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Abstract 

Objective: Idiopathic inflammatory myopathies (myositis, IIMs) are rare, systemic 

autoimmune disorders that lead to muscle inflammation, weakness, and extra-muscular 

manifestations, with a strong genetic component influencing disease development and 

progression. Previous genome-wide association studies identified loci associated with 

IIMs. In this study, we imputed data from two prior genome-wide myositis studies and 

analyzed the largest myositis dataset to date to identify novel risk loci and susceptibility 

genes associated with IIMs and its clinical subtypes. 

Methods: We performed association analyses on 14,903 individuals (3,206 cases and 

11,697 controls) with genotypes and imputed data from the Trans-Omics for Precision 

Medicine (TOPMed) reference panel. Fine-mapping and expression quantitative trait 

locus co-localization analyses in myositis-relevant tissues indicated potential causal 

variants. Functional annotation and network analyses using the random walk with restart 

(RWR) algorithm explored underlying genetic networks and drug repurposing 

opportunities. 



Results: Our analyses identified novel risk loci and susceptibility genes, such as FCRLA, 

NFKB1, IRF4, DCAKD, and ATXN2 in overall IIMs; NEMP2 in polymyositis; ACBC11 in 

dermatomyositis; and PSD3 in myositis with anti-histidyl-tRNA synthetase autoantibodies 

(anti-Jo1). We also characterized effects of HLA region variants and the role of C4.  

Colocalization analyses suggested putative causal variants in DCAKD in skin and muscle, 

HCP5 in lung, and IRF4 in EBV-transformed lymphocytes, lung, and whole blood. RWR 

further prioritized additional candidate genes, including APP, CD74, CIITA, NR1H4, and 

TXNIP, for future investigation. 

Conclusion: Our study uncovers novel genetic regions contributing to IIMs, advancing our 

understanding of myositis pathogenesis and offering new insights for future research. 



Introduction 

Idiopathic inflammatory myopathies (IIMs), characterized by chronic muscle weakness 

and muscle inflammation, are rare, heterogeneous autoimmune diseases1,2. The 

underlying pathogenesis of myositis involves genetic components, which increase 

susceptibility to environmental insults and can confer an elevated risk of the disease3.  

Genome-wide association studies (GWAS) have emerged as powerful tools for 

elucidating the genetic basis of complex conditions, including myositis. Recent GWAS 

investigations have highlighted the involvement of genetic variants within the human 

leukocyte antigen (HLA) region, contributing to the risk of myositis4. Several alleles 

included in the 8.1 extended haplotype, which encompasses loci in class I, II, and III 

regions, have been associated not only with increased susceptibility to IIMs but also with 

other autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, 

and Hashimoto's thyroiditis in populations of European ancestry. Furthermore, variants in 

non-HLA loci, such as PTPN22, STAT45, SDK2, LINC00924, NAB16, and C4A 

deficiency7,8 have been implicated in the pathogenesis of myositis; however, the lower 

number of cases and controls available in previous studies has limited novel discoveries 
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and our ability to gain a comprehensive understanding of the genetic architecture of 

myositis. 

To address these limitations and enhance our understanding of the underlying 

pathogenesis of myositis, we conducted meta-analyses, which combined two studies 

providing a total of 14,903 individuals of European descent, including 3,206 myositis 

cases and 11,697 healthy controls. By integrating data from multiple cohorts, we 

confirmed known signals and discovered ten novel associations for myositis and its 

clinical subtypes. Additional analysis with the complement C4 system provided insights 

into the relative impacts of HLA and C4 genes to disease susceptibility. Fine-mapping 

and expression quantitative trait locus (eQTL) co-localization suggested specific disease-

associated genetic variants within the identified risk loci, highlighting their role in gene 

expression modulation in myositis-related tissues. We also constructed multiplex 

networks based on biological pathways of susceptibility markers to explore potential risk 

candidate genes by using a random walk with restart (RWR) algorithm, which provided 

insights for hypothesis generation in future myositis research and offered potential 

avenues for targeted therapies and precision medicine approaches. 

Materials and Methods 

Study Populations 

Samples from the Immunochip dataset5 (7,486 control, 2,688 cases) and an earlier 

GWAS dataset4 (4,712 controls, 1,710 cases) were obtained from the Myositis Genetics 

Consortium (MYOGEN)4–6. Subtypes of cases included in the overall analyses of the IIM 

group (total IIMs) contained cases with polymyositis (PM), dermatomyositis (DM), juvenile 
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polymyositis (JPM), juvenile dermatomyositis (JDM), anti-synthetase syndrome (ASyS), 

inclusion body myositis (IBM), and necrotizing myopathy (NM). Cases were selected 

based on the classification criteria in the previous studies4–8. Clinical subtype analyses 

were performed on PM, DM, JDM, and myositis with anti-histidyl-tRNA synthetase 

autoantibodies (anti-Jo1), that comprised the largest numbers of subsets of cases 

participants. 

Genotyping, Quality Control, and Imputation 
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For each dataset, samples without clinical information or misdiagnoses were excluded. 

The genotyping data were converted to GRCh38 positions using UCSC's liftOver tool. 

Chromosome X was excluded from the analyses due to its absence in the GWAS dataset. 

Single-nucleotide polymorphisms (SNPs) with a call rate < 95% were removed. 

Individuals with > 5% missing genotypes were excluded.  Variants deviating from Hardy-

Weinberg equilibrium (HWE) in controls (p<10-6) and in cases (p<10-10) were removed 

before imputation. Relatedness was checked using the KING-robust kinship estimator9. 

Duplicates or related individuals (kinship>0.12) within each dataset were excluded to 

reduce correlations among participants. Principal components analysis (PCA) in the 

GWAS dataset was performed using PLINK 1.910. In the Immunochip dataset, PCA was 

calculated using Ancestry Inference using Principal component analysis and Spatial 

analysis (AIPS)11 based on the HapMap III reference panel (Supplementary Information). 

Outliers identified based on the PCA were removed from further analyses (Figure S1, S2). 

In the meta-analyses, for closely related individuals between datasets (kinship>0.15) and 

any duplicates between the two datasets, the data from the Immunochip dataset was 

retained (Figure S1). 

To expand the coverage of our investigation, genotypes from the arrays were imputed 

separately against the Trans-Omics for Precision Medicine (TOPMed) reference panel12. 

SNPs located within 28-34Mb on chromosome 6 were selected for HLA-imputation 

against the Multi-ethnic HLA reference panel (version 2.0 2022)13. Variants with 

imputation quality r2<0.6 , minor allele frequency (MAF) < 0.005 , and post-imputation 

HWE p<10-6 in controls were excluded from further analyses. C4 alleles were imputed 
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against the European population from HapMap III, according to the imputec4 protocol14.  

Supplementary Information provides further detail on data processing. 

Statistical Analyses 

Association analyses were conducted for each dataset on the genotyped and imputed 

data from the total myositis samples (n=3,206 cases), DM (n=1,131 cases), JDM (n=645 

cases), PM (n=1,094 cases) subtypes, and myositis with anti-Jo1 (n=388 cases) using 

SNPTEST 2.5.615 (-method expected), with adjustments for population variation based 

on the PCA analyses as described in the Supplementary Information. Inverse-variance 

fixed-effects meta-analyses and sex-stratified analyses for the total IIMs and subtypes 

were then performed using METASOFT16. To identify independent and secondary signals, 

we implemented stepwise conditional and joint association analyses (COJO) using GCTA 

v1.9417. Interaction analyses were performed to assess potential differences by sex and 

across subtypes, including PM, DM, and JDM. In the HLA region, meta-analyses were 

carried out on the HLA-imputed data. Additionally, C4 association analysis, along with 

conditional and joint analyses of both C4 and HLA imputed data, were performed using 

R. Model details and parameters are provided in the Supplementary Information.

Fine-mapping and Co-localization Analyses 

susieR is a Bayesian approach that evaluates multiple causal signals in a region 

simultaneously based on the Sum of Single Effects (SuSiE) regression framework. We 

identified 95% credible sets within the non-HLA region and 99% credible sets for the HLA 

region, and subsequently computed the posterior inclusion probability (SNP.PIP) of 

causality. The co-localization analyses of meta-analyzed data and eQTL studies were 

https://sciwheel.com/work/citation?ids=1189243&pre=&suf=&sa=0&dbf=0
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performed using the coloc 5.2.1 R package18. We selected eQTL studies of five myositis-

associated tissue types from the Genotype-Tissue Expression (GTEx) v819, including 

EBV-transformed lymphocytes (n=147), skin without sun exposure (n=517), whole blood 

(n=670), lung (n = 515), and skeletal muscle (n=706) for 32 myositis associated SNP 

signals. Specifically, we studied 60 analyses for the total IIM group, 25 for the PM group, 

35 for the DM group, 15 for the JDM group, and 25 for the anti-Jo1 group.  Co-localization 

in specific tissue was considered when the posterior probability of shared causal variants 

in meta-analyzed myositis data and tissue-specific eQTL (PP.H4) exceeded 80%, with 

the identified variants residing in 90% credible sets. Details of the fine-mapping and co-

localization analyses are described in the Supplementary Information. 

Annotation and Enrichment Analyses 

Significantly associated variants were annotated using ANNOVAR20 based on the 

GRCh38 UCSC refGene and FAVOR21. For intergenic variants, their corresponding 

nearest up and/or downstream genes were reported. The RegulomeDB 2.222,23 was 

utilized to annotate variants and assess potential regulatory impact. This database 

integrates information such as histone-sequencing, DNase hypersensitivity footprints, 

transcription factor ChIP-seq, chromatin accessibility, and position weight matrix 

information (motif), to assign probability scores and rank the variants based on their 

likelihood of regulatory significance. The Gene Set Analysis Toolkit (WebGestaltR)24 was 

used to perform functional enrichment. We report the results with FDR<0.05.  

Random Walk with Restart on Multiplex Networks 

https://sciwheel.com/work/citation?ids=11774391&pre=&suf=&sa=0&dbf=0
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 Random Walk with Restart (RWR) 
Algorithm 

Network propagation has been widely applied in genetic analyses to prioritize potential 

genes based on biological networks of risk markers25. RWR is a network propagation 

algorithm, in which an iterative stimulate starts from seed nodes and transverse the 

network with a probability to move to adjacent nodes or back to the seed nodes. Upon 

reaching convergence, nodes are ranked based on their level of connection to the seed 

nodes (rank scores). Nodes with higher rank scores indicate stronger connections, 

suggesting their importance in the disease-related networks. In our study, genes 

represent nodes, and biological interactions denote edges. We adapted the RWR 

algorithm on multiplex networks26 with the modifications detailed in the Supplementary 

Information. Disease genes reached suggestive significant threshold (p=1×10−5) from the 

COJO analyses served as seed nodes, with -log10(p) as the initial score. We used the 

default settings for the transition probability 𝛿𝛿, the restart probability 1-α, and the restart 

probability of a given layer t. Multiplex network patterns were evaluated by permutation 

test. We reported the top 50 candidates with p<0.05.  

Construction of Multiplex Network 

For the total IIMs and each clinical subgroup, we built their corresponding multiplex 

networks. Each layer of the multiplex network was composed of genes or proteins from 

the protein-protein interaction network (PPI), pathways from the KEGG databases, and 

co-expression RNA seq data. The multiplex network details are available in the 

Supplementary Information. 

Data and Code availability 
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The data, housed at Baylor College of Medicine, are part of the MYOGEN consortium 

and are available for collaboration through the network. Software, packages, and code 

utilized for the study can be found in the Supplementary Information. 

Results 

The heritability of IIMs was estimated at 25% excluding the MHC region and 59% 

including it, based on meta-analyzed GWAS and Immunochip data. This indicates a 

significant genetic component for myositis. To identify genetic risk factors, we performed 

analyses on total myositis and clinical subtypes, as detailed in Figure 1. 

Meta-analyses identified novel risk loci in myositis and subtypes 

We conducted meta-analyses for the total IIMs and its subtypes to identify genome-wide 

significant signals. Many significant signals within risk loci are highly correlated due to 

linkage disequilibrium (LD), which complicates causal inference and functional 

interpretation. To elucidate the genetic pattern between correlated signals and distinguish 

independent variants that contribute to myositis, we employed a stepwise model that 

executed iterative conditional and joint analyses. This approach captured the combined 

effects of multiple conditionally independent variants within a risk locus and allowed 

discoveries of additional novel variants (detail in Supplementary Information). 

Our analyses showed that the majority of genome-wide significant signals (p<5×10−8) are 

within the HLA region, confirming that HLA alleles are the strongest genetic risk factors 



 
for overall IIM and its subtypes. In addition, we identified several significant associations 

outside of the HLA region (Table1, Figure 2, Table S1). 

In the total IIMs (Figure 2A), an intergenic variant near HLA-DRB1/HLA-DQA1 (rs535777, 

p = 3.78×10−106, OR = 2.327) was the most significant signal within the HLA (Figure S3A, 

Figure S4G). Outside of the HLA region, we discovered novel variants within the total IIMs 

group and its subtypes and confirmed previously reported associations. STAT4 

(rs4853540, p = 5.93×10−9, OR = 0.808) showed higher significance in our analysis 

compared to previous studies (Figure 3B, Figure S4B). We also identified a novel intronic 

locus in NFKB1 (rs230514, p = 3.86×10−8, OR = 1.185) (Figure 3C, Figure S4C). An 

independent signal rs12203592 in IRF4 outside the HLA region on chromosome 6 was 

significant for total IIMs (p = 8.41×10-18, OR = 1.439) (Figure 3D, Figure S4D). Several 

novel variants in the non-coding region showed genome-wide significant associations 

with myositis, including signals near GJA1 and HSF2 (rs7754730, p = 1.47×10-9, OR = 

1.189), PINX1 (rs113538396, p = 1.57×10-10, OR = 3.081), ATXN2 (rs35350651, p = 

3.30×10-9, OR = 0.843), and DCAKD (rs9898793, p = 1.65×10-9, OR = 1.252) (Figure 3E-

H, Figure S4I-L). Near FCRLA, a novel intergenic locus (rs6668534, p = 5.39×10-8, OR = 

0.826)(Figure 3A, Figure S4A) was suggestively associated with total IIMs.  

In analyses stratified by clinical subtypes, we identified some subset-specific and novel 

findings. In the PM subgroup (Figure 2B), we confirmed a previously identified risk variant 

of PTPN22 (rs2476601, p = 5.70×10-10, OR = 1.503) and identified a novel risk locus in 

NEMP2 (rs74925618, p = 4.52×10-9, OR = 1.804) (Figure 4A, Figure S5B). In the MHC 



 
region, the most significant signal was an intergenic variant near MICA/LINC01149 

(rs3132473, p = 6.88×10−68, OR = 2.772) (Figure S6, Figure S5D). For DM (Figure 2C), 

the strongest signal came from HCP5/HCG26 (rs3131617, p = 1.56×10−44, OR =2.306) 

(Figure S7D, S8A). Non-HLA intronic variants in ABCB11 (rs145940036, p = 4.91×10−8, 

OR =3.172) and in PINX1 (rs113538396, p = 5.22×10-9, OR = 3.868) reached the 

genome-wide significance threshold in DM (Figure 4B,D, Figure S7A,G). Additionally, 

rs12203592 in IRF4 was also significantly associated with both DM (p = 1.69×10−9, OR 

=1.471) and JDM (p = 9.58×10−9, OR =1.578)(Figure 4C, E).In JDM, the strongest signal 

observed was near HLA-DRB5/HLA-DRB6 (rs1894553, p = 2.24×10−18, OR =1.894) at 

the HLA region (Figure 2D, Figure S7K, Figure S9A).  

In the anti-Jo1 group, in addition to the strongest signal in HCP5 (rs3132090, p = 1.75×10-

84, OR = 5.643) (Figure 2E, Figure S5F, Figure S10A) located within the HLA region, a 

non-HLA risk locus in PSD3 (rs6991531, p = 5.01×10-9, OR = 4.229) was significantly 

associated with anti-Jo1 myositis (Figure 4F, Figure S5J). 

Sex-stratified analysis showed similar effect sizes in females and males, except a slightly 

stronger effect for IRF4 in males. Formal analysis of sex interactions did not reveal 

significant differences in the identified signals between males and females, except for 

IRF4 in the DM group, where the effect was also marginally stronger in males (Table S2-

3). Pairwise interaction analyses among DM, JDM, and PM suggested that many of the 

identified variants have distinct effect sizes across subtypes and contribute to subtype-

specific disease risk ( |𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡| > 1.96) (T able S 4). The  vari ant in PTPN22 was 

significant in the interaction test across different subtypes, with a larger effect or stronger 



association in PM compared to JDM and adult-onset DM, consistent with previous 

observations27. IRF4 showed significant differences between JDM and other subtypes, 

with a higher odds ratio in JDM compared to DM and total IIMs in the meta-analysis. This 

suggested that IRF4 may play a more pivotal role in JDM, contributing to the significant 

interaction observed when comparing JDM with other subtypes. Variants in ABCB11 and 

PINX1 in the interaction tests between DM and JDM were not significant. The lack of 

significance may be due to low MAF of the variants, which could limit the power to detect 

associations and subtle differences in variant effects between subtypes. 

Within the HLA region, an additional variant in non-coding RNA locus in TSBP1-AS1 (p = 

2.71×10−40, pC = 9.06×10-9, OR = 1.487) was jointly significant within the HLA region in 

total IIMs (Table S5, Figure S3) after conditioning on top signals. Variants that reached 

the suggestive threshold (p = 1×10−5) in autosomal regions of total IIMs and subtypes 

were reported (Table S6). 

Investigation of HLA variants and C4 revealed their respective roles as risk factors 

To investigate the genetic architecture of myositis in the HLA region, we conducted HLA 

conditional and joint analyses on the imputed HLA data. These analyses confirmed 

previously reported signals in the MHC class I and class II regions (Figure S11) and 

identified novel associations, such as HLA-DRB1*16:01 (pC = 1.57×10-8) in the DM group 

after conditioning on the previously reported HLA-B*08:01 allele. Additional HLA risk loci 

rs1265764 in TSBP1-AS1 and rs116312062 in HLA-DRB6 were also genome-wide 

significant (Table S7). The list of HLA alleles and HLA amino acids that reached the 

genome-wide significant threshold is shown in Table S8. We then further studied the MHC 
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class III region, calculating the mean and standard error of imputed dosages of C4 genes 

(C4A, C4B, C4L, and C4S) in both cases and controls. Cases showed lower levels of 

C4A and C4L compared to controls (Table S9). C4A and C4L were strongly correlated, 

as were C4B and C4S (Figure S12). Significant associations of C4A and C4L with 

myositis were found across total IIMs and subtypes (Table S10). Additionally, conditional 

and joint analyses of HLA variants and C4 genes suggested that HLA-DRB1*03:01 

remained the strongest HLA risk allele in total IIMs, and HLA-B*08:01 with rs116312062 

were significant in PM and anti-Jo1 groups.  After accounting for effects from C4A or C4L, 

rs126574 and HLA-DQA1*05:01 were no longer significant, suggesting these 

associations are due to LD with C4A or C4L (Table S11). 

Fine-mapping and eQTL co-localization analyses pinpointed credible sets of causal 

variants within the identified risk loci 

Discoveries from the conditional and joint analyses provided significant insights into the 

involvement of novel genetic risk loci in the underlying pathogenesis of myositis. To gain 

more perspective into the causal variants within the identified risk loci, we employed a 

Bayesian fine-mapping approach to identify candidates with potential direct effects on 

disease phenotypes. The fine-mapping analyses yielded multiple 95% credible sets (99% 

for the HLA region), with each set containing a distinct group of variants with assigned 

SNP.PIP of causality (Table S12). The SNP.PIP of each variant in a credible set indicates 

its likelihood of being causal within a specific risk locus. We reported candidate variant 

with the highest PIP in each credible set from the fine-mapping analyses (Table S13). 

Most of the highly probable causal variants were the lead variants detected from the 

COJO analyses. Fine-mapping identified rs535777 near HLA-DRB1 as a top potential 



variant in causal credible sets for total IIMs and anti-Jo1 in the HLA region. This variant 

confers a strong regulatory impact in the MHC class II region according to the 

RegulomeDB annotation (rank = 1b, probability = 1). 

To assess the likelihood that genetic variants are causally related to disease phenotypes 

and gene expression in myositis-related tissues, we performed co-localization analyses 

and identified credible sets of variants (Table S14). The co-localization posterior 

probability of rs12203592 in the total IIMs, DM, and JDM indicated plausible shared 

causality in both the meta analyzed myositis data, and the expression level of IRF4 in 

EBV-transformed lymphocytes(PP.H4 = 0.990, SNP.PIP = 1.000), lung (PP.H4 = 1.000, 

SNP.PIP = 1.000), and whole blood cells (PP.H4 = 1.000, SNP.PIP = 1.000) (Figure 5A). 

rs12950988 in DCAKD was the lead variant in the credible sets of total IIMs co-localization 

analysis in skeletal muscle (PP.H4 = 0.984, SNP.PIP = 0.928) and skin tissue (PP.H4 = 

0.970, SNP.PIP = 0.428) (Figure 5B). We also observed colocalization of eQTLs for HCP5 

in lung tissue with both total myositis and DM. The most likely causal variants associated 

with these colocalization credible sets are rs3132090 for the HCP5 eQTL with total 

myositis (PP.H4 = 0.902, SNP.PIP = 0.442) and rs3131618 for the HCP5 eQTL with DM 

(PP.H4 = 0.945, SNP.PIP = 0.651) (Figure 5C). 

RWR identified candidate genes and potential drug repurposing targets through 

biological networks 

To provide more comprehensive insights into the genetic architecture of myositis and 

support future research, we performed network propagation with the RWR algorithm. This 



approach prioritizes candidate genes based on the functional connectivity of disease-

associated genes within related biological pathways. RWR on multiplex networks that 

integrate various biological datasets (Table S15) enables robust and comprehensive 

analyses, capturing the global network topology while preserving individual network 

properties. Additional candidate genes were identified within each clinical group (Table 

S16, Figure S13) based on their strength of connectivity to disease genes. 

Notably, several genes belonging to nuclear transcription factor Y (NFY), including NFYA, 

NFYB, NFYC, regulatory factor X (RFX), and the transmembrane protein family(TMEM) 

ranked as top candidates in the overall myositis group. Class II MHC transactivator 

(CIITA), the β-amyloid precursor protein (APP), and CD74 were also the leading 

candidates across multiple groups. Gene set over-representation analyses of candidate 

and disease gene sets showed enrichment in immune-related processes and signaling 

pathways, prioritized for future investigation based on statistical significance (Figure S14). 

To explore the potential for drug repurposing in myositis, we also investigated if any 

disease (Table S6) and additional candidate genes (Table S16) from RWR were targets 

of drugs on the market according to the DrugBank database28. Potential treatments are 

listed in Table S17. 

Discussion 

In our study, we explored the genetic architecture underlying myositis to gain a  deeper 

insight into the genetic basis of IIMs. Our meta-analyses on 15,350 individuals of 
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European descent identified novel genetic risk loci within and outside the HLA region in 

overall IIMs and subtypes.  

In the total IIMs group, the odds ratio of minor alleles in FCRLA, STAT4, and ATXN2 

suggested their protective effects against myositis. rs4853540 in STAT4, which targets 

the IRF7 motif, may enhance transcription activity, as indicated by H3K4me1 and 

H3K27ac, in both T cells and B cells, suggesting its critical role in modulating immune 

responses (Figure S15A). rs35350651 within the 3'UTR of ATXN2 potentially regulates 

the highly conserved DNA-binding motif in AT-Rich Interaction Domain (ARID) subfamily 

ARID3A, which is associated with autoimmune diseases29,30 and neuromuscular diseases, 

including diseases with similarities to IBM (e.g. amyotrophic lateral sclerosis (ALS))31, 

possibly through histone modification. (Figure S15B). Future studies are needed to further 

understand mechanisms by which these variants may influence risk for IIMs development. 

Through conditional and joint analyses, rs12203592 in IRF4, genotyped in the 

Immunochip dataset, was significant in the association study of Immunochip dataset and 

the meta-analyses of total, DM, and JDM groups, but not in the GWAS, where it was 

imputed. IRF4 is associated with pigmentation and its allele prevalence varies across 

European populations32. Based on fine-mapping and co-localization analyses, 

rs12203592 might contribute to both the risk of myositis and gene expression levels in 

EBV-transformed lymphocytes, lung, and whole blood cells, but further studies in more 

homogeneous populations would be helpful. The novel genetic locus around DCAKD, 

rs9898793, with high posterior probability and in LD with the additional putative causal 

variant rs12950988, might modify regulatory elements, influencing DCAKD expression in 
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skeletal muscle and skin tissue. rs3132090 near HCP5 locus was identified as the top 

variants in the co-localized credible sets for lung tissue in total myositis, and rs3131618 

was the top variant in the co-localized credible sets in DM. Variants in the 3'UTR proximal 

to the HCP5 loci have been associated with myositis33. The novel variant rs3132090, 

upstream of the transcription start site of HCP5, may influence DNA-binding motifs in the 

transcription factor activator protein 2 (TFAP2) members, including TFAP2A, TFAP2B, 

and TFAP2C, potentially modulating the expression of multiple targets (Figure S15C). 

Fine-mapping analyses also identified rs535777, a putative causal variant with regulatory 

impacts on nuclear receptor NR1H3 and sine oculis homeobox 1 (SIX1) in various 

immune cell types, such as CD4+ T cells (Figure S15D), which are related to autoimmune 

diseases and inflammatory processes34,35. 

When conducting stratified analysis based on clinical subtypes, we revealed distinct risk 

loci specifically associated with each subtype. In the PM group, rs74925618 in NEMP2 

was significant. NEMP2 encodes a nuclear envelope integral membrane protein, 

suggesting a potential role in signaling pathways that might influence PM risk. PINX1, 

associated with total IIMs and DM, has also been linked to other autoimmune diseases in 

European ancestry36. In addition to subtype analyses, we investigated myositis with anti-

Jo1, the most common myositis-specific autoantibody. Despite the limited sample size in 

the anti-Jo1 myositis group, rs3132090 near the HCP5 loci showed the strongest 

association among the subtype-specific signals. Outside the HLA region, PSD3 had 

boarder odds ratio ranges, likely due to the small anti-Jo1 sample size and low allele 

frequencies. Larger patient cohorts or combining with other anti-tRNA synthetase 
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autoantibodies could provide more compelling evidence for these novel signals. Certain 

subgroups, such as IBM, had insufficient sample sizes to support genetic analyses. 

Future studies with expanded cohorts are necessary to investigate these important but 

rarer subtypes. Another limitation of the study is the limited density of genotypes available 

in the arrays that we studied. In particular, three SNPs had limited support from nearby 

genotyped SNPs. The PINX1 variant (rs113538396) was imputed in both datasets, and 

the IRF4 (rs12203592) and GJA1 (rs7754730) were genotyped only on the Immunochip. 

Further studies that directly genotype additional SNPs around these variants will help to 

validate these findings.    

By exploring the impact of C4 located within the MHC class III region, we showed that 

cases had fewer copies of C4A and C4L than controls, with reduced copy numbers 

significantly associated with total IIMs and its subtypes. These observations are 

consistent with previous studies linking lower copy number variations of C4A and C4L to 

increased risks of myositis and other autoimmune diseases37,38. 

The relative contributions of C4 isotypes and HLA variants as risk factors were also 

investigated, in addition to the analyses on HLA imputed data. Conditional and joint 

analysis were performed, with copy number of each C4 isotype included as predictors to 

assess their impact on HLA associations. The strongest HLA alleles, HLA-DRB1*03:01 

in total IIMs, and HLA-B*08:01 in PM and anti-Jo1, retained statistical significance, 

indicating their independence from C4 as risk factors in myositis. rs1265764 in TSBP1-

BTNL2 Antisense RNA 1 (TSBP1-AS1), which showed joint significance with other HLA 

https://sciwheel.com/work/citation?ids=15096470,15096469&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0


variants in nearly all subtypes, was not significant after conditioning on C4, suggesting its 

dependence on C4. 

To expand our understanding of the genetic network of myositis, we prioritized additional 

candidate genes based on the biological networks of risk markers using RWR. Several 

RFX genes, such as RFX5, ranked highly across groups. RFX5 is evolutionary 

conservative, and its mutation can disrupt HLA expression, leading to immunodeficiency39. 

CIITA was also among the top candidates, playing an essential role in regulating 

transcriptional activity of the HLA class II promoter, and together with NFY and RFX genes, 

affecting the function of the immune system40–42. CD74 ranked at the top across multiple 

groups and has been previously suggested in animal models as a key regulator, binding 

to migration inhibitory factor, and a potential therapeutic target in alphavirus-induced 

myositis, in addition to its intracellular role in MHC class II antigen-presenting43. Another 

candidate, APP, is associated with neurodegenerative and neuroinflammatory conditions 

similar to IBM, such as ALS and multiple sclerosis44. 

NR1H4 (FXR) was one of the leading candidates in DM. Experiments have shown that 

overexpression of NR1H4 inhibits expression of proinflammatory cytokine in inflammatory 

bowel diseases45, which are associated with DM and possibly sharing similar 

immunopathogenesis46. TXNIP, a top candidate in JDM, interacts with the nucleotide-

binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, 

which has been suggested to associate with myositis47. The discoveries from RWR 

suggest new avenues for exploration and provide a foundation for future research 
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hypothesis generation. Further investigations are helpful to understand the contribution 

and underlying pathogenicity of these candidate genes in myositis. 

Due to the absence of standardized therapeutic guidelines for the treatment of IIM, the 

current therapeutic interventions for myositis are mainly guided by expert experience, 

case reports, and small clinical trials. Medications for myositis primarily consist of drugs 

that have received approval for other conditions and are utilized "off-label" in myositis48. 

To explore the potential for drug repurposing in myositis, we investigated if any disease 

and additional candidate genes from RWR were targets of drugs on the market. Current 

medications for myositis, such as human immunoglobulin and rituximab (combined with 

glucocorticoids)48, were confirmed in the analyses (Table S17). Antithymocyte 

immunoglobulin (rabbit) and valproic acid have also been investigated to treat certain 

autoimmune conditions49,50. Other medications targeting B-lymphocyte antigen CD20, 

serine/threonine-protein kinase, and dipeptidyl peptidase 4 could also be considered for 

potential relevance to myositis treatment. While our initial findings suggested possible 

opportunities for drug repurposing in myositis, further investigations and validations are 

necessary to provide reliable evidence, ultimately improving patient outcomes. 

Overall, our study has identified novel genetic associations, providing valuable insights 

into the genetic architecture underlying myositis and its clinical subtypes. A limitation of 

our study is the variable spacing of SNP data across the genome. Because data were 

derived, in part, from the Immunochip, which focused on loci known to influence 

autoimmune conditions, there are regions where there are highly significant signals but 
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for which further studies are needed to identify the most likely locus. Future studies using 

denser genotyping or whole genome sequencing would help to refine signals in these loci. 

Nevertheless, integrating results from the current GWAS studies not only contributes to 

our understanding of disease etiology, but also helps guide future investigations and 

facilitate the development of more efficient and effective interventions and treatments for 

these complex autoimmune disorders.  
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Group Nearest 
Gene 

LeadSNP CHR:POS Function Minor 
Allele 

MAF Meta b Meta 
se 

Meta p Meta 
OR 

bJ ORJ pJ 

total 
IIMs 

FCRLA(dist=
5024)* 

rs6668534 1:161702205 intergenic G 0.234 -0.192 0.035 5.39 x 10-8 0.826 -0.192 0.035 5.53 x 10-8 

STAT4 rs4853540 2:191052591 intronic T 0.222 -0.213 0.037 5.93 x 10-9 0.808 -0.213 0.808 6.13 x 10-9 

NFKB1* rs230514 4:102550782 intronic G 0.353 0.169 0.031 3.86 x 10-8 1.185 0.169 1.185 3.96 x 10-8 

IRF4* rs12203592 6:396321 intronic T 0.157 0.364 0.042 8.41 x 10-18 1.439 0.364 1.439 9.97 x 10-18 

LINC01149(
dist=5050);H
CP5(dist=11

157) 

rs2516457 6:31452023 intergenic A 0.466 -0.428 0.029 1.05 x 10-47 0.652 -0.272 0.762 6.15 x 10-19 

TSBP1-AS1 rs1980496 6:32372293 ncRNA_i
ntronic 

T 0.398 0.397 0.030 2.71 x 10-40 1.487 0.201 1.223 5.36 x 10-10 

HLA-
DRB1(dist=2
0020);HLA-

DQA1(dist=2
7550) 

rs535777 6:32609856 intergenic C 0.154 0.845 0.039 3.78 x 10-106 2.327 0.691 1.996 2.89 x 10-59 

HLA-
DRB1(dist=3
7244);HLA-

DQA1(dist=1
0322) 

rs147774179 6:32627079 intergenic G 0.049 0.313 0.060 1.83 x 10-7 1.367 0.448 1.565 1.50 x 10-13 

GJA1(dist=2
25016);HSF
2(dist=72480

8) 

rs7754730 6:121674743 intergenic C 0.385 0.173 0.030 4.68 x 10-9 1.189 0.173 1.189 4.83 x 10-9 

PINX1* rs113538396 8:10777742 intronic A 0.007 1.125 0.176 1.57 x 10-10 3.081 1.125 3.081 1.64 x 10-10 

ATXN2* rs35350651 12:11146962
7 

intronic AC 0.485 -0.171 0.029 3.30 x 10-9 0.843 -0.171 0.843 3.41 x 10-9 

DCAKD* rs9898793 17:45038945 intronic T 0.241 0.225 0.037 1.65 x 10-9 1.252 0.225 1.252 1.73 x 10-9 

PM PTPN22 rs2476601 1:113834946 exonic A 0.101 0.407 0.066 5.70 x 10-10 1.503 0.407 1.503 5.90 x 10-10 

NEMP2* rs74925618 2:190513057 intronic C 0.066 0.59 0.101 4.52 x 10-9 1.804 0.59 1.804 4.72 x 10-9 

PSORS1C3(
dist=1826);H
CG27(dist=9

617) 

rs28360059 6:31188143 intergenic A 0.163 -0.573 0.072 1.63 x 10-15 0.564 -0.403 0.668 3.03 x 10-8 

MICA(dist=2
5237);LINC0
1149(dist=11

15) 

rs3132473 6:31440552 intergenic A 0.132 1.02 0.059 6.88 x 10-68 2.772 0.893 2.443 6.79 x 10-49 

HLA-
DQB1(dist=2

299);HLA-
DQA2(dist=7

2435) 

rs3135000 6:32668956 intergenic A 0.472 0.496 0.046 1.41 x 10-26 1.642 0.318 1.374 3.50 x 10-11 

DM ABCB11* rs145940036 2:169006750 intronic A 0.007 1.154 0.212 4.91 x 10-8 3.172 1.154 3.172 5.00 x 10-8 

IRF4* rs12203592 6:396321 intronic T 0.154 0.386 0.064 1.69 x 10-9 1.471 0.386 1.471 1.77 x 10-9 

LINC01149(
dist=5050);H
CP5(dist=11

157) 

rs2516457 6:31452023 intergenic A 0.476 -0.432 0.045 1.62 x 10-21 0.649 -0.286 0.752 1.86 x 10-9 

HCP5(dist=3
152);HCG26
(dist=2268) 

rs3131617 6:31468961 intergenic T 0.128 0.835 0.060 1.56 x 10-44 2.306 0.556 1.743 2.74 x 10-17 

HLA-
DRB5(dist=1
9601);HLA-

DRB6(dist=2
816) 

rs371760589 6:32549887 intergenic G 0.017 0.637 0.127 4.95 x 10-7 1.892 0.765 2.149 1.91 x 10-9 

HLA-DQB1 rs9274258 6:32663671 intronic G 0.41 0.567 0.045 1.99 x 10-36 1.762 0.451 1.57 2.64 x 10-21 

PINX1* rs113538396 8:10777742 intronic A 0.006 1.353 0.232 5.22 x 10-9 3.868 1.353 3.868 5.35 x 10-9 

JDM IRF4* rs12203592 6:396321 intronic T 0.155 0.456 0.080 9.58 x 10-9 1.578 0.456 1.578 9.93 x 10-9 

HLA-
DRA(dist=20

244);HLA-
DRB5(dist=5

2063) 

rs9268926 6:32465290 intergenic G 0.191 0.273 0.068 6.72 x 10-5 1.314 0.403 1.496 7.90 x 10-9 

HLA-
DRB5(dist=4

802);HLA-
DRB6(dist=1

7624) 

rs1894553 6:32535089 intergenic A 0.131 0.639 0.073 2.24 x 10-18 1.894 0.721 2.058 3.84 x 10-22 

anti-
Jo1 

HCP5(dist=2
05) 

rs3132090 6:31462975 upstream A 0.128 1.73 0.089 1.75 x 10-84 5.643 1.017 2.765 1.99 x 10-20 

HLA-
DRA(dist=82

50);HLA-
DRB5(dist=6

4057) 

rs9268791 6:32453296 intergenic T 0.379 1.056 0.080 2.10 x 10-39 2.874 0.916 2.5 6.26 x 10-24 

HLA-
DQA1(dist=1
4581);HLA-

DQB1(dist=1
205) 

rs4713570 6:32658263 intergenic T 0.258 0.967 0.076 1.65 x 10-37 2.630 0.541 1.717 3.90 x 10-10 

HLA-
DQB1(dist=7

53) 

rs9273370 6:32658715 downstre
am 

G 0.408 -0.56 0.080 3.27 x 10-12 0.571 -0.728 0.483 1.94 x 10-16 

PSD3* rs6991531 8:18883152 intronic C 0.012 1.442 0.247 5.01 x 10-9 4.229 1.442 4.229 5.11 x 10-9 



Table 1. Joint analyses on conditionally independent variants reaching the 

genome-wide significance threshold in the total IIMs, IIM subtypes and myositis 

with anti-Jo1 antibodies. CHR:POS. chromosome and position in hg38; MAF, minor 

allele frequency in combined cases and controls; Meta b, Meta se, Meta p, and Meta OR 

indicate effect size of minor alleles, standard error of effect size, p-value, and Odds Ratio 

from the result of meta-analyses; bJ, ORJ, and pJ indicate effect size, Odds Ratio, and 

p-value from a joint analysis of all the selected SNP. * novel association outside of HLA.

Figure Legends 

Figure 1. Overview of the study. Genotypes from GWAS and Immunochip datasets are 

imputed after quality control. Meta-analyses are performed. Independent lead variants 

are then identified using multi-SNP-based conditional and joint analyses (COJO) on the 

results of meta-analyses. We also investigate credible sets of causal variants and 

prioritize additional candidate genes via Random Walk with Restart (RWR) on multiplex 

networks. Each multiplex network integrates three different biological networks, including 

co-expression, KEGG pathway, and protein-protein interaction network (PPI). Leveraging 

the results of COJO and RWR, we perform gene set enrichment analyses and explore 

potential drug repurposing opportunities. Figure is created with BioRender. 

Figure 2. Manhattan Plots of the total IIMs and subtypes of Myositis. Signals 

reaching genome-wide significance level (P = 5×10−8, red line) are highlighted in green. 

The most significant signal at each risk locus is annotated. Locus at chromosome 6 is 

truncated at -log10P = 20. The arrow points to the most significant signal with its p-value 



in each plot. A. total IIMs: total myositis; B. PM, polymyositis; C. DM, dermatomyositis; D. 

JDM, juvenile dermatomyositis; E. anti-Jo-1 autoantibody-positive myositis. 

Figure 3. Regional Plots of the most significant novel signals outside the HLA 

region in the total IIMs. The purple diamond indicates the index SNP. Variants imputed 

in both studies are represented by downward-pointing triangles, while those genotyped 

in at least one study are indicated by upward-pointing triangles. The color of each variant 

indicates the approximate value of the LD squared coefficient of correlation (r2) between 

the index SNP and the corresponding variant. Index SNPs: A. rs6668534 in FCRLA at 

chr1; B. rs4853540 in STAT4 at chr2; C. rs230514 in NFKB1 at chr4; D. rs12203592 in 

IRF4 at chr6; E. rs7754730 in GJA1, HSF2 at chr6; F. rs113538396 in PINX1 at chr8; G. 

rs35350651 in ATXN2 at chr12; H. rs9898793 in DCAKD at chr17. 

Figure 4. Regional Plots of the most significant novel signals outside of the HLA 

region in PM, DM, and myositis with anti-Jo1. Purple diamond: the index SNP. Variants 

imputed in both studies are represented by downward-pointing triangles, while those 

genotyped in at least one study are indicated by upward-pointing triangles. The color of 

each variant corresponds to the approximate value of the LD squared coefficient of 

correlation (r2) between the index SNP and a given variant. Index SNPs are A. 

rs74925618 in NEMP2 in PM ; B. rs145940036 in ABCB11 in DM; C. rs12203592 in IRF4 

in DM; D. rs113538396 in PINX1 in DM; E. rs12203592 in IRF4 in JDM; F. rs6991531 in 

PSD3 in anti-Jo1. 

Figure 5. eQTL co-localization analyses within risk loci in significant tissues. 

Regional plots and plots of Z-score from eQTL studies vs. meta-analyses of A. IRF4 in 

total IIMs, DM, and JDM. eQTL variants from ENSG00000137265.IRF4. circle (right 



panel): top variant in credible sets of meta-analyses, eQTL, and co-localization. B. 

DCAKD in total IIMs.  eQTL variants from ENSG00000172992.DCAKD. circle (right 

panel): top variant in credible sets of meta-analyses; triangle (right panel): top variant in 

credible sets of eQTL and co-localization. C. HCP5 in total IIMs and DM. eQTL variants 

from ENSG00000206337.HCP5. circle (right panel): top variant in credible sets of meta-

analyses and DM co-localization ; triangle (right panel): top variant in credible sets of 

eQTL. square (right panel): top variant in credible sets of total IIMs co-localization. Purple 

Diamond: LD index. SNP.PP.H4: the probability of colocalization for the credible set.* 

Only common variants between meta-analyses and eQTL are analyzed. 
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