanisms within RL frameworks is an emerg-
ing research area aimed at addressing these limitations. By incorporating dynamic, 
user-driven reward systems, it is possible to improve the relevance and personaliza-
tion of retrieval results, ensuring that the system remains responsive to user needs 
over time.

In the context of image retrieval, the self-adaptive reward mechanism contributes 
to more personalized and effective retrieval outcomes. It helps in prioritizing images 
that are more likely to meet user expectations, thereby enhancing user satisfaction 
and engagement with the retrieval system [3]. Moreover, it supports continuous 
improvement in retrieval performance as the system operates in real-world scenar-
ios. Operating in real-world scenarios entails encountering diverse user preferences 
and evolving content dynamics. The adaptive nature of the mechanism equips the 
retrieval system to respond effectively to these challenges. It adapts dynamically to 
changes in user behavior and content relevance, ensuring robust performance across 
varying conditions and contexts.

Medical image analysis plays a crucial role in assisting physicians with both qual-
itative and quantitative assessments of lesions and anatomical structures, thereby 
enhancing the accuracy and reliability of medical diagnoses and prognoses. Tradi-
tionally, these tasks were labor-intensive and susceptible to inefficiencies and biases 
when performed solely by experienced physicians or medical physicists. During the 
past decade, there has been a notable surge in the application of machine learning 
methods to streamline and automate medical image analysis. Despite the widespread 
adoption of supervised and unsupervised learning models, the utilization of RL in 
this domain remains relatively limited [4].

Image retrieval systems have evolved from simple keyword-based searches to 
complex models leveraging deep learning for feature extraction and similarity 
matching. Traditional methods, such as bag-of-words and SIFT descriptors, have 
laid the foundation for image retrieval. Recent advancements have employed con-
volutional neural network (CNN) to extract deep features, significantly improving 
retrieval performance. RL has introduced a new dimension to image retrieval, ena-
bling dynamic and adaptive search strategies. However, the potential benefits of 
integrating RL with advanced reward mechanisms in image retrieval are not fully 
realized. Research in this area can lead to systems that not only deliver more rel-
evant results but also continuously improve their performance based on user interac-
tions and contextual changes [5].

In the realm of image retrieval, several challenges hinder the effectiveness of 
traditional systems. Firstly, dynamic user preferences pose a significant obstacle, 
as users often have changing interests and needs influenced by personal experi-
ences, trends, or seasonal factors. This variability can lead to irrelevant results when 
systems fail to adapt. Additionally, contextual changes, such as current events or 
specific situational requirements, further complicate the retrieval process, as the 
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relevance of images can shift dramatically. Many existing systems also struggle with 
effectively interpreting and integrating user feedback, limiting their ability to learn 
from interactions and improve over time. Moreover, the evolution of content rele-
vance necessitates continuous reassessment of retrieved results, as certain images 
may gain or lose significance over time. Finally, achieving high levels of person-
alization in retrieval outcomes remains challenging, particularly when systems must 
cater to diverse user preferences and context-specific needs simultaneously.

In this research work, we propose a novel image retrieval framework that com-
bines deep deterministic policy gradient (DDPG) with a self-adaptive reward mech-
anism (SARM). This approach aims to address the challenges posed by evolving 
user preferences and varying contextual factors. The framework interprets both user 
feedback and contextual cues to dynamically adjust the agent’s retrieval strategies, 
fostering continuous learning and improvement in retrieval performance.

1.1  Objectives

1. Dynamic reward adjustment based on user feedback Develop a reward adjust-
ment algorithm that dynamically modifies the reward values based on user feed-
back to ensure that the RL agent learns to prioritize user satisfaction and relevance 
in image retrieval.

2. Context-aware reward structuring Introduce a context-aware component to the 
reward mechanism that considers the specific characteristics of the retrieval task, 
such as image complexity, diversity, and user-specific preferences, to provide a 
more nuanced reward structure.

3. Adaptive learning rate for efficient convergence Implement an adaptive learn-
ing rate strategy within the DDPG framework that adjusts the learning rate based 
on the agent’s performance and reward trends, facilitating faster and more stable 
convergence of the RL model.

1.2  Motivations

Managing image complexity in retrieval tasks
Image retrieval, particularly in specialized fields such as healthcare, often 

involves handling complex images with varying levels of detail, such as medical 
images with intricate features. Current retrieval systems struggle to accurately cap-
ture and interpret this complexity, leading to suboptimal results. A RL-based frame-
work that incorporates contextual factors, such as image complexity and user-spe-
cific needs, is essential to improve the accuracy and relevance of retrieval outcomes.

Addressing data imbalance in image datasets
Image datasets, especially those used in niche domains like medical or e-com-

merce applications, often suffer from imbalanced class distributions. This imbalance 
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can lead to biased retrieval results, where frequently occurring image types are 
prioritized at the expense of rarer, but equally important, images. Developing a 
dynamic learning approach that adjusts based on varying data distributions is criti-
cal to ensure balanced and unbiased retrieval.

Adapting to dynamic user preferences and feedback
User preferences can vary widely, and these preferences can evolve over time as 

they interact with image retrieval systems. Traditional static retrieval models fail 
to capture this dynamic aspect of user behavior. Therefore, a self-adaptive reward 
mechanism that continuously learns from user feedback is necessary to personalize 
retrieval experiences and improve satisfaction by dynamically prioritizing relevant 
results.

Optimizing learning for efficient and stable convergence
RL models can face challenges in achieving stable and efficient learning, particu-

larly when dealing with complex, high-dimensional tasks such as image retrieval. 
An adaptive learning rate mechanism that adjusts based on the agent’s performance 
is crucial to ensuring faster convergence and more robust model training, leading to 
a more responsive and efficient retrieval system.

1.3  Contributions

This research makes several significant contributions to the field of image retrieval 
using RL:

Development of an RL framework The primary contribution lies in the design 
and implementation of an RL framework tailored specifically for image retrieval 
tasks. By integrating deep learning models, particularly convolutional neural net-
work (CNN), with RL algorithms such as deep deterministic policy gradient 
(DDPG), the framework enables the autonomous learning of optimal image retrieval 
strategies based on user interactions and feedback.

Enhanced adaptability and accuracy Unlike traditional methods that rely on 
static feature extraction and heuristic-based approaches, the proposed framework 
enhances adaptability by dynamically learning and adjusting its retrieval strategy. 
This adaptability leads to improved accuracy in selecting relevant images from 
large-scale datasets, thereby enhancing the overall precision and effectiveness of the 
retrieval system.

Integration of user feedback mechanisms A key contribution is the integration 
of a self-adaptive reward mechanism within the RL framework. This mechanism 
enables the system to effectively incorporate user feedback into the learning process, 
facilitating personalized and context-aware image retrieval. By dynamically adjust-
ing rewards based on user interactions, the system improves its responsiveness and 
relevance to user preferences over time.

Empirical evaluation and validation The research includes comprehensive 
empirical evaluations conducted on standard benchmark datasets, such as MNIST, 
and potentially on larger and more complex datasets. These evaluations assess the 
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performance, efficiency, and scalability of the proposed RL-based image retrieval 
system compared to traditional methods. The results provide empirical evidence of 
the system’s effectiveness and demonstrate its potential for real-world applications.

Practical applications and future directions Beyond theoretical advancements, 
this research explores practical applications of the proposed framework across vari-
ous domains, including healthcare, e-commerce, and digital libraries. By demon-
strating its applicability in diverse settings, the research contributes to expanding the 
scope and impact of RL techniques in image retrieval.

Contribution to research and development Lastly, this research contributes to 
the broader research community by advancing the state-of-the-art in image retrieval 
methodologies. It provides insights into the integration of deep learning with RL for 
complex tasks, paving the way for future research directions in autonomous, adap-
tive systems for image analysis and retrieval.

In summary, the contributions of this research extend beyond technical advance-
ments to encompass practical applications, empirical validations, and implications 
for the future development of intelligent image retrieval systems leveraging RL.

1.4  Structure of this paper

This paper is structured to provide a comprehensive understanding of the proposed 
framework for image retrieval based on RL. The structure unfolds as follows.

Section  1 introduces the paper, outlining the objectives, motivations, contribu-
tions, and overall structure of this paper. Section 2 presents the related work, sum-
marizing recent advancements in reinforcement learning (RL), image retrieval, and 
user feedback mechanisms. This section is divided into subsections, covering top-
ics such as rewards adjustment, incorporating user feedback, contextual adaptation, 
and enhanced learning and adaptability. Section 3 provides the problem formulation. 
The elements of this section establish a comprehensive mathematical foundation for 
the proposed approach. In Sect. 4, the proposed methodology is discussed, focusing 
on the self-adaptive reward mechanism with its dynamic adjustment factor and con-
text factor. Section 5, titled experimental setup, includes descriptions of the datasets 
used, along with information on hyperparameters, data transformation and loading, 
neural network model and features extraction, actor and critic networks, training and 
validation loop, and evaluation metrics. Section 6 provides the results and discus-
sion, offering a comparison of DDPG-SARM with state-of-the-art (SOTA) methods 
and including an ablation study to assess model robustness. Section 7 concludes the 
paper with a summary of key findings, and Sect. 8 outlines possible future works.

2  Related work

In this section, we review the existing literature related to key aspects of our pro-
posed method, including rewards adjustment, incorporating user feedback, contex-
tual adaptation, enhanced learning and adaptability, and benefits in image retrieval. 
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Each of these components contributes to the development of more sophisticated and 
personalized image retrieval systems.

2.1  Rewards adjustment

Dynamic reward adjustment enhances the DDPG agent’s capacity to learn by allow-
ing rewards to evolve based on recent interactions and contextual information. 
This ongoing adjustment enables the agent to quickly adapt its retrieval strategies, 
improving its responsiveness to changing user preferences or dataset characteristics. 
As a result, the agent’s learning process becomes more aligned with user needs and 
the complexity of the task at hand.

Lillicrap et al. [6] successfully demonstrated a model-free approach using DDPG, 
solving more than 20 physics-based tasks, including cartpole swing and dexterous 
manipulation. However, DDPG, like many reinforcement learning (RL) methods, 
requires a significant number of training episodes. Despite this, it remains an inte-
gral component for addressing various RL challenges due to its adaptability. Zhao 
et al. [7] introduced continuous-time RL methods, showcasing the performance of 
policy gradient methods such as trust region policy optimization/proximal policy 
optimization (TRPO/PPO) in the continuous setting. Their research emphasizes the 
importance of policy adaptation to continuous environments, which resonates with 
our aim to enhance dynamic reward adjustment in image retrieval.

Viswanadhapalli et al. [8] applied DDPG in control systems, using reward shap-
ing for reference tracking in flexible manipulators. This work underscores the value 
of incorporating domain-specific constraints into reward mechanisms, similar to our 
approach in tailoring rewards for the dynamic nature of image retrieval tasks. Fur-
thermore, recent advances, such as the reward-adaptive RL method by [9], introduce 
hybrid policy gradients that optimize multiple criteria simultaneously. The ability to 
dynamically prioritize different reward components is crucial in environments like 
image retrieval, where multiple user-specific and contextual factors come into play.

In dynamic reward frameworks, as seen in the multi-reward architecture (MRA) 
proposed by Xu et  al. [10], learning from multiple sub-reward branches leads to 
more granular decision-making. In our image retrieval framework, dynamically 
adjusting reward structures based on ongoing feedback will provide similar bene-
fits, allowing the system to better align with evolving user preferences. Ultimately, 
dynamic rewards adjustment equips the DDPG agent with the flexibility to prioritize 
actions that maximize positive outcomes based on current user feedback. This adapt-
ability is essential for ensuring that the image retrieval process remains relevant, 
personalized, and capable of delivering results that align with user expectations. 
The proposed dynamic reward adjustment mechanism is particularly beneficial in 
the context of image retrieval, where static approaches often fall short of capturing 
nuanced user preferences and evolving task conditions. By continually updating the 
reward structure based on real-time interactions and contextual factors, the retrieval 
system is able to offer more tailored and satisfying results.
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The exploration of dynamic reward adjustment in RL has shown promise across 
various domains, such as robotics and gaming [11]. However, its application to 
image retrieval remains relatively underexplored. This research addresses that gap 
by proposing a novel framework that leverages dynamic reward adjustments to 
enhance the relevance and accuracy of image retrieval tasks, aligning the system’s 
learning process with user-driven objectives and task-specific nuances.

2.2  Incorporating user feedback

Interpreting user interactions with the retrieval system, such as clicks on 
retrieved images or other forms of feedback, to determine the quality of retrieval 
outcomes. Positive feedback, indicating satisfaction with the retrieved images, 
leads to higher rewards, while negative feedback adjusts the rewards downward. 
Incorporating user feedback effectively is central to the self-adaptive reward 
mechanism designed for the image retrieval system. This mechanism relies 
on interpreting user interactions with the retrieval system, which can include 
actions such as clicks on retrieved images or explicit feedback provided by the 
user. These interactions serve as valuable signals that help gauge the quality and 
relevance of the retrieved images from the user’s perspective.

When a user interacts positively with the retrieval system, such as by click-
ing on retrieved images or indicating satisfaction through explicit feedback, the 
mechanism responds by assigning higher rewards. This positive reinforcement 
encourages the agent to prioritize and reinforce actions that lead to satisfying 
retrieval outcomes, aligning more closely with user preferences and expecta-
tions. Conversely, negative interactions or feedback from the user result in 
adjustments to the rewards provided. This could occur when a user ignores or 
expresses dissatisfaction with the retrieved images. Lower rewards in response 
to negative feedback prompt the agent to reassess its strategies and prioritize 
alternative actions that may better meet user expectations or retrieval needs. 
In this research work instead of real user feedback, the correctness of the RL 
agent’s action (classification) is used to simulate feedback.

Liang et  al. [2] introduced an innovative application of deep reinforcement 
learning (DRL) for droplet routing on digital microfluidic biochips (DMFBs), 
which automate biochemical protocols. DMFBs face challenges with electrode 
degradation over time, which can disrupt droplet transport and compromise bio-
assay accuracy. By framing droplet routing as a reinforcement learning prob-
lem, the authors trained neural network policies to adapt to electrode conditions, 
ensuring reliable fluidic operations. Their RL-based solution, validated on both 
real and simulated DMFBs, proves effective across various chip sizes and is 
computationally feasible on devices like the Raspberry Pi 4, showing promise 
for time-sensitive bioassays.
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Khamaj et al. proposed a modern method to enhance user experiences through 
RL and a deep Q network (DQN). Using these techniques, the objectives are to 
optimize user interactions and increase engagement, satisfaction, and task com-
pletion rates. Traditional user interfaces offer a common experience due to their 
impersonal and inflexible nature, which limits the potential for higher engage-
ment and satisfaction in the absence of real-time changes based on individual 
preferences and behaviors. To address this issue, the study introduces an intel-
ligent system that continuously learns and adapts to user interactions. This inno-
vative approach combines RL and DQN to incrementally adjust user interfaces. 
Unlike conventional methods, the proposed model adapts by using well-estab-
lished, high-reward moves along with the development of new strategies through 
an exploration–exploitation mechanism. Timestamped data fields such as Event-
Type, contentId, personId, sensorId, and timestamp provide a comprehensive 
understanding of user behavior, enabling detailed and nuanced adjustments to 
the interface [1].

2.3  Contextual adaptation

The self-adaptive reward mechanism considers both user feedback and broader con-
textual factors in the image retrieval task. This includes evaluating the relevance of 
retrieved images to specific contexts, such as thematic alignment and situational 
appropriateness, which helps the agent refine retrieval strategies. By dynamically 
adapting rewards based on these contextual cues, the mechanism ensures responsive-
ness to evolving user preferences and trends, optimizing retrieval performance over 
time. This approach enables the agent to maintain relevance and adapt to changing 
conditions, enhancing the utility of its retrieval outcomes.

Intelligent manufacturing and agent-based systems are actively researched for 
their potential to optimize industrial processes. Current approaches often rely on 
training models with extensive experimental data under specific conditions, followed 
by deployment, but challenges, like tool wear and machine-specific noise, can limit 
transferability and necessitate cautious adaptation strategies. This study addresses 
these issues by proposing a novel method for safe, efficient contextual optimization 
in industrial settings. The approach balances exploration and exploitation through 
continual learning, supported by appropriate data management and local approxi-
mation techniques. Implemented as a modular software solution for industrial edge 
control, this method is demonstrated on a steel straightening machine, showcasing 
its ability to adapt reliably to varying operational environments [12].

While existing DRL-based approaches have achieved some success in image 
augmentation tasks, their effectiveness for data augmentation in intelligent medi-
cal image analysis remains unsatisfactory [13, 14]. To address this, the adaptive 
sequence-length-based deep reinforcement learning (ASDRL) model for automatic 
data augmentation (AutoAug) is proposed, introducing a precise reward function that 
evaluates augmentation transformations more accurately and an intelligent automatic 
stopping mechanism (ASM) that halts augmentation once optimal performance is 
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achieved. Extensive experiments on medical image segmentation datasets show that 
ASDRL-AutoAug significantly outperforms state-of-the-art methods, offering supe-
rior performance through accurate reward assessment and adaptive sequence length, 
demonstrating its potential to enhance medical image analysis [15].

Although RL has achieved remarkable successes in various domains, its appli-
cation in real-world scenarios is limited due to many methods failing to general-
ize to unfamiliar conditions. This work addresses the problem of generalizing to 
new transition dynamics, where the environment’s response to the agent’s actions 
changes, such as a robot’s mobility being affected by different gravitational forces 
depending on its mass. Effective generalization requires conditioning an agent’s 
actions on extrinsic state information and contextual information that reflects envi-
ronmental responses. Despite the recognized need for context-sensitive policies, the 
architectural integration of context information remains underexplored. This work 
investigates how context information should be incorporated into behavior learning 
to enhance generalization. A neural network architecture, the decision adapter, is 
introduced to generate the weights of an adapter module, conditioning the agent’s 
behavior on context information. The decision adapter extends a previously pro-
posed architecture and demonstrates superior generalization performance across 
multiple environments. Furthermore, it shows increased robustness to irrelevant dis-
tractor variables compared to alternative methods [16].

By integrating contextual factors into reward calculations, the mechanism 
improves the relevance of retrieved images [17]. This proactive adjustment helps in 
delivering content that is not only visually appealing, but also contextually appro-
priate, thus enhancing user satisfaction and engagement with the retrieval system. 
Contextual adaptation fosters adaptive learning within the agent. It enables the sys-
tem to continuously refine its retrieval strategies based on real-time contextual cues, 
improving its ability to anticipate and respond to varying retrieval demands effec-
tively. The ability to adapt rewards based on contextual factors contributes to opti-
mized performance across diverse retrieval tasks and user scenarios. This adaptive 
capability ensures that the agent can maintain high standards of performance and 
relevance, even in dynamic and unpredictable environments.

In practice, contextual adaptation operates alongside user feedback within the 
deep deterministic policy gradients (DDPG) framework. The mechanism leverages 
both user interactions and contextual cues to dynamically adjust rewards during the 
agent’s training and decision-making processes. This integrated approach not only 
enhances the system’s adaptability, but also supports its ability to deliver tailored 
and contextually relevant image retrieval solutions.

2.4  Enhanced learning and adaptability

In recent years, researchers have increasingly explored the application of RL algo-
rithms as integral components in addressing various natural language processing 
(NLP) tasks. Particularly noteworthy is their integration into conversational systems, 
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leveraging deep neural networks. Researchers conducted a comprehensive review of 
the current state-of-the-art RL methods within the realm of NLP, with a primary 
focus on conversational systems, given their growing importance. They provided in-
depth descriptions of these NLP challenges and discussed why RL represents a suit-
able approach for tackling them effectively. In addition, they critically examine the 
advantages and limitations associated with RL methods in this context [18].

Recent advancements in multimedia streaming applications (MAS) have 
improved video transmission speed but still face issues like slow access, delays, and 
inefficiencies. Traditional manual annotation for content retrieval is inaccurate over 
large databases, leading to a shift toward automatic annotation. This study intro-
duces an automated model that retrieves visually similar images from streams using 
multi-modal active learning (MAL) combined with a convolutional recurrent neu-
ral network (CRNN) to annotate based on features like edges, color, and texture. A 
deep reinforcement learning (DRL) algorithm validates features, enhancing retrieval 
performance. Simulation results show that the MAL-DRL model outperforms con-
ventional methods across metrics like retrieval accuracy, sensitivity, specificity, and 
MAPE [19].

A deep reinforcement learning (DRL) approach improves object detection in low-
quality images by enhancing image quality through a reward-driven method rather 
than extensive retraining. Using an image enhancement tool chain (IETC) and a 
dueling deep Q network-based tool selector (DDQN-TS) with a ‘pass’ option, the 
system adapts to variable image quality conditions. A ‘thresh’ parameter addresses 
negative sample inconsistencies, demonstrating effectiveness in challenging settings 
with noise, fog, and uneven lighting [20].

In summary, we proposed DDPG-SARM (deep deterministic policy gradient with 
self-adaptive reward mechanism) to address the shortcomings of existing methods 
in dynamic environments, where user preferences and dataset characteristics are 
constantly evolving. Traditional methods often struggle to adapt to changing con-
ditions, relying heavily on predefined rules or static reward functions. This limits 
their ability to improve over time or react to real-time user feedback. In contrast, 
DDPG-SARM dynamically adjusts rewards based on continuous user interaction, 
enabling faster adaptation to new data patterns and improving retrieval accuracy and 
efficiency. By integrating both user feedback and contextual cues into the learning 
process, DDPG-SARM ensures the agent remains responsive and effective, provid-
ing consistent, high-quality retrieval outcomes even in unpredictable environments. 
This adaptability overcomes the limitations of conventional approaches, which often 
fail to maintain optimal performance in such dynamic settings.

3  Problem formulation

In this research, we aim to develop a robust image retrieval system for medical 
images, particularly focusing on the MedMNIST datasets. The goal is to leverage 
reinforcement learning (RL) with a deep deterministic policy gradient (DDPG) 
framework, which is coupled with a self-adaptive reward mechanism (SARM). The 
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system will learn to improve the retrieval of relevant medical images by interacting 
with a dynamic environment. Formally, we define the following components:

3.1  State space ( S)

Let st ∈ S be the state at time t , representing the current query image or a feature 
vector of an image extracted using a convolutional neural network (CNN).

where xt in X is the input image at time t.

3.2  Action space ( A)

The action at ∈ A represents the selection of an image from the dataset to be 
retrieved, based on its similarity to the query image.

� is the policy network that selects an action given the state.

3.3  Reward function ( R)

The reward function R(st, at) provides feedback on the retrieval accuracy. A 
self-adaptive reward mechanism (SARM) is implemented to adjust the rewards 
dynamically based on the system’s performance and user feedback:

where �1, �2, �3 are adaptive weighting factors.

3.4  Objective function

The primary objective is to maximize the expected cumulative reward J(�) , where 
� represents the parameters of the policy (actor) network:

where � is the discount factor, p� is the distribution of states under policy � , and T is 
the time horizon. To ensure that this objective aligns with the evaluation metrics in 
the experimental section—specifically accuracy, precision, recall, and F1-score—
we describe below how each metric connects to our objective function and how 
these metrics will be measured.

(1)st = CNN(xt)

(2)at = �(st)

(3)
R(st, at) = �1 ⋅ user feedback + �2 ⋅ system accuracy + �3 ⋅ contextual factors

(4)J(�) = �s∼p�

[
T∑

t=0

� tR(st, at)

]
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• Accuracy Accuracy reflects the correct retrieval rate of relevant images 
among all retrievals. In terms of our objective function, optimizing the cumu-
lative reward J(�) encourages correct action selections, resulting in high accu-
racy in the retrieval of relevant images. During experimental evaluation, accu-
racy will be calculated as the proportion of correctly retrieved relevant images 
out of all retrievals.

• Precision Precision measures the relevancy of retrieved images, indicating 
the proportion of relevant images among those retrieved by the model. Within 
the objective function, maximizing J(�) indirectly promotes high precision by 
rewarding actions that prioritize the retrieval of relevant images based on sim-
ilarity to the query image. In experiments, precision will be measured as the 
ratio of true positive retrievals to the sum of true positives and false positives.

• Recall Recall assesses the model’s capability to retrieve all relevant images, provid-
ing a measure of completeness. In our objective, a higher cumulative reward J(�) 
should correlate with the model’s ability to consistently retrieve all relevant images 
for a given query. Experimentally, recall will be calculated as the ratio of true posi-
tive retrievals to the total number of relevant images in the dataset.

• F1-Score The F1-score offers a balanced metric that considers both precision 
and recall. By optimizing the cumulative reward J(�) , we aim to achieve a bal-
anced retrieval performance that does not overemphasize either precision or 
recall, thereby achieving a high F1-score. This score will be evaluated as the 
harmonic mean of precision and recall in our experiments.

Through these measures, the objective function J(�) will be evaluated based on 
its impact on accuracy, precision, recall, and F1-score, providing a comprehensive 
assessment of the retrieval system’s effectiveness. This alignment ensures that the 
objectives of current study are clearly articulated and can be effectively validated 
through the experimental results.

3.5  Task characteristics

Data imbalance The dataset exhibits imbalance across different organ classes, 
affecting model performance. To address this, we apply the synthetic minority 
oversampling technique (SMOTE) to ensure a more balanced distribution during 
training:

where Nc is the number of samples in class c, and Nmax is the size of the largest class 
after balancing.

3.6  Action‑value estimate (Q‑function) and critic updates

The Q-function Q(st, at) is trained to minimize the temporal difference (TD) error, 
representing the objective for updating the critic network. The TD error is mini-
mized as follows:

(5)Nc = Nmax, ∀c ∈ Classes
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where � are the parameters of the critic network.

4  Proposed methodology

Figure  2 shows that the self-adaptive reward mechanism dynamically adjusts the 
rewards provided to the DDPG agent throughout its training process. Instead of rely-
ing on static reward schemes that offer fixed rewards based on predefined criteria, 
this mechanism continuously updates reward values in real-time, utilizing user feed-
back and contextual cues from the image retrieval tasks. The key advantage of this 
dynamic reward adjustment lies in its ability to optimize the learning process by 
promoting adaptability and personalized responses.

The primary objective of this research is to develop a robust image retrieval sys-
tem utilizing RL. Our approach leverages a convolutional neural network (CNN) for 

(6)L(�) =
1

N

N∑

i=1

(
Q�(si, ai) − (ri + �Q�� (si+1, ai+1))

)2

Fig. 2  Proposed framework (DDPG-SARM)
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feature extraction, and a deep deterministic policy gradient (DDPG) agent to learn 
and optimize the retrieval process. Algorithm 1 presents the overall working of pro-
posed model.

Algorithm 1  DDPG Model with SARM
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Deep deterministic policy gradient (DDPG) is a model-free off-policy 
actor–critic that uses deep function approximators. It is particularly effective in 
continuous action spaces.

1. Policy update

where � is the learning rate and J(�) is the objective function defined as:

2. Q-function update

where � is the learning rate and the target value y is given by:

Here, � is the discount factor, and �′ and �′ are the parameters of the target networks, 
r is the reward, and s′ is the next state.

4.1  Self‑adaptive reward mechanism

The self-adaptive reward mechanism shown in Fig.  3 dynamically adjusts the 
rewards during the learning process based on user feedback and contextual factors, 
ensuring the DDPG agent’s adaptability to evolving environments. This mechanism 
is particularly effective in image retrieval tasks, where user preferences and dataset 
characteristics change over time. Dynamic adjustment is controlled by factors that 
are updated after each interaction, based on user feedback and contextual cues.

The process of adjusting rewards is illustrated in Algorithm 2, outlining the step-
by-step computation and updating of adaptive rewards. The reward mechanism ini-
tializes two key factors: the dynamic adjustment factor and the context factor, both 
of which influence how rewards are calculated and adjusted throughout the learning 
process.

(7)� ← � + �∇�J(�)

(8)J(�) = �s∼D[Q(s,��(s))]

(9)� ← � + �∇�

(
Q�(s, a) − y

)2

(10)y = r + �Q�� (s
�,��� (s

�))
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Algorithm 2  Self-adaptive reward mechanism

Fig. 3  Self-adaptive reward flowchart
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Let rt be the reward at time step t , ft be the user feedback, and ct be the context at 
that time step. The adaptive reward rt is computed as:

where �t is the dynamic adjustment factor, updated based on user feedback. �t is the 
context factor that accounts for contextual information.

4.1.1  Dynamic adjustment factor

The dynamic adjustment factor �t is updated according to the feedback ft received. 
The update rule is:

where � is the learning rate that controls the adjustment magnitude. ft is the feed-
back received from the user at time t.

4.1.2  Context factor

The context factor �t is updated based on the contextual information ct as follows:

where � is the context learning rate. ct represents the context-specific input at time t.
In proposed mechanism, user feedback influences the base reward, which is fur-

ther adjusted by multiplying it with the dynamic adjustment factor. The context fac-
tor, which captures contextual information about the task, is also incorporated into the 
reward calculation. After each interaction, the factors are updated; positive feedback 
increases the dynamic adjustment factor, encouraging the agent to continue pursuing 
successful strategies, while negative feedback decreases it, signaling the need to explore 
alternative strategies. Contextual information is used to fine-tune the context factor, 
ensuring that the reward mechanism remains sensitive to the evolving environment.

5  Experimental setup

The experimental setup includes details on the dataset(s) used, hyperparameters, 
evaluation metrics, and the overall process used to train and evaluate the reinforce-
ment learning (RL) based image retrieval system.

5.1  Dataset(s) description

Following subsections discuss the datasets used in current research work.

(11)rt = �t ⋅ �t ⋅ ft

(12)𝛼t+1 =

{
𝛼t + 𝜂 ⋅ ft if ft > 0

𝛼t − 𝜂 ⋅ |ft| if ft ≤ 0

(13)�t+1 = �t + � ⋅ ct
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5.1.1  DermaMNIST

The DermaMNIST is based on the HAM10000 [21, 22], which is a large collection 
of multi-source dermatoscopic images of common pigmented skin lesions. The Der-
maMNIST dataset provides a comprehensive collection of 10,015 images classified 
into seven different categories, which represent various skin lesions and conditions. 
Figure 4 presents sample of each category.

Actinic keratoses (Label 0) are rough, scaly patches on the skin that develop from 
years of exposure to the sun. This category includes both precancerous and cancer-
ous lesions, making accurate classification crucial for early treatment. Basal cell car-
cinoma (Label 1) is a common type of skin cancer that originates in the basal cells, 
which are found in the lower part of the epidermis. Benign keratosis-like lesions 
(Label 2) are noncancerous growths that resemble keratosis, a condition marked by 
rough, raised skin. Dermatofibroma (Label 3) are benign skin nodules commonly 
found on the lower legs. Melanoma (Label 4) is a serious and potentially fatal form 
of skin cancer that arises from melanocytes. Melanocytic nevi (Label 5) has the 

Fig. 4  Sample images from DermaMNIST dataset

Table 1  Class distribution in DermaMNIST dataset

Class Disease Dataset

Training Validation Testing

0 Actinic keratoses 228 33 66
1 Basal cell carcinoma 359 52 103
2 Benign keratosis-like lesions 769 110 220
3 Dermatofibroma 80 12 23
4 Melanoma 779 111 223
5 Melanocytic nevi 4693 671 1341
6 Vascular lesions 99 14 29
Total instances 7007 1003 2005
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highest number of instances, representing benign moles, commonly known as nevi. 
Vascular lesions (Label 6) are abnormal clusters of blood vessels on the skin and are 
generally benign.

This distribution in Table 1 shows a significant class imbalance, with melanocytic 
nevi being the most prevalent and vascular lesions and dermatofibroma being the 
least common. The presence of both benign and malignant categories in this dataset 
highlights its value in training models for early and accurate detection of skin condi-
tions, emphasizing the importance of handling class imbalance in model training to 
ensure robust performance across all classes.

5.1.2  PneumoniaMNIST

The PneumoniaMNIST is based on a prior dataset [23] of 5856 pediatric chest X-ray 
images. The PneumoniaMNIST dataset consists of pediatric chest X-ray images and 
is designed as a binary classification task for detecting pneumonia, with two catego-
ries as shown in Fig. 5, representing healthy and diseased lungs.

Table  2 presents the data distribution of PneumoniaMNIST dataset. Normal 
(Label 0) class includes images of normal, healthy lungs without signs of infection. 
Identifying normal cases accurately is essential to prevent unnecessary interventions 
and to ensure that healthy individuals are not misdiagnosed with pneumonia. Pneu-
monia (Label 1) represents lungs showing signs of infection, such as inflammation 
caused by bacteria or viruses. With the higher number of instances in this category, 
the dataset emphasizes pneumonia detection, which is particularly crucial for early 
treatment and better health outcomes, especially in vulnerable pediatric patients.

The dataset is highly imbalanced, with more than twice the number of pneumo-
nia instances compared to normal instances. This imbalance is common in medical 

Fig. 5  Sample images from PneumoniaMNIST dataset

Table 2  Class distribution in 
PneumoniaMNIST dataset

Class Disease Dataset

Training Validation Testing

0 Normal 1214 135 234
1 Pneumonia 3494 389 390
Total instances 4708 524 624
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Fig. 6  Sample images from OrganMNIST dataset
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datasets, where diseased cases are often prioritized for detection. Effective handling 
of this imbalance is critical for developing a reliable model that can accurately dis-
tinguish between normal and pneumonia cases, helping to reduce false negatives and 
ensure appropriate care for those affected.

5.1.3  OrganMNIST

The OrganMNIST is based on 3D computed tomography (CT) images from liver 
tumor segmentation benchmark (LiTS) [24] from MedMNIST v1 [25]. Hounsfield-
unit (HU) of the 3D images is transformed into grayscale with an abdominal win-
dow [26]. Figure 6 presents the samples from OrganMNIST dataset.

Table 3  Class distribution in 
OrganMNIST dataset

Class Organ Dataset

Training Validation Testing

0 Bladder 1956 321 1036
1 Femur-left 1390 233 784
2 Femur-right 1357 225 793
3 Heart 1474 392 785
4 Kidney-left 3963 568 2064
5 Kidney-right 3817 637 1965
6 Liver 6164 1033 3285
7 Lung-left 3919 1033 1747
8 Lung-right 3929 1009 1813
9 Pancreas 3031 529 1622
10 Spleen 3561 511 1884
Total instances 34,561 6491 17,778

Table 4  Hyperparameters and their settings

Learning rates

Actor network �actor = 3 × 10−4

Critic network �critic = 3 × 10−4

Batch size B = 32

Discount factor � = 0.99

Soft update parameter � = 0.005

Replay buffer size N = 100, 000

Max action Max_action = 1.0

Number of epochs Epochs = 100

Iterations per training call Iterations = 100

Dynamic adjustment learning rate (for self-adaptive reward mechanism) � = 0.01
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Table  3 shows that the dataset contains a total of 58,830 grayscale images, 
each sized 28 × 28 pixels, distributed across 11 classes representing different 
organs. The data set is divided into three parts: training, validation, and test sets. 
Total Records: 58,830 images, Training dataset: 34,561 images, Validation data-
set: 6491 images, Testing dataset: 17,778 images.

The dataset is not balanced. The number of instances per class varies signifi-
cantly, with the ‘liver’ class having the highest number of instances (6164) and 
the ‘femur-right’ class having the fewest (1357). This imbalance can affect the 
performance of classification models, as models may become biased toward the 
more frequent classes. So we applied the SMOTE [27] to balance the data, after 
sampling we get 67,804 each class consists of 6164 instances

5.2  Hyperparameters

Hyperparameters play a critical role in the performance of both the feature extractor 
(CNN) and the RL agent (DDPG). Table 4 presents the key hyperparameters used in 
our experimental setup:

5.3  Data transformation and loading

The data transformation and loading phase is crucial for preparing the dataset for 
training. We utilize data augmentation and normalization techniques to ensure that 
the model generalizes well to unseen data.

Let X be the set of raw images, T  be the set of transformations, and X′ be the 
transformed images. The transformation can be expressed as:

where T  includes operations like grayscale conversion, resizing, and tensor 
conversion.

5.4  Neural network model and features extraction

A convolutional neural network (CNN) is used to extract features from the images. 
This network consists of convolutional layers followed by pooling layers, which help 
in capturing spatial hierarchies in images.

1. Convolutional layer

where W is the weight matrix, ∗ denotes the convolution operation, x is the input, b 
is the bias, and f  is the activation function (ReLU in this case).

2. Pooling layer

where max denotes the max-pooling operation applied to the input x.

(14)X� = T(X)

(15)y = f (W ∗ x + b)

(16)y = max(x)
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3. Fully connected layer

where W and b are the weights and biases of the layer and f  is the activation func-
tion (ReLU).

The feature extraction function uses the CNN to transform each image into a fea-
ture vector. These feature vectors are then used as inputs to the RL agent. Let CNN 
be the feature extractor and x be an input image. The feature vector � is given by:

5.5  Actor and critic networks

The actor–critic method is used in RL where the actor network decides the 
actions to be taken, and the critic network evaluates the action by computing a 
value function. In deep deterministic policy gradient (DDPG), the critic loss and 
actor loss typically exhibit the following behavior:

The critic network is trained to minimize the difference between its Q value 
estimates and the target Q values, computed using the Bellman equation. Since 
this is a regression problem where the loss function is the mean squared error 
(MSE), the critic loss is generally positive. It measures the squared difference 
between the predicted Q values and the target Q values.

The critic loss is calculated using the mean squared error (MSE) between the 
predicted Q values and the target Q values:

where Q is the critic network, Q′ is the target critic network, �′ is the target actor 
network, ri is the reward, � is the discount factor, si and ai are the states and actions 
in the replay buffer.

The actor network is trained to maximize the Q value predicted by the critic 
for the actions it selects. In practice, this means minimizing the negative of the 
expected Q value. Therefore, the actor loss is often negative, indicating that the 
policy’s actions are achieving higher Q values as predicted by the critic.

The actor loss is calculated as the negative expected Q value:

where � is the actor network.
The actor network is updated by minimizing this loss, which means maximiz-

ing the Q value predicted by the critic. Since we minimize the negative Q value, 
the actor loss often appears negative. A negative actor loss means that the Q val-
ues for the actions chosen by the actor are positive and potentially increasing.

(17)y = f (Wx + b)

(18)� = CNN(x)

Critic Loss =
1

N

N∑

i=1

(
Q(si, ai) − (ri + �Q�(si+1,�

�(si+1)))
)2

Actor Loss = −
1

N

N∑

i=1

Q(si,�(si))
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5.6  Training and validation loop

The training loop involves iterative updating of the actor and critic networks 
using batches of data from the replay buffer. Validation is performed to assess the 
model’s performance on unseen data. Figure 6 presents the sample images from 
the dataset.

1. Training iteration
for each iteration:

2. Validation

5.7  Evaluation metrics

To evaluate the performance of the image retrieval system, several metrics are 
considered:

• Accuracy: 

• Precision, recall, and F1-score: these metrics can provide additional insights into 
the performance of the retrieval system, especially in cases of imbalanced datasets. 
They are defined as: 

This experimental setup integrates CNN-based feature extraction with a RL approach 
(DDPG) and a self-adaptive reward mechanism to enhance image retrieval accu-
racy. The setup is designed to ensure robust training, effective feature extraction, and 

s, a, r, s�, d ∼ ReplayBuffer

y = r + �Q�� (s
�,��� (s

�))

Update critic: � ← � + �∇�

(
Q�(s, a) − y

)2

Update actor: � ← � + �∇�J(�)

(19)Accuracy =
Number of correct predictions

Total predictions

(20)Accuracy =
Number of correctly retrieved images

total number of images

(21)Precision =
True positives

True positives + false positives

(22)Recall =
True positives

True positives + false negatives

(23)F1-score =
2 × Precision × Recall

Precision + Recall
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adaptive learning based on user feedback. Evaluation metrics like accuracy, precision, 
recall, and F1-score are used to assess the system’s performance comprehensively.

6  Results and discussion

Figure 7 illustrates the training, validation, and test accuracies of DDPG-SARM. 
Analyzing the trend of these accuracies provides significant insights into the 
model’s learning behavior, generalization capacity, and potential areas for further 
improvement.

In the initial epochs, both training and validation accuracies rise sharply. The 
training accuracy starts at approximately 40% and quickly climbs to around 70% 
by epoch 20. Similarly, the validation accuracy begins slightly higher and reaches 
around 85% by the same epoch. This rapid increase suggests that the model is 
effectively learning the fundamental patterns in the data. The fact that the valida-
tion accuracy is higher than the training accuracy during this phase might indi-
cate that the validation set contains slightly easier examples or that the model is 
generalizing well from the onset. The training accuracy gradually rises from 70 
to about 80%, while the validation accuracy continues its upward trend but starts 
to plateau around 90% after epoch 40. This deceleration indicates that the model 
is entering a phase of fine-tuning where it makes smaller adjustments to optimize 
performance. In the later stages of training, the training accuracy continues its 
gradual ascent, eventually surpassing 90% by epoch 100. The validation accuracy, 
on the other hand, fluctuates slightly around the 90% mark, but remains relatively 
stable. This convergence between training and validation accuracies is a positive 
sign, indicating that the model is not overfitting to the training data and is main-
taining good generalization to unseen data. The stability in validation accuracy 
further confirms that the model has effectively learned the dataset and any addi-
tional epochs yield marginal improvements.

Fig. 7  Training, validation and test accuracies over epochs
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The overall training and validation accuracy trends suggest that the model does 
not suffer from significant overfitting, as evidenced by the convergence of both 
accuracies at high values. The model appears to have achieved a good balance 
between learning the training data and generalizing to the validation set. This bal-
ance is crucial for ensuring that the model performs well on new, unseen data. 
Achieving around 90% accuracy in both training and validation is indicative of 
strong performance on the task.

Figure 8 shows the standard deviation of accuracy over epochs for the DDPG-
SARM model reveals key insights into its learning behavior. Initially, the significant 
decrease in standard deviation indicates that the model is stabilizing, suggesting an 

Fig. 8  Standard deviation over epochs

Fig. 9  Confusion matrix on OrganMNIST test dataset
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improvement in consistency between training and validation accuracy. This narrow-
ing gap implies enhanced generalization, as the model becomes less sensitive to 
fluctuations in the data. As the epochs progress, the graph levels off with minimal 
variability, signaling that the model has reached a stable state where its performance 
is consistent across both training and validation sets. This stability indicates that the 
model has been effectively regularized and is less likely to overfit, which is crucial 
for ensuring robustness and generalizability, allowing it to handle unseen data reli-
ably. Overall, the decreasing standard deviation reflects the model’s balanced learn-
ing process and adaptability.

The confusion matrix shown in Fig. 9 presents a comprehensive view of the per-
formance of model across different organ classes. For the bladder class, the model 
has 991 true positives, indicating a high level of accuracy in detecting bladder 
images. There are minimal misclassifications into other classes, which shows that 
the model has learned to distinguish bladder images well. The femur-left and femur-
right classes show similar performance, with 755 and 752 true positives, respec-
tively. There are a few misclassifications, such as confusion between femur-left and 
femur-right, which is understandable given their anatomical similarities. However, 
overall performance remains strong for these classes. In the heart class, there are 746 
true positives. There are some misclassifications into classes like bladder and liver, 
but these are relatively few, indicating that the model performs well in identifying 
heart images. The kidney-left and kidney-right classes have 1990 and 1877 true pos-
itives, respectively. There is slight confusion between these two classes, which can 
be attributed to the difficulty in distinguishing between the left and right kidneys due 
to their similar appearances. Despite this, the model still performs well overall in 
these categories. The liver class stands out with the highest number of true positives 

Table 5  Performance comparison with the mainstream models using DermaMNIST, PneumoniaMNIST, 
and OrganMNIST datasets

Underline and bold values are the highest ones for each metric

Model DermaMNIST PneumoniaMNIST OrganMNIST

AUC (%) OA (%) AUC (%) OA (%) AUC (%) OA (%)

ResNet-18(28) [28] 91.70 73.50 94.40 85.40 99.70 93.50
ResNet-18(224) [28] 92.00 75.40 95.60 86.40 99.80 95.10
ResNet-50(28) [28] 91.30 73.50 94.80 85.40 99.70 93.50
ResNet-50(224) [28] 91.20 73.10 96.20 88.40 99.80 94.70
Auto-sklearn [29] 90.20 71.90 94.20 85.50 96.30 76.20
AutoKeras [30] 91.50 74.90 94.70 87.80 99.40 90.50
FPViT [31] 92.30 76.60 97.30 89.60 97.60 78.50
EHDFL [32] 91.70 76.90 96.80 88.30 97.40 78.40
CapsNet [33] 94.70 70.72 92.00 84.46 96.35 74.46
ResCaps [34] 95.81 74.56 94.72 88.46 96.13 72.09
3ResCaps [35] 96.10 75.61 95.22 89.42 96.40 74.75
MResCaps [35] 96.25 77.05 96.30 89.74 97.12 79.73
DDPG [36] 96.15 75.45 96.80 89.46 96.80 88.32
Proposed (DDPG-SARM) 96.18 79.65 96.70 94.46 97.85 95.30
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at 3169. This indicates excellent performance in detecting liver images, with very 
few misclassifications into other classes. For the lung-left and lung-right classes, the 
model achieves 1663 and 1712 true positives, respectively. There are minor misclas-
sifications between these two classes and with kidney-left, but the overall detection 
performance remains strong. The pancreas class has 1548 true positives, with a few 
misclassifications. Despite these, the model generally performs well in identifying 
pancreas images. Finally, the spleen class has 1815 true positives, with minimal 
misclassifications, indicating robust detection capabilities for spleen images.

6.1  DDPG‑SARM versus state‑of‑the‑art (SOTA) methods

Table  5 presents a detailed performance comparison of various models on three 
medical imaging datasets; DermaMNIST, PneumoniaMNIST, and OrganMNIST. 
The metrics used for the evaluation include the area under the curve (AUC) and the 
overall accuracy (OA). The comparison helps to assess how the proposed model, 
DDPG-SARM, performs against existing models, especially in terms of both clas-
sification effectiveness (AUC) and general accuracy (OA) across datasets.

The AUC for DermaMNIST shows the highest values with models using Res-
Caps variations and reinforcement learning-based models, particularly with CapsNet 
and MResCaps reaching around 96%. The proposed DDPG-SARM model achieves 
a high AUC of 96.18%, only slightly behind MResCaps’ 96.25%, indicating compet-
itive classification performance. For overall accuracy, the proposed model achieves 
79.65%, outperforming all other models. This result suggests that DDPG-SARM 
improves on general prediction accuracy, likely due to its self-adaptive reinforce-
ment mechanism, which optimizes feature learning dynamically, thus enhancing 
accuracy.

The AUC values on PneumoniaMNIST are particularly high across models, with 
FPViT and DDPG reaching the top AUCs of 97.30% and 96.80%, respectively, 
indicating strong model performance for this task. DDPG-SARM achieves a nota-
ble OA of 94.46%, the highest across all models, outperforming the closest model, 
MResCaps, which has an OA of 89.74%. This significant improvement suggests that 
the proposed model excels at handling pneumonia classification, possibly due to its 
advanced adaptive mechanisms that capture critical features more effectively.

OrganMNIST sees high AUC performance across models, with ResNet-18(224) 
reaching 99.80% AUC, and the proposed DDPG-SARM model performing well 
with an AUC of 97.85%. The OA metric shows that DDPG-SARM achieves 95.30%, 
the highest among all models, with ResNet-18(224) following at 95.10%. This 
improvement in accuracy suggests that DDPG-SARM’s performance is consistent 
and effective across complex image variations within this dataset, likely due to its 
reinforcement learning framework adapting to subtle feature differences.

The DDPG-SARM model consistently performs at or near the top across all met-
rics and datasets. It achieves the highest OA on DermaMNIST, PneumoniaMNIST, 
and OrganMNIST, indicating a strong generalization ability across diverse medical 
imaging tasks. ResNet-18 and ResNet-50 variants show strong performance in AUC 
for OrganMNIST but are generally outperformed by DDPG-SARM and some of 
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the Capsule Network-based models (CapsNet, ResCaps, MResCaps) in DermaMN-
IST and PneumoniaMNIST. CapsNet, ResCaps, and MResCaps show competitive 
AUCs, especially for DermaMNIST and PneumoniaMNIST, but their OA values 
are generally lower compared to DDPG-SARM, highlighting potential overfitting or 
lesser adaptability to dataset variance. While AutoML models provide a reasonable 
performance baseline, they do not achieve top performance, especially in OA, which 
may reflect limitations in AutoML-driven feature adaptation for these medical imag-
ing datasets.

The proposed DDPG-SARM model demonstrates superior performance in over-
all accuracy across all datasets and provides competitive AUC values, positioning it 
as a robust and effective model for medical image classification. The reinforcement 
learning-based approach allows it to dynamically adjust to dataset-specific charac-
teristics, outperforming traditional and AutoML approaches, as well as specialized 
architectures like capsule networks, especially in terms of accuracy. This makes 
DDPG-SARM an ideal choice for high-stakes medical applications where both clas-
sification performance and reliability are crucial.

6.2  Ablation study

The results obtained from ablation study using OrganMNIST dataset is presented 
in Table  6 which demonstrates the impact of key components, namely the deep 
deterministic policy gradient (DDPG) model [36], self-adaptive reward mechanism 
(SARM), and synthetic minority oversampling technique (SMOTE) [27] on the 
overall performance of the image retrieval framework. The table compares the sys-
tem’s accuracy, precision, recall, and F1-score across three different configurations.

Configuration 1: DDPG without SARM and SMOTE
In the first row of the table, we observe the performance of the baseline system 

where DDPG is used without SARM and SMOTE. The results show an accuracy 
of 85.43%, with precision, recall, and F1-score closely following around 85%. This 
demonstrates the performance of the base system when the reward mechanism is 
static and the class imbalance in the data set is not addressed. The relatively lower 
values across all metrics indicate the limitations of the system when it lacks adaptive 
learning and a balanced data distribution.

Configuration 2: DDPG with SARM, without SMOTE
When the self-adaptive reward mechanism (SARM) is introduced, we observe 

an improvement in all performance metrics. The system achieves an accuracy of 
88.32%, with precision, recall, and the F1-score also increasing to around 88%. The 

Table 6  Ablation study

Values in bold text are the highest ones for each metric

DDPG SARM SMOTE Accuracy (%) Precision (%) Recall (%) F1 (%)

✓ ✗ ✗ 85.43 84.65 85.35 85.11
✓ ✓ ✗ 88.32 87.76 88.65 88.20
✓ ✓ ✓ 95.3 94.76 95.65 95.19
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inclusion of SARM allows the system to dynamically adjust rewards based on user 
interactions and context, leading to better decision-making by the DDPG agent. This 
highlights the importance of SARM in improving adaptability and overall perfor-
mance, even without addressing data imbalance.

Configuration 3: DDPG with SARM and SMOTE
In the final configuration, both SARM and SMOTE are included, resulting in the 

highest performance across all metrics. The system achieves an accuracy of 95.3%, 
with precision at 94. 76%, recall at 95. 65%, and an F1-score of 95. 19%. The intro-
duction of SMOTE effectively addresses the class imbalance in the training dataset, 
which, combined with the ability of SARM to dynamically adapt rewards, signif-
icantly enhances the model’s ability to generalize and make accurate predictions. 
This configuration demonstrates the cumulative benefit of adaptive reward mecha-
nisms and balanced data sampling, which yields optimal performance in the image 
retrieval task.

The results of the ablation study clearly indicate that both the self-adaptive 
reward mechanism (SARM) and SMOTE play crucial roles in improving the sys-
tem performance. The inclusion of SARM alone leads to notable improvements, 
suggesting that dynamic adjustment of rewards is vital for adapting to diverse user 
interactions and evolving contexts. Additionally, addressing class imbalance through 
SMOTE further boosts the system’s ability to achieve higher accuracy and balanced 
prediction outcomes across all metrics.

The highest performing configuration, which combines DDPG with both SARM 
and SMOTE, highlights the synergy between these components. The dynamic learn-
ing capabilities of SARM, along with the balanced data distribution enabled by 
SMOTE, enable the DDPG agent to better optimize its actions and provide more 
accurate image retrieval results. The significant jump in performance metrics in 
this configuration justifies the use of both SARM and SMOTE in the proposed 
framework.

In summary, the model performs exceptionally well across most organ classes, 
with high true positive rates and minimal misclassifications. The ability to gener-
alize across different organ types is evident, making the model a reliable tool for 
medical image retrieval and diagnosis. The few instances of confusion, particularly 
between anatomically similar organs, suggest areas for further refinement.

7  Conclusion

This research work presents a novel framework for image retrieval using reinforce-
ment learning (RL), specifically employing the deep deterministic policy gradient 
(DDPG) algorithm enhanced with a self-adaptive reward mechanism. The key find-
ings and contributions of this study underscore the significant advantages of this 
approach over traditional image retrieval methods and static reward RL techniques. 
The proposed framework demonstrated superior retrieval accuracy, reaching 95.3%, 
94.46%, and 79.65% over OrganMNIST, PneumoniaMNIST, and DermaMNIST 
datasets, respectively. This improvement is attributed to the dynamic adjustment 
of rewards, which enables the DDPG agent to learn and adapt effectively to user 
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preferences and contextual variations. The self-adaptive reward mechanism plays a 
critical role in this process by continuously updating reward values based on real-
time user feedback and contextual cues from retrieval tasks.

Moreover, the framework showed faster convergence, achieving near-optimal per-
formance within 50 epochs. This rapid adaptation is crucial for maintaining high 
retrieval performance in dynamic environments where user preferences and dataset 
characteristics evolve unpredictably. In terms of efficiency, the proposed framework 
exhibited shorter training times due to its adaptive nature, which streamlines the 
learning process and reduces computational overhead. This efficiency, combined 
with high accuracy and rapid convergence, highlights the practical applicability of 
the proposed framework for real-world image retrieval systems. The high precision, 
recall, and F1-score of the model reflect its effectiveness and reliability in the image 
retrieval task. These metrics indicate that the model can accurately and comprehen-
sively retrieve relevant images from the dataset, making it well suited for practical 
applications, particularly in fields where accurate and complete retrieval is critical, 
such as medical imaging. Further fine-tuning and optimization can enhance these 
metrics, but current performance suggests a strong and effective model.

8  Future works

Despite the high performance of our current approach, there are always opportuni-
ties for improvement. Fine-tuning hyperparameters, such as learning rate, batch size, 
and network architecture, might yield slight gains in accuracy. Incorporating more 
sophisticated data augmentation techniques could enhance the model’s robustness 
and generalization further. Additionally, experimenting with regularization methods 
like dropout or L2 regularization might help mitigate any minor overfitting that is 
not apparent from the current results. Furthermore, exploring more advanced RL 
algorithms like soft actor–critic (SAC) and twin-delayed DDPG (TD3) could pro-
vide additional stability and efficiency in the learning process. These algorithms 
have been shown to offer improved learning in complex and high-dimensional envi-
ronments, which could enhance the effectiveness of the self-adaptive reward mech-
anism in handling diverse user feedback and contextual data. Future work could 
involve integrating SAC and TD3 to further refine the adaptability and performance 
of the image retrieval framework, particularly in more challenging or dynamic 
scenarios.

In summary, this research validates the effectiveness of using an RL approach 
with a self-adaptive reward mechanism for image retrieval. The enhanced learning 
capabilities and adaptability of the DDPG agent result in more personalized and 
effective retrieval outcomes, improving user satisfaction and engagement. These 
findings open up new avenues for future research, such as exploring additional data-
sets, refining the reward mechanism, and incorporating more contextual factors to 
further enhance the performance of image retrieval systems.

Data availability Data will be made available on request.
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