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ABSTRACT
Background: Endogenous glucagon‐like peptide‐1 (GLP‐1) and glucose‐dependent insulinotropic polypeptide (GIP) regulate
islet cell function. GLP‐1 receptor agonists (GLP‐1RAs) have been associated with an elevated risk of acute pancreatitis. Data on
the pancreatic safety of tirzepatide (a dual GLP‐1 and GIP agonist) and its effects on islet cell function in randomized controlled
trials (RCTs) are scarce. Moreover, no meta‐analysis has comprehensively examined such effects of tirzepatide.
Methods: Electronic databases were searched for RCTs with tirzepatide as the intervention and a placebo or active comparator
as the control. The primary outcome was adjudication‐confirmed pancreatitis; secondary outcomes were the percent changes
from baseline in serum pancreatic amylase, lipase, insulin, C‐peptide, glucagon, and homeostasis model assessment of insulin
resistance (HOMA2‐IR).
Results: Seventeen RCTs with 18 published reports involving 14,645 subjects were analyzed. Over a follow‐up duration of 12–
72 weeks, tirzepatide had identical risks of pancreatitis to placebo (tirzepatide 5 mg: RR 2.04, 95% CI [0.27–15.69], p = 0.49;
10 mg: RR 0.63, 95% CI [0.08–5.12], p = 0.67; and 15 mg: RR 1.26, 95% CI [0.36–4.98], p = 0.72). Tirzepatide was also associated
with comparable risks of pancreatitis to insulin and GLP‐1RAs. However, tirzepatide (at all doses) caused greater increases in
pancreatic amylase and lipase than placebo and insulin. Individuals on tirzepatide 15 mg and GLP‐1RAs had similar risks of
having increased lipase levels. The percent reductions in fasting insulin were greater with tirzepatide 10 and 15 mg than with
placebo. All doses of tirzepatide caused greater percent reductions in fasting insulin, C‐peptide, and glucagon than GLP‐1RAs.
Compared to placebo and GLP‐1RAs, the percent reductions in HOMA2‐IR were greater with all doses of tirzepatide.
Conclusion: The meta‐analysis provides evidence of the safety of tirzepatide regarding pancreatitis and establishes its positive
effect on islet cell functions and insulin resistance.
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1 | Introduction

Tirzepatide, a 39‐amino‐acid synthetic peptide, has dual agonist
activity at both the glucagon‐like peptide‐1 (GLP‐1) receptors
and glucose‐dependent insulinotropic polypeptide (GIP) re-
ceptors, with a greater affinity for GIP receptors [1]. By binding
to and activating their unique receptors in pancreatic β‐cells,
endogenous GLP‐1 and GIP induce insulin secretion in a
glucose‐dependent fashion. GLP‐1 and GIP also promote β‐cell
proliferation with inhibition of cellular apoptosis, thus
expanding β‐cell mass. Additionally, GIP augments postprandial
glucagon secretion from α‐cells during euglycemic but not
during hyperglycemic periods. In contrast, GLP‐1 tends to
suppress glucagon secretion in hyperglycemic states, although it
loses such an inhibitory effect at hypoglycemic levels [2]. In
addition to pancreatic islet cells, GLP‐1 receptors are expressed
in the exocrine duct cells of the pancreas. It is postulated that
stimulating these receptors with incretin therapies may lead to
the overgrowth of the cells covering the smaller ducts [3]. This
results in hyperplasia and chronic low‐grade or acute inflam-
mation, potentially causing acute pancreatitis [3]. Moreover,
GLP‐1 inhibits pancreatic exocrine secretion, a putative mech-
anism associated with the pathogenesis of pancreatitis [4].
Exendin‐4 peptide, a stable analog of GLP‐1, regulates the
pancreatic expression of the Reg gene family. Changes in the
expression of RegIIIβ have been linked to varying effects on
pancreatitis susceptibility and pancreatic necrosis in vivo [5].
However, current evidence does not suggest a direct role for GIP
receptor activation in causing pancreatitis [2]. Early clinical
trials evaluating the efficacy and safety of GLP‐1RAs reported
heightened risks of developing acute pancreatitis with GLP‐
1RAs compared with placebo or active comparators [6]. Subse-
quently, post‐marketing and observational reports using the
FDA database raised concerns about the risk of developing
acute pancreatitis, particularly recurrent acute pancreatitis, with
GLP‐1RAs [7].

Tirzepatide once‐weekly subcutaneous injection has been
approved for use in adults by the FDA for glycemic manage-
ment with type 2 diabetes (T2D) and for weight reduction in
obesity or overweight [8, 9]. Tirzepatide has been proven in
randomized‐controlled trials (RCTs) to be effective in reducing
glycemic hemoglobin (HbA1c) in T2D and substantially
reducing weight in patients with obesity with/without T2D [10,
11]. As tirzepatide activates both GLP‐1 and GIP receptors, the
drug may be associated with pancreatitis, at least theoretically.
However, in a meta‐analysis by Zeng et al. that included nine
RCTs, the increased risk of pancreatitis was not significantly
associated with tirzepatide compared with all control groups
consisting of basal insulin, selective GLP1‐RAs, and pla-
cebo [12].

Exploring the effects of the therapeutic doses of tirzepatide on
islet cell function and glucose homeostasis may help better
understand its glycemic and weight‐lowering capacity.
Although a post hoc exploratory study of biomarkers linked
with pancreatic beta‐cell function and insulin sensitivity in a
Phase 2 trial has been published, no RCTs conducted, especially
for such effects of tirzepatide, are yet available [13]. Moreover,
no systematic review and meta‐analysis (SRM) exist in its effects
on islet cell function. Additionally, Zeng et al.’s SRM on the risk

of pancreatitis with tirzepatide, the most important pancreatic
safety concern, did not include recently published RCTs [8].
Hence, it was imperative to conduct an updated SRM, including
all relevant RCTs of tirzepatide, reporting the pancreatic safety
of tirzepatide and its effects on islet cell function to inform
better clinical practice decisions by healthcare professionals.

2 | Methods

2.1 | Search Strategy

Several databases and registers, including MEDLINE (via
PubMed), Scopus, Cochrane Central Register, and Clin-
icalTrials.gov, were systematically searched. The search covered
these sources from their commencement to June 30, 2024. The
search terms were applied to titles only; the search technique
followed a Boolean approach using the terms “tirzepatide” OR
“LY34 37943.” Every recently published or unpublished clinical
study in English was searched exhaustively and carefully. This
search involved looking through pertinent publications and
references found in the clinical trials included in the present
work.

2.2 | Study Selection

Population, Intervention, Comparison, Outcomes and Study
(PICOS) design was used as a framework to formulate eligibility
criteria for the clinical trials in this SRM. The patient population
(P) consisted of study subjects undergoing a therapeutic trial of
tirzepatide for any clinical indication; the intervention (I) was
tirzepatide once‐weekly subcutaneous injections at any dose;
the comparison or control (C) included individuals receiving a
placebo or active comparator; the outcomes (O) included tirze-
patide's pancreatic safety and its effects on islet cell functions;
and the randomized controlled trials (RCTs) were considered as
the study type (S) for inclusion. This study comprised RCTs
spanning a minimum 12‐week duration with study individuals
aged at least 18. The trials had at least two treatment arms/
groups, with one receiving tirzepatide as monotherapy or as an
add‐on to other drugs and the other receiving a placebo or any
other active comparator either alone or as an add‐on to other
medications. Excluded from consideration were nonrandomized
trials, retrospective studies, pooled analyses of clinical trials,
conference proceedings, letters to editors, case reports, and ar-
ticles that did not provide data on outcomes of interest. Also
excluded were clinical trials involving animals or healthy
humans, as well as randomized controlled trials (RCTs) with a
duration of less than 12 weeks.

2.3 | Outcomes Analyzed

The primary outcome of interest was the percentage of partici-
pants in the tirzepatide group and the control group who were
confirmed to have pancreatitis through adjudication. Additional
outcomes included the percent changes from the initial values
(CFB) in pancreatic amylase, lipase, fasting insulin, and ho-
meostasis model assessment of insulin resistance (HOMA2‐IR).
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Subgroup analyses were conducted according to the type of
comparison groups and the tirzepatide dose.

2.4 | Data Handling and Risk of Bias Assessment

Data extraction was independently conducted by four authors
using standardized forms, with additional information available
elsewhere [14]. The method for handling missing data has also
been expanded upon in the same source [14]. The risk of bias
(RoB) assessment was independently carried out by four authors
using the Cochrane risk‐of‐bias tool for randomized trials,
version 2 (RoB 2) in the Review Manager (RevMan) computer
program, version 7.2.0 [15, 16]. The specific and overall risks of
biases have been outlined in the same source [14]. Publication
bias was assessed using funnel plots in the same software, with a
minimum of 10 studies included in a forest plot [16–18].

2.5 | Statistical Analysis

The results of the outcomes were reported using standardized
mean differences (SMDs) for continuous variables and risk ra-
tios (RRs) for dichotomous variables, together with 95% confi-
dence intervals (CIs). The RevMan‐generated forest plots
portrayed the SMD or RR for the outcomes; the left side of the
forest plot favored tirzepatide, and the right side favored the
control group(s) [16]. Random effects analysis models were
chosen to address the anticipated heterogeneity resulting from
variations in population characteristics and trial lengths. The
inverse variance statistical method was applied for all instances.
The SRM encompassed forest plots that integrated data from a
minimum of two trials. A significance level of p < 0.05 was used.

2.6 | Assessment of Heterogeneity

The assessment of heterogeneity was initially conducted by
studying forest plots. Subsequently, a Chi2 test was performed
using N‐1 degrees of freedom and a significance level of 0.05 to
determine the statistical significance. The I2 test was also
employed in the subsequent analysis [19]. The specifics of un-
derstanding I2 values have already been explained in depth
elsewhere [14].

2.7 | Grading of the Results

The Grading of Recommendations Assessment, Development
and Evaluation (GRADE) methodology was used to determine
the quality of evidence about each meta‐analysis outcome [20].
The details of generating the summary of findings (SoF) table
and judging the quality of evidence as “high,” “moderate,”
“low,” or “very low” have been previously reported [14].

2.8 | Ethical Statement

This SRM followed the guidelines outlined in the Cochrane Handbook
for Systematic Reviews of Interventions [21] and is reported in
compliance with the Preferred Reporting Items for Systematic Reviews
and Meta‐Analyses (PRISMA) checklists [22]. The SRM was registered

with PROSPERO (CRD42024568848), and the protocol summary is
accessible online.

3 | Results

3.1 | Search Results

The steps of selecting studies are depicted in Supporting
Information S1: Figure S1. The initial search identified 1092
articles; the number was narrowed to 30 after screening titles
and abstracts and a subsequent full‐text review. Finally, 17
RCTs with 18 published reports involving 14,645 subjects
meeting all the prespecified criteria were included in this SRM
[23–39]. The trial NCT03131687 had two reports, both included
in this SRM [13, 25]. Twelve studies were excluded; eight were
substudies or post hoc analyses of an included trial [40–47], and
the other four did not report the outcomes of interest [48–51].

3.2 | Characteristics of Included Studies

Out of the 17 RCTs included in this SRM, one was a phase 1
[24], three were phase 2 [13, 23, 25, 39], and the other 13 were
phase 3 trials [26–38]. Twelve trials included individuals with
T2D [23–25, 27, 31–38], four included obese/overweight subjects
without diabetes [26, 28–30], and one included those with
biopsy‐confirmed metabolic dysfunction associated steatohepa-
titis (MASH) and stage F2 or F3 fibrosis, with or without dia-
betes [39], as the study population. Ten RCTs used matching
placebos [23, 24, 26–31, 35, 39], four used insulin [33, 34, 36, 37],
two used GLP‐1 receptor agonists (GLP‐1RA) [32, 38], and two
trials used both placebo and GLP‐1RA in the control groups [13,
24, 25]. Insulin degludec was used in one trial [33], glargine in
two trials [34, 37], and lispro was used in one trial as an active
comparator [36]. Dulaglutide was used in two trials [13, 25, 38],
and semaglutide was used in two trials in the control group [24,
32]. Most of the RCTs had three tirzepatide (5, 10, and 15 mg)
[26, 31–39], one had an additional arm of 1 mg [13, 25], two had
two arms of 10 and 15 mg [27, 29], one had a single arm of
15 mg [24], and one trial had only single tirzepatide arm of
maximum tolerated dose (MTD, 10 or 15 mg) [28]. Frias 2020
had one tirzepatide arm of 12 mg (which was analyzed as tir-
zepatide 10 mg arm) and two arms of tirzepatide 15 mg with
different dose‐escalation patterns (outcome results were polled
to analyze in a single tirzepatide 15 mg arm) [23]. SURMOUNT‐
OSA had two different trial populations, each with tirzepatide
MTD (10 or 15 mg) and placebo arms; outcome results of tir-
zepatide MTD and placebo groups in Trials 1 and 2 were pooled
into single groups of tirzepatide MTD and placebo [30]. All
tirzepatide MTD arms were analyzed as tirzepatide 15 mg. One
trial had a 12‐week duration [23], one had a 26‐week duration
[13, 25], one had a 28‐week duration [24], four had 40‐week
durations [31, 32, 35, 37], seven had 52‐week durations [29,
30, 33, 34, 36, 38, 39], and the other three spanned 72 weeks
[26–28]. The baseline characteristics of the included RCTs were
matched throughout the trial arms. The specifics of the included
and excluded studies are shown in Supporting Information S1:
Tables S1 and S2, respectively.
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3.3 | Risk of Bias in the Included Studies

Supporting Information S1: Figure S2 illustrates the specific and
overall RoB in the 17 included RCTs. The overall RoB was low
in most (67.7%) trials. One study (SURMOUNT‐3) had “some
concerns” about attrition bias resulting from missing outcome
data. Five (29.4%) studies had high risks for overall bias, which
reflected the bias due to deviations from intended interventions.
Publication bias was evaluated using funnel plots, which are
presented in Supporting Information S1: Figure S3.

3.4 | Grading of the Results

The SoF table (Supporting Information S1: Table S3) presents
the grades for the certainty of the evidence supporting the pri-
mary outcome of this SRM.

3.5 | Primary Outcome: Risk of Pancreatitis
(Adjudication‐Confirmed)

The risks of pancreatitis were similar among the study subjects
receiving any dose of tirzepatide and placebo (for tirzepatide
5 mg: RR 2.04, 95% CI [0.27–15.69], I2 = 0%, p = 0.49, high
certainty of the evidence; 10 mg: RR 0.63, 95% CI [0.08–5.12],
I2 = 0%, p = 0.67, high certainty of the evidence; and 15 mg: RR
1.26, 95% CI [0.36–4.98], I2 = 0%, p = 0.72, moderate certainty of
the evidence) (Figure 1). Such risks were also similar with all
doses of tirzepatide versus insulin (for tirzepatide 5 mg: RR 2.08,
95% CI [0.08–54.32], I2 = 65%, p = 0.66; 10 mg: RR 1.71, 95% CI
[0.10–29.71], I2 = 52%, p = 0.71; and 15 mg: RR 1.13, 95% CI
[0.13–9.79], I2 = 6%, p = 0.91) (Figure 2A), and GLP‐1RA (for
tirzepatide 5 mg: RR 0.83, 95% CI [0.03–26.54], I2 = 63%,
p = 0.91; 10 mg: RR 0.67, 95% CI [0.11–3.97], I2 = NA, p = 0.66;
and 15 mg: RR 0.95, 95% CI [0.20–4.91], I2 = 0%, p = 0.95)
(Figure 2B).

3.6 | Pancreatic Amylase and Lipase

Greater rises (measured as percent CFB) in serum pancreatic
amylase were found in all groups of tirzepatide than in the
placebo (for tirzepatide 5 mg: SMD 19.58%, 95% CI [13.03–
26.12], I2 = 60%, p < 0.00001, moderate certainty of the evi-
dence; 10 mg: SMD 23.16%, 95% CI [17.13–29.19], I2 = 68%,
p < 0.00001, moderate certainty of the evidence; and 15 mg:
SMD 23.69%, 95% CI [18.78–28.61], I2 = 65%, p < 0.00001,
moderate certainty of the evidence) (Figure 3A), and insulin (for
tirzepatide 5 mg: SMD 12.99%, 95% CI [2.35–23.63], I2 = 89%,
p = 0.02; 10 mg: SMD 16.00%, 95% CI [1.02–30.98], I2 = 94%,
p = 0.04; and 15 mg: SMD 17.42%, 95% CI [1.85–32.99], I2 = 95%,
p = 0.03) (Figure 3B) groups.

Tirzepatide groups also demonstrated higher increments in
serum lipase than the placebo (for tirzepatide 5 mg: SMD
25.46%, 95% CI [19.49–31.43], I2 = 13%, p < 0.00001, high cer-
tainty of the evidence; 10 mg: SMD 27.99%, 95% CI [23.91–
32.07], I2 = 2%, p < 0.00001, high certainty of the evidence; and
15 mg: SMD 32.58%, 95% CI [27.17–38.00], I2 = 41%,

p < 0.00001, high certainty of the evidence) (Figure 4A), and
insulin (for tirzepatide 5 mg: SMD 18.68%, 95% CI [2.08–35.28],
I2 = 93%, p = 0.03; 10 mg: SMD 21.05%, 95% CI [6.24–35.86],
I2 = 91%, p = 0.005; and 15 mg: SMD 25.20%, 95% CI [7.48–
42.91], I2 = 92%, p = 0.005) (Figure 4B) groups. The risks of the
study subjects to have an increased lipase with tirzepatide 15 mg
and GLP‐1RA were identical (RR 1.14, 95% CI [0.24–5.28],
I2 = 44%, p = 0.87) (Figure 4C).

3.7 | Fasting Insulin

The percent reductions in fasting serum insulin were greater
with tirzepatide 10 mg (SMD −27.76%, 95% CI [−45.88–9.64],
I2 = 89%, p = 0.003, low certainty of the evidence), and 15 mg
(SMD −37.0%, 95% CI [−44.32–29.69], I2 = 73%, p < 0.00001,
moderate certainty of the evidence) than with placebo. The CFB
in fasting insulin was similar in tirzepatide 5 mg and placebo
groups (SMD −22.39%, 95% CI [−49.55–4.77], I2 = 67%, p = 0.11,
moderate certainty of the evidence) (Figure 5A). Compared to
GLP‐1RA, the percent reductions in fasting insulin were greater
with all does of tirzepatide (for tirzepatide 5 mg: SMD −22.45%,
95% CI [−31.53–13.38], I2 = 0%, p < 0.00001; for 10 mg: SMD
−30.62%, 95% CI [−39.01–22.24], I2 = 0%, p < 0.00001; and for
15 mg: SMD −22.6%, 95% CI [−41.39–3.81], I2 = 77%, p = 0.02)
(Figure 5B).

3.8 | Fasting C‐Peptide

Compared to GLP‐1RA, the percent reductions in fasting C‐
peptide were greater with all does of tirzepatide (for tirzepa-
tide 5 mg: SMD −14.07%, 95% CI [−20.43–7.72], I2 = 0%,
p < 0.0001; for 10 mg: SMD −21.98%, 95% CI [−27.88–16.09],
I2 = 0%, p < 0.00001; and for 15 mg: SMD −15.83%, 95% CI
[−30.32 to −1.33], I2 = 53%, p = 0.03) (Figure 6A).

3.9 | Fasting Glucagon

Compared with placebo, the percent reduction in fasting
glucagon was greater with tirzepatide 15 mg (SMD −43.55%,
95% CI [−83.68 to −3.41], I2 = 85%, p = 0.03) (Figure 6B). The
reductions in glucagon were comparable between tirzepatide
5 mg (SMD −13.74%, 95% CI [−41.52–14.03], I2 = 77%, p = 0.33)
and 10 mg (SMD −22.10%, 95% CI [−50.46–6.26], I2 = 78%,
p = 0.13) groups with GLP‐1RA group; such reduction was
greater with tirzepatide 15 mg than GLP‐1RA (SMD −15.10%,
95% CI [−26.09–4.12], I2 = 43%, p = 0.007) (Figure 6C).

3.10 | HOMA2‐IR

The percent reductions in HOMA2‐IR were greater with all
doses of tirzepatide than with placebo (for tirzepatide 5 mg:
SMD −16.70%, 95% CI [−31.78–1.61], I2 = 15%, p = 0.03; 10 mg:
SMD −20.21%, 95% CI [−32.14–8.29], I2 = 0%, p = 0.0009; and
15 mg: SMD −31.81%, 95% CI [−42.47–21.15], I2 = 0%,
p < 0.00001) (Supporting Information S1: Figure S4A), and GLP‐
1RA (for tirzepatide 5 mg: SMD −11.32%, 95% CI [−17.92–4.72],

4 of 11 Obesity Science & Practice, 2024



I2 = 0%, p = 0.0008; 10 mg: SMD −20.92%, 95% CI [−40.29–1.55],
I2 = 46%, p = 0.03; and 15 mg: SMD −20.34%, 95% CI [−26.35–
14.33], I2 = 0%, p < 0.00001) (Supporting Information S1:
Figure S4B).

4 | Discussion

The current SRM summarized the effects of tirzepatide on the
pancreas based on the results of 17 RCTs with tirzepatide in
individuals with overweight/obesity with and without T2D.
Tirzepatide was compared against a placebo or different active
comparators, like insulin or GLP‐1RAs, in the included RCTs.
Although greater rises in pancreatic amylase and lipase were
observed in the tirzepatide group, the risk of pancreatitis with
tirzepatide was identical to the control group. Improvements in

islet cell functions and insulin resistance were also more robust
with tirzepatide.

It was reassuring to note that tirzepatide use was not associated
with a statistically significant excess risk of pancreatitis
compared with placebo, GLP‐1RA, or insulin. Zeng et al., in
their meta‐analysis, also found that tirzepatide use was not
associated with an increased risk for clinically, biochemically,
and imaging‐confirmed pancreatitis [12]. Although clinically
evident pancreatitis risk was similar, greater increases in
pancreatic enzymes like amylase and lipase levels were found
with all doses of tirzepatide compared with placebo or insulin. A
single study (SURPASS J‐mono) reported greater rises in
pancreatic amylase with all doses of tirzepatide than GLP‐1RA.
However, such rises in lipase levels were only observed with
higher doses of tirzepatide (10 and 15 mg) [38]. However, none

FIGURE 1 | Forest plot highlighting the proportions of study subjects with pancreatitis: tirzepatide versus placebo.
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of the study participants had markedly increased (≥ 3 times the
upper limit of normal range) pancreatic amylase levels in either
the tirzepatide (all doses) or the GLP‐1RA group in another
study, NCT03131687 [13, 25]. In the same study, identical pro-
portions of participants had increased lipase levels in the tir-
zepatide 5 and 10 mg and the GLP‐1RA group [13, 25]. In this
meta‐analysis, patients receiving tirzepatide 15 mg and GLP‐
1RA had a comparable risk of an increase in lipase. Thus,
while tirzepatide offers a greater reduction in body weight and
metabolic parameters than GLP‐1RAs, current data suggest that
the agent is as safe as GLP1‐RAs in terms of pancreatic safety.

GLP‐1RAs are known to directly increase pancreatic enzyme
secretion by acting on the GLP‐1 receptors expressed on
pancreatic acinar cells, and there is an elevation of circulating
pancreatic enzymes in some people treated with GLP‐1RA [52].
Elevated levels of amylase and lipase may also be seen in T2D,
even without clinically overt pancreatitis [53]. However, the
initial concerns about a possible link between GLP‐1RA use and
the development of pancreatitis or pancreatic cancer have not
been substantiated in RCTs and real‐world data [52, 54, 55].
Different dosages of tirzepatide have been studied in the RCTs
included in our meta‐analysis, and there were no significant

FIGURE 2 | Forest plot highlighting the proportions of study subjects with pancreatitis (A) tirzepatide versus insulin, (B) tirzepatide versus
GLP‐1RA.

FIGURE 3 | Forest plot highlighting the percent changes from baseline in pancreatic amylase: (A) tirzepatide versus Placebo, (B) tirzepatide versus
insulin.
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differences in the rates of pancreatitis between them. Whether
or not the degree of pancreatic enzyme elevation seen with
tirzepatide is clinically relevant remains unknown.

Obesity is the key driver in the pathogenesis of T2D. Current
guidelines recommend 5–15% weight loss in individuals with
obesity to improve glycemic and metabolic parameters and
prevent complications [56]. The obesity‐centric approach to
managing T2D has led to the popularity of the GLP‐1RAs and
subsequently the “dual” or “triple” agonists, which work on
other receptors besides GLP‐1 receptors. The glucose‐lowering
efficacy of tirzepatide results from concurrent improvements
in multiple key components of the pathophysiology of T2D,

including β‐cell function, insulin sensitivity, and glucagon
secretion [57]. We found that tirzepatide reduced fasting insulin
and HOMA‐IR significantly more than placebo and GLP‐1RA,
indicating its favorable effect on insulin resistance. The reduc-
tion in fasting C‐peptide level was also greater with tirzepatide
than GLP‐1RA. In addition, there were more reductions in
fasting glucagon levels with tirzepatide than with placebo and
GLP‐1RA. The incretin hormones GLP‐1 and GIP are known to
increase glucose‐stimulated insulin secretion and increase beta
cell proliferation and regeneration while reducing their
apoptosis. By inducing significant weight loss, they can also
improve insulin sensitivity. GLP‐1 has additional effects such as
increased lipolysis and increased satiety. While GLP‐1 and GIP

FIGURE 4 | Forest plot highlighting the (A) percent changes from baseline in lipase: tirzepatide versus placebo, (B) percent changes from baseline
in lipase: tirzepatide versus insulin, (C) proportions of study subjects with increased lipase: tirzepatide versus GLP‐1RA.

FIGURE 5 | Forest plot highlighting the changes from baseline in fasting insulin: (A) tirzepatide versus placebo, (B) tirzepatide versus GLP‐1RA.
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both increase insulin levels, the effects on glucagon are con-
tradictory since GLP‐1 decreases glucagon, but GIP can increase
its levels [58]. In non‐diabetics, GIP stimulates insulin secretion
but does not alter glucagon release during hyperglycemia,
whereas during hypoglycemia, it increases glucagon release
without affecting insulin secretion [59]. Notably, in subjects
with T2D, there was increased glucagon secretion in response to
GIP, even during hyperglycemia. In preclinical studies, tirze-
patide has significantly improved β‐cell function and insulin
sensitivity and reduced glucagon secretion in people with T2D
[24]. In vitro studies have shown that the two incretins, GIP and
GLP‐1, administered together, can exhibit synergistic action on
both insulin synthesis and secretion and also on the genes
associated with β‐cell differentiation and survival [60]. Howev-
er, the insulin‐sensitizing effects of tirzepatide were not
explained by the greater weight loss alone, suggesting additional
effects mediated via dual receptor agonism [13].

Several studies have substantiated the greater weight loss and
cardiometabolic benefits of tirzepatide compared with GLP‐
1RAs. One proposed hypothesis behind this is that there is
facilitation of the effects of GIP on re‐sensitized β‐cells. How-
ever, similar results have not been seen with other GLP‐1/GIP
dual agonists that have not produced the same results as tirze-
patide [61]. Tirzepatide has a higher potency at the GIP than at
the GLP‐1 receptor. Additionally, it has unique post‐receptor
signaling properties at the GLP‐1 receptor with a bias toward
cyclic AMP production than β‐arrestin recruitment. This is
evident from in vitro experiments with islet cells, which
revealed that β‐arrestin1 limits the insulin response to GLP‐1
but not to tirzepatide [62]. This, in turn, leads to reduced
GLP‐1 receptor internalization and enhancement of insulin
secretion.

To our knowledge, this is the first SRM to study the pancreatic
safety of tirzepatide and its effects on islet cell function. While
there have been prior meta‐analyses on the therapeutic efficacy
or the overall safety profile of tirzepatide, we focused on its
pancreatic effects. Meta‐analyses of their safety profile concen-
trated mostly on adverse gastrointestinal effects and hypogly-
cemia [63, 64]. We included data on adjudication‐confirmed
pancreatitis events and elevation of pancreatic enzymes to
provide more specific information limited to pancreatic adverse
effects. One important limitation of our analysis was the small
number of RCTs regarding the changes in C‐peptide and
glucagon levels, which could be a key player in explaining the
differences in efficacy between tirzepatide and GLP‐1RA. Due to
a very small number of events, pancreatic cancers were not
included as an outcome in our meta‐analysis. The included
RCTs were not designed to evaluate the safety profile of tirze-
patide, particularly concerning amylase and lipase elevation as
the primary outcomes. Also, the follow‐up time for patients in
the RCTs treated with tirzepatide was relatively short, and
therefore, longer‐term follow‐up is required for more robust
evidence in favor of its safety and reassurance regarding the
sustainability of improvement in insulin resistance.

5 | Conclusion

This SRM suggests that the dual GLP‐1/GIP receptor agonist
tirzepatide improves beta cell functioning and insulin sensitivity
while having a good safety profile for pancreatic adverse events.
While elevation of pancreatic enzymes could be seen, its clinical
significance is unclear, and clinically manifested pancreatitis is
rare. Further longer‐term and larger studies are required to

FIGURE 6 | Forest plot highlighting the changes from baseline in (A) fasting C‐peptide in tirzepatide versus GLP‐1RA, (B) fasting glucagon in
tirzepatide versus placebo, (C) fasting glucagon in tirzepatide versus GLP‐1RA.
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make clearer recommendations regarding routine monitoring of
pancreatic enzymes after initiation or dose up‐titration of tir-
zepatide, as well as studies comparing the effects of tirzepatide
to available GLP‐1RAs on the pancreatic islet cell hormones.
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