
Please cite the Published Version

Aguru, Aswani Devi, Pandey, Amrit, Erukala, Suresh Babu , Bashir, Ali Kashif , Zhu, Yaodong
, Kaluri, Rajesh and Gadekallu, Thippa Reddy (2024) Reliable-RPL: A Reliability-Aware

RPL Protocol Using Trust-Based Blockchain System for Internet of Things. IEEE Transactions on
Reliability. ISSN 0018-9529

DOI: https://doi.org/10.1109/tr.2024.3508652

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/637712/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an author-produced version of the published paper. Uploaded in
accordance with the University’s Research Publications Policy

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-8145-8237
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0003-4911-5522
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0003-0097-801X
https://doi.org/10.1109/tr.2024.3508652
https://e-space.mmu.ac.uk/637712/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

1

Reliable-RPL: A Reliability-Aware RPL Protocol
Using Trust-Based Blockchain System for

Internet of Things
Aswani Devi Aguru, Amrit Pandey, Suresh Babu Erukala, Senior Member, IEEE,

Ali Kashif Bashir, Senior Member, IEEE, Yaodong Zhu, Rajesh Kaluri,
and Thippa Reddy Gadekallu, Senior Member, IEEE

Abstract—Routing protocol for low-power and lossy network
(RPL) is a routing protocol for resource-constrained Internet of
Things (IoT) network devices. RPL has become a widely adopted
protocol for routing in low-powered device networks. However,
it lacks essential security features, including end-to-end secu-
rity, robust authentication, and intrusion detection capabilities.
Blockchain is a decentralized and immutable digital ledger that
records transactions across multiple computers. It provides pri-
vacy, transparency, security, and trust. In this work, we proposed a
blockchain-based reliable RPL protocol called reliable-RPL, which
uses node reliability, link reliability, and relative trust scores of
RPL-enabled IoT devices. The parent selection and network topol-
ogy formulation are based on the proposed reliability-aware objec-
tive function. A lightweight ECC-based scheme performs registra-
tion, identification, and authentication of RPL-enabled IoT devices.
The consistent topological updates from these authenticated IoT
devices are used to secure routing paths in RPL-enabled networks.
Using a modified trickle algorithm, we employed a reputation-
based trust system that monitors and labels malicious nodes based
on their reliable activities. The novelty of the proposed framework
relies on integrating Contiki-NG (as fronted for IoT network sim-
ulation) and Hyperledger Fabric (as a backend for blockchain-
based device authentication and trust-based attack resilience re-
garding rank, replay, sinkhole, and route poisoning attacks). The
experimental evaluation of reliable-RPL has demonstrated its

Aswani Devi Aguru is with the Department of Computer Science and En-
gineering, SRM University, AP 522240, India (e-mail: aa720086@student.
nitw.ac.in).

Amrit Pandey is with the SAP Labs India, Bangalore 560048, India (e-mail:
mail.amritpandey@gmail.com).

Suresh Babu Erukala is with the National Institute of Technology Warangal,
Warangal 506004, India (e-mail: esbabu@nitw.ac.in).

Ali Kashif Bashir is with the Department of Computing and Mathematics,
Manchester Metropolitan University, M15 6BH Manchester, U.K., and also
with the Centre for Research Impact and Outcome, Chitkara University Institute
of Engineering and Technology, Chitkara University, Rajpura 140401, India
(e-mail: Dr.alikashif.b@ieee.org).

Yaodong Zhu is with the Jiaxing University School of Information Science
and Engineering, Jiaxing 314001, China (e-mail: zhuyaodong@163.com).

Rajesh Kaluri is with the School of Computer Science Engineering and
Information Systems, Vellore Institute of Technology, Vellore 632014, India
(e-mail: rajesh.kaluri@vit.ac.in).

Thippa Reddy Gadekallu is with the Division of Research and Development,
Lovely Professional University, Phagwara 144411, India, and also with the
Centre for Research Impact and Outcome, Chitkara University Institute of En-
gineering and Technology, Chitkara University, Rajpura 140401, India (e-mail:
thippareddy@ieee.org).

effectiveness compared to state-of-the-art methods regarding sig-
nificant performance metrics, including packet loss, routing over-
head, and throughput on Hyperledger Caliper.

Index Terms—Blockchain, Internet of Things (IoT), routing
protocol for low-power and lossy network (RPL), reliability,
reputation, trust.

I. INTRODUCTION

THE routing protocol for low-power and lossy network
(RPL) is a standardized routing protocol developed by

the IETF for low-power and lossy networks (LLNs), such as
Internet of Things (IoT) networks and wireless sensor networks
(WSNs). It uses an IPv6-based directed acyclic graph (DAG)
to represent network topology. Its features include multihop
routing, energy efficiency, and robustness to network changes
and failures. RPL supports unicast, multicast, and anycast traffic
patterns. It is widely used in IoT and WSN deployments for its
suitability for LLNs. RPL scales to large networks prioritizes
energy efficiency, and ensures robustness in adverse conditions.
It supports multihop routing and offers flexibility with different
metrics for network optimization. Security mechanisms, includ-
ing authentication and encryption, protect against attacks. RPL
is ideal for various applications, including industrial automation,
smart homes, and WSNs. Its key features address the challenges
of LLNs, characterized by resource-constrained devices, low
bandwidth, limited processing power, memory, and high packet
loss.

Security in RPL communication is an active area of research.
The literature contains a variety of works aimed toward securing
RPL communication, which includes approaches based on ac-
knowledgment, trust, location, mathematics, and specifications.
Many of these efforts concern a few parameters and processes
that fail to give a flawless solution to secure routing and are
vulnerable to fundamental routing issues. Furthermore, many
existing techniques have an inherent issue of being resource-
demanding, which is counter-intuitive for resource-constrained
IoT devices. For instance, Dvir et al. [1] employed Version
and Rank authentication to prevent Ranks and Version attacks;
nonetheless, it must address the solution’s computationally
expensive aspect. Conti et al. [2] presented software remote
attestation solutions to prevent practically every software attack.
However, the centralized form creates concerns, such as a single

https://orcid.org/0000-0002-8145-8237
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0003-4911-5522
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0003-0097-801X
mailto:aa720086@student.nitw.ac.in
mailto:aa720086@student.nitw.ac.in
mailto:mail.amritpandey@gmail.com
mailto:esbabu@nitw.ac.in
mailto:Dr.alikashif.b@ieee.org
mailto:zhuyaodong@163.com
mailto:rajesh.kaluri@vit.ac.in
mailto:thippareddy@ieee.org

2

point of failure. Although Airehrour et al. [3] provided an
outstanding trust-based way to analyze routing paths in topology,
it lacks a backup and recuperation mechanism to handle power
loss and node greediness.

The significant challenge commonly identified while realizing
secure RPL (SRPL) communication in IoT networks is the lack
of reliability. This issue results in increased memory consump-
tion due to continuous key exchange [4], energy depletion [5],
decreased packet delivery ratio, DAO update rate during authen-
tication [4], lower backup and recuperation of trust values [3],
lower scalability [2], hardware dependency [6], failure against
attacks [7], [8], inefficient routing paths [9] while parent se-
lection and resource hungry schemes for attack detection using
machine learning or deep learning. Addressing these research
gaps is the principal motivation of our work.

In addition to the reliability, authentication is also a critical
factor that ensures the trustworthiness of the IoT networks
by limiting the involvement of untrustworthy and adversarial
nodes in the network. The existing reliability-aware RPL pro-
tocol implementations by Haque et al. [10], Lahbib et al. [11],
Nobakht et al. [12], Shahbakhsh et al. [13], and Shahbakhsh
et al. [14] do not address the authenticity and trust scores of IoT
devices while designing the objective functions (OFs). RPL’s
implicit authenticated mode performs the job but requires heavy
computation and occasionally depends on per-installed keys.
RPL needs a key management strategy for secure commu-
nication. Furthermore, the key management, distribution, and
storage need additional memory resources. Due to the lack of
confidentiality and integrity-preserving safeguards, nodes are
vulnerable to eavesdropping, tampering, and other attacks on
control messages. At least one of the techniques previously could
make secure routing a reality; however, their absence creates a
barrier to resolving security issues [15]. The foremost problems
that this article addresses are as follows.

1) Lack of authenticity and trustworthiness of existing
reliability-aware RPL protocols.

2) Routing overhead of RPL protocol in IoT networks.
3) Sngle point of failure of existing key management tech-

niques.
4) Lack of backup and recuperation.
We address these research problems by designing a

blockchain-enabled SRPL mechanism that mitigates potential
cyberattacks by offering a lightweight, trust-based secure com-
munication that is energy efficient, decentralized, and scalable
to massive networks of IoT devices to secure routing paths.

This article proposes a reliability-aware RPL protocol for IoT
networks using a trust-based blockchain system. Combined with
the trust-based reputation model, this system effectively identi-
fies malicious adversaries in the RPL-enabled IoT network. The
blockchain network is designed on the fog layer and runs on the
low-powered border routers (LBRs). The node registration on
the blockchain network will eliminate various security concerns
of the RPL-enabled IoT environment, including identification,
authentication, scalability, and attack resilience. In addition, the
proposed scheme also acts as a solid backbone for backup and
recuperation of the LBR nodes. This feature shows the novelty
of our framework to the existing SRPL protocol designs.

The significant contributions of the proposed framework are
summarized as follows.

1) We design a blockchain-enabled reliability-aware RPL
protocol that ensures node reliability through congestion
control and energy efficiency and link reliability through
optimal packet delivery ratio and signal strength in IoT
networks.

2) We propose a trust-enabled trickle algorithm that de-
tects inconsistencies in RPL-based data transmission us-
ing multiple trust score evaluations and reliability-aware
objective function (ROF) for achieving attack resilience.

3) We develop chaincodes for device registration, ECC-based
lightweight authentication, peer creation, and secure path
updating on the Hyperledger Fabric test network.

4) We present a novel RPL protocol stack and blockchain net-
work architecture integration for realizing SRPL routing
paths in IoT networks. This amalgamation is implemented
by integrating Contiki NG as the frontend for node sim-
ulation and Hyperledger Fabric as a backend for running
the blockchain network.

5) We perform an informal security analysis of the pro-
posed framework regarding attack resilience against vari-
ous attacks. We analyze the performance of the proposed
framework using the Cooja simulator, Wireshark, and
Hyperledger Caliper regarding packet loss during attacks,
routing overhead, power consumption, packet delivery
ratio, and blockchain throughput which exhibit optimal
results than state-of-the-art.

II. RELATED WORK

This section presents the related work on RPL secu-
rity frameworks existing in the literature. We have classi-
fied these mechanisms into four types based on the ap-
proach [16] viz. Cryptography and mathematics-based methods
([17], [9], [18]), trust-based methods ([3]), specification-based
methods ([19], [2], [5], [6]), and blockchain-based methods
([20], [8]). The detailed insights into each work are presented as
follows.

Mathematical- and cryptography-based security for RPL in-
volves the application of mathematical algorithms and crypto-
graphic techniques to ensure the integrity, confidentiality, and
authenticity of data transmitted within the network. An inherent
security mechanism in RPL is proposed by Raoof et al. [17],
which is much more effective for external attacks. However,
secure mode RPL uses significantly more energy with a drop-in
PDR to 70% in case of internal attacks. An algorithm for secure
parent selection based on a rank threshold value is presented by
Iuchi et al. [9]. However, it results in an increased number of hops
from each node to the destination-oriented directed acyclic graph
(DODAG) root. An SRPL routing protocol incorporating rank
threshold values and validation methods using the hash-chain
technique is proposed by Glissa et al. [18]. However, this scheme
results in an additional overhead due to excessive hashing algo-
rithms.

Specification-based security for RPL involves enforcing se-
curity requirements and constraints based on the protocol

3

specifications. A mechanism to prevent insider DAO attacks,
SecRPL, is presented by Ghalcb et al. [19]. However, this
mechanism negatively affects the downward packet delivery
ratio if the threshold is set to a low value, as the nodes will miss
some critical DAO messages to build downward routing paths. A
remote attestation method in RPL protocol to prevent software
attacks is presented by Conti et al. [2]. However, this scheme
only considers software-only attacks in an IoT environment and
assumes hardware specifications. A trust anchor interconnection
loop, called TRAIL, is presented by Perrey et al. [5] to validate
the upward path of DODAG. However, it results in enhanced
memory consumption. A trusted platform module (TPM) for
storing digital keys, certificates, and passwords is presented
by Seeber et al. [6] to safeguard against node tampering. This
scheme is a hardware-based solution that makes it loosely cou-
pled to the topology, in which physical access to a node can be
gained and compromised.

Trust-based methods aim to enhance the security and relia-
bility of communications within these networks by establishing
and maintaining trust relationships between networks based on
the node’s activities. Airehrour et al. [21] proposed a simple trust
calculation strategy to label malicious nodes in the network. This
method fails in case of many imminent attacks. Thulasiraman
and Wang [22] proposed a lightweight trust metric system for
mobile-IoT networks performing routing over RPL. This system
leads to heavy network overhead in case of increased mobility.
Airehrour et al. [3] proposed a trust-based mechanism to evaluate
and compute the trustworthy behavior of nodes in the network.
This metric then facilitates a node to elect a neighboring node
for routing; however, it must consider scalability and lack of
backup and recuperation strategy for root nodes. A sinkhole
detection scheme in RPL-based IoT networks, called SoS-RPL,
is presented by Zaminkar et al. [23] which consists of two phases
for ranking of RPL nodes and blocking the malicious nodes,
respectively. The simulation results on NS3 have proven the
efficiency of the protocol against sinkhole attack detection. A
novel reliability-aware RPL protocol, called “reliability-aware
adaptive RPL routing protocol” is proposed by Shahbakhsh et al.
[13] for IoT networks. This protocol achieves reliability by eval-
uating various metrics regarding parent selection and stable path
identification. The simulation of this protocol on Cooja ensures
improved reliability on data exchange and reduced instability in
RPL network topology. A hybrid security framework-enabled
RPL protocol, called DSH-RPL, is proposed by Zaminkar et al.
[24] for secure communication in IoT networks. Improvement
in RPL reliability, detection of sinkhole attacks, blacklisting the
malicious nodes, and encrypted data transmission are the four
phases of this protocol. The simulation results have shown that
the evaluation of DSH-RPL exhibits optimal performance in
terms of various security parameters.

A blockchain and ML-based RPL routing framework is pro-
posed by Sahay et al. [20]. However, this strategy may not be
appropriate for systems that demand immediate responses to
validate the generated IoT data. Ramezan et al. [8] proposed a
novel routing protocol called BCR for routing in IoT networks. If
the neighbors want to participate in the routing process, they can
offer routes via them by paying Route_Offer_Bond in the smart
contract address. In case of a malicious node offering the wrong

route, the node’s address is added to the Blacklisted_address of
the device. The BCR protocol, as proposed, eliminates the need
for a central authority to authorize, add, or remove IoT devices.
Unlike traditional centralized routing protocols, it does not rely
on a secret key-sharing mechanism.

In addition, we carried out an extensive analysis of the optimal
characteristics of the RPL protocol based on the survey presented
by Shirvani et al. [25]. This survey is based on various trust-based
routing schemes in RPL-based IoT networks to achieve black-
listing traffic from malicious devices, link reliability, enhanced
congestion control, lightweight authentication, and improved
scalability. This survey played a prominent role in identifying
existing research problems and designing a novel RPL proto-
col with reliability, secure data transmission, scalability, trust,
and decentralization. After performing a rigorous analysis of
state-of-the-art techniques on RPL security frameworks (see
Table I), we have proposed a trust-based blockchain network
for SRPL routing while defending the rank attack, reply attack,
and sinkhole attacks.

III. PRELIMINARIES

This section provides the preliminaries of the proposed frame-
work.

A. RPL: Routing Protocol for Low Powered and Lossy
Networks

RPL is a routing protocol for resource-constrained devices in
LLNs, such as IoT deployments. It establishes and maintains
routes between nodes to enable efficient communication within
the network. The primary goal of RPL is to provide energy-
efficient and reliable routing while accommodating the unique
characteristics of low-power networks, including limited band-
width, high loss rates, and constrained computational resources.
RPL forms a DODAG to organize the network topology. The
protocol utilizes a proactive approach, where nodes periodically
exchange control messages called DODAG information object
(DIO) to disseminate routing information throughout the net-
work. RPL employs a rank-based mechanism to construct routes,
where each node maintains a rank indicating its position in the
DODAG. Nodes with higher ranks become parents to lower
ranked nodes, forming upward routes toward the root of the
DODAG. RPL also incorporates a trickle timer algorithm to reg-
ulate control message transmissions, minimizing overhead, and
conserving energy. It also supports route optimization and repair
mechanisms to adapt to network changes dynamically. Overall,
RPL addresses the unique challenges of LLNs by providing
efficient routing, scalability, and adaptability for diverse IoT ap-
plications. However, as IoT networks are resource-constrained,
formulating reliable and energy-efficient RPL routing paths and
trust-based parent selection are the major limitations in existing
RPL protocol implementations.

B. Trickle Algorithm

The trickle algorithm is a key component of the RPL, designed
for resource-constrained devices in IoT networks. Its purpose
is to regulate the frequency of control messages exchanged

4

TABLE I
SUMMARY OF LITERATURE REVIEW

between neighboring nodes to ensure network stability while
minimizing overhead. The algorithm operates based on “trick-
ling” information throughout the network. Each node main-
tains a trickle timer that controls the transmission of control
messages. The working of the trickle algorithm is presented
in Algorithm 1. The trickle algorithm effectively balances the
frequency of control message transmissions, reducing unneces-
sary overhead in the network while still ensuring that essential
control information is propagated promptly. In our proposed
mechanism, we have modified the trickle timer to multicast DIO
messages containing the reputation values of the neighbor nodes.
Formation components and variables in the trickle algorithm
are minimum interval size (Imin), maximum interval size (Imax),
redundancy constant (k), and current interval size (I), counter
(c), random time (t), respectively.

C. Blockchain

Blockchain is a decentralized data storage and transfer sys-
tem using nodes instead of a central authority [26], [27]. It
enables secure and unalterable transaction records, benefiting

cryptocurrencies, smart contracts, supply chains, and digital
identity. With cryptography and consensus, blockchain enhances
industry transparency, efficiency, and trust [28], [29]. The con-
sortium blockchain is a controlled network operated by multiple
entities. Organizations form a consortium, collaborating to man-
age rules, validate transactions, and maintain the ledger [30].
This type offers strong privacy and security due to restricted
network access [31].

In our proposed system, we have developed a consortium
blockchain network of LBR nodes acting as organizations. These
organizations have multiple peers that act as IoT nodes. The flow
of information in the ledger is restricted to those LBR nodes
that share the connection to the common channel and is closed
to other participants. To become part of this channel, any LBR
node has to register itself as an organization and get approval
from the existing organizations.

1) Consensus Mechanism: The proposed architecture uses a
consortium blockchain network that uses Raft consensus [32]
mechanism for publishing blocks. Raft is often considered a
lightweight consensus algorithm, which makes it suitable for
running on LBR devices. Raft operates by electing a leader

5

Algorithm 1: Mechanism of Trickle Algorithm.
Require: Formation Components and variables
Ensure: Trickle activities
1: Set c← 0; I ← {I{min}, I{min} × 2Imax}; t← [I2 , I),

where I ∈ {Imin × 2n|n ∈ N0, n ≤ Imax};
2: if Detect(Identicaldata) then
3: c = c + 1
4: end if
5: while t do
6: if c < k then
7: Allow(Data transmission);
8: else
9: Supress(Data transmission);

10: end if
11: end while
12: if Expiration(I) then
13: while I < Imax do
14: I = 2× I;
15: end while
16: end if
17: if Detect(Inconsistentdata) && I > Imin then
18: I = Imin

19: else
20: Return(Trickle remains idle);
21: end if
22: c← 0; t← [I2 , I);

node, which coordinates the other nodes in the system. The
leader node receives client requests, updates the system’s state,
and replicates the updates to other nodes. If the leader fails, a
new leader is elected through a leader election process. One of
the ways that Raft achieves its lightweight design is through
its use of leader election. In Raft, a single leader is responsible
for coordinating the other nodes in the system, simplifying the
replication process, and reducing the counts of transmissions
needed to be exchanged.

D. Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography is a public-key cryptographic
algorithm that uses the algebraic structure of elliptic curves over
finite fields to provide security. The algorithm generates a public
and private key pair on an elliptic curve. The public key is derived
from a point on the curve, and the private key is a random integer.
Let E be an elliptic curve defined over a finite field Fp of prime
order p, and let P be a point on E. The private key d is a random
integer from the interval [1, n− 1], wheren is the order ofP . The
public keyQ is the result of scalar multiplication ofP by d:Q =
dP . To encrypt a message, the sender chooses a random integer
k from the interval [1, n− 1] and generates a random point R
on the curve:R = kP . The sender then calculates the encryption
key K as follows: K = Q+R = dP + kP = (d+ k)P . The
message is then encrypted using K as the key. To decrypt the
message, the recipient uses their private key d to perform scalar
multiplication onK:K ′ = dK = d(d+ k)P = kdP + d2P =
kP + d2P = R+Q. The recipient can then recover the original

Algorithm 2: Signature Generation in ECDSA.
Require: Message m, Private key of sender dA
Ensure: Signature Key pair (R,S)
1: Calculate e = Hash(m) {Hash is the cryptographic

hash function, such as SHA-2}
2: Choose a random integer k from [1, P − 1]
3: Calculate R = x1(modN), where (x1, y1) = k ×G

{(x1, y1) is the curve point.}
4: if R = 0 then
5: Calculate e & Repeat the process.
6: end if
7: S = k−1(Hash(m) + dA×R)mod(P)
8: if S = 0 then
9: Calculate e & Repeat the process.

10: end if
11: Return (Signature key pair as (R,S))

message by using R to cancel out the encryption performed by
the sender.

1) Elliptic Curve Digital Signature Algorithm (ECDSA):
Digital signatures play a crucial role in blockchain technol-
ogy, especially in the authentication of transactions. The nodes
must provide proof of authorization while submitting a trans-
action, which is verified by every other node in the network.
ECDSA uses ECC to generate digital signatures as key pairs
for signing and verification purposes. Due to the many key
advantages of ECC over other algorithms in public key cryp-
tography, blockchain applications employ ECDSA for signing
transactions and events. ECDSA uses the temporary key pairs to
calculate the signature pairs R and S. R is x coordinator of the
temporary public key. dA is the sender’s private key. m is the
message. P is the prime order of the elliptic curve (order of
G). Qa is the sender’s public key. Hash() is the cryptographic
hash function. A random point on the elliptic curve is chosen as
the temporary private key k, and the public key is then derived
by P = k ×G, where G is the elliptic curve base point. The
transactions are signed using the signature generation algorithm
in Algorithm 2. Later, the signed transactions are verified using
the pairs R and S, and the public key is taken from Algorithm 3.

2) ECC-Based Shared Key Exchange Scheme: Elliptic curve
Diffie–Hellman (ECDH) key exchange is a popular method for
securing communication by creating a shared key between two
parties. The ECDH key exchange works as follows.

IV. PROPOSED FRAMEWORK: RELIABLE-RPL

This section describes our proposed blockchain-based SRPL
protocol, reliable-RPL, including system modeling, cross-
layer integration, an SRPL path establishment, ECC-based
lightweight authentication, and a trust-based modified trickle
algorithm for attack resilience.

A. Assumptions

1) Blockchain network is hosted at the fog layer using LBRs.
The orderer service is hosted as a server in the cloud layer.

6

Algorithm 3: Signature Validation in ECDSA.
Require: Private key of sender Qa
Ensure: Validation of signature.
1: if R, S ∈ [1, P − 1] then
2: Return (“Signature is valid”)
3: end if
4: Calculate e = Hash(m) {Hash is the hash used in

signature generation algorithm}
5: P = S−1 ×Hash(m)×G+ S−1 ×R×Qa
6: Calculate w = S−1(modP); u1 = e× w(modP);

u2 = R× w(modP)
7: Calculate (x1, y1) = u1 ×G + u2 ×Qa {The curve

point (x1, y1) is the sum of two scalar multiplications.}
8: if R = x1(modP) then
9: Return (“Signature is valid”)

10: end if

Algorithm 4: Key Generation Algorithm in ECDH.
Require: Public information of numbers n and G, secret
numbers a, b.

Ensure: Generation of key pairs.
1: Private key of A, Apri = A; Private key of B, Bpri = b
2: if a ∈ [1, n] then
3: Compute the public key for A as Apub = a×G.
4: Generate the public key for B as Bpub = b×G.
5: else
6: “Failed to generate keys”
7: end if

Algorithm 5: Shared Key Calculation Algorithm in ECDH.
Require: Apub, Apri, Bpub, Bpri

Ensure: Shared key S
1: For A: Secret Key(S) = S = Apri ×Bpub = a× bG.
2: For B: Secret Key(S) = S = Bpri ×Apub = b× aG.

Algorithm 6: Key Exchange Algorithm in ECDH.
Require: Public keys Apub, Bpub

Ensure: Key exchange between A and B
1: Keys at A: Apub, Apri; Keys at B: Bpub, Bpri

2: if Flag == 1 then
3: Keys at A: Bpub; Keys at B: Apub, Bpri

4: “Successful execution of key exchange mechanism”
5: else
6: “Failed to exchange the keys”
7: end if

2) LBR devices have sufficient memory and energy to run
lightweight operations (ECC and Raft consensus) and peer
services of blockchain networks.

3) The RPL protocol works in nonstoring mode.

Fig. 1. Architecture of proposed reliable-RPL.

B. System Model

The system model of the proposed reliable-RPL is depicted
in Fig. 1. This architecture comprises three layers, namely RPL
DODAG layer, blockchain network layer, and cloud layer.

1) RPL DODAG Layer: This layer consists of the IoT device
network executing routing via RPL protocol over IPv6 suit. It
comprises sensors, routers, and root nodes in a typical RPL
topology. We have assumed that this layer runs the RPL protocol
in nonstoring mode; hence, all the intermediary nodes do not
store downward routing paths. Any request for routing goes
through the sink (root), which is responsible for redirecting the
message to the destination node in the network. The main role
of the RPL DODAG layer is to propagate the neighbor nodes’
relative and primary trust values to the root node so that the
malicious nodes can be detected and a secure route path can be
found.

Suppose the total number of packets delivered from node u
to node v is P (t)d. The total number of packets sent to node u
from node v isP (t)s. The time during the DODAG construction
is t. The trust of each node in the RPL network can be calculated
based on trusted parent node selection [33]

PrimaryTrust =
P (t)d
P (t)s

. (1)

The retribution weight ρ is attached to the malicious node.
Upon the consecutive malicious actions, the value of ρ will be
incremented by a constantκThe updation formula for retribution
weight is mentioned in (2)

ρi = ρi + κ (2)

7

Relative Trust =
P (t)s

P (t)s + ρ[P (t)d − P (t)s]
(3)

Threshold Trust =
1

Packet-count-beyond-threshold
. (4)

The parent selection will be based on the value of PrimaryTrust.
The optimal parent is found based on the RelativeTrust if this
value is equal. After the node joins the DODAG, the attacker
node can be identified based on ThresholdTrust. The mutual
trust among multiple nodes of RPL networks is formed using
MutualTrust. When the trust score is reduced, the neighbor node
sends an acknowledgment to the border router, and the infor-
mation about the attacker node will be broadcast. The packets
from the node will be dropped. This model minimizes energy
consumption and unnecessary network traffic. Among many
possible ways of DODAG construction, the optimal DODAG
is formed based on the cost of both the link and nodes of RPL
networks. The significant variables that decide the cost are the
number of hops h, interference i, reliability r, and error rate e.
So, the total cost of a path is determined using an OF as

Cost(route) = α× h+ β × i+ γ × r + δ × e. (5)

The most remarkable factor among all these variables is the
node’s reliability r. In IoT networks, r is calculated based on
node reliability nr and link reliability lr.

1) Evaluation of node reliability (nr): The reliability of an IoT
node is evaluated in terms of node congestion and energy
efficiency for the current node cn and parent node pn [34].
We consider two factors, namely buffer utilization BU and
the remaining energy of the node EG, to analyze the node
congestion and energy efficiency of the node, respectively.
The node reliability of the current node nr(cn) depends
on two factors, congestion and energy factor (cef), and
reliability reduction factor (rrf). Equation (6) presents the
evaluation of nr(cn) as follows:

nr(cn) = max ((cef× BU + (1− cef)

× EG), (nr(pn)× rrf)) . (6)

2) Evaluation of link reliability (lr): The reliability of the
communication between the IoT nodes is evaluated in
terms of expected transmission count (ETX) and radio
signal strength indicator (RSSI) [35]. ETX indicates the
data packet delivery between IoT nodes, RSSI indicates
the received signal strength from pn to cn, MRRS indi-
cates the maximum received signal strength by the cn.
Equation (7) presents the evaluation of lr(cn) as follows:

lr(cn, pn) =
1

ETX(cn, pn)
× RSSI(cn, pn)

MRRS
. (7)

3) The overall reliability factor r is DRI× nr(cn) + (1−
DRI)× lr(cn, pn), where DRI is the dynamic reliability
index of the IoT network.

We define the ROF interims of r and RelativeTrust among cn
and pn

ROF(cn) =
P (t)pn

P (t)pn + ρ[P (t)cn − P (t)pn]
× (γ × r). (8)

TABLE II
CONTROL MESSAGES IN DODAG CONSTRUCTION

The path with minimal cost and highest reliability is selected for
the transmission. In DODAG, every node’s rank is calculated by
the ROF based on its level from the root node. The lower value
of ROF indicates a higher probability of the node being selected
as the parent. The construction and maintenance of DODAG are
carried out using control messages described in Table II.

Based on the proposed ROF, the trickle algorithm reduces the
overhead caused by control messages during DODAG construc-
tion and maintenance. It includes two steps as follows.

1) Transmission suppression: A node suppresses its trans-
mission if a sufficient number of messages are captured in
its range.

2) Resolving inconsistencies in DAG: If any change in the
network is detected, the trickle increases the transmission
of control messages.

2) Blockchain Network Layer: The blockchain network is
deployed over the fog network of LBRs. The LBRs run as
independent peers on our consortium blockchain network. The
chaincode or smart contract is deployed over the network. All
the organizations (LBR) are running over one channel, sharing
one public ledger and one segregated one. As shown in the
system model, the orange line shows the connection of all the
organizations with the orderer in the cloud layer.

Fig. 2 shows the registration, authentication, and registration
mechanism of a new LBR device wanting to join the Hyperledger
fabric network. The notations used in the sequence diagram are
TS: Time stamp, PubK: Public key, and PriK: Private key. As
shown in the sequence diagram, the fog device first sends a
registration request to the blockchain network already running
on the network of fog devices. These fog devices comprise all the
LBR in the network, including the orderer hosted in the cloud.
After the authentication mechanism is complete, the adding peer
invokes the DeviceChaincode to add this node to the device
ledger. Cryptomaterial, along with the device ID assigned by
the blockchain network, is sent back to the new LBR device.
Finally, the LBR device submits a request to join the instance
channel and operates as a new DODAG root.

3) Cloud Layer: All the communication regarding device
registration to sharing changes in the routing information hap-
pens via the external network supported by the cloud layer.
The orderer organization responsible for running the consensus
mechanism is also hosted on the cloud layer as an independent
server. The cloud layer enables a seamless connection between
all the organizations running different networks and varying
protocol suits.

8

Algorithm 7: Proposed Trust-Enabled Trickle Algorithm.
Require: Formation Components and variables
Ensure: Trust-enabled Trickle activities
1: Set c← 0; I ← {Imin, Imin × 2Imax}; t← [I2 , I),

where I ∈ {Imin × 2n|n ∈ N0, n ≤ Imax};
2: if Detect(Identicaldata) then
3: c = c + 1
4: end if
5: while t do
6: if c < k then
7: Allow(Data transmission);
8: else
9: Supress(Data transmission);

10: end if
11: end while
12: if Expiration(I) then
13: while I < Imax do
14: I = 2× I;
15: end while
16: end if
17: while Detection-of-inconsistent-data do
18: u, v← Nodes in the RPL network with same rank.
19: Calculate reputation scores;
20: Return(PrimaryTrust = P (t)d

P (t)s
)

21: Include a retribution weight ρ;
22: Return(RelativeTrust = P (t)s

P (t)s+ρ[P (t)d−P (t)s]
)

23: Reliability-aware objective function ROF =
RelativeTrust × γ × r

24: Return(ThresholdTrust =
1

Packet−count−beyond−threshold)
25: The lower reputation scores indicate higher

inconsistencies in data
26: end while
27: if Detect(Inconsistentdata) && I > Imin &&

!ROF then
28: I = Imin

29: else
30: Return(Trickle remains idle);
31: end if
32: c← 0; t← [I2 , I);

C. Methodology

The methodology followed to establish secure route paths in
the IoT environment is explained as follows.

Step-1: The LBR device first submits a registration request to
the existing blockchain network hosted by the fog devices.

Step-2: The leader peer in the organization accepts the re-
quest and begins the authentication mechanism via the ECDSA
algorithm. Upon successful authentication of the device, the
private and public key for the new device is generated using
an ECC-based key generation algorithm.

Step-3: The leader peer then invokes the DeviceChaincode
by creating a transaction and submitting it to the orderer. Along
with this, MSP certificates are generated by the organization’s

Fig. 2. Sequence diagram of LBR device registration, authentication, and peer
update.

CA. DeviceChaincode then provisions a new device ID DevID
for the peer.

Step-4: The LBR device is then sent back the cryptomaterials
and DevID as a response by the blockchain network. On receiv-
ing the material, the LBR device sends a executeJoin request
to join with the instanceChannel of the organization. Upon
successful join request, the new LBR device now runs as an
independent peer in the network with the shared public ledger
and participates in the consensus algorithm.

Step-5: An IoT device registers itself to the LBR by sending
the registration request to the nearby nodes.

Step-6: The LBR then completes the identification and au-
thentication of the IoT device via ECDH and generates a shared
key.

Step-7: LBR then registers this device on the ledger by in-
voking DeviceChaincode. The transaction is submitted and then
run on the network for consensus. This chaincode effectively
identifies edge and fog devices in the network.

Step-8: As a node, the IoT device acts like an adversary and
disrupts routing paths. According to the evaluation of the (ROF),
the node’s probability of being selected as a parent is high if
the value is low. In addition, the modified trickle algorithm
then captures the decrease in the reputation trust value of the
IoT device via a primary and relative trust (as presented in
Algorithm 7). The request for a node with a low reputation value
is submitted to the LBR.

Step-9: LBR, on receiving updates about the decreased rep-
utation of a device, alters the routing paths in its routing table
and publishes it as a transaction via RoutingChaincode to the
blockchain network. In this way, the downward routing paths in
the network are secured by sharing the secure routes over the
blockchain network.

9

Fig. 3. Overall methodology for establishing secure route paths.

Step-10: Due to decreased reputation value, the malicious
node is omitted while calculating a more secure route by indi-
vidual LBRs. The route paths are also decentralized with the rest
of the LBR; hence, any inconsistency detected by one LBR is
propagated to the entire IoT network.

The overall methodology is based on the cross-layer integra-
tion of RPL-enabled IoT nodes and blockchain network. We
proposed a novel integrated architecture by amalgamating the
internal layers of RPL protocol and Hyperledger Fabric network
(as presented in the following Section IV-C1).

1) Cross-Layer Integration: The reliable-RPL system in-
volves orchestrating multiple software technologies, including
a cross-layer integration of RPL protocol layers and blockchain
network.

We have employed the Contiki-NG operating system that
comes with the in-built implementation of the RPL-Lite proto-
col. Hyperledger Fabric is used to create a blockchain network
hosted on the fog devices of any IoT network. In Fig. 4, we have
shown the integration of Contiki-NG OS with the Hyperledger
Fabric system in a layered manner.

Perception layer: In the bottom-most layer, the sensors and
actuator nodes collect the data and send it upwards to the
DODAG root. This layer is also called perception layer and
comprises various network technology, which is the backbone
of the communication in IoT.

Network layer: The next layer comprises our Contiki-NG
operating system, which utilizes the various Contiki modules in
order to achieve tasks such as registration, authentication, and
identification of edge devices. This layer runs the RPL routing
protocol on its top. The Contiki-NG operating system is modified
to share the trust value and label the reputation values of the
neighbor nodes. This layer also communicates to the blockchain
network layer.

Blockchain network layer: Since the blockchain layer is also
part of the LBR device (fog layer), the fog devices are respon-
sible for registering and authenticating LBR devices looking
to join the network. The blockchain layer provides services,
such as LBR device registration and authentication, IoT device
identification, registration, and authentication, and the consistent
route path update over the entire network in a decentralized
manner.

Cloud layer: The purpose of the cloud layer is to provide a
communication backbone for communication between peers and

Fig. 4. Cross-layer architecture of RPL and blockchain network.

to host an orderer service that assists in running the consensus
mechanism and validating transactions.

Application layer: Finally, the application of all the opera-
tions can be used in the application layer. Applications, such
as network monitoring, route update visualizations, backup,
recuperation, can be realized from this layer.

2) Deployment of Chaincodes: We have designed and de-
ployed two chaincodes in our proposed model, both on the
instanceChannel channel.

3) Device Chaincode: To maintain a consistent database of
IoT devices and network topology in the network, we will use
a chaincode related to storing each device’s identity, authenti-
cation, and reputation values (see Algorithm 8). This chaincode
will also have functions related to registering the device after
LBR authenticates the device using our ECC-based key ex-
change mechanism, updating the device information, updating
the reputation value, and deleting the device if it leaves the
network. ρ is the base reputation value for any newly registered
device on the blockchain network, as mentioned in the trust
calculation.

4) Routing Chaincode: To preserve the updates in the routing
topology and RPL-instance information of each LBR we have
designed and implemented a routing chaincode, as presented in
Algorithm 9. After receiving DAO messages from each new node
that was recently registered or during the rank update among
any node in the topology, the control message will trigger the

10

Algorithm 8: Device Registration.
Require: Registration Request PubK, PriK, MACID,
IP

Ensure: Device registration on Blockchain
1: DevID ← GenerateRandomDevID()
2: if Device is LBR then
3: Access Level← 1
4: else
5: Access Level← 0
6: end if
7: Device← (DevID, R = ρ)
8: DeviceChaincode← network.getContract

(‘deviceChaincode’)
9: if DeviceChaincode.execute(‘retriveDevice’, Device)

then
10: Return← (Device already exist)
11: else
12: DeviceChaincode.submitTransaction(‘registerDevice’,

Device, Access Level)
13: Response← New device registered on ledger
14: Return← (New device registered, DevID)
15: end if

Algorithm 9: Downward Path Update Request.
Require: Old(current) and New downward paths
Ensure: Update instance information for the network
1: Old← LBR(DevID).getRouteState()
2: New← Path update request
3: RoutingChaincode←

network.getContract(‘routingChaincode’)
4: if New route path is validated then
5: RoutingChaincode.submitTransaction(
6: ‘updateDownwardPath’, ‘DevID’, ‘New’)
7: Return← (Downward Path updated in

LBR(DevID))
8: else
9: Return← (Invalid Update)

10: end if

creation of a new routing table in LBR. The routing chaincode
will be responsible for executing the route change and consistent
routing ledger that can be validated by each LBR in the network.

V. EXPERIMENTAL EVALUATION OF RELIABLE-RPL

In this section, we present Contiki-NG integration with Hy-
perledger Fabric and simulation of attack resilience against
rank, sinkhole replay, and route poisoning attacks using Contiki-
Cooja. Table III presents the simulation and experimentation
parameters of reliable-RPL.

A. Hyperledger Fabric

Hyperledger Fabric [36] is a platform for building distributed
ledger applications for business solutions. It has a modular
architecture that allows different components, such as consensus
and membership services, to be plug-and-play. As our proposed

TABLE III
SIMULATION PARAMETERS

Fig. 5. Blockchain network model on Hyperledger Fabric.

system uses consortium blockchain, we will implement Hy-
perledger Fabric to create our blockchain network. We have
used Hyperledger Fabric to create our consortium blockchain
network. Fig. 5 shows the logical model of our Hyperledger
Fabric system deployed and integrated with the Contiki-NG
operating system. Our experimental fabric network consists of
one organization that represents the network of LBRs called
Network1. We have created a channel called instancechannel
on this network to connect the peers to share a common public
ledger. Network organization initially had a CA, and one peer as
a leader joined it. A registration request by any LBR is authen-
ticated by the leader peer, and on successful authentication, a
new peer is created in this organization. Each peer hosts its own
segregated and public ledger in CouchDB instances, which are
simple key-value pair databases.

To test our framework, we have used Docker to host our
blockchain network. Docker is an open-source platform that
enables application deployment, scaling, and management au-
tomation through containerization. This technology offers a
standardized container unit, encapsulating the software and its
dependencies. Containers are self-contained and lightweight
environments encompass all the components to run an appli-
cation, such as code, runtime, libraries, system tools, and con-
figurations. The Hyperledger Fabric model consists of four main
elements: assets, chaincode, ledger, and transactions. Assets are
anything that has value and can be exchanged over the network.
Chaincode is the smart contract that defines the business logic
and rules for asset manipulation. The ledger is the append-only
record of all the transactions on the network. Transactions are
the invocations of chaincode that result in state changes of assets.
Participants in the Hyperledger Fabric network are divided into
three roles: clients, peers, and orderers. Clients are applications
that act on behalf of users to propose and endorse transactions.
Peers are nodes that maintain the ledger and run the chaincode.

11

Fig. 6. Creation of genesis block.

Fig. 7. Crytomaterial for LBR1 organization.

Orderers are nodes that order transactions into blocks and broad-
cast them to peers. Peers and orderers can belong to different
organizations enrolled through a Membership Service Provider
(MSP). All the organizations (LBR nodes) share a common
public ledger by joining a channel. Each peer in the organization
hosts two databases, namely Transaction Log and World State.
Transaction log stores the history of updated transactions and
blocks, whereas the World state stores the actual asset updates.

B. Blockchain Network Setup

The fog layer comprising the LBR devices runs the blockchain
network, and we modeled this network on Hyperledger Fabric,
as depicted in Fig. 5.

The blockchain network is responsible for registering, au-
thenticating, and maintaining any new LBR device wanting to
join as a peer. Since our network is a consortium blockchain
network, employing an ECC-based authentication mechanism
to allow only permissioned nodes to access the ledger becomes
necessary. Fig. 6 shows the beginning of the system’s setup by
creating genesis and configuration blocks via configtx.yaml file.
First, the cryptomaterial for all the entities are created using the
cryptogen tool provided by the Hyperledger Fabric platform.

Fig. 7 also shows the generation of cryptomaterial for LBR1
organization in terms of MSP identities, CA, and keys of various
entities on the network done by the cryptogen binaries by uti-
lizing the crypto-config.yaml file. The MSP will use these files

Fig. 8. Generated organization and genesis block binaries.

Fig. 9. Network up with docker.

Fig. 10. “instanceChannel” channel creation.

to identify and authenticate peers and network entities. Fig. 8
depicts the generation of binaries.

Fig. 9 shows the running network in the docker container on
which each entity is hosted. This network includes two peers,
one CA, two instances of CouchDB (one for each peer), and
three orderers (as used by the Raft consensus mechanism).

Fig. 10 shows the channel creation among the recently de-
ployed Hyperledger entities. The instanceChannel that connects
all network peers is granted by channel binary.

C. Chaincode Deployment

Chaincode in Hyperledger Fabric is responsible for imple-
menting the business logic of smart contracts. It defines the rules
and functions for reading from and writing to the blockchain

12

Fig. 11. DeviceChaincode deployment.

Fig. 12. DeviceChaincode invocation for checking commit readiness.

Fig. 13. RoutingChaincode deployment.

ledger. Chaincode interacts with the network and updates the
ledger’s state based on transactions and queries. We have de-
signed and deployed two chaincodes in our proposed model,
both on the instanceChannel channel.

1) Device Chaincode: Fig. 11 shows our network’s deploy-
ment of DeviceChaincode. First, we bundle the DeviceChain-
code logic written in Go programming language into a package
called deviceChaincode.tar.gz, as highlighted in Fig. 11. Then,
the chaincode is approved for all the organizations in the net-
work. Finally, we test the chaincode for commit readiness by
invoking the initLedger function from the chaincode.

Fig. 12 shows the data committed by our test initLedger com-
mand in the Devicechaincode. The output shows the CouchDB
instance used by the ledger on each peer. The DEVICE0 is the
ID set by the deviceChaincode chaincode, and the entry contains
the information on the newly registered device.

Fig. 14. LBR device registration.

Fig. 15. LBR device authentication.

2) Routing Chaincode: Fig. 13 shows the deployment and
successful invocation of RoutingChaincode in Network1 orga-
nization. The procedure is the same as for DeviceChaincode
deployment, where we package the code and then approve and
check the organization’s commit readiness.

3) Device Registration: Fig. 14 shows the LBR root device in
Cooja simulator requesting the leader peer hosted in the Docker
system. On the left, we can see the request being made to the
peer hosted at locahost:7594. The registration request is sent
with the device’s IP, MAC, and current timestamp.

4) Device Authentication: Fig. 15 shows that the request re-
ceived by the peer is moved forward by authenticating the device
by generating the ECDSA signature and verification certificates.
Once that is verified by the LBR node, the public and private
key is generated using the ECC-based key generation algorithm.
Finally, the peer invokes the DeviceChaincode chaincode. The
invocation request implicitly goes to the orderer service, and
the device registration information is committed to the device
ledger. A new ID is generated for the peer by the chaincode.

5) Peer Creation: In Fig. 16, the CA and MSP of the or-
ganization generated the necessary cryptomaterial for the new
peer (LBR device). All the certificates generated by the MSP
are sent back to the LBR along with its public and private
keys. Finally, the LBR device, on receiving the cryptomaterial,
submits a request to join instanceChannel.

6) Route Updation: Fig. 17 shows the procedure of detecting
malicious nodes and updating the routing data as saved in the
routing ledger. On sufficient drop in the reputed value, the rout-
ingChaincode is invoked by the detecting peer and is submitted

13

Fig. 16. Peer update on Hyperledger network.

Fig. 17. Secure route path selection on detecting a malicious node.

to the orderer for validation of the transaction and committing
it to the routing ledger.

D. Simulation of Attack Resilience by Reliable-RPL

1) Attack Model: According to the system model, IoT de-
vices communicate in the RPL network using insecure channels.
An adversary can intercept the control messages, reducing trust
among LBR and RPL nodes. We consider the Dolev–Yao threat
model, which allows an adversary to modify the DIO, DIS, and
DAO messages in RPL networks. The implementation results
of our proposed framework prove its ability to withstand rank
attacks, reply attacks, sinkhole attacks, and route poisoning
attacks.

2) Informal Security Analysis of Reliable-RPL
on Contiki-Cooja:

1) Rank attacks: In a typical network topology represented
by G(V,E) where V is a set of nodes(motes) and E
represents the connection between them, each V ’s depth
in the topology is referred to by its rank R(V). The rank
is a relative concept dependent on the OF in which the
DODAG operates. In our rank attack simulation, we have
made our malicious node advertise the correct rank for
6–12 s, after which it manipulates the control messages
to decrease its rank. As was observed in the simulation,
due to rank change, the nearby nodes updated their parent
list and added the malicious node as the default parent. For
the initial few minutes, a heavy loss of packet delivery was
observed that drastically decreased the relative reputation
value of the malicious node.

2) Sinkhole attacks: In the network topology represented by
G(V,E), V is a set of nodes(motes), and E represents

the link connections between them. Then, the number of
packets delivered by intermediate nodes from the set of
motes Vn is given by P (t)d, and the total number of pack-
ets forwarded through the mote is given by P (t)s. A node
becomes malicious when it starts to drop packets through
it except the control packets such that P (t)d <<< P (t)s.
As a significant number of packets are dropped, then mote
becomes a sinkhole. In our sinkhole attack simulation, the
mote was programmed to drop simple “Hello” packets
sent upwards in the topology every 2 s. It was observed
that a significant drop in delivered packets led to a decrease
in the reputation of the mote. The route paths were then
switched to choose a more secure path.

3) Route poisoning attacks: As individual LBRs publish all
the routing updates and information about RPL instances
on the routing ledger, the ledger maintains the consistency
of the routing topology. To simulate a route poisoning
attack on the LBR, we first replaced one of the existing
peers with an unauthenticated peer. It was found that
the new peer failed to create a new transaction as the
Hyperledger network threw the error. Second, we try to
make an inappropriate update to the network by unlabeling
a malicious node, i.e., increasing the trust reputation value,
which was also rejected by the orderer as the DeviceChain-
code transaction update was inconsistent with the world
state data.

4) Replay attacks: In the network topology represented by
G(V,E), V is a set of nodes(motes), and E represents the
link connections between them. An adversary triggering
a replay attack is a malicious node that captures old con-
trol messages and retransmits them to create inconsistent
topological changes. To prevent this, the timestamp on this
control message is verified with the latest control message
transmitted by the LBR. In our simulation, we created a
malicious node transmitting old and new control packets at
4–6 s. Upon receiving old packets, the surrounding nodes
decreased the primary trust value of the malicious node.

E. Performance Analysis

The proposed system has been analyzed and evaluated using
the tools available in the Cooja simulator. Data capture included
reception logs, radio transmission packets, and routing table
updates. We have used Wireshark to evaluate the radio packets
and find the packet drop ratio. The routing overhead metric
was calculated by taking the combined runtime of the reliable-
RPL system. Finally, we also evaluated our Hyperledger Fabric
system using Hyperledger Caliper. The results are compiled be-
low in the graphs shown in Figs. 18, 19, and 22. Fig. 18 shows the
average packet loss during all the attacks. The results have been
compared with the [3] system. It was observed that during at-
tacks, such as rank and sinkhole, the packet loss is less as the rep-
utation value of the adversary decreases rapidly. If the value of
ρ was increased, as discussed in our modified trickle algorithm,
then a significant increase in the packet drop was observed.

Fig. 19 shows the average routing overhead after integrat-
ing Hyperledger Fabric with Contiki-NG. With the number
of increases in the nodes in the simulation, it was observed

14

Fig. 18. Average packet loss during attacks.

Fig. 19. Average routing overhead.

Fig. 20. Packet delivery ratio.

that routing overhead increases exponentially. This scenario is
because as more nodes join the network, the number of route
updates rises significantly. In the future, we will work to improve
the efficiency of decreasing the routing overhead by employing
efficient route update schemes.

Fig. 20 showcases the efficiency of “reliable-RPL” in main-
taining higher packet delivery ratios even under malicious rank

Fig. 21. Average power consumption.

Fig. 22. Blockchain throughput.

attacks. It was observed that the system held a consistent packet
delivery ratio compared to other mechanisms, even when in-
creasing the number of attacker nodes in the network.

On an increasing number of attacks per second, it was ob-
served that the reliable-RPL has a significant increase in power
consumption; overall, it performed better than the rest of the
mechanism regarding an increase in the power consumption
ratio. Fig. 21 compares reliable-RPL with other mechanisms.

The standalone Hyperledger Fabric network’s performance
was evaluated using Hyperledger Caliper. The registration and
authentication of two fog nodes as peers on the network took 13
seconds, the highest among all the operations on the network.
The throughput evaluation of the standalone Hyperledger Fab-
ric blockchain network, which is evaluated as transactions per
second, was also done, and it was observed that the throughput
rate increases with an increase in the number of peers.

VI. CONCLUSION AND FUTURE WORK

In this article, a blockchain-based SRPL protocol, called
reliable-RPL, is proposed to achieve trust, reliable, scalable,
lightweight, and energy-efficient data transmission in RPL-
enabled IoT networks. A consortium blockchain network of

15

LBRs runs a device chaincode for registration and ECC-based
authentication of new peers and a routing chaincode for updating
the routing information on the ledger of each peer. A trust-based
trickle algorithm is proposed to detect data transmission incon-
sistencies based on node and link reliability through an ROF
using various trust evaluations. A novel cross-layer architecture
that amalgamates RPL and blockchain networks is proposed.
The proposed protocol is resilient against rank, version, sink-
hole, and replay attacks. In addition, the proposed mechanism
also solves the problem of backup and recuperation in the LBRs
by maintaining a consistent public ledger of RPL instances
and routing information that can quickly restore the previous
routing state of any LBR. We have implemented our model on
an integrated simulation environment using Contiki-NG and Hy-
perledger Fabric. Attack resilience capabilities of the proposed
reliable-RPL are simulated using Contiki-Cooja. In addition,
we evaluated the performance of the proposed framework on
Hyperledger Caliper. We proved the efficiency of reliable-RPL
in terms of average packet loss, routing overhead, packet delivery
ratio, average power consumption, and throughput.

In the future, we aim to explore the application of our model
to provide security in real-time IoT applications, such as secure
data processing and cloud communication. We also aim to
complete the formal analysis of our system using BAN logic
and the AVISPA tool.

REFERENCES

[1] A. Dvir, T. Holczer, and L. Buttyan, “VeRA-version number and rank
authentication in RPL,” in Proc. IEEE 8th Int. Conf. Mobile Ad-Hoc Sensor
Syst., IEEE, 2011, pp. 709–714.

[2] M. Conti, P. Kaliyar, M. M. Rabbani, and S. Ranise, “SPLIT: A secure
and scalable RPL routing protocol for Internet of Things,” in Proc.
14th Int. Conf. Wireless Mobile Comput., Netw. Commun., IEEE, 2018,
pp. 1–8.

[3] D. Airehrour, J. A. Gutierrez, and S. K. Ray, “Sectrust-RPL: A secure
trust-aware RPL routing protocol for Internet of Things,” Future Gener.
Comput. Syst., vol. 93, pp. 860–876, 2019.

[4] T. Winter et al., “RPL: IPv6 routing protocol for low-power and lossy
networks,” RFC, vol. 6550, pp. 1–157, 2012.

[5] H. Perrey, M. Landsmann, O. Ugus, M. Wählisch, and T. C. Schmidt,
“TRAIL: Topology authentication in RPL,” in Proc. Int. Conf. Embedded
Wireless Syst. Netw., 2016, pp. 59–64.

[6] S. Seeber, A. Sehgal, B. Stelte, G. D. Rodosek, and J. Schönwälder, “To-
wards a trust computing architecture for RPL in cyber physical systems,”
in Proc. 9th Int. Conf. Netw. Service Manage., IEEE, 2013, pp. 134–137.

[7] A. Sehgal, A. Mayzaud, R. Badonnel, I. Chrisment, and J. Schönwälder,
“Addressing DODAG inconsistency attacks in RPL networks,” in Proc.
2014 Glob. Inf. Infrastructure Netw. Symp., IEEE, 2014, pp. 1–8.

[8] G. Ramezan and C. Leung, “A blockchain-based contractual routing pro-
tocol for the Internet of Things using smart contracts,” Wireless Commun.
Mobile Comput., vol. 2018, 2018, Art. no. 4029591.

[9] K. Iuchi, T. Matsunaga, K. Toyoda, and I. Sasase, “Secure parent node
selection scheme in route construction to exclude attacking nodes from
RPL network,” in Proc. 21st Asia-Pacific Conf. Commun., IEEE, 2015,
pp. 299–303.

[10] K. F. Haque, A. Abdelgawad, V. P. Yanambaka, and K. Yelamarthi, “An
energy-efficient and reliable RPL for IoT,” in Proc. IEEE 6th World Forum
Internet Things, 2020, pp. 1–2.

[11] A. Lahbib, K. Toumi, S. Elleuch, A. Laouiti, and S. Martin, “Link reliable
and trust aware RPL routing protocol for Internet of Things,” in Proc. IEEE
16th Int. Symp. Netw. Comput. Appl., 2017, pp. 1–5.

[12] N. Nobakht, S. S. Kashi, and S. Zokaei, “A reliable and delay-aware routing
in RPL,” in Proc. 5th Conf. Knowl. Based Eng. Innov., 2019, pp. 102–107.

[13] P. Shahbakhsh, S. H. Ghafouri, and A. K. Bardsiri, “RAARPL: End-to-end
reliability-aware adaptive RPL routing protocol for Internet of Things,” Int.
J. Commun. Syst., vol. 36, no. 6, 2023, Art. no. e5445. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5445

[14] A. Seyfollahi, M. Mainuddin, T. Taami, and A. Ghaffari, “RM-RPL:
Reliable mobility management framework for RPL-based IoT systems,”
Cluster Comput., vol. 27, pp. 4449–4468, 2024. [Online]. Available: https:
//api.semanticscholar.org/CorpusID265488054

[15] Z. Xuemin et al., “Self-organizing key security management algo-
rithm in socially aware networking,” J. Signal Process. Syst., vol. 96,
pp. 369–383, 2024. [Online]. Available: https://api.semanticscholar.org/
CorpusID:270078601

[16] A. Raoof, A. Matrawy, and C.-H. Lung, “Routing attacks and mitigation
methods for RPL-based Internet of Things,” IEEE Commun. Surv. Tut.,
vol. 21, no. 2, pp. 1582–1606, Apr.–Jun. 2019.

[17] A. Raoof, A. Matrawy, and C.-H. Lung, “Secure routing in IoT: Evaluation
of RPL’s secure mode under attacks,” in Proc. 2019 IEEE Glob. Commun.
Conf., IEEE, 2019, pp. 1–6.

[18] G. Glissa, A. Rachedi, and A. Meddeb, “A secure routing protocol based
on RPL for Internet of Things,” in Proc. 2016 IEEE Glob. Commun. Conf.,
IEEE, 2016, pp. 1–7.

[19] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem, I. Romdhani, and
L. Mackenzie, “Addressing the DAO insider attack in RPL’s Internet
of Things networks,” IEEE Commun. Lett., vol. 23, no. 1, pp. 68–71,
Jan. 2019.

[20] R. Sahay, G. Geethakumari, and B. Mitra, “A novel blockchain based
framework to secure IoT-LLNS against routing attacks,” Computing,
vol. 102, no. 11, pp. 2445–2470, 2020.

[21] D. Airehrour, J. Gutierrez, and S. K. Ray, “Securing RPL routing protocol
from blackhole attacks using a trust-based mechanism,” in Proc. 26th Int.
Telecommun. Netw. Appl. Conf., IEEE, 2016, pp. 115–120.

[22] P. Thulasiraman and Y. Wang, “A lightweight trust-based security architec-
ture for RPL in mobile IoT networks,” in Proc. 16th IEEE Annu. Consum.
Commun. Netw. Conf., IEEE, 2019, pp. 1–6.

[23] M. Zaminkar and R. Fotohi, “SoS-RPL: Securing Internet of Things
against sinkhole attack using RPL protocol-based node rating and ranking
mechanism,” Wireless Pers. Commun., vol. 114, pp. 1287–1312, 2020.

[24] M. Zaminkar, F. Sarkohaki, and R. Fotohi, “A method based on encryption
and node rating for securing the RPL protocol communications in the IoT
ecosystem,” Int. J. Commun. Syst., vol. 34, 2020, Art. no. e4693.

[25] M. Hosseini Shirvani and M. Masdari, “A survey study on trust-based
security in Internet of Things: Challenges and issues,” Internet Things,
vol. 21, 2022, Art. no. 100640.

[26] H. Jiang, M. Wang, P. Zhao, Z. Xiao, and S. Dustdar, “A utility-aware gen-
eral framework with quantifiable privacy preservation for destination pre-
diction in LBSs,” IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2228–2241,
Oct. 2021.

[27] Y. Liu and Y. Zhao, “A blockchain-enabled framework for vehicular data
sensing: Enhancing information freshness,” IEEE Trans. Veh. Technol.,
vol. 73, no. 11, pp. 17416–17429, Nov. 2024.

[28] A. A. Laghari, A. A. Khan, R. Alkanhel, H. Elmannai, and S. Bourouis,
“Lightweight-BIoV: Blockchain distributed ledger technology (BDLT) for
internet of vehicles (IoVs),” Electronics, vol. 12, no. 3, p. 677, 2023.
[Online]. Available: https://www.mdpi.com/2079-9292/12/3/677

[29] J. Yang, K. Yang, Z. Xiao, H. Jiang, S. Xu, and S. Dustdar, “Improving
commute experience for private car users via blockchain-enabled multitask
learning,” IEEE Internet Things J., vol. 10, no. 24, pp. 21656–21669,
Dec. 2023.

[30] Y. Liu et al., “SS-DID: A secure and scalable Web3 decentralized iden-
tity utilizing multi-layer sharding blockchain,” IEEE Internet Things J.,
vol. 11, no. 15, pp. 25694–25705, Aug. 2024.

[31] M. Waqas et al., “Botnet attack detection in Internet of Things devices over
cloud environment via machine learning,” Concurrency Computation:
Pract. Experience, vol. 34, no. 4, 2022, Art. no. e6662. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6662

[32] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft consen-
sus algorithm for private blockchains,” IEEE Trans. Syst., Man, Cybern.
Syst., vol. 50, no. 1, pp. 172–181, Jan. 2020.

[33] N. Djedjig, D. Tandjaoui, F. Medjek, and I. Romdhani, “New trust metric
for the RPL routing protocol,” in Proc. 8th Int. Conf. Inf. Commun. Syst.,
IEEE, 2017, pp. 328–335.

[34] Z. Fatima et al., “Mobile crowdsensing with energy efficiency to control
road congestion in internet cloud of vehicles: A review,” Multimedia Tools
Appl., vol. 83, pp. 1–26, 2023.

[35] D. Airehrour, J. Gutierrez, and S. K. Ray, “A trust-aware RPL routing pro-
tocol to detect blackhole and selective forwarding attacks,” J. Telecommun.
Digit. Economy, vol. 5, no. 1, pp. 50–69, 2017.

[36] E. Androulaki et al., “Hyperledger fabric: A distributed operating sys-
tem for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
pp. 1–15.

https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5445
https://api.semanticscholar.org/CorpusID265488054
https://api.semanticscholar.org/CorpusID265488054
https://api.semanticscholar.org/CorpusID:270078601
https://api.semanticscholar.org/CorpusID:270078601
https://www.mdpi.com/2079-9292/12/3/677
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6662

