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 
Abstract—Driving behavior safety analysis in edge 

computing involves the real-time collection and processing 
of vehicle driving data. Fuzzy models have advantages in 
analyzing driving behavior due to their excellent ability to 
handle uncertain information. This study develops a 
multitask discriminative Takagi-Sugeno fuzzy model 
(MD-TS-FM) for driving behavior safety assessment. To 
comprehensively analyze the correlation and differences in 
multitask driving behaviors, the designed consequent part 
consists of two parts: task-shared part reflects the shared 
intrinsic structure information that are consistent across 
different driving tasks, and task-specific part reflects 
distinct characteristics and variations specific to each task, 
allowing the model to address the unique aspects of 
different driving behaviors. Accordingly, the task-shared 
consequent part is characterized by low-rank property, 
which mines global structural information within the fuzzy 
space; whereas the task-specific consequent part exhibits 
sparsity, which removes non-discriminative and irrelevant 
information. This sparsity ensures that the model focuses on 
the most critical features for each specific task. 
Furthermore, a discriminative diversity term is introduced 
to enhance the diversity between tasks, which explores the 
consistent information of task-shared consequents while 
reducing the overlap of task-specific consequents. 
Experimental results indicate that the MD-TS-FM model 
can be effectively applied to driving behavior safety 
assessment. 
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I. INTRODUCTION

ith the robust development and utilization of 
perception and communication technologies, edge 
computing in Internet of Vehicles (IoV) has become a 

crucial component of Intelligent Transportation Systems 
(ITS)[1,2]. The relationships among data collection, 
transmission, and storage of driving behaviors in edge 
computing are illustrated in Fig. 1. Edge computing in IoV 
conducts wireless communications and information 
exchanges based on vehicle communication standard 
protocols and defined categories of information. This 
supports cooperative vehicle decision-making control, 
collaborative intelligent traffic management and 
information services, as well as internet and travel services. 
Particularly, the use of sensors built into or attached to 
vehicles allows for real-time acquisition of critical vehicle 
data, including travel time, speed, and engine revolutions 
per minute (RPM), etc. 
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Fig. 1 Collection, transmission, storage, and analysis of driving 
behavior data in edge computing-IoV 

By analyzing these data, one can deeply study drivers' 
behaviors, thereby providing strong support for identifying 
and predicting potentially dangerous driving actions [3]. 
For example, Feng et al. [4] designed an intelligent driving 
diagnosis assistance system that utilized vehicle sensors to 
collect data on driving behavior. The system input this data 
into a binary regression model, which classified dangerous 
driving behaviors into three risk categories: high, medium, 
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and low. Karrouchi et al. [5] proposed a system that 
evaluated driving state and style based on both driving 
operations and the driver's facial reactions. This system 
collected data from the vehicle's Controller Area Network 
(CAN) to determine whether the driving behavior was 
smooth or aggressive. By analyzing the driver's facial 
expressions, this system can provide a more 
comprehensive assessment of the driver's state and style, 
leading to personalized feedback and improvements in 
driving habits. Ding et al. [6] analyzed traffic conflicts on 
highway sections using clustering techniques based on 
vehicle trajectory data. They used improved surrogate 
safety measures to calculate the probability and severity of 
vehicle collisions in edge computing. 
  One of the challenges in driving risk assessment lies in dealing 
with the uncertainty of different driving behaviors [7]. Drivers 
exhibit a wide range of driving styles, which are shaped by 
various factors such as personality, experience, culture, and 
attitudes towards risk. Fuzzy inference is indeed a powerful tool 
for handling uncertainty and complexity in driving behavior 
analysis [8]. It simulates human thinking and can effectively 
handle intelligent driving problems, demonstrating flexibility 
and adaptability. For example, Alam et al. [9] used the fuzzy 
Analytic Hierarchy Process (AHP) to evaluate dangerous 
driving behaviors. The AHP is essentially a structured 
technique for dealing with complex decisions that involve 
multiple criteria. By applying fuzzy logic to the AHP, the 
researchers were able to analyze and rank various alternatives, 
taking into account the subjective differences among drivers 
and the inherent uncertainty in assessing driving behavior. 
Ronquillo-Cana et al. [10] proposed a system for assessing 
dangerous driving behavior by integrating data from objective 
sensors, such as acceleration, steering, position, and speed, with 
subjective driver questionnaires. This system employed a 
rule-based fuzzy inference method to integrate the results of 
objective and subjective classification systems, providing a 
more comprehensive assessment of driving behavior. Eftekhari 
et al. [11] designed a neuro-fuzzy system to evaluate driver 
behavior. This system addressed the uncertainty challenges in 
judging driving actions by classifying them based on similarity 
to predefined fuzzy patterns. However, these fuzzy models are 
essentially modeled using traditional single-task learning 
strategy. Single-task fuzzy models train a separate model for 
each task, often neglecting the relationships among multiple 
tasks and potentially losing some information that exists 
between data or model parameters. Particularly when data is 
scarce, single-task fuzzy models may struggle to gather 
sufficient data distribution information.  

In driving behavior safety assessment, accurate analysis of 
driver behavior data is crucial. Multitask learning offers a 
promising solution to this challenge by leveraging the 
connections between tasks to enhance overall performance [12]. 
Therefore, we propose a multitask discriminative 
Takagi-Sugeno fuzzy model (MD-TS-FM). The proposed 
model designs multitask fuzzy rules and focuses on learning 
multitask consequent parameters to address the limitations of 
single-task fuzzy models. The MD-TS-FM model encapsulates 
consensus information across diverse tasks within the rule 

consequents, referred to as task-shared consequent part, thereby 
facilitating the exploration of intertask correlations. 
Additionally, each task's rule consequent includes specific 
information for that task, referred to as task-specific consequent 
part, which reflects distinct characteristics to each task. 
Accordingly, the MD-TS-FM model endeavors to reveal the 
inherent link among multi-tasks within the consequent part. It 
postulates that the task-shared consequent part embodies a 
low-rank structure, whereas the task-specific consequent part 
exhibits sparsity characteristics. Simultaneously, a 
discriminative diversity term is introduced to promote 
consistency in task-shared consequent part and minimizes 
redundancy in task-specific consequent part. The experimental 
results on real-world datasets confirm the effectiveness of the 
MD-TS-FM model in learning better consequent parameters
and fully exploring the relationships between tasks. Empirical
validation substantiates the superior performance of the
proposed model compared to other fuzzy models. MD-TS-FM
can better detect and respond to different driving behaviors.

The contribution of this study is as follows: 
(1) The study introduces a novel multitask learning model

that integrates TS-fuzzy model from multiple tasks for joint 
learning. The proposed model can significantly enhance the 
accuracy and reliability of driving behavior safety assessments 
by capturing the interdependencies and unique characteristics of 
different driving scenarios. 

(2) Within the TS fuzzy model framework, the study
proposes a new method for multitask fuzzy consequent learning. 
The consequent part of the fuzzy rules is ingeniously divided 
into two components. Task-shared consequent part captures 
common patterns and knowledge that are applicable across all 
tasks. Task-specific consequent part focuses on unique 
characteristics specific to each individual task. Moreover, the 
low-rank and sparsity constraints are introduced. The low-rank 
constraint encourages the task-shared part to capture 
generalizable patterns, while the sparsity constraint promotes 
simplicity and interpretability in the task-specific part. 

(3) Discriminative diversity term is introduced to minimize
overlap between task-specific consequents across different 
tasks. Thus, the model can better differentiate between various 
driving tasks, enhancing its performance and ability to capture 
task-specific details. Concurrently, leveraging disparities in 
task-specific representations enhances the performance of 
multitask learning. 

In Section II, an overview of fuzzy rule model is 
introduced. The multitask discriminative TS fuzzy model is 
described in Section III. The comparison experiments and 
results are presented in Section IV. Finally, Section IV 
concludes the study. 

II. RELATED WORK

Fuzzy rule model is an approach to implementing fuzzy 
reasoning using natural language, which utilizes IF-THEN 
rules to describe the complex nonlinear relationships 
between inputs and outputs in the framework of fuzzy set 
theory. The Takagi-Sugeno(TS) fuzzy model is 
characterized by its strong approximation ability, simple 
structure and straightforward implementation mechanism 
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[13, 14]. The fundamental concept of TS model involves 
partitioning the global nonlinear fuzzy model into several 
fuzzy subspaces, each representing a specific aspect or 
feature of the system. Within these subspaces, simple 
linear relationship models are established using linear 
combinations of the fuzzy rules. 

Given the input variable 1 2=[ , ,..., ] d
dz z z z R , i

jA is the 

fuzzy subset of the jth multivariate fuzzy set in the ith rule. 
i
jA achieves the partitioning of the data space. The 

structure of the ith rule is as follows:
1 1 2 2
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(1)

THEN part of the fuzzy rule indicates a local linear 
model established in the ith (1 )i c  fuzzy subspace. 

1
,0 ,[ ,..., ]i i i d

j j j dp p  p R and 1( )i d
jy z R represent the 

consequent parameters and rule output, respectively. c and
k are the number of fuzzy rules and dimensions of output, 
respectively.

For a given input z, the final output of the TS fuzzy 
model is the weighted sum of the outputs from local linear 
models, where the weights are the degrees of membership 
of z in each fuzzy set,

1
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where ( )iu z and ( )iu z are fuzzy membership and normalized 
fuzzy membership respectively,

1
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j
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jAj

u u z


z , (3)

'
' 1

( ) ( ) / ( )
c

i
i i

i
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
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2( ) ( ( ) / (2 ))i
j

i i
j j j jA

u z exp z B    , (5)

where the antecedent parameters 
1[ ,..., ]i i i

dB BB and

1[ ,..., ]i i i
d δ are often computed by fuzzy C-means 

(FCM)-based clustering algorithms. iB can be considered as 

the ith clustering center. The element i
j in iδ can be 

computed as,
2

1 1
( ) /

n n
i i i
j mj mj j mj

m m
h z B  

 

   ,                     (6)

where h is the scale parameter. nj is the fuzzy membership
obtained via clustering algorithms. n is the number of samples.

Denote the matrices as follows,
1( )[1, ]i i T T du  z z z R , (7)

1 2 ( 1)( ) [( ) , ( ) ,..., ( ) ]T T c T T c d  z z z z R ,               (8)

1 1
1

( 1)

1

...

...

k
c d k

c c
k
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 
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 
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 
 
 
  R . (9)

The output of TS fuzzy model in Eq. (2) is rewritten as,
( ) ( )Tf z Ρ z . (10)

Given the training dataset d nZ R and its output n kF R ,
the consequent part of the rules is often obtained using the 
least squares method,

2 2

2
min ( )T

F
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Ρ
Ρ Z F Ρ , (11)

where 1
( 1)( ) [ ( ),..., ( )] nc

n
d     Z z z R .  is the tradeoff

parameter.

III. MULTITASK DISCRIMINATIVE TS FUZZY MODEL 

A. Rule Construction in MD-TS-FM
The MD-TS-FM fuzzy model aims to address the 

limitations of traditional fuzzy models by incorporating 
multitask learning capabilities. This allows the model to 
handle multiple tasks simultaneously, leveraging shared 
knowledge between tasks and improving overall 
performance. Assuming there are T tasks with datasets 

tn
t

d
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t
k

F R , where1 t T  . The ith
fuzzy rule for the tth task is,
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 
 
 Q R 
 
 

   Q R    as the task-shared consequent 

part and task-specific consequent part for the tth task,
respectively. V aims to explore the shared knowledge and 
captures general relationships that are relevant across 
different tasks. tQ aims to explore the unique 
characteristics of each individual task that cannot be 
generalized to other tasks.

Let 1 2( ) [( ) , ( ) ,..., ( ) ]T T c T T
t t t t z z z z , the output for the tth 

task is written as,
( ) ( ) ( )T

t t t tf  z V Q z .                       (13)
The fuzzy rules used in the MD-TS-FM model can be

designed to be applicable across different tasks.
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B. Consequent Learning in MD-TS-FM
In multitask learning, low-rank and sparsity constraints are a

popular strategy that improves model performance by 
encouraging the sharing of information across related tasks and 
promoting model generalization [15]. Specifically, MD-TS-FM
adopts this by imposing low-rank constraint on the task-shared 
consequent part; at the same time, MD-TS-FM
imposes 2,12,1 -norm sparse constraint on the task-specific
consequent part. Therefore, we obtain the low-rank and sparse 
constraint term, 

2,1,
min ( )

T

t
t

Rank V Q
Q V ,                 (14)

where  and  are the tradeoff parameters. The choice of 

the 2,12,1 -norm sparse constraint is motivated by several

advantages. Unlike the commonly used 11 -norm sparse, which

induces element-wise sparsity, the 2,12,1 -norm promotes group
sparsity. This is particularly useful when task-specific
consequent part is naturally grouped [16]. Such sparsity can 
greatly simplify the model and improve its interpretability. 
Compared to 11 -norm constraint, which can result in
non-differentiable points in the optimization landscape, 

2,12,1 -norm constraint is differentiable everywhere and often
easier to optimize. This can lead to more stable and efficient 
optimization solution. In addition, 2,12,1 -norm is less sensitive to

outliers than 11 -norm because it does not emphasize large
values as much. This makes it more robust to data noise and 
outliers in real-world scenarios.

Existing fuzzy models often neglect the 
interrelationships among distinct consequent parameters. 
However, considering the heterogeneity inherent in related 
tasks, it is reasonable to assume that the task-specific 
components of different tasks should vary significantly.
Each task-specific consequent part should exhibit minimal 
similarity to others, with discernible differences across 
various tasks and a weak connection to the task-shared 
consequent part. To address this, we introduce the 
discriminative diversity term,

,
min ( ( ) ( ))

T
T T
t t r

t t r
Tr Tr 



 V Q
Q V Q Q , (15)

where  and  are the tradeoff parameters.
In MD-TS-FM, the task-shared consequent part is isolated 

from distinct tasks, reflecting discriminative rules across 
various tasks. Intuitively, amplifying the difference between V
and tQ , as well as the divergence among different tasks, can 
enhance the discriminative ability of rule consequents.
Therefore, the objective function of consequent leaning in 
MD-TS-FM is,

2

2,1,
min ( ( ) ( ) ( ) ( ))

( ).

T
T T T

t t t t t t rF
t t r

Tr Tr

Rank

   





    



 V Q
Z V Q F Q Q V Q Q

V
(16)

C. Parameter Optimization
The nuclear-norm effectively approximates the low-rank 

constraint [17]. Given its convex nature, the nuclear-norm can 
be readily addressed through matrix factorization technique.
Therefore, we incorporate the nuclear-norm constraint 

*
V on 

V into the objective function,
2

2,1,

*

min ( ( ) ( ) ( ) ( ))

,

T
T T T

t t t t t t rF
t t r

Tr Tr   





    



 V Q
Z V Q F Q Q V Q Q

V

(17)
By introducing the auxiliary variables Θ , Eq.(17) can be 

written as,
2

2,1, ,

*

min ( ( ) ( ) ( ) ( ))

,
. .

T
T T T

t t t t t t rF
t t r

Tr Tr

s t

   





    





 V Q Θ
Z V Q F Q Q V Q Q

Θ
V Θ

(18)
We solve Eq. (18) through the Augmented Lagrange 

Multiplier (ALM) method. Eq. (18) can be rewritten as,
2

2,1, , ,

2

*

min ( ( ) ( ) ( ) ( ))

,
2

T
T T T

t t t t t t rF
t t r

F

Tr Tr   








    

   

 V Q Θ H
Z V Q F Q Q V Q Q

HΘ V Θ

(19)
where H is the Lagrange multiplier. 0  is the penalty 
parameter.
1) Update V. Fixing Q, H, and Θ , the objective function of V
is,

2
2

min ( ( ) ( ) ( )) .
2

T
T T

t t t tF
t F

Tr 
 


     V

HZ V Q F Q V V Θ

(20)
Taking the first derivative of V, we obtain,

1(2 ( ) ( ) ) (2 ( )( ( ) ) )T T
t t t t t t t           V Z Z I Z Z Q F Q Θ H

(21)
2) Update tQ . Fixing V, H, and Θ , the objective function of 

tQ is,
2

2,1
min ( ( ) ( ) ( )) ( )

T
T T T

t t t t t t rF
t t r

Tr Tr   


     Q
Z V Q F Q Q V Q Q

(22)
According to the definition of 2,12,1 -norm,

2,1
(( ) )T

t t t tTrQ Q D Q ，where tD is the diagonal matrix 

with the diagonal elements , 2
( ) 1/ (2 ( ) )t i i t id  Q . Eq.(22) can 

be rewritten as,
2

min ( ( ) ( ) (( ) ) ( )) ( )
T

T T T T
t t t t t t t t rF

t t r
Tr Tr Tr   



     Q
Z V Q F Q D Q Q V Q Q

(23)
Taking the first derivative of tQ , we obtain,

1(2 ( ) ( ) 2 ) (2 ( )( ( ) ) 2 ( ))T T
t t t t t t t r

t r
Tr      



     Q Z Z D Z Z V F V Q

(24)
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3) Update Θ . Fixing V, H, and 
tQ , the objective function of 

Θ is,
2

*
min

2
F





  

Θ

HΘ V Θ .             (25) 

According to the Singular Value Thresholding algorithm [18], 
we obtain, 

( / )



  Θ V H .               (26) 

where ( ) sgn( ) max( ,0)x x x    is the soft threshold 
operator, sgn( )x is the sign function. 
4) Update H. Fixing V, Θ , and tQ , the objective function of H 
is, 

2

min
F


 

H

HV Θ .      (27) 

Taking the first derivative of H, we obtain, 
( )  H H V Θ ,         (28) 

maxmin ( , )   , (29) 
where   is the number of iterations. 

The algorithm description of the MD-TS-FM model is shown 
in Algorithm 1. 
Algorithm 1. The MD-TS-FM model 

Input: Multitask data 1{ , }T

t t tZ F for T tasks, number of fuzzy 
rules, tradeoff parameters   ,  ,  , and  , scalar parameter 
h; 
Output: Fuzzy rules and output function. 
Step 1: Obtain antecedent parameter B using the fuzzy 
clustering algorithm; 
Step 2: Obtain antecedent parameter δ  by Eq.(6); 
Step 3: Obtain ,1 ,2 ,( ) [ ( ), ( ),..., ( )]

tt t t t n   Z z z z  by 
Eqs.(7-8); 
Repeat 
    Step 4: Update V by Eq.(21); 
    Step 5: Update

tQ by Eq.(24);   
    Step 6: Update Θ by Eq.(26); 
    Step 7: Update H by Eqs.(28)-(29); 
Until Objective function Eq.(19) converges or reaches the 
maximum number of iterations; 
Step 8: Generate fuzzy rules for each task by Eq.(12); 
Step 9: Obtain output function for each task by Eq.(10). 

IV. EXPERIMENTS

A. Datasets and Experiment Setup

To evaluate the performance of the proposed MD-TS-FM 
model, experimental validation is conducted using the DDD20 
dataset [19] and the D2CAV dataset [20]. These datasets 
include driving behavior data and GPS data from multiple road 
segments of various durations. The recorded data include 
accelerator pedal status, brake pedal status, steering wheel 
rotation angle, gearbox gear, longitude, latitude, engine RPM, 
etc. To better recognize driving behaviors, we introduce a set of 
features derived from a period of driving data, including: 
accelerator pedal presses, maximum speed, brake pedal presses, 

average speed, standard deviation of speed, maximum 
acceleration, maximum deceleration, maximum lateral 
acceleration, average acceleration, average deceleration, 
average yaw rate during lane changes, number of lane changes, 
average pitch rate during turns, number of turns, number of 
times exceeding speed limit. The acceleration of sample n on 
road segment i is ,n ia , , ( ) /n i t t wa v v w  , where 

tv  is the 
instantaneous velocity of sample n at time t, and w represents the 
time interval. For identifying lane change maneuvers, a 
directional angle deviation exceeding 10° along a road segment, 
followed by a return within ±5°, indicates a lane change. 
Regarding turning actions, successive directional angles 
surpassing 90° within a specific time window are considered as 
turning events. 

The experimental duration is set as 40 seconds. Driving 
behaviors are classified into three distinct types: cautious, 
aggressive, and fatigued driving. The cautious driving pattern is 
characterized by consistent speed, minimal acceleration, and 
moderate steering amplitude. In contrast, aggressive driving is 
marked by frequent sharp accelerations, forceful braking, and 
substantial steering. Fatigued driving manifests through erratic 
vehicle trajectories and frequent lane alterations. The driving 
scenes include city, campus, freeway, town, and highway—each 
considered as a separate learning task. Each task comprised 60 
samples for a total of 300 samples.  

In this study, we compare the MD-TS-FM fuzzy model with 
several other fuzzy models. These include two single-task TSK 
fuzzy models—L2-TSK-FS [13] and TSFS-SVR [14], and four 
multitask TS fuzzy models: MT-TSK-FS [21], mtSparseTSK 
[22], MW-TSKFS [23], and MT-TSK-FC [24]. Following [21], 
in multitask fuzzy models, the FCM algorithm is applied to 
partition all the training data into subsets. Each subset is 
considered as a rule, which enables different tasks to share 
antecedent part in the fuzzy rules. The number of fuzzy rules is 
chosen from the set {3, 4,..., 15}. The tradeoff parameters are 
selected from the set 6 4 6{2 ,2 ,..., 2 }  . The scalar parameter h is 
selected in the gird {0.1,0.2,...,1} . Finally, it is set as 0.5 
empirically. A 5-fold cross-validation is adopted for model 
training. The experiments are conducted 8 times. In the 
experiment, accuracy, F-measure, G-means, and recall serve as 
the evaluation metrics. 

B. Performance Comparison

The recognition results of various TS fuzzy models are 
presented in Table I. This Table compares the accuracy, 
F-measure, G-means, and recall indicators of driving behavior.
The recognition performance of each fuzzy model varies across
tasks, potentially due to the distribution characteristics of the
data samples themselves. All multitask fuzzy models
outperform single-task fuzzy models, indicating that multitask
learning can improve the classification performance. It is also
evident that the MD-TS-FM model outperforms single-task
models in terms of recognition performance. MD-TS-FM
achieves the highest accuracy of 96.72% in identifying driving
behavior across five tasks. Specifically, for the city task (Task1),
the proposed MD-TS-FM enhances classification accuracy by
6.89% over L2-TSK-FS, and by 7.24%, 5.59% and 6.88% in
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F-measure, G-means, and recall respectively. Compared to the
second-best model MW-TSKFS, MD-TS-FM achieves
improvements of 3.30%, 3.53%, 2.17%, and 2.83% in G-means,
F-measure, and recall, respectively. In the highway task (Task5),
the baseline model L2-TSK-FS records a classification
accuracy of 90.82%, G-means, F-measure, and recall at 91.05%,
90.84%, and 91.03%, respectively. Compared to L2-TSK-FS,
our proposed MD-TS-FM model achieves improvement of
6.92%, 5.87%, 7.01%, and 6.16% in classification accuracy,
F-measure, G-means, and recall, respectively. Thus, the
MD-TS-FM model is more suitable for driving behavior safety
assessment than the compared fuzzy models.

The recognition accuracy of various fuzzy models in three 
types of driving behavior is shown in Table II. Cautious driving 
behavior has the highest accuracy, while aggressive and fatigue 
driving have slightly lower accuracy. Consistent with daily 
experience, cautious driving behavior is characterized by small 
fluctuations in speed, low frequency of acceleration and 

deceleration, and smooth changes in steering angle. This 
suggests that fuzzy models can easily recognize this behavior. 
Aggressive driving behavior involves drastic speed changes, 
larger acceleration and deceleration, and significant variations 
in steering angle. Fatigued driving is marked by large speed 
fluctuations, frequent steering angle changes, and multiple lane 
departures. These behaviors are more likely to be confused due 
to their similarities and the complexity of the driving conditions. 
In addition, the results in Tables I-II further support the 
advantages of multitask models over single-task learning 
models. Especially, the MD-TS-FM model has the highest 
recognition performance in each category, proving its 
effectiveness in driving behavior safety assessment. This 
suggests that it has effectively learned the underlying patterns 
and characteristics of each behavior. Its ability to monitor 
drivers' behavior in real time, issue warnings when necessary, 
and reduce risks associated with disoperation makes it a 
valuable tool for improving road safety.  

Table I The recognition results of various TS fuzzy models 

Index L2-TSK-FS TSFS-SVR MT-TSK-FS mtSparseTSK MW-TSKFS MT-TSK-FC MD-TS-FM

Accuracy 

Task1 90.71 90.52 93.52 93.36 94.30 93.38 97.60 
Task2 89.87 91.55 92.56 94.52 93.82 93.29 96.32 
Task3 90.07 91.98 91.78 94.44 93.67 93.31 95.14 
Task4 89.34 91.95 92.35 93.33 93.48 93.07 96.80 
Task5 90.82 90.34 93.68 93.23 94.93 94.10 97.74 

Average 90.16 91.27 92.78 93.78 94.04 93.43 96.72 

G-means

Task1 90.44 91.16 93.21 94.70 94.15 93.03 97.68 
Task2 88.63 91.07 92.45 93.66 93.91 93.16 96.60 
Task3 89.43 91.42 91.26 93.03 93.17 91.99 95.01 
Task4 88.73 90.88 91.95 91.92 92.81 91.58 95.44 
Task5 91.05 90.76 93.65 94.68 94.74 93.76 96.92 

Average 89.66 91.06 92.50 93.60 93.76 92.70 96.29 

F-measure

Task1 91.19 90.86 92.66 92.89 94.61 93.52 96.78 
Task2 90.28 92.10 92.00 94.00 93.65 93.22 95.77 
Task3 90.56 90.86 92.62 93.35 94.53 94.04 95.25 
Task4 88.94 91.15 93.94 93.53 93.25 93.08 96.58 
Task5 90.84 90.89 93.97 94.11 94.58 93.91 97.85 

Average 90.36 91.17 93.04 93.58 94.12 93.55 96.45 

Recall 

Task1 90.28 91.20 92.37 93.42 94.33 93.30 97.16 
Task2 89.41 91.50 92.02 93.97 93.22 93.24 95.85 
Task3 90.54 91.05 91.84 93.07 94.09 92.72 95.86 
Task4 89.06 90.73 92.60 93.66 92.95 92.77 96.80 
Task5 91.03 90.81 93.05 93.65 94.37 93.04 97.19 

Average 90.06 91.06 92.38 93.56 93.79 93.01 96.57 
The bold values in Tables I-II means the best experiment results. 

Table II The recognition accuracy in three types of driving behavior of various fuzzy models 
L2-TSK-FS TSFS-SVR MT-TSK-FS mtSparseTSK MW-TSKFS MT-TSK-FC MD-TS-FM

Class 1 92.38 92.80 94.52 95.57 96.18 95.31 98.58 
Class 2 89.10 90.05 91.99 92.71 92.77 92.42 95.70 
Class 3 89.02 90.95 91.82 93.05 93.18 92.56 95.88 

Table III The antecedent part of each rule for Task1 by MD-TS-FM 
Feature1 Feature2 …… Feature6 Feature7 Feature8 Feature9 …… Feature14 Feature15 

Rule1 0.25 0.25 …… 0.25 0.25 0.5 0.25 …… 0.25 0 
Rule2 0.75 0.75 …… 0.75 0.5 0.75 0.75 …… 0.5 1 
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Rule3 1 1 …… 0.75 1 0 0 …… 1 1
Rule4 0.75 0.5 …… 0.5 0.5 0.25 0.5 …… 0.75 0.5
Rule5 0 0.25 …… 0.25 0 1 0 …… 0 0
…… …… …… …… …… …… …… …… …… …… ……
Rule10 0.5 0.75 …… 0.125 0.75 0 0.75 …… 1 0.75

C. Analysis of Fuzzy Rule
The number of fuzzy rules for all fuzzy models is shown in 

Fig. 2. The MD-TS-FM model obtains ten rules for each task, 
equivalent to the MW-TSKFS model. With a small number of 
rules, the MD-TS-FM model is concise, which is essential in 
applications like driving behavior safety assessment where rule 
interpretability is important. The MD-TS-FM model applies 
low-rank constraint on task-shared consequent part. This
constraint encourages cooperation among tasks by identifying
common structures in the data that can be shared across tasks. In 
addition, the MD-TS-FM model applies 2,12,1 -norm sparsity

constraint on task-specific consequent part. 2,12,1 -norm

sparsity constraint promotes attention to the most relevant 
features for each task, reducing overlap and enhancing 
distinctiveness in the fuzzy space. This sparsity constraint can 
also help in consequent parameter selection. By applying 
low-rank and sparsity constraints, the MD-TS-FM model 
strengthens its classification performance.

To guarantee the semantic precision of rules, we relocate the 
centers of the membership functions to the nearest grid partition. 
The procedure for repositioning the centers of membership 
functions is illustrated in Fig. 3. Here, green circles denote the 
original centers of membership functions derived from FCM 
algorithm, red circles represent the fine-tuned centers following 
relocation, and triangles signify the input variables within the 
membership functions. The antecedent part of each rule for 
Task1 by MD-TS-FM is shown in Table III. We can easily 
descript the membership functions for each fuzzy set in a given 
linguistic variable, such as very low(0), low(0.25), middle(0.5), 
high(0.75), very high(1). For example, the linguistic description 
of the antecedent part of Rule1 shown in Table III can be written 
as:

IF Accelerator pedal presses is Low, and Maximum speed is low, 
and Brake pedal presses is Low, and Average speed is low, and
Standard deviation of speed is Very low, and Standard deviation of 
speed is low, and Maximum acceleration is low, and Maximum 
deceleration is middle, and Maximum lateral acceleration is low, and 
Average acceleration is low, Average yaw rate during lane changes is 
low, and Number of lane changes is Very low, and Average pitch rate 
during turns is Very low, and Number of turns is low, and Number of 
times exceeding speed limit is Very low.

Therefore, the MD-TS-FM model demonstrates adaptability 
by optimizing its rule parameters to better fit each task, thereby 
enhancing performance across all tasks. The tuned membership 
functions allow the model to handle uncertainty and imprecision 
in the data, increasing its robustness and adaptability to various 
scenarios. The MD-TS-FM model has a concise model structure 
while maintaining good performance. This balance is crucial in 
fuzzy models, as it allows for easier understanding of the model 

without sacrificing performance. Therefore, the results highlight
the potential of MD-TS-FM in advancing driving behavior 
safety evaluations.

Fig. 2 Fuzzy rules for all fuzzy models

0.25  0.5 0.75 1
x

1

0.75

0.5

0.25

0

y

Fig. 3 Example of adjusting centers of membership functions

D. Parameter Sensitivity Analysis
First, we analyze the performance of the MD-TS-FM model 

from the perspective of the number of fuzzy rules. To achieve 
the highest accuracy, it is crucial to find an optimal number of 
fuzzy rules that balances coverage of driving behavior with 
avoidance of redundancy. Therefore, we determine this optimal 
number through cross-validation in this study. The experimental 
result is shown in Fig. 4. The performance of the MD-TS-FM is 
influenced by the number of fuzzy rules. When the number of 
fuzzy rules is less than 5, MD-TS-FM has lower accuracy. This 
occurs because too few fuzzy rules may not provide sufficient
information for accurate driver behavior classification. In this 
case, the model may not be able to capture all the nuances and 
variations in driving behavior. When the number of fuzzy rules 
reaches ten, MD-TS-FM obtains the highest accuracy. when the 
number of fuzzy rules exceeds 13, the accuracy rate of 
MD-TS-FM decreases a little. An excessive number of rules
increases the risk of overlapping, leading to confusion and
inaccurate classification. Therefore, MD-TS-FM achieve
satisfactory accuracy when the number of fuzzy rules is in the
range [10, 12].

Second, we analyze the performance of the MD-TS-FM
model from the perspective of the parameter sensitivity and 
reveals how different parameters affect the model’s 
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performance. The tradeoff parameters that need to be optimized 
include  ,  ,  , and  . The experimental results are shown in 
Fig.5.  adjusts the sparsity term of task-specific consequent 
part. 2,12,1 -norm sparsity promotes attention to the most relevant 
rules for each task, potentially improving model performance. 
From Fig. 5 (a), we can see that a larger value of  makes the 
matrix tQ sparser, leading to a higher accuracy recognition.
This indicates that by focusing on fewer but more impactful 
task-specific consequent part, our model can achieve better 
recognition performance.  adjusts the low-rank constraint of 
the task-shared consequent part. The low-rank constraint 
encourages the model to find commonalities across tasks, which 
can lead to more efficient representation. From Fig.5(a), we can 
see that different  result in changes in model performance, 
but the fluctuations are within a small range. This suggests that 
low-rank constraint can help maintain stability in model 
performance.  and  are discriminative diversity term
parameters. These parameters are tradeoff parameters for the 
diversity between the task-shared consequent part and the 
task-specific consequent part. They encourage the model to 
explore differences between tasks and enhance discriminability. 
From Fig.5(b), we can see when  and  are greater than 1, 
MD-TS-FM tends to stabilize and reach a higher recognition
performance. This suggests that increasing the difference
between the task-shared and task-specific parts, as well as
exploring the differences between task-specific part of different
tasks, can enhance the model’s ability to distinguish between
tasks, leading to better performance.

Fig. 4 Analysis of number of fuzzy rules in MD-TS-FM

(a)

(b)
Fig.5 Parameter sensitivity of MD-TS-FM, (a)  and  , (b) 

and 

V. Conclusion
The diversity and complexity of driving behavior among car 

drivers greatly affect road traffic safety. In recent years, edge 
computing in IoV technology has emerged as a powerful tool for
evaluating and refining these driving behaviors to enhance road
safety. This paper proposes a multitask discriminative TS fuzzy 
model MD-TS-FM. MD-TS-FM leverages the fuzzy model's 
ability to manage uncertain information, thereby addressing the 
diversity and complexity in driving behaviors. Additionally, it 
enhances the model's recognition capabilities in multitask 
learning scenarios with limited training sets. Specifically, in 
multitask consequent parameter learning, the MD-TS-FM
model utilizes a task-shared consequent part across multiple 
tasks while maintaining task-specific consequent part. The 
task-shared consequent part retains the consistency between 
different tasks, while the task-specific consequent part 
preserves the diversity across tasks. The experimental results on 
the DDD20 and D2CAV datasets confirm the effectiveness of 
the MD-TS-FM model in learning better consequent parameters 
and fully exploring the relationships between tasks. This model 
can contribute to the development of advanced driver assistance 
systems that can better detect and respond to different driving 
behaviors. However, one identified limitation of our model is its 
reliance on labeled and completed driving data, which restricts 
the model's flexibility and adaptability. Thus, our future 
research could explore dynamic adjustment mechanisms for 
feature selection to enhance the model's responsiveness to 
changing data patterns. Additionally, combining the fuzzy 
model with advanced techniques, such as deep learning, could 
lead to hybrid models that leverage the high-order feature 
learning capabilities of deep networks. This integration could 
improve the model's fitting ability for complex data and 
potentially yield more accurate identification in diverse driving 
scenarios. Furthermore, integrating data from various sensors 
and sources, such as CAN bus data or environmental factors, 
could provide a more comprehensive understanding of driving 
behaviors and further enhance the model's performance.
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